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LIKELIHOOD REWEIGHTING METHODS TO REDUCE
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ON HISTORICAL DATA TO MAKE INFERENCE1

BY LEI NIE, ZHIWEI ZHANG, DANIEL RUBIN AND JIANXIONG CHU
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It is generally believed that bias is minimized in well-controlled random-
ized clinical trials. However, bias can arise in active controlled noninferior-
ity trials because the inference relies on a previously estimated effect size
obtained from a historical trial that may have been conducted for a differ-
ent population. By implementing a likelihood reweighting method through
propensity scoring, a study designed to estimate a treatment effect in one trial
population can be used to estimate the treatment effect size in a different tar-
get population. We illustrate this method in active controlled noninferiority
trials, although it can also be used in other types of studies, such as histori-
cally controlled trials, meta-analyses, and comparative effectiveness analyses.

1. Introduction. The code of federal regulations (CRF) Chapter 21, Sec-
tion 314.126, states that “The purpose of conducting clinical investigations of a
drug is to distinguish the effect of a drug from other influences. . .” and the pur-
pose is achieved through “adequate and well-controlled clinical investigation.”
According to the CRF, an adequate and well-controlled trial has a number of char-
acteristics, including: (1) “The method of assigning patients to treatment and con-
trol groups minimizes bias and is intended to assure comparability of the groups
with respect to pertinent variables such as age, sex, severity of disease. . .” and
(2) “Adequate measures are taken to minimize bias on the part of the subjects,
observers, . . . .” Characteristic (1) and part of (2) aim to minimize bias through
balancing the population between the two treatment arms.

By conducting well-controlled clinical trials, we generally anticipate that sys-
tematic bias is minimized in superiority trials. However, this belief may be more
tenuous in noninferiority trials. Note that noninferiority trials are the major vehicle
to evaluate new treatments in many disease areas, after the pioneering considera-
tion of ethical issues in Placebo-controlled trials by Rothman and Michels (1994).

Consider a Palivizumab-controlled noninferiority trial of Motavizumab for pro-
phylaxis of serious respiratory syncytial virus (RSV) disease in high risk chil-
dren [Carbonell-Estrany et al. (2010)]. This trial will be called MOTA through-
out the paper. The goal of the trial was to evaluate whether Motavizumab was
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noninferior to Palivizumab in the rate of hospitalization attributed to RSV. Let
μ̂TC be the estimated log-odds ratio of Palivizumab vs. Motavizumab, and let
μ̂CP be the estimated log-odds ratio of Placebo vs. Palivizumab. Because the
log-odds ratio of Placebo vs. Motavizumab cannot be estimated directly (the
noninferiority trial does not have a placebo arm), μ̂TC + μ̂CP is often used

as an indirect estimate, with a standard error of
√

σ 2
TC + σ 2

CP. We may con-
sider the noninferiority of Motavizumab to Palivizumab to be met at level α if

μ̂ = (μ̂TC + μ̂CP)/
√

σ 2
TC + σ 2

CP > Zα , where Zα is the (100 − α)th percentile of
a standard normal distribution. In this example, μ̂CP and its standard error σCP

were obtained from an earlier Placebo-controlled trial of Palivizumab, Impact-
RSV Study Group (1998), in which μ̂CP = 0.86 (corresponding to odds ratio
of 2.4) with a standard error of 0.21. This trial will be called IMPACT through-
out the paper. Now, keeping in mind the fact that the statistics μ̂ synthesizes μ̂CP

and μ̂TC, with the former estimated from the IMPACT population and the latter es-
timated from the MOTA population, we illustrate the following issues. First, both
MOTA and IMPACT enrolled subjects exclusively from two disjoint subgroups:
(1) children ≤24 months with a clinical diagnosis of Bronchopulmonary dysplasia
(BPD); and (2) children with ≤35 weeks gestation and ≤6 months, who did not
have BPD. The proportion of subjects with BPD was 51% in IMPACT and only
22% in MOTA. Second, treatment heterogeneity of Palivizumab was observed in
these two subgroups in IMPACT. For subjects enrolled with BPD, the odds ratio
was 4.88 with a 95% C.I. of (2.17,10.96), and for subjects enrolled without BPD,
the odds ratio was 1.72 a 95% C.I. of (1.06,2.79) (see Section 4). The Wald Chi-
square test of treatment by BPD interaction through a logistic regression was sig-
nificant with a p-value of 0.03. Because of the population difference and treatment
heterogeneity, an appropriate odds ratio μ̂CP used in μ̂ should reflect the popula-
tion of MOTA, while the value of 0.86 instead reflects the population of IMPACT.
Using data provided in Section 4, we obtain the adjusted incidence rate of Placebo
in the MOTA population of 34/266 × 22% + 19/234 × 78% = 9.2%, and the ad-
justed incidence rate of Palivizumab of 39/496 × 22% + 9/506 × 78% = 3.1%.
Therefore, the adjusted log-odds ratio is 1.14 and the adjusted odds ratio is 3.1.
Consequently, the adjusted log-odds ratio of Placebo vs. Palivizumab in the MOTA
population should be better quantified as 1.14 rather than 0.86, the unadjusted log-
odds ratio μ̂CP. The difference between 1.14 and 0.86 is a bias associated with this
inference.

In the previous example, it was easy to adjust for the population difference,
which only involved heterogeneity in BPD status. In some other examples, the
situation could be more complicated. For example, in the development of Elvite-
grevir [Molina et al. (2012)], the trial population was different from the historical
trial population in several characteristics, for which treatment heterogeneity has
been reported [Cooper et al. (2008)].
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These examples show that analysis of a noninferiority trial may rely on a com-
bination of information from the trial itself and one or more historical trials. The
main issue is that the populations of the noninferiority and historical trials may be
different. If treatment heterogeneity is present, an inference that does not adjust
for the population difference can be biased.

Covariate adjustment approaches [Zhang (2009) and Nie and Soon (2010)] have
been proposed to address the problem. Both approaches involve a regression model
relating the clinical outcome to treatment and relevant covariates. They cannot be
directly applied to obtain the marginal (crude) odds ratio, which is the prespecified
primary endpoint in the aforementioned examples.

This paper proposes a calibration method through likelihood reweighting so
that a study designed to estimate a marginal treatment effect size for one trial
population (e.g., IMPACT) may be used to calibrate the effect size in a different
but closely related study population (e.g., MOTA). We prove that the maximum
likelihood estimator for this reweighted likelihood is a consistent estimator of the
treatment effect size in the targeted population. In addition, we also propose a
nonparametric approach based on the calibration method.

The proposed calibration approach using the likelihood reweighting method is
(asymptotically) equivalent to the covariate adjustment approach in some cases
such as linear regression, however, they are different in other cases. The choice be-
tween the two approaches can be subtle and subjective. An important consideration

is to make sure that μ̂TC and μ̂CP in the statistics μ̂ks = (μ̂TC + μ̂CP)/
√

σ 2
TC + σ 2

CP
have similar interpretations. Specifically, if μ̂TC is a marginal (i.e., overall) treat-
ment effect as in the previous two examples and in most randomized clinical trials,
then μ̂CP should probably be calibrated using the method presented in this paper
so as to maintain the marginal interpretation. In Section 3.3 we also make some
observations on the likelihood reweighing method as an alternative to the covariate
adjustment approach used in randomized clinical trials, along with the differences
noted in the literature.

Although this paper mainly targets noninferiority trials, the results are also
applicable to historically controlled trials, which have similar issues [Friedman,
Furberg and Demets (1998)]. A comparison of the likelihood reweighting method
to related methods in historically controlled trials, for example, Zhang (2007),
Signorovitch et al. (2010) and Signorovitch et al. (2011), is provided in the sup-
plement [Nie et al. (2013)]. This paper focuses on calibrating the treatment effect
size from one population to another population which is different but overlapping.
It is related to but different from studies generalizing results from a subpopula-
tion to a strictly larger population (whole population); see Cole and Stuart (2010),
Greenhouse et al. (2008), Weisberg, Hayden and Pontes (2009) and Frangakis
(2009), among others. These references are restricted to the clinical trial literature,
although other areas, such as observational studies, involve similar problems.
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2. Motivation, assumptions, and notation.

2.1. Motivation. The idea behind our method is simple. Recall the Introduc-
tion where we obtained the expected incidence rate of Placebo in the MOTA pop-
ulation as

12.8% × 22% + 8.1% × 78% =
∑500

i=1 yipxi,MOTA/pxi,IMPACT

500
,

where pxi,MOTA and pxi,IMPACT are the percentage of Placebo subjects with char-
acteristics xi in MOTA and IMPACT trials, respectively. When xi = 1 (a diagnos-
tic of BPD), the pxi,MOTA and pxi,IMPACT are 22% and 53%, respectively; when
xi = 0, they are 78% and 47%. By defining pxi,MOTA/pxi,IMPACT as ri , the ex-
pected incidence rate of Placebo in the MOTA population is simply the mean of
reweighted response from all subjects and the weight reflects the change of popu-
lation difference with respect to BPD status.

In many other situations, the parameters cannot be directly calibrated as shown
in this example. They can, however, be estimated using a likelihood approach to
be described shortly.

Robins and colleagues gave an intuitive explanation of how the inverse probabil-
ity weighting approach reduces bias in the context of estimating marginal structural
models (MSMs) in epidemiology [Robins, Hernán and Brumback (2000)]. Heuris-
tically, weighting each subject by the inverse of the propensity score for the treat-
ment actually received creates a confounding-free pseudo-population, where treat-
ment assignment is independent of the potential outcomes. Typically, the inverse
probability weighting approach is used to estimate marginal means of potential
outcomes in an estimating equation framework. However, the insights of the work
by Robins and colleagues certainly extend to likelihood-based inference and allow
us to calibrate the treatment effect. Specifically, upon appropriately reweighting
the likelihood function contributed by each subject, a calibrated treatment effect
can be obtained. Before illustrating the reweighted likelihood approach, we intro-
duce some notation and assumptions.

2.2. Assumptions and notations. Consider a trial conducted in a population P

(e.g., the IMPACT population) to compare treatment 1 (e.g., Palivizumab) to treat-
ment 2 (e.g., Placebo). We assume that a random sample from P is randomly
assigned into these two treatment groups. The objective of the trial is to quantify
the treatment effect size of treatment 1 relative to treatment 2 in population P . The
objective of this paper is to calibrate the effect size of treatment 1 relative to treat-
ment 2 from the original population to a different but closely related population P ∗
(e.g., MOTA population).

We assume that the populations P and P ∗ are different. In our first example,
P refers to a population comprised of subjects with BPD (51%) and without BPD
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(49%) and P ∗ refers to a population with a different composition (22% with BPD,
78% without BPD).

We also assume that the populations P and P ∗ are closely related and that the
differences between P and P ∗ are entirely captured by the value of a predictive
covariate (vector) X representing subjects’ baseline disease characteristics. In ad-
dition, we assume that all subjects with covariate value X = x are expected to
have the same treatment effect, regardless of their origin (population P or pop-
ulation P ∗). That is, subjects with the same covariate value X are exchangeable
in P and P ∗. In our first example, this means subjects with the same BPD diag-
nostic status, whether in the IMPACT population or the MOTA population, are
exchangeable in terms of response to treatments.

The difference and close relationship between population P and P ∗ is further
illustrated in mathematical form below after we clearly state the objective of the
paper. Let Y be the response variable. We write μt(X) = E(Y |X,T = t) for the
conditional mean response of subjects with covariate X who were assigned into
treatment T = t , and μtP = ν[EX∈P {μt(X)}] for the transformed marginal mean
response with respect to population P . When ν(·) is the identity function, μtP is
the marginal mean; when Y is a binary variable and ν(·) is the logit function, μtP

is the log odds in the population P . μtP may be used to quantify the response
of treatment T = t from a historical trial, although this is not the focus of this
paper but a by-product. Instead this paper focuses on noninferiority trials, in which
we are interested in the treatment effect of treatment 1 vs. treatment 2. We thus
consider μP = π [EX∈P {μ1(X)},EX∈P {μ2(X)}] as a metric to measure treatment
effect of treatment 1 vs. treatment 2.

In the historical trial (e.g., IMPACT), μtP or μP is estimated. However,
the objective in this paper is to estimate μtP ∗ = ν[EX∈P ∗{μt(X)}] or μP ∗ =
π [EX∈P ∗{μ1(X)},EX∈P ∗{μ2(X)}] through calibration, without conducting a dif-
ferent trial in population P ∗ (MOTA population).

Let F(x) and F ∗(x) denote the cumulative distribution functions of X in P

and P ∗, respectively, and let f (x) and f ∗(x) be the corresponding probability
density functions. We first assume that f ∗(x)/f (x) �= 1 for some X = x, which
illustrates the differences between populations P and P ∗. We also assume that
∞ > r(x) = f ∗(x)/f (x) is well defined. Because the populations are fully de-
scribed by X, this assumption means that any subject included in P ∗ should have
representatives with the same measurements in population P . This highlights the
close relationship between P and P ∗. When a value of x does not present in P ∗,
then r(x) = 0. In this case, we shall not use the subjects in the historical trials with
value x.

3. Calibration of treatment effect size through likelihood reweighting. In
our first example only the BPD status is considered and the weight is easy to de-
fine. However, in our second example many predictive covariates may need to be
considered. In the latter case, the definition of the weight is straightforward using
the concept of the propensity score [Rosenbaum and Rubin (1983)].
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3.1. Parametric approach. Assume two random samples of size n1, n2 from
population P are assigned into treatment 1 and treatment 2, respectively. We as-
sume yit , the ith subject’s response from treatment group t , follows a generalized
linear model (GLM) with canonical link,

lt (y, θtx) = exp
{

yθtx − b(θtx)

atx(ϕtx)
+ ctx(y,ϕtx)

}
.(1)

Let g(·) be the canonical link function; then μt(X) = g−1(θt ). We assume that
g(·) is a monotone function with continuous second derivative functions. One pos-
sible metric to measure the treatment effect is EX(θtx) and another possible metric
is μtP = g[EX∈P {μt(X)}]. In the binomial-logistic regression case, we implicitly
assume that the log odds is additive for the metric EX(θtx) and assume the pro-
portion is additive for the metric μtP = g[EX∈P {μt(X)}]. The former metric was
used in the covariate adjustment approach of Nie and Soon (2010). The latter met-
ric shall be used in the likelihood reweighting method, as introduced in this paper.
These two metrics are related but usually are not identical in nonlinear models.

To estimate μtP , we construct the likelihood function

nt∏
i=1

lt (yit , αt ).(2)

The maximum likelihood estimate (MLE) α̂t of αt is a consistent estimate of
the treatment effect size μtP = g[EX∈P {μt(X)}]. The proof for this is standard
and similar to that of Theorem 1 below, and is therefore omitted. However, in this
paper, our goal is to provide a consistent estimate of μtP ∗ = g[EX∈P ∗{μt(X)}].
Our strategy is to “tilt” the population P so that it matches the population P ∗ and
our matching tool is the propensity score.

In the likelihood (2) we reweight the contribution of the likelihood function
from the ith subject from the historical trial with the weight r(x), and form a new
likelihood function (2*)

nt∏
i=1

{
lt (yit , αt )

}r(xi).(2*)

THEOREM 1. α̂∗
t , the MLE which maximize (2*), is a consistent estimate

of μtP ∗ = g[EX∈P ∗{μt(X)}]. In addition, α̂∗
t ∼ N(μiP ∗,A−1(μiP ∗)B(μiP ∗) ×

A−1(μiP ∗)), where

A(αt ) = E

{
r(x)

d2 log lt (yit , αt )

dα2
t

}
,

B(αt ) = E

{
r2(x)

d log lt (yit , αt )

dαt

d logt (yit , αt )

dαt

}
.
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The proof of Theorem 1 is given in the Appendix. Theorem 1 indicates that
the calibrated treatment effect converges to the treatment effect that would be pre-
sented in population P ∗. In other words, the likelihood function (2*) is reweighted
in such a way that the units can be treated as randomly sampled from a target pop-
ulation, not the population of the study. Note that, if the two trials have the same
population, then r(x) = 1, so that likelihood function (2*) reduces to (2).

Briefly, we note that the parametric approach easily extends to include some
key covariates, including a treatment indicator as typically used in noninferiority
trials, in the likelihood (2*) as follows:

n∏
i=1

{
l(yi, α + βz)

}r(xi),

where l(yi, α + βz) is the likelihood function contributed by the ith subject and
z is a vector of treatment and/or covariate of interest. The MLE converges to the
parameters in the target population P ∗.

3.2. Nonparametric approach. Section 3.1 is based on the model assump-
tion (1). In this subsection we take a nonparametric approach similar to the
reweighting method of Zhang (2007) [see also Signorovitch et al. (2010) and
Signorovitch et al. (2011)] for a historical control problem, and estimate
EX∈P ∗{μt(X)} by δ̂t = ∑nt

i=1 yit r(xi)/
∑nt

i=1 r(xi). When nt → ∞,∑nt

i=1 yit r(xi)

nt

→ EX∈P

{
μt(X)

f ∗(X)

f (X)

}
= EX∈P ∗

{
μt(X)

} = μiP ∗ .

Here we used the fact that r(x) = f ∗(x)/f (x), shown in the proof of Theorem 1
in the Appendix. Similarly,

∑nt

i=1 r(xi)/nt → EX{f ∗(x)/f (x)} = 1. Therefore,∑nt

i=1 yit r(xi)/nt → EX∈P ∗{μt(X)} and, thus,

μtP = ν
[
EX∈P

{
μt(X)

}]
can be estimated by ν(δ̂t ) = v{∑nt

i=1 yit r(xi)/
∑nt

i=1 r(xi)}. The variance of the
estimator and therefore the confidence interval for the desired parameter can be
obtained, for example, through the bootstrap method proposed in Efron (1981).

3.3. Likelihood reweighting method vs. the previous covariate adjustment ap-
proach. Aside from the differences between two approaches previously men-
tioned in the Introduction, we have the following observations on the likelihood
reweighing method as an alternative to the covariate adjustment approach used in
randomized clinical trails, along with the differences noted in the literature.

In the covariate adjustment approach, only the covariates interacting with treat-
ment are considered influential and relevant to the adjustment. However, there are
other types of “influential” covariates. One type of “influential” covariates relates
to noncollapsibility, as illustrated in Table 1 from Greenland, Pearl and Robins
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(1999). Assuming that Table 1 represents the population P and that X and Z rep-
resent the treatments and status of a disease, 50% of enrolled subjects have a cer-
tain disease and the other 50% of them do not have it. The event rates are 40%
and 20% for treatment 1 (X = 1) and 2 (X = 0), respectively, in subjects with the
disease and are 80% and 60% in subjects without the disease. The treatment 1 vs.
treatment 2 odds ratio is 2.67 whether subjects have the disease or not, hence no
treatment heterogeneity (i.e., no treatment by covariate interaction when measured
in odds ratio). Consider a population P ∗, in which 86% of enrolled subjects have
the disease and the other 14% of them do not have it. The overall odds ratio in
population P ∗ is thus 2.44. While the covariate adjustment approach would find
that 2.67 is the odds ratio of treatment 1 vs. treatment 2 in P and P ∗, the likelihood
reweighting method would find that 2.25 and 2.44 are the odds ratio in P and P ∗,
respectively. In other words, the covariate adjustment approach estimates the con-
ditional odds ratio and the likelihood reweighting method estimates the marginal
odds ratio.

In this example, because the conditional odds ratio is not the same as the
marginal odds ratio, the issue of noncollapsibility arises, leading to some ques-
tions on using the odds ratio as the measure of treatment effect. The likelihood
reweighting method provides a flexible way to circumvent this difficulty. With the
percentage difference as an alternative metric (measure of treatment effect), we
could work with τP ∗ = μ1P ∗ − μ2P ∗ and μtP ∗ = ν[EX∈P ∗{μt(X)}], where ν(·) is
the identity function.

The covariate adjustment approach relies on the ability of the data to detect
treatment effect heterogeneity, that is, the treatment by covariate interaction. How-
ever, in some situations, trials may not be large enough to detect moderate interac-
tions because they are not designed for that purpose. Even if some trials are large,
the rarity of events could hamper the ability to detect all heterogeneity. Therefore,
it is likely that some important interactions are not going to be detected, lead-
ing to partial adjustment with a residual bias. In these scenarios, the likelihood
reweighting method can be a good alternative, as it estimates the marginal effect
by maximizing the “unadjusted” likelihood (2*). Although modeling was also used
to estimate propensity scores, the dependent variable is the trial indicator, not the
outcome of interest.

The covariate adjustment approach may face co-linearity problems when there
are many covariates. When that happens, the model-based adjustment requires a
difficult decision on how to omit some covariates and select a good model. When
this problem occurs, the likelihood reweighting method can be a good alternative,
as it is less susceptible to this issue: while co-linearity may also cause problems
with parameter estimation in the propensity score models, it does not adversely
affect prediction of the propensity score itself.

The covariate adjustment approach utilizes the same outcome data for both
model selection and formal inference based on the chosen model, and the results
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could be too optimistic. In case this becomes a concern, the likelihood reweight-
ing method can be considered as an alternative, as propensity score modeling and
model selection do not involve outcome data. The techniques presented here are
expected to be useful in uncontrolled observational studies as well. Although un-
controlled observational studies inherit many more issues than these controlled
trials, the difference or change in the patient populations associated to different
comparing groups remains one of the key issues.

As pointed out by the reviewers, a possible weakness of both approaches is that
they require subject-level data from the historical control trial. Readers are referred
to Nie and Soon (2010) for some discussions. One possible solution could be defin-
ing the weight based on summary statistics, an idea as illustrated in Signorovitch
et al. (2010) and Signorovitch et al. (2011).

4. Applications. In noninferiority trials, we aim to calibrate the effect size
of the active control (e.g., Palivizumab) relative to Placebo from the historical
trial population P (e.g., IMPACT) to the noninferiority trial population P ∗ (e.g.,
MOTA). Using Bayes’ rule, we obtain r(x) ∝ Pr(P ∗|X = x)/Pr(P |X = x). As the
population P ∗ is associated with the experimental treatment (e.g., Motavizumab)
and the population P with Placebo, r(x) ∝ Pr(T = MOTA|X = x)/Pr(T =
Placebo|X = x), that is, r(x) is proportional to the odds through the propensity
score.

4.1. Development of Motavizumab, a second generation of Palivizumab. Pa-
livizumab is a humanized monoclonal antibody, approved and marketed for passive
immunoprophylaxis of respiratory syncytial virus (RSV) in infants at risk for se-
rious RSV disease. It was studied in the IMPACT trial, a phase III randomized,
double-blind, Placebo-controlled clinical trial that was conducted to evaluate the
ability of prophylaxis with Palivizumab to reduce respiratory syncytial virus infec-
tion in high-risk infants. A total of 1502 children with prematurity or bronchopul-
monary dysplasia (BPD), also called chronic lung disease (CLD) in infancy, were
randomized to receive either Palivizumab or Placebo intramuscularly. The primary
endpoint was RSV related hospitalization within 150 days since administration of
the first dose of treatment. For more information of this trial please refer to the
Impact-RSV Study Group (1998). This trial enrolled subjects exclusively from two
disjoint subgroups: (1) children 24 months old or younger with a clinical diagnosis
of BPD requiring ongoing medical treatment; and (2) children with 35 weeks ges-
tation or less and 6 months old or younger, who did not have a clinical diagnosis
of BPD.

Among subjects enrolled with a diagnosis of BPD, the incidence rate of RSV-
related hospitalization was 12.8% (34/266) in the Placebo arm and 7.9% (39/496)
in the Palivizumab arm. Among subjects enrolled without a diagnosis of BPD, the
incidence rate of RSV-related hospitalization was 8.1% (19/234) in the Placebo
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TABLE 1
Subject distribution: numbers of subjects

(numbers of RSV-hospitalizations)

IMPACT trial BPD Non-BPD

Placebo 266 (34) 234 (19)
Palivizumab 496 (39) 506 (9)
MOTA trial
Palivizumab 723 (28) 2607 (34)
Motavizumab 722 (22) 2583 (24)

arm and 1.8% (9/506) in the Palivizumab arm. Among the 500 subjects who re-
ceived Placebo, 53 (10.6%) had an RSV-related hospitalization; among the 1002
subjects who received Palivizumab, 48 (4.8%) had an RSV-related hospitaliza-
tion (see Table 1 for details). It is clear that the treatment effect of Palivizumab vs.
Placebo was better in subjects enrolled without a diagnosis of BPD than in subjects
enrolled with a diagnosis of BPD. The overall treatment effect size of Palivizumab,
as measured in the odds ratio of the Placebo vs. Palivizumab, was 2.4 with a 95%
C.I. of (1.6,3.5).

To evaluate Motavizumab, a second generation version of Palivizumab,
a phase 3, randomized, double-blind, Palivizumab-controlled, multi-center, multi-
national noninferiority trial (MOTA) was conducted to assess whether Mo-
tavizumab was noninferior to Palivizumab. More precisely, the question was
whether Motavizumab is at least not too much worse than Palivizumab in the
sense that the difference of Motavizumab vs. Palivizumab is greater than the dif-
ference of Placebo vs. Palivizumab. With the risk difference metric this means that
the rate difference of RSV hospitalization between Motavizumab and Palivizumab
is smaller than the rate difference of RSV hospitalization between Placebo and
Palivizumab. In the metric of odds ratio this means that the odds ratio between
Motavizumab and Palivizumab is smaller than the odds ratio between Placebo and
Palivizumab. In order to evaluate noninferiority, one possible test statistic is

μ̂ks = μ̂TC + μ̂CP√
σ 2

TC + σ 2
CP

,

where μ̂TC is the overall log-odds ratio of Palivizumab vs. Motavizumab and μ̂CP
is the overall log-odds ratio of Palivizumab vs. Placebo.

4.2. Calibrated effect size of Palivizumab vs. Placebo in the new MOTA study
population. Assume that Yixt , the incidence of RSV hospitalization of the ith
subject, follows a logistic regression model, yixt ∼ Binomail(1,pxt ); logit(pxt ) =
θxt with x = 0,1, representing subjects enrolled without and with a diagnosis of
BPD and t = 0,1 representing Placebo and Palivizumab.
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Whether to make inference on pxt (the incidence rate) or θxt (the log odds of
an event) is generally subjective. Both are used extensively in noninferiority trials.
In IMPACT and MOTA, the log-odds ratio was the primary metric, but the risk
difference is the primary metric in current HIV trials. Therefore, we shall illustrate
both metrics in the Motavizumab example.

Let us first consider quantifying the treatment effect using the risk difference.
Let pn denote the proportion of subgroup with x = 1 in the target population (e.g.,
MOTA population) and ph denote the proportion of subgroup with x = 1 in the
historical population (e.g., IMPACT population). It is easy to show that the MLEs
of likelihood in (2) and (2*) are

α̂t = n1t ȳ·1t + n0t ȳ·0t

n1t + n0t

; α̂∗
t = n1t (pn/ph)ȳ·1t + n1t ((1 − pn)/(1 − ph))ȳ·0t

n1t (pn/ph) + n1t (1 − pn)/(1 − ph)
.

In our example, these are

α̂0 = 266 × 12.8% + 234 × 8.1%

500
= 10.6%;

α̂∗
0 =

(
266

0.22

266/500
12.8% + 234

0.78

234/500
8.1%

)
/(

266
0.22

266/500
+ 234

0.78

234/500

)
= 9.1%.

Similarly, α̂1 = 4.8%; α̂∗
1 = 3.1%. For the nonparametric approach presented in

Section 3.2, the same results are obtained. Indeed, whether using the risk difference
or the log-odds ratio as metrics, the parametric approach presented in Section 3.1
and the nonparametric approach presented in Section 3.2 lead to the same results
for this example.

The standard error of the calibrated effect size α̂∗
j can be calculated directly here

as

std
(
α̂∗

0
) =

√
0.222 × 12.8% × (1 − 12.8%)

266
+ 0.782 × 8.1% × (1 − 8.1%)

234

= 0.015.

Similarly, std(α̂∗
1) = 0.005. We could also use statistical software to obtain the

standard error. In this paper we used the SAS procedure PROC GEMMOD with
the generalized estimating equation (GEE) option to compute the standard error
described in Theorem 1. The resulting standard errors for α̂∗

0 and α̂∗
1 are 0.015 and

0.005, which are the same as obtained in our direct computation.
Now, let us quantify the treatment effect using the log-odds ratio metric. The

estimate can be obtained through PROC NLMIXED with the replicate statement.
However, the standard error obtained from this procedure is not the standard error
stated in Theorem 1. In order to obtain the correct standard errors, we could obtain
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a bootstrap standard error [Efron (1981)], which is 0.25. Alternatively, we can also
use PROC GEMMOD to obtain the same point estimate and the standard error. It
results in the same estimate and standard error. Note that the unadjusted log-odds
ratio is μ̂CP = 0.86 with standard error 0.21.

The estimated log-odds ratio of Palivizumab vs. Motavizumab is 0.31 with a
standard error of 0.20. Using the unadjusted or adjusted effect size, we calculate
the unadjusted and adjusted statistics,

μ̂ = μ̂TC + μ̂CP√
σ 2

TC + σ 2
CP

= 0.31 + 0.86√
0.202 + 0.212

= 4.0;

μ̂adj = μ̂TC + μ̂CP√
σ 2

TC + σ 2
CP

= 0.31 + 1.14√
0.202 + 0.252

= 4.5.

The significance levels associated with the unadjusted and adjusted inference
are 0.00003 and 0.000003, respectively. Other than this approach, one can also
use a more conservative approach, the fixed margin approach [see FDA (2010) for
details], to make the following inference:

μ̂f = μ̂TC + μ̂CP

σTC + σCP
= 0.31 + 0.86

0.20 + 0.21
= 2.9;

μ̂adj,f = μ̂TC + μ̂CP

σTC + σCP
= 0.31 + 1.14

0.20 + 0.25
= 3.2.

The significance level associated with the unadjusted inference is 0.002 and it
is 0.0006 for the adjusted inference. Although both are less than 0.05, the latter
one is approximately 0.0252, which means the significance level is as low as that
of two independent clinical trials, each significant at a level of 0.025, fulfilling the
regulatory requirement on the quantity of the evidence [see Soon et al. (2013)].
The quantity requirement has been interpreted in the FDA guidance of drug ef-
fectiveness [FDA (1998)] as follows: “With regard to quantity, it has been FDAs
position that Congress generally intended to require at least two adequate and well-
controlled studies, each convincing on its own, to establish effectiveness.” There-
fore, the adjusted approach could make a difference because Motavizumab was
evaluated in a single noninferiority trial. However, we emphasize that this analy-
sis only takes the published data into consideration and assumes that there are no
other potential issues associated with the trial design and conduct.

4.3. Calibrating the effect size using subject-level data. Section 4.2 presented
a simple example to illustrate calibration through likelihood reweighting. In gen-
eral, subject-level data from a clinical trial is much more complex than the data
presented in Table 1. Although the FDA typically has access to all subject-level
data for regulatory purposes, we have no authority to use them for purposes other
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than regulatory decision-making. Therefore, we cannot share our experiences ana-
lyzing real data with readers. For the purpose of illustrating methodology, we will
use a simulated data set based on the IMPACT data set and the MOTA data set.

We randomly generate variables x1, x2, and x3 so the generated data set, say,
IMPACT0 and MOTA0, will have 5 variables: BPD status, treatment, x1, x2,
and x3. In IMPACT0, we randomly generate a data set for 1502 subjects, with
x1, x2,x3 following three independent Bernoulli distributions with success rates of
0.4, 0.6, and 0.5. Similarly, in MOTA0, we randomly generate another data set for
6635 subjects, with x1, x2, and x3 following three independent Bernoulli distribu-
tions with success rates of 0.6, 0.5, and 0.4. We then pool the two data sets together
and define a trial indicator to distinguish IMPACT0 and MOTA0.

To obtain the weight for each subject, we use logistic regression to model the
logit of the trial probability as a linear function of BPD status, x1, x2, and x3. Using
the fitted model, we predict the probability of each subject in IMPACT0 being
located in MOTA0. We then define the weight r(x) by the odds of the predicted
probability times 1502/6635. Note here vector x means all variables: BPD status,
treatment, x1, x2, and x3. Now, the estimated propensity score ratio r(x) is defined
for all 1502 subjects.

The MLE of the reweighted likelihood (2*) can be obtained through imple-
mentation of SAS procedure PROC GEMMOD (see the attached programming
code). With the repeat and weight statement [in the repeat statement, subject is the
ID number and the weight is r(x)], the GEMMOD procedure provides the GEE
[Zeger and Liang (1986)] type sandwich estimates for standard error, correspond-
ing to the variance formula given in Theorem 1. All the programs, including the
simulated data, are available upon request.

The point estimate of the adjusted log-odds ratio is 1.23 with a standard error of
0.28. The final inference of the noninferiority trial may use the following adjusted
statistics:

μ̂adj = μ̂TC + μ̂CP√
σ 2

TC + σ 2
CP

= 0.31 + 1.23√
0.202 + 0.282

= 4.5;

μ̂adj,f = μ̂TC + μ̂CP

σTC + σCP
= 0.31 + 1.23

0.20 + 0.28
= 3.2.

Although the problem did not occur in our example, we note that the weighted
likelihood approach may result in an estimate with large variance if we have very
small or very large values of r(x). The problem has been described in the propen-
sity score literature and is not unique to our setting. Some promising methods for
dealing with extreme propensity score weights include using generalized boosted
regression (GBR) [McCaffrey, Ridgeway and Morral (2004), Ridgeway and Mc-
Caffrey (2007) and Lee, Lessler and Stuart (2009)]. Based on our experience, we
recommend that the propensity score model should be limited to effect modifiers,
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that is, baseline variables that are associated with the treatment difference, echo-
ing what was recommended by Cole and Hernán (2008). Including many variables
that are not effect modifiers in the propensity score model generally increases the
chance of extreme weight due to the larger population heterogeneity, with no clear
benefits in reducing bias. The supplement [Nie et al. (2013)] provides more de-
tails and a simulation study to illustrate this recommendation. At the end of this
section, we also describe some additional alternatives approaches. Before doing
that, we would like to discuss some special issues when this problem occurs in
historically controlled trials and noninferiority trials.

When the weights are extremely small, such as when some subjects with cer-
tain characteristics in the historical trial have no or few counterparts (subjects with
the same characteristics) in the noninferiority trials, r(x) is 0 or near 0 for these
subjects. For example, this may happen when more stringent inclusion criteria
are implemented so that subjects with less severe disease conditions at baseline
were included in the historical trials but are excluded from the noninferiority trial.
It is understandable these subjects (e.g., with less severe disease condition) may
not always be used to make inferences about the control vs. placebo (i.e., μ̂CP)
in the noninferiority trials subjects (e.g., with more severe disease condition) un-
less we make an assumption that the treatment effect μ̂CP in these subjects dose
not depend on baseline disease status. Only with this assumption, we may mul-
tiply their weight r(x) using a large number so that these subjects still represent
the subjects with different characteristics. Without this assumption, the method
expectedly leads to a relatively larger variance because we discard a portion of
information from the historical trial.

The weights can be extremely large, such as when a subpopulation presented
in a noninferiority trial is not well represented in the historical trial. For example,
some subjects in noninferiority trials of HIV may use a newly approved potent
background drug that was rarely used or never used in the historical trials. In this
case, using historical data from another group (subjects who did not have the new
background drug) to make inference about the relative effect of the control vs.
placebo (i.e., μ̂CP) may not be prudent without additional assumptions. In this
case, we might have to consider alternative approaches. One possibility is to re-
strict the proposed analysis to the subpopulation of the current study that is also
represented in the historical study. This is essentially equivalent to what propen-
sity score matching would achieve, where unmatched subjects are automatically
excluded. Another possibility is to consider the hybrid design idea presented in
Soon et al. (2011).

Now we briefly describe a stratified approach based on stratified propensity
scores. Suppose a control treatment is evaluated in historical trials but we would
like to calibrate its effect size in a new population for which r(x) is computed. We
group r(x) into a number of strata g1, . . . , gL. The percentage of subjects falling
into gl is wlh and wln in population P and P ∗, respectively. Let β̂l with variances
s2
l be the treatment effect size in group l. Then a combined calibrated treatment
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effect in the population P ∗ is
∑L

l=1 β̂lwln with variance
∑L

l=1 s2
l w2

ln. When a new
treatment is evaluated by its comparison to the control in population P ∗, a strati-
fied analysis based on the subclasses of the propensity score can be implemented
as follows. Let γ̂l be an estimate of treatment effect of the new treatment, with vari-
ances s2

ln, in the lth group of the propensity score. We evaluate the new treatment
through a stratified analysis such as

∑L
l=1{γ̂l − β̂l}wl∗∑L
l=1{s2

ln + s2
lh}w2

l∗
.

Depending on the objective, wl∗ may be chosen differently. Alternatively, we
may also use the stratification method as described in Section 4.3 or define a
threshold �2 > �1 > 0 so that subjects with r(x) beyond [�1,�2] should re-
define the weight of [�1,�2], whichever is closer, similar to the method used in
Cole and Hernán (2008). The actual determination of [�1,�2] depends on the
actual data and practical assumptions.

5. Concluding remarks. Motivated by a real example, we show that bias can
arise in active controlled noninferiority trials when estimated treatment effect size
for the control treatment is obtained from a historical trial that has been conducted
for a different population. Covariate adjustment approaches [Zhang (2009) and
Nie and Soon (2010)] have been proposed to address the problem. However, they
may be directly applied to obtain the marginal treatment effects, which are often
the pre-specified primary endpoints. This paper proposes a likelihood reweighting
method through propensity scoring to estimate the marginal treatment effect size
in the target population of a noninferiority trial based on data obtained from a
historical trial that has been conducted for a different population.

APPENDIX

PROOF OF THEOREM 1. It is easy to verify that the generalized linear model
satisfies Assumptions A1–A3 in White (1982), therefore, Theorem 2.2 is applica-
ble. The log likelihood of (2*) is

n∑
i=1

f ∗(xi)

f (xi)
log lt (yit , αt ).

According to Theorem 2.2 [White (1982)], the maximum likelihood estimate α̂t

converges to the parameter, say, αt0, which maximizes∫
EY |X=x,T =t

{
logf (x) + log l(yit |x, t) − r(x) log l(yit , αt )

}
dF(x),
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where log l(yit |x, t) is the log-likelihood function obtained from model (1). Tak-
ing derivatives with respect to αt , we know αt0 is the solution of the following
equation: ∫

EY |X=x,T =t

[
r(x)

{
y − b′(αt )

}]
dF(x) = 0.

Consequently, the estimating equation can be written as∫
EY |X=x,T =t

{
y − b′(αt )

}
dF ∗(x) = 0.

Noting b′(·) = g−1(·), we have αt0 = μiP ∗ = g[EX∈P ∗{μt(X)}]. As the assump-
tions A4–A6 are easily verifiable, the asymptotic properties of the MLE of (2*)
are immediately obtained from Theorem 3.2 in White (1982). �
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SUPPLEMENTARY MATERIAL

Supplement to “Likelihood reweighting methods to reduce potential bias
in noninferiority trials which rely on historical data to make inference” (DOI:
10.1214/13-AOAS655SUPP; .pdf). The supplement provides an assessment of the
efficiency loss for the weighted likelihood method and a comparison between the
likelihood reweighting method and related methods in historically controlled trials.
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