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A novel approach to malware classification is introduced based on anal-
ysis of instruction traces that are collected dynamically from the program in
question. The method has been implemented online in a sandbox environment
(i.e., a security mechanism for separating running programs) at Los Alamos
National Laboratory, and is intended for eventual host-based use, provided the
issue of sampling the instructions executed by a given process without dis-
ruption to the user can be satisfactorily addressed. The procedure represents
an instruction trace with a Markov chain structure in which the transition ma-
trix, P, has rows modeled as Dirichlet vectors. The malware class (malicious
or benign) is modeled using a flexible spline logistic regression model with
variable selection on the elements of P, which are observed with error. The
utility of the method is illustrated on a sample of traces from malware and
nonmalware programs, and the results are compared to other leading detec-
tion schemes (both signature and classification based). This article also has
supplementary materials available online.

1. Introduction. Malware (short for malicious software) is a term used to
describe a variety of forms of hostile, intrusive or annoying software or program
code. It was recently estimated that 30% of computers operating in the US are
infected with some form of malware [PandaLabs (2012)]. More than 286 million
unique variants of malware were detected in 2010 alone [Symantec (2011)], and it
is widely believed that the release rate of malicious software is now far exceeding
that of legitimate software applications [Symantec (2008)]. A large majority of
the new malware is created through simple modifications to existing malicious
programs or by using code obfuscation techniques such as a packer [Royal et al.
(2006)]. A packer compresses a program much the same way a compressor like
Pkzip does, then attaches its own decryption/loading stub which “unpacks” the
program before resuming execution normally at the program’s original entry point
(OEP).
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1.1. Review of malware detection. Malicious software is growing at such a
rate that commercial antivirus vendors (AV) are not able to adequately keep up
with new variants. There are two methods for antivirus scanners to implement
their technology. The first is via a static signature scanning method, which uses
a sequence of known bytes in a program and tests for the existence of this se-
quence. The second method of detection is to use generic or heuristic detection
technologies. Unfortunately, even though most of the new malware is very simi-
lar to known malware, it will often not be detected by signature-based antivirus
programs [Christodorescu and Jha (2003), Perdisci et al. (2006)] until the malware
signature eventually works its way into the database, which can take weeks or
even longer. Further, in a recent study [Antivirus Comparatives (2011)], detection
of new malware threats (i.e., those not yet in the signature database) was found to
be substantially less than the ideals touted by AV company product literature.

Because of the susceptibility to new malware, classification procedures based
on statistical and machine learning techniques have been developed to classify
new programs. These methods have generally revolved around n-gram analysis of
the static binary or dynamic trace of the malicious program [Dai, Guha and Lee
(2009), Reddy, Dash and Pujari (2006), Reddy and Pujari (2006), Stolfo, Wang
and Li (2007)], and some very promising results have come from a Markov chain
representation of the program trace [Anderson et al. (2011)].

The data sources used to classify programs include binary files [Kolter and
Maloof (2006), Reddy, Dash and Pujari (2006)], binary disassembled files [Bilar
(2007), Shankarapani et al. (2010)], dynamic system call traces [Bayer et al.
(2006), Hofmeyr, Forrest and Somayaji (1998), Rieck et al. (2011)] and, most
recently, dynamic instruction traces [Anderson et al. (2011), Dai, Guha and Lee
(2009)]. Although some success has been achieved by using disassembled files,
this cannot always be done, particularly if the program uses an unknown packer,
and therefore, this approach has similar shortcomings to the signature-based meth-
ods.

Here a similar path is taken to that in Anderson et al. (2011) where they use
the dynamic trace from many samples of malware and benign programs to train
a classifier. A dynamic trace is a record of the sequence of instructions executed
by the program as it is actually running. Dynamic traces can provide much more
information about the true functionality of a program than the static binary, since
the instructions appear in exactly the order in which they are executed during op-
eration. The drawback to dynamic traces is that they are difficult to collect for two
reasons: (i) the program must be run in a safe environment and (ii) malware of-
ten has self-protection mechanisms designed to guard against being watched by
a dynamic trace collection tool, and care must be taken to ensure the program is
running as it would under normal circumstances.

For this paper a modified version of the Ether malware analysis framework
[Dinaburg et al. (2008)] was used to perform the data collection. Ether is a set of
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extensions on top of the Xen virtual machine. Ether uses a tactic of zero modifica-
tion to be able to track and analyze a running system. Zero modification preserves
the sterility of the infected system, and limits the methods that malware authors
can use to detect if their malware is being analyzed. Increasing the complexity of
detection makes for a much more robust analysis system.

Collecting dynamic traces can be slow due to all of the built-in functionality
of Ether to safeguard against a process altering its behavior while being watched.
Collection of traces can also be performed with Intel’s Pin tool [Luk et al. (2005),
Skaletsky et al. (2010)], which is faster and more stable than Ether. However, there
is some concern that Pin is more easily detected by the program being monitored.
In either case, it is an engineering hurdle to develop a software/hardware solution
that would be efficient enough to collect traces on a host without disruption to the
user. This problem is being investigated, however, the current implementation is
sufficient for application on an enterprise network using a sandbox environment
(i.e., the program is passed along to the user that requested it, while being run on a
separate machine devoted to analysis) [Goldberg et al. (1996)]. There are several
commercial sandbox tools available (e.g., FireEye, CW Sandbox, Norman Sand-
box, Malwr, Anubis, . . . ) that are used by many institutions in a similar manner,
for example.

The proposed methodology (using Pin for trace extraction) has been inserted
into this process at Los Alamos National Laboratory (LANL) and now allows for
a more robust approach to analyzing new threats as they arrive at the network
perimeter. To be clear, the extensive results and comparisons presented in this pa-
per used the Ether tool for trace collection. However, Intel’s Pin tool was adopted
for trace extraction to conduct model training and classification in the actual imple-
mentation in LANL’s sandbox since it was much more stable and therefore better
for use in an automated environment. While this sandbox implementation allows
the possibility of infection on an individual user’s machine, it is still a major advan-
tage to know that a machine has been infected with malware so that the appropriate
action can be taken. For example, it is far better to clean up a few machines and la-
bel that file as malware instantly for other machines (i.e., blacklist it forever using
signature-based tools) than the alternative of not knowing about the infection until
some time much later.

1.2. Goals of this work. The two main goals of this work are then to (i) clas-
sify malware with high accuracy for a fixed false discovery rate (e.g., 0.001) and
(ii) provide an online classification scheme that can determine when enough trace
data has been collected to make a decision.

As mentioned previously, this work builds upon that of Anderson et al. (2011),
but is different in several important ways. Most notably, goal (ii) is tackled here,
but also goal (i) is achieved in a quite different manner through categorization of
instructions and a different classification procedure, as described in Section 3. In
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order to accomplish (i), we propose a logistic regression framework using penal-
ized splines. Estimation of the large number of model parameters is performed
with a Relaxed Adaptive Elastic Net procedure, which is a combination of ideas
from the Relaxed Lasso [Meinshausen (2007)], Adaptive Lasso [Zou (2006)] and
the Elastic Net [Zou and Hastie (2005)]. To accomplish (ii), we allow the regres-
sion model to have measurement error in the predictors in order to account for the
uncertainty in a dynamic trace with a small number of instructions. Initial results
indicate the potential for this approach to provide some excellent and much needed
protection against new malware threats to complement the traditional signature-
based approach.

The rest of the paper is laid out as follows. Section 2 describes the dynamic trace
data and how it will be used in the regression model. In Section 3 the underlying
classification model and estimation methodology are presented. The classification
results on five minute dynamic traces are presented in Section 4. Finally, an illus-
tration of how the method could be applied in practice in an online classification
analysis is provided in Section 5. Section 6 concludes the paper. The supplemen-
tary document to this paper [Storlie et al. (2014)], available online, also presents
some preliminary work on the clustering of malware.

2. Dynamic trace data. As mentioned previously, a modified version of the
Ether malware analysis framework [Dinaburg et al. (2008)] was used to collect
the dynamic trace data. A dynamic trace is the sequence of processor instructions
called during the execution of a program. This is in contrast to a disassembled
binary static trace which is the order of instructions as they appear in the binary
file. The dynamic trace is generally believed to be a more robust measure of the
program’s behavior since code packers can obfuscate functionality from analysis
of static traces. Other data can be incorporated as well (e.g., presence of a packer,
system calls, file name and location, static trace, . . . ). The framework laid out in
Section 3 allows for as many data sources or features as one may wish to include.

In order to make efficient use of the dynamic trace, it is helpful to think of
the instruction sequence as a Markov chain. This representation of the sequence
has been shown to have better explanatory power than related n-gram methods
[Anderson et al. (2011), Shafiq, Khayam and Farooq (2008)]. To this end, the
instruction sequence is converted into a transition matrix Z, where

Zjk = number of direct transitions from instruction j to instruction k.

Estimated transition probabilities P̂ are obtained from counts Z, where

Pjk = Pr{next instruction is k | current instruction is j }.
The elements of P̂ are then used as predictors to classify malicious behavior. This
entire procedure is described in more detail in Section 3. The Zjk are 2-grams,
while the estimated Pjk are essentially a scaled version of the 2-grams, that is,
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the relative frequency of going from state j to state k given that the process is
now in state j . These quantities (Zjk and Pjk) are usually substantially different
in this case, since not all states are visited with similar frequencies. Anderson et al.
(2011) used estimated Pjk from dynamic traces (with the state space consisting of
Intel instructions observed in the sample) as features in a support vector machine.
They found that using the Pjk provided far better classification results for malware
than using 2-grams (or n-grams in general). This is likely due to the fact that
sometimes informative transitions j → k may occur from a state j that is rarely
visited by a particular program, but when it is visited, it tends to produce the j → k

transition prominently. Such situations will be measured very differently with Pjk

versus Zjk .
There are hundreds of commonly used instructions in the Intel instruction set,

and thousands of distinct instructions overall. A several thousand by several thou-
sand matrix of transitions, resulting in millions of predictors, would make esti-
mation difficult. More importantly, many instructions perform the same or similar
tasks (e.g., “add” and “subtract”). Grouping such instructions together in a reason-
able way not only produces a faster method but also provides better explanatory
power versus using all distinct Intel instructions in our experience. This is also
illustrated via classification performance in Section 4.

Through collaboration with code writers familiar with assembly language, we
have developed four categorizations of the Intel instructions, ranging from coarse
groupings to more fine:

• Categorization 1 (8 classes → 64 predictors):
math, logic, priv, branch, memory, stack, nop, other

• Categorization 2 (56 classes → 3136 predictors):
asc, add, and, priv, bit, call, math_other, movc, cmp, dcl, . . .

• Categorization 3 (86 classes → 7396 predictors):
Python Library “pydasm” categories for Intel instructions

• Categorization 4 (122 classes → 14,884 predictors):
pydasm categories for instructions with rep instruction-x given its own class
distinct from instruction-x.

Figure 1 displays a conceptualization of the Markov chain transition probability
representation of a dynamic instruction trace. The graph on the right has eight
nodes corresponding to the eight categories of categorization 1, where the edges
correspond to transition probabilities from one instruction category to the next for
the given program. The location (i.e., address) that each instruction acted on in
memory is not used in this analysis, since these locations are not consistent from
one execution of the program to another.

The data set used contains dynamic traces from 18,942 malicious and 3046
benign programs, respectively, for a total of 21,988 observations. The mali-
cious sample was obtained via a random sample of programs from the website
http://www.offensivecomputing.net/, which is a repository that collects malware

http://www.offensivecomputing.net/
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FIG. 1. Markov chain transition probability representation of a dynamic instruction trace: (left)
the first several lines from a dynamic trace output (i.e., instruction and location acted on in memory,
which is not used), (right) a conceptual conversion of the instruction sequence into categorization 1
transition probabilities.

instances in cooperation with several institutions. Malware samples are acquired
by the Offensive Computing Website through user contributions, capture via mw-
collectors and other honeypots (i.e., traps set up on a network for the purpose of
collecting malware or other information about possible network attacks), discov-
ery on compromised systems, and sharing with various institutions. Admittedly,
this is not a truly random sample from the population of all malicious programs
that a given network may see, but it is one of the largest publicly available malware
collections on the Internet [Quist (2012)].

Obtaining a large sample of “known to be clean” or benign programs is more
difficult. If a program is just not deemed to be malware by AV, it should not be
given a definite “clean bill of health,” as will be clear from the results of Section 4.
Hence, to obtain a large sample of benign programs, a collection was gathered of
many programs that were running on LANL systems during 2012. If these pro-
grams passed through a suite of 25 AV engines as “clean,” then they were treated
as benign for this paper. There is a far lower rate of malware on LANL systems
then in the “wild.” Therefore, if a program that was on a LANL system also passes
through the various AV programs as clean, it is probably safe to deem it benign.

Each of the observations was obtained from a 5 minute run of the program.
Originally there were 19,156 malicious and 3157 benign programs, but any pro-
gram with less than 2000 instructions executed during the five minutes was re-
moved from the data set. The rationale behind this was that some benign processes
remain fairly idle, waiting for user interaction. Since such programs produce very
short traces and are not representative of the kind of programs that require scan-
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ning, it was decided to remove them from the training set. The data set used in this
analysis (dynamic trace files obtained via Ether) is available upon request.

3. A statistical model for malware classification. Elements of an estimated
probability transition matrix for the dynamic trace of each program P̂ are used as
predictors to classify a program as malicious or benign. Two main goals for the
classification model are to (i) screen out most predictors to improve performance
and allow certain transitions to demonstrate their importance to classification, and
(ii) explicitly account for uncertainty in P̂ for online classification purposes be-
cause this uncertainty will have a large impact on the decision until a sufficiently
long trace is obtained.

3.1. Logistic spline regression model. For a given categorization (from the
four categorizations given in Section 2) with c instruction categories, let Zi be the
transition counts between instruction categories for the ith observation (an obser-
vation Zi is made once on each program). Let Bi be the indicator of maliciousness,
that is, Bi = 1 if the ith observation is malicious and Bi = 0 otherwise. For the
initial model fit discussion in this section, we take Pi to be fixed at an estimated
value P̂i . The training set has observations where the traces are long enough so that
there is very little variability in P̂i . In the results of Section 4 we specifically take
P̂i to be the posterior mean [i.e., E(Pi | Zi )], assuming a symmetric Dirichlet(ν)

prior for each row of Pi (i.e., an independent Dirichlet distribution with parame-
ter vector [ν, ν, . . . , ν] was assumed for each row of Pi ). In the analysis presented
in this paper ν = 0.1 was used. However, in Section 5 the assumption of a fixed
known Pi (equal to P̂i ) is relaxed and a simple approach is described to account
for the uncertainty inherent in Pi when making decisions based on shorter traces.

The actual predictors used to model the Bi are

xi = [
logit(P̂i,1,1), logit(P̂i,1,2), . . . , logit(P̂i,c,c−1), logit(P̂i,c,c)

]′(1)

for i = 1, . . . , n, where P̂i,j,k is the (j, k)th entry of the P̂i matrix, and each com-
ponent of the xi is scaled to have sample mean 0 and sample variance 1, across
i = 1, . . . , n. The scaling of the predictors to a comparable range is a standard prac-
tice for penalized regression methods [Tibshirani (1996), Zou and Hastie (2005)].
We then use the model

logit
[
Pr(B = 1)

] = fβ(x) = β0 +
c2∑

s=1

K+1∑
l=1

βs,lφs,l(xs),(2)

where the basis functions φs,1, . . . , φs,K+1 form a linear spline with K knots at
equally spaced quantiles of xs , s = 1, . . . , c2 (and c2 is the number of elements in
the P̂ matrix). That is, φs,1(xs) = xs and

φs,l(xs) = |xs − ξs,l|+ for l = 2, . . . ,K + 1,
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where ξs,l is the (l − 1)th knot for the sth predictor, and |x|+ = x if x > 0 and 0
otherwise.

Pairwise products of the φs,l(x) can also be included to create a two-way in-
teraction spline for f (x). A compromise which is more flexible than the additive
model in (2), but not as cumbersome as the full two-way interaction spline, is to
use a model which includes multiplicative interaction terms, that is,

fβ(x) = β0 +
c2∑

s=1

K+1∑
l=1

βs,s,lφs,s,k(xs) +
c2−1∑
s=1

c2∑
t=s+1

K+1∑
l=1

βs,t,lφs,t,l(xsxt ),(3)

where φs,t,1, . . . , φs,t,K+1 form a linear spline with K knots at equally spaced
quantiles of xsxt for s �= t (and at equally spaced quantiles of xs for s = t). The
model in (3) with K = 5 is ultimately the route taken for implementation of the
detection scheme on our network. This model has potentially a very large number
of parameters in this application [∼30 million β’s for the interaction model in
(3) when using categorization 2]. Thus, an efficient sparse estimation procedure is
necessary and is described next in Section 3.2.

3.2. Relaxed Adaptive Elastic Net estimation. In order to estimate the large
number of parameters in (3), a combination of the Elastic Net [Zou and Hastie
(2005)], Relaxed Lasso [Meinshausen (2007)] and Adaptive Lasso [Zou (2006)]
procedures was used. The Elastic Net is efficient and useful for extremely high-
dimensional predictor problems p � n. This is in part because it can ignore many
unimportant predictors (i.e., it sets many of the βs,t,l ≡ 0). The Elastic Net, Re-
laxed Lasso and Adaptive Lasso procedures are reviewed below, then generalized
for use in this application.

The data likelihood is

L(β;B) =
n∏

i=1

[
logit−1(

fβ(xi )
)]IBi=1

[
1 − logit−1(

fβ(xi )
)]IBi=0,

where B = [B1,B2, . . . ,Bn]t . The Elastic Net estimator is a combination of ridge
regression and Lasso [Tibshirani (1996)], that is, it seeks the β that minimizes

logL(β;B) + λ

{
ρ

c2∑
s=1

c2∑
t=s

K+1∑
l=1

β2
s,t,l + (1 − ρ)

c2∑
s=1

c2∑
t=s

K+1∑
l=1

|βs,t,l|
}

(4)

for given tuning parameters λ > 0 and ρ ∈ [0,1] which are typically chosen via m-
fold cross-validation (CV). For the linear spline model of (3), the penalty on β2

s,t,l

and |βs,t,l| corresponds to a penalty on the overall trend and the change in slope at
the knots (i.e., encourages “smoothness”). Another benefit to the Elastic Net is that
fits for many values of λ are obtained at the computational cost of a single least
squares fit [i.e., O(p2)] via the Least Angle Regression (LARS) algorithm [Efron
et al. (2004)].
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The Relaxed Lasso and Adaptive Lasso both emerged as procedures developed
to counteract the over-shrinking that occurs to the nonzero coefficients when using
the Lasso procedure in high dimensions. The Relaxed Lasso can be thought of as
a two-stage procedure, where the Lasso procedure (i.e., the Elastic Net estimator
with ρ = 0) is applied with λ = λ1, then the Lasso is applied again to only the
nonzero coefficients with λ = λ2, where typically λ1 > λ2.

The Adaptive Lasso is also a two-stage procedure where an initial estimate of
βs,t,l is obtained via unregularized maximum likelihood estimates or via ridge re-
gression (if p > n). In the second step, the Lasso is applied with a penalty that has
each term weighted by the reciprocal of the initial estimates, β̃s,t,l .

This motivates the following three-step approach taken to estimate the coeffi-
cients of the logistic spline model in (3):

Algorithm 1: Estimation procedure.

Step 1: Screen the predictors xs for importance (i.e., conduct variable selection)
using a linear logistic model

logit
[
Pr(B = 1)

] = f1(x) = α0 + ∑
s

αsxs,

with α estimated via Elastic Net in (4) with λ = λ1 and ρ = 0.5.
Step 2: Use active predictors (i.e., those xs with αs �= 0) to fit the interaction

spline model of (3) via the Elastic Net with λ = λ2 and ρ = 0.5. Denote the esti-
mated coefficients from step 2 as β̃s,t,l .

Step 3: Fit the interaction spline model of (3) via the Adaptive Elastic Net with
λ = λ3 and ρ = ρ3. That is, β̂ is given by the minimizer of

logL(β;B) + λ3

{
ρ3

c2∑
s=1

c2∑
t=s

K+1∑
l=1

(
βs,t,l

β̃s,t,l

)2

+ (1 − ρ3)

c2∑
s=1

c2∑
t=s

K+1∑
l=1

∣∣∣∣βs,t,l

β̃s,t,l

∣∣∣∣
}
.(5)

The tuning parameters λ1, λ2, λ3 and ρ3 need to be chosen via CV. However,
these parameters are tuned individually within their respective steps of the fitting
algorithm (i.e., tune λ1 in step 1, then tune λ2 in step 2, then tune λ3 and ρ3 in
step 3). That is, they are not tuned to find a global optimum in the four-dimensional
space. As mentioned above, tuning of λ comes at no additional cost in the LARS
algorithm. So the only loop needed is in step 3 of the algorithm to tune ρ3. Addi-
tionally, the implementation of the LARS algorithm via the R package glmnet
allows a specification of the maximum number of nonzero coefficients to ever be
included into the model. This max was set to 20,000 in each step of Algorithm 1
in our implementation.

On the surface it may seem excessive to combine these three concepts, but the
extremely high dimensionality of the model in (3) demands this aggressive ap-
proach. There are over 9 million parameters if using categorization 2, over 200
million predictors if using categorization 4. The initial out-of-sample classification
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results using just one of these procedures alone were far inferior to those obtained
with combined approach. For example, overall 10-fold CV classification rates of
∼94% were achieved with the Elastic Net, Adaptive Lasso and Relaxed Lasso,
respectively, when used alone to fit the model in (3), whereas overall 10-fold CV
accuracies achieved using the combined method above are ∼98%, as shown in
Section 4. One could also use another sparse estimation routine in place of Elastic
Net in Algorithm 1. In fact, the results of using the Maximum a posteriori (MAP)
estimate discussed in Taddy (2013) are also provided in Section 4.

3.3. Prior correction for sample bias. Prior correction [Manski and Lerman
(1977), Prentice and Pyke (1979)] involves computing the usual logistic regression
fit and correcting the estimates based on prior information about the proportion of
malware in the population of interest π1 and the observed proportion of malware
in the sample (or sampling probability), B̄ . Knowledge of π1 can come from some
prior knowledge, such as expert elicitation or previous data. King and Zeng (2001)
point out that, provided the estimates of the regression coefficients [i.e., βs,t,l , j <

k, l = 1, . . . ,M in (5)] are consistent, the following corrected estimate is consistent
for β0:

β̃0 = β̂0 − log
(

1 − π1

π1

B̄

1 − B̄

)
.(6)

Prior correction will have no effect on the classification accuracy results dis-
cussed in Section 4, since it is just a monotonic transformation, so there will be
an equivalent threshold to produce the same classification either way. However, it
can be useful in practice to have the estimated probability of maliciousness for a
given program provide a measure of belief of the maliciousness of the program on
a scale that incorporates the prior probability that the code is malicious. That is, if
π1 can somehow be specified for the given network on which the program will be
executed, then prior correction in (6) can be useful.

4. Classification results. Let P̂r(B = 1 | x) be given by (3) with βs,t,l re-
placed by their respective estimates β̂s,t,l . The ith observation is classified as ma-
licious if P̂r(B = 1 | xi ) > τ for some threshold τ which can be selected to produce
an acceptable false discovery rate (FDR).

4.1. Out of sample accuracy. The classification accuracy of the proposed
method is first examined on the various categorizations. The 10-fold CV over-
all accuracy results for the four different categorizations are provided in Table 1.
The overall accuracy is defined as the number of correct classifications divided
by the number of programs. Categorizations 2, 3 and 4 are generally not much
different from each other, but they all perform far better than categorization 1. In
the remainder of the results the categorization 2 is used, since it provides the most
parsimonious model among the best performing covariate sets.
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TABLE 1
Overall out-of-sample accuracy calculated via 10-fold CV by category using logistic interaction

spline regression with Relaxed Adaptive Elastic Net estimation. The standard error of the respective
accuracy estimates are provided in parentheses

Cat 1 Cat 2 Cat 3 Cat 4

0.923 (0.009) 0.976 (0.004) 0.971 (0.003) 0.971 (0.003)

The logistic spline regression with Relaxed Adaptive Elastic Net estimation EN
Inter Spline is compared to various other methods (with all methods using cate-
gorization 2 unless explicitly stated otherwise) in Table 2. The data set was parti-
tioned into the same 10 sets to produce the 10-fold CV results for all methods. The
entire estimation routine (including scaling the covariates and parameter tuning)
was conducted on each of the ten training sets, then predictions on the respective
test sets were obtained.

The competing methods are (i) MAP Inter Spline—using the MAP estimate of
Taddy (2013) from the R-package textir in place of the elastic net throughout
Algorithm 1, (ii) EN Linear+Int—using a linear model with interaction instead of
the interaction spline in Algorithm 1, (iii) EN Add Spline—using an additive spline
instead of the interaction spline in Algorithm 1, (iv) EN Linear—linear logistic
regression estimated with Elastic Net (i.e., step 1 of Algorithm 1), (v) MDA—
the mixture discriminant analysis (MDA) routine of Hastie and Tibshirani (1996)
(using the R package mda) using two components on the set of covariates with
nonzero coefficients from the linear logistic regression elastic net, (vi) SVM—
a support vector machine using a Gaussian kernel provided by the R package
kernlab, (vii) SVM (No Cat)—a support vector machine using a Gaussian ker-
nel and using a distinct category for each unique instruction [i.e., the approach of
Anderson et al. (2011) implemented with the author’s C code], and (viii) Antivirus
1–7—seven leading signature-based antivirus programs with all of their most re-
cent updates. The predictor screening used in conjunction with the MDA method
is essential in this case in order to avoid the numerical issues with the procedure
that occurred when using all predictors. The number of mixture components (two)
was chosen to produce the best 10-fold CV accuracy.

The names of the leading antivirus programs are not provided due to legal con-
cerns. It is important to recognize that these AV software packages are using sig-
natures (i.e., blacklists) and whitelists as well as heuristics to determine if a pro-
gram is malicious. The other (i.e., classification-based) methods in the table are
not using signatures, hence, a direct comparison to the AV results is not possible.
In particular, the results of the classification approaches would improve substan-
tially if signatures were to be used to ensure correct classification for some of
the programs in the data set. It is important to understand that the goal of the
classification-based methods is not to replace signature-based detection, but rather
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TABLE 2
Comparison of classification results using various methods. All methods use categorization 2 with
the exception of SVM (No Cat), which assumes each unique instruction is its own unique category.

All methods had results calculated via 10-fold CV (same 10 folds were used for each method)

Malware detection accuracy1
Compute

time (min)

Detection method
Overall

accuracy 1% FDR2 0.1% FDR3 ∼0% FDR4 Train5 Predict6

EN Inter Spline 0.976 0.817 0.692 934 0.291
MAP Inter Spline 0.969 0.807 0.594 265 0.282
SVM 0.963 0.597 0.333 231 0.328
EN Linear+Int 0.961 0.679 0.373 90 0.013
EN Add Spline 0.952 0.646 0.342 483 0.187
EN Linear 0.944 0.564 0.272 32 0.002
SVM (No Cat) 0.936 0.420 0.315 447 0.929
MDA 0.926 0.252 0.115 33 0.001
Antivirus 1 0.838 0.812
Antivirus 2 0.831 0.804
Antivirus 3 0.825 0.797
Antivirus 4 0.805 0.774
Antivirus 5 0.790 0.756
Antivirus 6 0.619 0.558
Antivirus 7 0.287 0.172

1The number of correct malware classifications divided by the number of malware observations.
230 out of 3046 benign programs incorrectly considered malicious.
3Three out of 3046 benign programs incorrectly considered malicious.
4There are some false positives from signature-based detection methods due to fuzzy matching
heuristics (Antivirus 1 and Antivirus 2 had two and one false detections, respectively, in this data
set, e.g.), but the exact FDR for these signature-based methods is unknown.
5Time in minutes to conduct the estimation of the model including parameter tuning (via 10-fold
CV) for one of the ten training sets (i.e., using ∼20,000 observations) once the traces have been
collected and parsed.
6Time in minutes to conduct the classification of all of the programs in one of the ten test sets (i.e.,
∼2200 programs) once the traces have been collected and parsed.

to complement signature-based methods by providing protection from new threats.
Even without the use of signatures, the interaction spline logistic method is com-
petitive with signature-based methods and would be a promising addition to AV
software. The EN Linear+Int method is also competitive in terms of accuracy and
at a small fraction of the computational cost for training and prediction.

Another competing method that would ideally be used in this comparison is the
posterior mean of the probability of maliciousness (as opposed to the MAP), as dis-
cussed in Gramacy and Polson (2012) and provided by the R package reglogit.
In fact, when assuming a Bayesian logistic regression model, thresholding on the
posterior mean would be Bayes optimal. In this particular problem, though, the
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FIG. 2. ROC curves for the methods in Table 2.

covariate space was too large for this approach to be practical. However, the MAP
and posterior mean will be nearly identical for a large enough sample. In this pa-
per, for example, we have a sample of over 20,000 and, in practice, this number
is growing everyday. In an effort to compare MAP to posterior mean for a large
sample, we ran with both approaches on the logistic regression model with lin-
ear terms using categorization 1. This test case was chosen because it posed no
computational issues. The MAP and posterior mean provided nearly identical re-
sults, for example, out-of-sample accuracies were 0.911 and 0.908, respectively.
This provides some assurance that the MAP will perform similarly to the poste-
rior mean here, however, it is hard to know for certain how large of a sample is
needed for this difference to become negligible for the interaction splines model
on categorization 2.

Figure 2 displays the ROC curves for the various competing methods in Table 2.
The antivirus programs are excluded since there is no thresholding parameter with
which to vary the false positive rate. It is clear from Table 2 and Figure 2 that
the interaction spline logistic model with Relaxed Adaptive Elastic Net estima-
tion or Relaxed Adaptive MAP estimation are superior to the other methods for
this classification problem. In particular, the Interaction Spline EN procedure has
an estimated out-of-sample overall error rate of only 0.024 (accuracy of 97.6%)
and still maintains a high degree of malware identification accuracy (69.2%) when
held to a very small (0.1%) false positive rate. When implementing this procedure
in practice, it would be wise to actually tune the estimation procedure not to neces-
sarily obtain the best overall accuracy as was done here, but rather to specifically
obtain high accuracy at identifying malware for a small false positive rate.
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5. Online detection. The predictors used in the logit spline model of Sec-
tion 3 are the elements of the probability transition matrix P, which can only be
observed (i.e., estimated) with error. This measurement error can be substantial
for a dynamic trace with only a small number of instructions. For online classi-
fication, it is essential to account for this measurement error and its effect on the
probability of maliciousness. Of particular importance is determining how long of
an instruction trace is needed before a decision can be made.

To tackle this issue, each row of P is further modeled as a symmetric
Dirichlet(ν) vector a priori, with each row assumed independent. The Dirichlet
distribution is a conjugate prior for P in a Markov chain model. With this assump-
tion, and a trace T1:m with m instructions observed thus far, the probability of
being Malicious, Pr(B = 1) = logit−1(f̂ (P)), has inherent variability (due to the
uncertainty in P) that decreases as m increases (i.e., as a longer instruction trace is
obtained). If a given process produces a trace T1:m, the distribution of Pr(B = 1)

can be simulated by generating draws from the posterior of P to produce uncer-
tainty bands and a posterior mean estimate E[Pr(B = 1) | T1:m].

This can be thought of as an empirical Bayes approach, as f is replaced with an
estimate f̂ , while only the uncertainty in P is recognized. This is a good compro-
mise, since there is a large sample available to construct the classification model,
and the uncertainty in Pr(B = 1) is dominated by uncertainty in P early on in the
trace. Ideally, a fully Bayesian version of this procedure could be implemented,
accounting for the “measurement” error even in the logistic regression estimation
process. However, this was attempted and proved to be computationally infeasible
for this problem. Figure 3 demonstrates the empirical Bayes approach on the first
malicious and benign programs in the sample, respectively, using a prior correction
of π1 = 0.01. There is a lot of uncertainty in either case initially, until about 10,000
instructions are collected (typically this takes a few seconds of runtime or less). By

(a) Dynamic trace from a malicious program (b) Dynamic trace from a benign program

FIG. 3. Posterior mean of the probability of malware given the instruction sequence for a malicious
sample (a) and benign sample (b), respectively, as a function of number of instructions (95% CI
reflecting uncertainty in red).
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FIG. 4. Computation time breakdown for analysis of a particular new program that generated
∼3.5 × 106 instructions in a 5 minute trace. CIs calculated from a sample of 1000 posterior draws
of P.

about 30,000 instructions the Pr(B = 1) for the malicious and benign processes are
tightly distributed near one and zero, respectively. A possible implementation for
online decision making could be to classify as malicious (or benign) according to
Pr(B = 1) > τ (for some threshold τ that admits a tolerable number of alarms per
day) once the 95% credible interval (CI) is narrow enough (e.g., <0.1).

Figure 4 provides a breakdown of the computational time needed for each piece
of the analysis of a new program. It is clear that most of the time is spent on
the extraction of the trace itself. This five minutes, however, can be significantly
shortened in many cases using the CI approach discussed above. With this current
computational burden, this approach is currently only suitable for use on a network
sandbox (i.e., running on a server) as it is passed along to the host machine. A trace
extraction in-line on the host could be feasible via a different software or hardware
solution, however, and is currently being investigated further.

Once a file is suspected of being malicious, it is often necessary to reverse en-
gineer (RE) the program to determine its functionality and origin in order to know
how to respond and/or how to better prevent future infections into the computer
network. The reverse engineering process is fairly sophisticated, requiring many
hours of effort from a highly trained individual. Some preliminary work has been
done to cluster malware instances into homogeneous groups to speed up the RE
process. This work is presented in a supplemental document to this paper [Storlie
et al. (2014)] which is available online. In that document a novel clustering method
based on a probabilistic change similarity measure is described. When a new mal-
ware instance is detected, it can be clustered into a homogeneous group, where
perhaps some of the group members have already been reverse engineered by an
analyst. The analyst can then use these previous efforts to more quickly under-
stand the nature and functionality, origin, etc. of the newly suspected malicious
program. An example of how this would work on a particular malware instance is
also provided.

6. Conclusions and further work. The Relaxed Adaptive Elastic Net is a
good framework for adding flexibility with splines for classification in high-
dimensional settings. It avoids over-fitting to obtain superior accuracy relative to
other popular approaches for classifying new programs. It is also possible to use
a model-based classification approach that treats the dynamic trace as a Markov
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chain directly, and assumes a mixture of Dirichlet distributions for the rows of the
transition matrix P. This framework would also cluster malware samples as it de-
tects them. Also, Anderson et al. (2012) use other features (e.g., static trace, file
entropy, system calls) in addition to dynamic traces (obtained via Pin) to perform
classification. The approach discussed here would easily allow for these additional
features along with the dynamic traces. Since categorization of instructions is use-
ful, it seems prudent to further investigate what the best possible categorization
might be.

The current framework allows for online application in a sandbox at the perime-
ter of a network. Implementation of the classification procedure in this manner is
currently up and running on LANL’s network and has identified several instances
of malware that were not found by any of LANL’s commercial AV tools. Thus, this
approach has proven to be a useful supplement to traditional signature-based AV.
The classification procedure runs very quickly on a given trace (once the model is
estimated, which is done offline). The largest obstacle to producing a host-based
software (i.e., running the classification procedure on an actual user’s machine as
it runs the applications) is the collection of dynamic traces in real time efficiently
without disruption to the user. The feasibility of such a collection procedure is cur-
rently being investigated. Finally, it could be useful to incorporate change point
detection in order to allow for instances where a benign process is “hijacked” by a
malicious program [Cova, Kruegel and Vigna (2010)].
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SUPPLEMENTARY MATERIAL

Supplement to “Stochastic identification and clustering of malware with
dynamic traces” (DOI: 10.1214/13-AOAS703SUPP; .pdf). This article also has a
supplemental document Storlie et al. (2014) available online which presents pre-
liminary work on the clustering of malware, to aid in reverse engineering. Some
computational complexity considerations for the proposed method are also dis-
cussed.
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