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For many decades, ultrahigh energy charged particles of unknown origin
that can be observed from the ground have been a puzzle for particle physi-
cists and astrophysicists. As an attempt to discriminate among several possi-
ble production scenarios, astrophysicists try to test the statistical isotropy of
the directions of arrival of these cosmic rays. At the highest energies, they
are supposed to point toward their sources with good accuracy. However,
the observations are so rare that testing the distribution of such samples of
directional data on the sphere is nontrivial. In this paper, we choose a non-
parametric framework that makes weak hypotheses on the alternative distri-
butions and allows in turn to detect various and possibly unexpected forms
of anisotropy. We explore two particular procedures. Both are derived from
fitting the empirical distribution with wavelet expansions of densities. We use
the wavelet frame introduced by [SIAM J. Math. Anal. 38 (2006b) 574–594
(electronic)], the so-called needlets. The expansions are truncated at scale
indices no larger than some J �, and the Lp distances between those esti-
mates and the null density are computed. One family of tests (called MUL-
TIPLE) is based on the idea of testing the distance from the null for each
choice of J = 1, . . . , J �, whereas the so-called PLUGIN approach is based
on the single full J � expansion, but with thresholded wavelet coefficients.
We describe the practical implementation of these two procedures and com-
pare them to other methods in the literature. As alternatives to isotropy, we
consider both very simple toy models and more realistic nonisotropic mod-
els based on Physics-inspired simulations. The Monte Carlo study shows
good performance of the MULTIPLE test, even at moderate sample size, for
a wide sample of alternative hypotheses and for different choices of the pa-
rameter J �. On the 69 most energetic events published by the Pierre Auger
Collaboration, the needlet-based procedures suggest statistical evidence for
anisotropy. Using several values for the parameters of the methods, our pro-
cedures yield p-values below 1%, but with uncontrolled multiplicity issues.
The flexibility of this method and the possibility to modify it to take into
account a large variety of extensions of the problem make it an interest-
ing option for future investigation of the origin of ultrahigh energy cosmic
rays.
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1. Introduction.

1.1. Motivation. It is a common problem in astrophysics to analyse data sets
containing measurements of a number of objects (such as galaxies of a particular
type) or of events (such as cosmic rays or gamma ray bursts) distributed on the
celestial sphere. Each set of such objects or events can be represented as a collec-
tion of positions Xi = (θi, φi), i = 1, . . . , n, in S the unit sphere of R

3. In many
cases, such objects trace an underlying probability distribution f on the sphere,
which itself depends on the physics which governs the production of the objects
and events. Galaxies, for instance, form in over-densities of a preexisting smooth
field of distribution of matter in the universe, and the study of the statistics of their
distribution has grown into a field of astrophysics by itself [Martínez and Saar
(2002)].

The case of ultrahigh energy cosmic rays (UHECRs) is of particular interest, and
is the main focus of the present work. UHECRs are particles of unknown origin
which arrive at the Earth from apparently random directions of the sky. These
particles interact with atoms of the upper atmosphere, generating a huge cascade
of billions of secondary particles. The observation of these secondary particles
with appropriate detectors on ground permits the measurement of the direction of
arrival and of the energy of the original cosmic ray.

The existence of cosmic rays has been known for about a century. Such parti-
cles exist with a very wide range of kinetic energies, from few eV to more than
1020 eV.1 Observed cosmic rays are typically ordinary charged particles (elec-
trons, protons and nuclei), propagating in empty space, and deflected by galactic
magnetic fields. The rate of observed cosmic rays in the vicinity of the Earth, how-
ever, decreases rapidly with energy. At low energy, the observed cosmic rays are
numerous and their composition is well known. There also exist several known
astrophysical processes responsible for their acceleration, such as stellar winds for
the least energetic ones, to violent phenomena such as supernovae shock waves at
higher energy. At the highest energies (E ≥ 1020 eV), however, the observed flux is
of the order of 1 event per square kilometre per century, which limits the statistics
of observed events to few tens of events (in two decades of observations). In addi-
tion, no understood astrophysical process, involving known objects, can accelerate
particles to such tremendous energies.

Recent observations of ultrahigh energy cosmic rays suggest that they are or-
dinary particles, such as protons and nuclei, accelerated in extremely violent as-
trophysical phenomena [see Kotera and Olinto (2011), for a recent review on the
astrophysics of UHECRs]. However, many alternate hypotheses concerning their
nature and origin have been proposed over the years [see, e.g., Hillas (1984), Torres
and Anchordoqui (2004), Cronin (2005)]. UHECRs could originate from active

11 eV = 1 electron Volt � 1.6 × 10−19 Joule.
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galactic nuclei (AGN), or from neutron stars surrounded by extremely high mag-
netic fields, or yet from many other processes. It is also possible that the type and
origin of ultrahigh energy cosmic rays (at energies above 1019 eV) depend, at least
to some extent, upon the energy at which they are observed. Indeed, the most ener-
getic cosmic rays cannot propagate very far (i.e., not much more than ∼ 100 Mpc)
without losing most of their energy by interactions with photons from the Cosmic
Microwave Background [the so-called GZK effect; Greisen (1966), Zatsepin and
Kuz’min (1966)]. The confirmation of the energy cutoff at the high end of the cos-
mic ray spectrum is one of the main achievements of the Pierre Auger Observatory
[Abraham et al. (2008, 2010b)].

Before the location and physical process of acceleration have been clearly iden-
tified, taking into account the fact that most of the evidence about the chemical
composition of cosmic rays at the highest energies rely on extrapolations of the
present knowledge of hadronic interactions at energies two orders of magnitude
above the range presently tested at the LHC, it is difficult to completely rule out
alternate theoretical explanations as to what UHECRs exactly are and what is their
origin. Alternate hypotheses such as production by decay of long-lived relic parti-
cles from the Big Bang, about 13 billion years old [Bhattacharjee and Sigl (2000)],
are just starting to be disfavored by the observations of the Pierre Auger collab-
oration, with recently published results about primary photon limits that impose
stringent limits on these kinds of models [Pierre Auger Collaboration (2009)].

In an attempt to better understand the origin of such UHECRs, physicists study
the statistical distribution of their directions of arrival, looking for two particu-
lar signatures. First, the (statistically significant) arrival of more than one UHECR
from the same direction on the sky would indicate that their production is not likely
to originate from single time events (e.g., catastrophic mergers of two compact
astrophysical objects), but rather from sources which emit UHECRs regularly.2

Second, one may look for correlation in the directions of arrival of UHECRs with
known astrophysical objects, as nearby active galactic nuclei, in an attempt to iden-
tify plausible production sites. Hence, in some hypotheses, the underlying proba-
bility distribution for the directions of incidences of observed UHECRs would be
a finite sum of point-like sources—or nearly point-like, taking into account the de-
flection of the cosmic rays by magnetic fields. In other hypotheses, the distribution
could be uniform, or smooth and correlated with the local distribution of matter in
the universe. The distribution could also be a superposition of the above. Distin-
guishing between these hypotheses is of primordial importance for understanding
the origin and mechanism of production of UHECRs.

In the past 20 years, a number of experiments have gathered observations of
UHECRs, and several papers have been written which look for such features in

2With the caveat that the time of propagation may depend on the energy and on the exact trajectory
followed by the UHECR to reach us, making it possible that two particles reaching the Earth at
different times have actually been emitted simultaneously.



TESTING THE ISOTROPY OF HIGH ENERGY COSMIC RAYS 1043

the distribution of their directions of arrival, with sometimes contradictory con-
clusions. The difficulty lies in the fact that UHECRs are rare and that they do not
arrive necessarily exactly from the direction where their source is located. Indeed,
as typical cosmic ray particles are charged (which permits their acceleration by
electromagnetic processes), they are deflected by Galactic and intergalactic mag-
netic fields. The deflection depends on the length of the path through the magnetic
field and on the energy and charge of the particle. In fact, only very energetic cos-
mic rays (above few 1019 eV) with small charge (e.g., protons or nuclei with small
atomic numbers) are expected to travel typical astrophysical distances from their
source to us with deflection angles smaller than a few degrees. Details of the de-
flections are not known, as neither the exact magnitude, orientation and regularity
on large scales of Galactic and extragalactic magnetic fields, nor the distance of
the sources of UHECRs, nor the exact energy of the incoming cosmic ray, nor its
charge (to within a factor of 26 between protons and iron nuclei), are known. Er-
rors on the direction of the source of an UHECR can then be of order 1◦ at the
lowest (typical error on the measurement of the direction of arrival with Auger),
up to few degrees for protons, or tens of degrees for heavy nuclei travelling a long
path through a regular galactic magnetic field.

Given a set of observed UHECRs, how can one best test for “repeaters” (cosmic
rays coming from the same source) or, more generally, anisotropy in the distribu-
tion? If one restricts the analysis to the few events for which one is sure that the
deflection angle is negligible, events are scarce and there are not enough statistics
to conclude. As one selects events with less energy, the direction of origin becomes
less reliable, with the total number of events completely dominated by those events
with poorly constrained direction of origin. Finally, it is not clear how to build the
isotropy test, without any sound prior knowledge about the uncertainty in the mea-
sured direction of the source. All of these are very meaningful questions to analyze
UHECR observations.

Recently, an analysis of the direction of arrival of 27 UHECRs observed by the
Pierre Auger experiment concludes in the existence of an anisotropy and a corre-
lation with objects in a catalogue of nearby active galactic nuclei (AGNs), located
at distances lower than about 70 Mpc3 [Abraham et al. (2008)]. This anisotropy,
however, is less obvious in a more recent analysis, based on 69 observed events
[Pierre Auger Collaboration (2010)]. Clearly, the statistics are limited, and the de-
velopment of new methods for investigating this topic can provide new insights
on the origin of the UHECRs. Methods independent of external data sets such as
the forementioned VCV catalogue (which is not a statistically well-characterized
sample of AGNs but a compilation of published results) are of particular interest.

370 million parsecs � 2.15 × 1021 km.
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1.2. Outline of this work. This work focuses on the important question of the
isotropy of the cosmic rays. Because of the small number of available data, this
question is not answered yet, although data from the Pierre Auger collaboration
seems to hint at a correlation between the directions to the ultra-high energetic
events (above 5.5 × 1019 eV) and the directions to active galactic nuclei in the
catalogue compiled by Véron and Cetty-Véron [see Pierre Auger Collaboration
(2008, 2010)]. From a statistical point of view, we address the question of testing
the goodness of fit of the isotropy assumption to this small sample of directional
data. The framework we choose is purely nonparametric, as we do not want to
favour any particular alternative hypothesis, and as we wish to be able to discover
unexpected forms of anisotropy.

The paper is organized as follows. In Section 2 we present a simplified model
of cosmic ray propagation which will be used in Monte Carlo simulations to test
the method. In Section 3 we present the nonparametric framework. Then we de-
scribe our needlet based anisotropy tests in Section 4. In Section 5 we present a
Monte Carlo experiment that compares the power of the different tests and also the
robustness of this power with respect to the parameters of the methods. We apply
our procedures to real data from the Pierre Auger collaboration in Section 6. We
then conclude and give perspectives for future extensions of the present work. An
online supplement [Faÿ et al. (2013)] is devoted to a longer description of the type
of wavelets we have used (the needlets) and the practical and numerical implemen-
tation of our methods. More numerical results are available there.

2. Simulating cosmic ray emission. In our investigation of tools to analyse
the distribution of UHECR events, we need a way to simulate a distribution of
observed events as a function of an underlying physical model. A complete Monte
Carlo simulation of the physical processes of cosmic ray emission and propagation
in the magnetic fields is beyond the scope of this paper and too dependent on
a number of physical assumptions for which there is little available knowledge.
We decide to perform qualitatively relevant simulations using a simple, although
physically representative, toy model of cosmic ray emission and propagation.

2.1. Cosmic ray sources. In one hypothesis (H0), we will assume that cos-
mic rays are emitted from a uniform distribution of many sources, that is, their
directions of arrival are independent of the energy, and uniformly distributed on
the celestial sphere. In the alternate hypothesis (H1), we will assume that n cos-
mic rays originate from a small number ns of sources, distributed uniformly in a
spherical volume V of universe, of radius rmax = 70 Mpc. For ns � n, the distri-
bution of directions of origin will be close to uniform and (H1) indistinguishable
from (H0). For n � ns , and ns small, coincidences in the directions of arrival of
the observed UHECRs will permit to identify easily the directions of the emitting
sources. Our objective is to address the issue when ns is comparable to the number
of observed events n.

Simulations are performed as follows:
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FIG. 1. Exposure function ε for the Pierre Auger Observatory in Galactic coordinates, repre-
sented through a Mollweide projection and computed from geometrical considerations [see Sommers
(2001)]. The value of the exposure for some direction is defined as the probability that an incoming
event from this direction is actually detected by the instrument. See Section 3.1.

• We fix the number ns of sources and distribute them uniformly in the volume V .
We assume that all sources are physically identical, that is, they emit cosmic
rays with the same probability and the same distribution in energy, the latter
coinciding with the observed flux dN/dE.

• We fix the number n of observed cosmic rays and draw at random their energies
according to the distribution n(E) ∝ E−α , E ∈ [Emin,Emax], α > 0.

• For each observed cosmic ray, we assign at random a corresponding emitting
source, according to a probability density inversely proportional to the square
of the distance D to the source (sources nearer produce a larger flux on Earth).
This probability distribution can be modulated by the acceptance of the instru-
ment for studying realistic test cases. For instance, Pierre Auger Collaboration
(2010) uses 69 highest energy events for the search of correlations with as-
trophysical sources, selected by a cut in zenith angle of arrival (θzenith ≤ 60◦).
Assuming homogeneous time coverage in UT over the years of observation,
the exposure is computed straightforwardly from simple geometrical consider-
ations [see Sommers (2001) and the details at the end of Section 2.2]. The map
of Auger exposure computed in this way is displayed in Figure 1. The effect of
the GZK cutoff is taken into account simply by limiting the volume to a sphere
of 70 Mpc radius.

• For each cosmic ray, we modify the direction of arrival due to extragalactic
magnetic fields. The next subsection describes the model used to implement
these deflections.

2.2. Deflection by Galactic and extragalactic magnetic fields. Galactic mag-
netic fields are an important component of the Galactic interstellar medium (ISM).
They can be probed in a variety of ways. The impact of local magnetic fields is
observed in the optical wavelength range via starlight polarization. Indeed, elon-
gated interstellar dust grains in the foreground of the observed star, aligned per-
pendicularly to magnetic field lines, absorb preferentially one direction of starlight
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polarisation (along their major axis). Measurements of many stars reveal a gen-
eral picture of the magnetic field in the Milky Way near the Sun [Heiles (1996),
Fosalba et al. (2002)]. Aligned dust grains also emit polarized infrared emission,
which can be used to infer magnetic fields in dust clouds [Benoît et al. (2004)].
Zeeman splitting of radio spectral lines allows for the direct measurement of rela-
tively strong fields in nearby, dense gas clouds in the Milky Way [Crutcher et al.
(2010)]. On larger-scales, the magnetic field of our Galaxy can be probed in three
dimensions using Faraday rotation of pulsar signals [Han et al. (2006)]. Finally,
synchrotron emission, emitted by relativistic electrons spiralling in the magnetic
field, can be used to constrain the direction and amplitude of the magnetic field ei-
ther from direct observation of the synchrotron polarisation [Page et al. (2007)] or
by measuring the Faraday rotation of Galactic synchrotron using multi-wavelength
observations in the radio range (below few GHz) [Beck (2011)].

In the vicinity of the Sun, the Galactic magnetic field has a typical amplitude of
a few microGauss. This amplitude is typically increasing with decreasing distance
toward the Galactic center, where it can reach values of a few tens of microGauss,
and up to a few milliGauss in very local regions. In general, the regular compo-
nent over most of the outer Galaxy is of the order of a few microGauss, aligned
along the Galactic plane. The overall field structure follows the optical spiral arms,
with evidence for at least one large-scale field reversal in the disk, inside the solar
radius, and several distortions near star-forming regions.

For the purpose of estimating their impact on the deflection of high energy cos-
mic rays, Galactic magnetic fields are typically modeled as the sum of two compo-
nents with different physical properties, a regular component and a turbulent com-
ponent. The regular component roughly follows the spiral arms of the Galaxy and
induces deflections typically perpendicular to the Galactic plane, that is, deflec-
tions in latitude of arrival. The turbulent component induces random deflections,
which can be modeled as two-dimensional Gaussian distributions centered at the
source. Indeed, we assume that such deflections are made of the superposition
of many independent small deflections by independent regions with independent
magnetic field directions, so that the Gaussian hypothesis is justified by the central
limit theorem. We consider only cases in which the total deflection is small enough
that the projection to the sphere is irrelevant (as well as the truncation of angles
to 2π ). Typical deflections for atomic nuclei are as follows [Harari, Mollerach and
Roulet (2002)].

For the regular component (magnetic lensing effect),

δreg = 3.25◦
(

1020 eV

E/Z

)(
B

2 μG

)(
r

3 kpc

)
,(1)

where E is the energy of the UHECR in eV, Z is the atomic number [e.g., 1 for
hydrogen nuclei (protons), 2 for Helium nuclei (alpha articles), etc.], B is the mag-
netic field in microGauss (μG), and r the propagation length of the cosmic ray
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in the magnetic field. The deflection is assumed deterministic (although energy-
dependent), and the instantaneous direction of the deflection is along 
v × 
B , where

v is the velocity of the incoming particle and 
B the regular Galactic magnetic field,
assumed to be along the y-axis of the Galactic coordinate system.

For the turbulent component (random deflection),

δturb = 0.56◦
(

1020 eV

E/Z

)(
B

4 μG

)√
r

3 kpc

√
Lgal

50 pc
.(2)

The deflection is Gaussian distributed with a standard deviation δturb and uniform
distribution of the direction of the deviation in [0,2π [. The deflections are written
in terms of the typical expected values for the magnetic field (2 μG for the regular
part and 4 μG for the turbulent part), for coherence length Lgal of the turbulent
part of the Galactic magnetic field (about 50 pc). 3 kpc is the typical propagation
length r inside the Galactic magnetic field for a cosmic ray coming perpendicularly
to the Galaxy. A plane parallel approximation of the disc-shaped geometry of the
Milky Way suggests a dependence of r with the Galactic latitude b of the incoming
cosmic ray. We assume here a dependence r ∝ 1/ sinb, with a maximum length of
10 kpc, typical of the size of the Galactic disk.

Extragalactic magnetic fields also deflect cosmic rays originating from distant
locations in the Universe. These deflections are expected to be qualitatively similar
to those due to the turbulent part of the Galactic magnetic field, except that typical
field strengths are smaller (and less well known) and correlation lengths are larger.
Following The Pierre Auger collaboration [Pierre Auger Collaboration (2008)],
we assume a deflection with standard deviation given by

δext = 2.4◦
(

1020 eV

E/Z

)(
B

1 nG

)√
D

100 Mpc

√
Lext

50 pc
.(3)

UHECRs are observed to arrive on Earth with a flux dN/dE proportional to
E−4.2 for energies E > 4 × 1019 eV [Abraham et al. (2008)]. Although the shape
of the spectrum is not very well constrained in this region (more recent Auger
results suggest a spectral index closer to −4.3), the exact shape of the spectrum
does not have a strong impact on the validity of our analysis. Our simulations will
assume such a distribution, with various values for the minimum energy Emin and
Emax = 1021 eV. We focus on very energetic UHECRs (E > 1019 eV) and assume
UHECRs are light nuclei (Z ≈ 1), for which deflections by magnetic fields are
expected to be of the order of a few degrees.

We then implement cosmic ray deflections according to equation (3) (first the
cosmic ray travels in the intergalactic medium) and then using both equations (1)
and (2). As the exact nature of the cosmic rays has little impact on the general
principles of our method, except that a change in atomic number induces a change
in the scale of the deflections, we have assumed here for simplicity that all cosmic
rays are protons (i.e., Z = 1). This, however, as a further refinement, can be easily
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FIG. 2. Two simulations of the physical model described in Section 2, with α = 4.2,
Emin = 4 × 1019,Emax = 1021. On the left, the number of sources is ns = 1000 and the number
of observations is n = 100. On the right, ns = 100 and n = 1000. It appears in this latter case that
clusters of events are of different typical angular size.

changed for practical application on real data sets. In particular, the presence or
lack of anisotropy in the directions of arrival of the highest energy cosmic rays
may help shed light on the nature of these particles, as iron nuclei, for instance,
are more deflected by magnetic fields than protons, by a factor Ziron = 26. This is
an important point to take into account in view of recent Auger results that seem
to indicate a low proton fraction at energy above 1018 eV, so that the cosmic rays
at those energies might be essentially heavier nuclei [Abraham et al. (2010a)].

Figure 2 illustrates simulated outcomes in two extreme cases: few sources and
many cosmic rays (right) and many sources and few cosmic rays (left).

In practice, instruments observe the sky unevenly. The capability of the instru-
ment to observe in a particular direction of the sky depends on the field of view
of the instrument and on the orientation of the instrument with respect to the sky
(which itself depends on the sidereal time). From the properties of the instrument
and the geometry of the observations, one can infer an equivalent observing time
as a function of direction on the sky, that is, a function on the sphere that modu-
lates the probability of detection of the observed cosmic rays. As an illustration, we
have displayed on Figure 1 a Mollweide projection of the exposure map associated
with the Pierre Auger Observatory, in Galactic coordinates, computed following
Section 2 in Sommers (2001). This exposure map has been generated assuming
a maximum accepted zenith angle for incoming cosmic rays of θzenith = 60◦ and
uniform distribution of observation periods in universal time (and hence, an expo-
sure that depends exclusively of the declination, not the right ascension, in equato-
rial coordinates). The effect of the precession of equinoxes has been neglected for
generating this exposure map (the perturbations it would generate are very tiny as
compared to what we can measure with about 100 events, as currently available).

3. Nonparametric tests on the sphere.

3.1. Introduction. We assume that the cosmic rays arrive on Earth along a
directional density h. We need to test

(H0) :h ≡ h0 against (H1) :h ≡ h0,(T1)
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where h0 is the density under the null. For the above-mentioned reasons, we focus
on test for anisotropy, then we choose h0 ≡ 1

4π
. Note, however, that the whole sub-

sequent setup can handle anisotropic choices for the null distribution. To take into
account the nonuniform angular acceptance in the observation model, we model
the exposure of the instrument by a known and arbitrary function ε : S → [0,1].
In this setting, we assume that incoming events from direction ξ ∈ S have proba-
bility ε(ξ) to be observed by the instrument. In this case, the observed incidental
directions are distributed along a density f which is proportional to εh:

f (ξ) = ε(ξ)h(ξ)∫
S
ε(ξ ′)h(ξ ′)dξ ′ ·(4)

Under the null, the observed directions of cosmic rays have a density

g(ξ) = ε(ξ)h0(ξ)∫
S
ε(ξ ′)h0(ξ ′)dξ ′ ·

Let (X1, . . . ,Xn) be an n sample of i.i.d. random positions on the two-dimensional
sphere with probability density function f . In order to test for isotropy of the un-
derlying physical phenomenon in this observational context, we need to implement
the test

(H0) :f ≡ g against (H1) :f ≡ g.(T2)

On the real line, testing for f ≡ g can be reformulated as testing for the uniform
distribution of the sample G(X1), . . . ,G(Xn) on [0,1], where G is the distribution
function associated with the probability density g. For higher dimensions (as on
the sphere), there is no natural transformation of the data, no notion of distribution
function for directional data, that allows to recast (T2) as (T1). Then we consider
(T2) in its generality, with (T1) as a particular case.

Our aim in this paper is to provide test algorithms which are at the same time
easy to implement, efficient in practical situations where the sample size is small
(a few tens) and the data may be collected in a nonuniform or incomplete way, but
also with properties that are likely to be optimal from a theoretical point of view.

Let us begin with a short review on nonparametric tests associated to function
estimation, since this will inspire our study in many ways.

3.2. Anisotropy tests among general nonparametric tests. The test problem is
well posed when the alternative is given. More often in practice it is wiser to con-
sider a large nonparametric class of alternatives. To allow derivation of optimality
properties, following standard point of view in a nonparametric framework [see,
e.g., Ingster and Suslina (2003), Ingster (1993), Butucea and Tribouley (2006)],
we shall consider smooth alternatives of the form

(H1,n) :f ∈ Fn(d,C),(5)
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where

Fn(d,C) = {
g′ ∈ R :d

(
g′z, g

)
> Crn

}
(6)

and R is a class of regularity, that contains, for example, all the twice continuously
differentiable densities or densities satisfying the Hölder condition with Hölder
exponent s > 0. We may consider balls in Sobolev or Besov spaces (see below).
Here, d is a (semi-) distance between densities and rn is referred to as a separation
rate. Roughly speaking, d and rn, respectively, define the shape and the size of the
neighbourhood of the density under the null which is excluded from the alterna-
tive set of densities. The multiplicative constant C allows to define the concept of
critical separation rate; see equations (9) and (10) below.

The choice of such alternatives is essential for the test procedure because the
test statistics are built, more or less, on estimators of d(f, g). For some particular
distances, nonparametric estimators f̂ of the density of the observed sample may
be plugged into the distance, namely,

d̂(f, g) = d(f̂ , g).

For instance, f̂ could be a histogram-like (pixel-wise constant) density estimate of
f based on counting events falling in any pixel of a given tessellation {Vk}k=1,...,K

of the sphere, namely,

f̂ = 1

n

K∑
k=1

#{Xi ∈ Vk, i = 1, . . . , n} 1Vk

μ(Vk)

and the decision could be taken on the value of d(f̂ , g) = ‖f̂ −g‖2, say. Neverthe-
less, as described in Ingster (2000), such “plug-in” procedures are not always opti-
mal in terms of rates of separation (see Section 4.2 for a more precise statement). In
contrast, multiple tests have nice theoretical (minimax optimality and adaptivity)
properties in various contexts: detection in a white noise model [Spokoiny (1996)],
χ2 test of uniformity on [0,1] [Ingster (2000)], goodness-of-fit test and model se-
lection for random variables on the real line [Fromont and Laurent (2006)], two-
sample homogeneity tests [Butucea and Tribouley (2006)], for instance. Note that
one would also like to test for uniformity by taking into account the uncertainty on
the measurements of the directional data. In a first approximation, this error can
be modeled as a convolution noise: the observations are Zi = εiXi, i = 1, . . . , n,

where ε1, . . . , εn is an i.i.d. sequence of random rotations in SO(3). Lacour and
Pham Ngoc (2012) addressed the problem of testing for the isotropy (X1, . . . ,Xn)

in the particular case of a full-sky coverage with uniform exposure and from noisy
observation (random rotations of the directions). As a consequence of the uniform
coverage, their adaptive testing procedure is ideally constructed on the multipole
moments of the observations.

If one has strong prior information, it is possible to construct tests that are not
uniform except along a few set of directions, but which can have as much power
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as possible at the n−1/2 scale in those few directions of interest. This framework
is introduced in Bickel, Ritov and Stoker (2006) and applied in Bickel, Kleijn and
Rice (2008) for detecting periodicity in a sequence of photon arrival times. In our
context, those directions are described by the Besov regularity of the alternative
density, which is efficiently handled by the formalism of the wavelet analysis.

In the following paragraphs we discuss the various ingredients of our study.

3.2.1. Distances. We will consider standard distances of functions on the
sphere, although there is in fact no clear choice for a ’good’ distance in this frame-
work: L1 distance is generally more appropriate for probability densities, but Lp

distances when p is increasing and especially L∞ are more and more sensitive to
bumps. As it is both usual and practical, we will mainly consider the L2 distance
(with respect to the invariant measure on the sphere). But, we will also consider
expressing our results for other Lp distances such as L1 and L∞. It is important
to notice that it is the remarkable ability to concentrate the needlets that enables
us to consider various distances. More traditional bases would only allow the L2

distance and would then be much less sensitive to local changes.

3.2.2. Separation rate. Let T (X1, . . . ,Xn) ∈ {0,1} be a nonrandomized deci-
sion, that is, a measurable function of the sample (X1, . . . ,Xn) with value in {0,1}.
The dependence in n is omitted in most of our notation. As usual the event [T = 1]
is equivalent to the rejection of the null hypothesis. The probability of error of the
first kind (false positive) of the decision is denoted

αn(T ) = Pg(T = 1),(7)

while probability of error of the second kind (false negative) against the alterna-
tive (5) is

βn(T ,C) = sup
f ∈Fn(d,C)

Pf (T = 0).(8)

Here Pf ,Pg denote the probability measure under the density f or g for the i.i.d.
sample (X1, . . . ,Xn).

Formally, the separation rate is defined using the following minimax optimality
criterion. A sequence rn is a minimax rate of testing [see Ingster (2000)] if the
following statements are satisfied:

1. For any r ′
n such that r ′

n/rn → 0 as n → ∞,

lim inf
n→∞ inf

T

{
αn(T ) + βn(T ,1)

} = 1,(9)

where the infimum is taken on all decision rules, that is, {0,1}-valued measurable
functions of the sample (X1, . . . ,Xn).
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2. For any α, β > 0, there exist some constant C > 0 and a test statistic T ∗
(said rate optimal in the minimax sense), such that

lim sup
n→∞

αn

(
T ∗) ≤ α and lim sup

n→∞
βn

(
T ∗,C

) ≤ β.(10)

Condition (9) says that if the separation rate vanishes faster that rn, then no test
can do better than the blind random decision, for which the sum of the errors of
the two kinds is exactly 1. Condition (10) says that there exists a decision that is
efficient for such a separation rate, so that this rate is indeed a critical rate.

It is clear that a good test become sensitive to a closer and closer alternative
hypothesis (H1,n) when the sample size n grows. The notation of critical radius
gives a precise and quantitative description of this behaviour. The rate rn = 1/

√
n

is the usual rate in the regular parametric setting.

3.2.3. Invariance properties. As the uniform distribution is invariant under
rotations of the sphere, the theory of invariant tests [see Lehmann and Romano
(2005), Chapter 6] leads to impose the same kind of invariance on any statisti-
cal procedure for testing isotropy [see, e.g., Giné M. (1975) and the references
therein]. As bases of invariant subspaces under rotations, the spherical harmon-
ics are thus the most natural tools to detect some deviation from isotropy as in
problem (T1). However, as explained earlier, a common property of astrophysi-
cal observation of (point or continuous) processes on the sphere is the nonuniform
coverage of the sky by the instrument. It is common also that some parts of the data
are missing or so noisy that it is preferable to completely ignore or mask them. That
is why noninvariant approaches must be considered, and localized analysis func-
tions (such as wavelets) may be used as alternatives to spherical harmonics. In the
same spirit, wavelets have been proposed in the context of the angular power spec-
trum estimation by Baldi et al. (2009b) and used in the realistic case of a partially
observed stationary process with heteroscedastic noise in Faÿ et al. (2008) and Faÿ
and Guilloux (2011).

3.2.4. Regularity conditions: Besov spaces on the sphere. Although this is not
directly the purpose of this paper, it is a natural question to ask which kind of
regularity spaces our procedures are designed for. The problem of choosing appro-
priate spaces of regularity on the sphere is a serious question, and it is important
to consider the spaces which generalize usual approximation properties. On the
other hand, we are interested in spaces of functions which can be characterized by
their needlet coefficients {βjk} associated to a needlet frame {ψjk} (where j de-
notes the scale and k the position; see the online supplement [Faÿ et al. (2013)] for
the precise definitions). Hence, as is standard in the nonparametric literature, it is
natural to consider Besov bodies constructed on the needlet basis. In many situa-
tions (not only the sphere) it can be proved that these spaces can also be described
as approximation spaces, so they have a genuine meaning and can be compared
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to Sobolev spaces. We define here the Besov body Bs
pq as the space of functions

f = (4π)−1 ∫
S
f dμ + ∑

j≥0
∑

k∈Kj
βj,kψj,k such that

∑
j≥0

2jsq

( ∑
k∈Kj

(|βj,k|‖ψj,k‖p

)p)q/p

< ∞

(with the obvious modifications for the cases p or q = ∞). Details on Besov spaces
and their characterization by wavelets can be found in Triebel (1992) and Meyer
(1992). For details on the relations between needlets and Besov spaces we refer,
for instance, to Narcowich, Petrushev and Ward (2006a, 2006b), Petrushev and Xu
(2008).

4. Needlet based test procedure and other anisotropy tests. We intro-
duce here two anisotropy detection procedures based on the needlet analysis of
{Xi}i=1,...,n. The first one is based on multiple testing and will be referred to as
MULTIPLE. The second one uses an estimate of the density plugged in a distance
criterion and will be referred to as PLUGIN. For the sake of further comparison
(see Section 5), we also describe two existing methods that are used in the gamma
ray burst and cosmic ray literature. The first one is based on a nearest neighbour
analysis [see Quashnock and Lamb (1993), Efron and Petrosian (1995)]. The sec-
ond one relies on the two-point correlation [see, e.g., Narayan and Piran (1993),
Kachelriess and Semikoz (2006)].

We want detection procedures that are efficient from a L2 point of view, but
also for other Lp norms. In addition, we will require procedures that are simple
to implement as well as adaptive to unknown and inhomogeneous smoothness. In
Euclidean frameworks, these types of requirements are well known to be efficiently
handled by (nonlinear) wavelet thresholding estimation in the context of density
estimation [see, e.g., Donoho et al. (1996)] or by multiple tests [Ingster (2000),
Spokoiny (1996)].

Our problem here requires a special construction adapted to the sphere, since
usual tensorized wavelets will never reflect the manifold structure of the sphere
and will necessarily create unwanted artifacts. Recently a tight frame (i.e., a re-
dundant family sharing some properties with orthonormal bases), called a needlet
frame, was produced which enjoys enough properties to be successfully used
for density estimation [Baldi et al. (2009a)], for example, concentration in the
“Fourier” domain as well as in the space domain. Here, obviously the “space”
domain is the two-dimensional sphere itself, whereas the Fourier domain is now
obtained by replacing the “Fourier” basis by the basis of Spherical Harmonics
which leads, as mentioned in the previous section, to invariant tests. This con-
struction produces a family of functions {ψjk, j ≥ 0, k ∈ Kj } which very much
resemble wavelets. The index k defines (with an analogy to the standard wavelets)
the locations (points) on the sphere around which the needlet is concentrated, and
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j is referred to as the scale. These needlets have been shown to be extremely use-
ful for solving several types of astrophysical problems [Delabrouille et al. (2009),
Faÿ et al. (2008), Pietrobon, Balbi and Marinucci (2006), Marinucci et al. (2008),
Pietrobon et al. (2008), Rudjord et al. (2009)] or diverse inverse problems in statis-
tics [Kerkyacharian et al. (2007), Kerkyacharian, Pham Ngoc and Picard (2011),
Kerkyacharian et al. (2010)]. They are especially well adapted to the situation re-
current in astrophysics where the “full sky” is not covered (meaning in our context
that there are regions of the sphere where the points Xi are not observed if they
happen to fall there).

A formal definition of needlets on the sphere is proposed in the online sup-
plement to this article [Faÿ et al. (2013)] and can be found in greater detail in
Narcowich, Petrushev and Ward (2006b). For the description of the test proce-
dures, we only need to define the empirical needlet coefficients

β̂jk
def= 1

n

n∑
i=1

ψjk(Xi),(11)

which are unbiased estimators of βjk(f )
def= 〈f,ψjk〉 = ∫

S
f (ξ)ψjk(ξ)dξ . As

usual in the wavelet literature, j ≥ 0 refers to the scale and k to the location.
The coarsest scale is j = 0. The index k refers to a collection of quadrature points
{ξj,k} that are available at each scale j . ψj,k is then a zero-mean function centered
on ξj,k and more and more concentrated as j → ∞.

In our simulations, we have chosen dyadic needlets with a spline function of
order 15 as generator, which leads to simple but sufficiently concentrated analysis
wavelets. All the wavelets are axisymmetric around some well chosen points ξj,k .
The spatial profiles of those needlets at the five coarsest scales are represented in
Figure 3. More details are available in the online supplement [Faÿ et al. (2013)].

FIG. 3. The shape of the five first needlets in the spatial domain as the function of the co-latitude θ .
Recall that all the ψj,k functions are axisymmetric around the points ξj,k .
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4.1. Multiple tests. For multiple tests, we will consider collections of “linear
estimators” of the density, meaning that we will not use any nonlinear processing
of wavelet coefficients such as thresholding in the estimation phase. By analogy
with the work of Butucea and Tribouley (2006) on the related problem of the two-
sample nonparametric homogeneity test, we define

f̂J = 1

4π
+

J∑
j=0

∑
k∈Kj

β̂jkψjk(12)

with the βjk’s given by (11). For any value of the smoothing parameter J , we
define the nonrandomized associated testing procedure

TJ = 1
d(f̂J ,g)≥tJ

=
{

1, if d(f̂J , g) ≥ tJ ,
0, if d(f̂J , g) < tJ .

(13)

This gives a family of tests indexed by J , where the dependence with respect to
the choice of the distance d and to the sequence of thresholds tJ is made implicit
in the notation.

Butucea and Tribouley (2006) proved that if the regularity conditions are known
and specified by Besov conditions, the smoothing parameter J can be chosen op-
timally. It is likely that their arguments could be reproduced in our case. However,
our point of view in this paper will not be to detail this theoretical issue but rather
to concentrate on the practical aspects of the tests. Moreover, it would be probably
difficult to relate physical information to mathematical regularity conditions.

Nevertheless, the optimal choice for the parameter J depends on the regularity s

specified in the class of alternatives. Adaptive optimality can be achieved thanks
to a multiple test that decides for the alternative hypothesis as soon as one of the
TJ (d, cJ ) = 1 individually does so, that is, defining T MULTIPLE, by

T MULTIPLE = 0 if and only if ∀J ≤ J �, TJ = 0.(14)

Mimicking the theoretical results obtained in Butucea and Tribouley (2006) and
Baldi et al. (2009a), we have used

J � = ⌊1
2 log2(n/ logn)

⌋
(15)

as a reference in our numerical investigations, as in the case of adaptive density
estimation (see below). Note, however, that the optimal J � could vary according
to the loss function (Lp norm) we use to measure the nonisotropy as suggested
by the results of the related problem in the two sample nonhomogeneity detection
Butucea and Tribouley (2006). The values tJ that are used in (13) must be chosen
to verify Pg(T

MULTIPLE = 0) � α, where α is the prescribed level of the test.
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4.2. Plug-in tests. It is also interesting to compare, from an empirical point of
view, the above multiple test procedures to algorithms where we simply plug in
an adaptive estimate of the density in the distance. These density estimators have
good asymptotic properties from a minimax point of view, hence, it makes sense
to investigate also their properties when used for testing. To the best of our knowl-
edge, no theoretical optimality is proved and there even are arguments suggesting
that these procedures might not be optimal. For instance, on the real line, the min-
imax rate of convergence for estimation (in the so-called dense case) is n−s/(2s+1),
meaning that if f belongs to a ball in a Hölder space with exponent s, then no esti-
mator can approach the least favorable density at a better error rate (measured in a
Lp norm). We refer to Donoho et al. [(1996), Theorem 3] for a precise statement,
among others. On the other hand, the minimax critical radius for nonuniformity
detection is n−2s/(4s+1) [see Ingster (2000)]. It means that, in the minimax frame-
work, one can distinguish asymptotically two hypotheses that are separated by a
distance negligible with respect to the accuracy of any nonparametric estimation
of the densities in an infinite dimensional space.

The most popular minimax adaptive technique consists in adding to a very ba-
sic linear estimation a thresholding rule as post-processing. In the above mentioned
paper [Baldi et al. (2009a)] this nonlinear post-processing actually is a hard thresh-
olding rule, namely,

f̂J � = 1

4π
+

J �∑
j=0

∑
k∈Kj

β̂jk1|β̂jk |>κ
√

logn/n
ψjk

for some positive constants κ and J � = �1
2 log2(n/ logn)�. The coefficients β̂jk

are defined in (11).
It is known that many variations exist with close theoretical properties but some

differences in different practical situations. Among those, we will especially con-
sider the data-driven thresholding introduced by Juditsky and Lambert-Lacroix
(2004) to deal with density estimation on the real line (as opposed to density on
[0,1]). It seems to give good detection procedures for small samples in our context.
In the following, we will consider the nonlinear estimates

f̂J � = 1

4π
+

J �∑
j=1

∑
k∈Kj

1|β̂jk |>λ
√

lognσ̂jk
1δjk>ρ lognβ̂jkψjk(16)

for some positive constants ρ,λ, J � = �1
2 log2(n/ρ logn)�, and where

σ̂ 2
jk

def= 1

n

n∑
i=1

ψ2
jk(Xi) − (β̂jk)

2,(17)

δjk
def= (

ψ2
jk(ξjk)

)−1
n∑

i=1

ψ2
jk(Xi).(18)
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Let us give a short interpretation of the thresholding procedure. The quantity
σ̂ 2

jk is an estimate of the variance of β̂jk . The expression for δjk is inspired by
the one provided in Juditsky and Lambert-Lacroix (2004). In this reference, com-
pactly supported wavelets on the real line are used with a threshold on the num-
ber of observations actually participating to the estimation of βjk . In this case,
it makes sense to count the number of observations falling in the support of the
wavelet. In our case, as needlets are supported on the whole sphere (although very
concentrated), we propose to replace this quantity by a continuous type approxi-
mation δjk ; see (18). Note that δjk = n if X1 = · · · = Xn = ξjk .

Finally, we define the PLUGIN procedure as the decision

T PLUGIN
J = 1

d(f̂J∗ ,g)≥tPLUGIN
J

,(19)

with f̂J � defined in (16) and tPLUGIN
J some fixed threshold depending on the pre-

scribed level α of the test.

4.3. Two-point correlation test and nearest neighbour test. When dealing with
one-dimensional data, one can compare every test procedure to the well-known
benchmark Kolmogorov–Smirnov or Cramér–von Mises tests, which are based on
the empirical distribution function of the sample. In higher dimensions (here on the
sphere), there is no natural order relation that allows to consider such approaches.
For sake of comparison, we have run some simulations on two different tests found
in the astronomical literature.

Nearest neighbour test. The following statistical procedure has been proposed
by Quashnock and Lamb (1993). We denote it NN, as nearest neighbour. For each
point Xi , we compute the distance Yi to its nearest neighbour. Under the hypothesis
that f is uniform over the whole sphere, the marginal distribution function of (Yi)

is φ :y �→ 1 − [(1 + cosy)/2]n−1, and the Wilcoxon statistic

W = √
12n

(
1

2
− 1

n

n∑
i=1

φ(Yi)

)

is asymptotically standard Gaussian. For a nonhomogeneous random draw (for in-
stance, in the presence of clusters), this statistic is expected to take significantly
high values, allowing to detect this kind of anisotropy. This test is of interest, as it
is simple to compute, it has no parameters to be tuned, and it admits an extension
to nonuniform exposure [see Efron and Petrosian (1995)]. In this case, the distri-
bution of W is estimated numerically by Monte Carlo methods. The NN procedure
simply writes

T NN = 1
W≥tNN ,(20)

where tNN
1−α is the (1 − α)-quantile of the distribution of W . This distribution can

be approximated by a standard Gaussian distribution if the sample size is big and
the exposure is uniform. Otherwise, the quantile is estimated by the Monte Carlo
method.
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Two-point correlation test. Among others, Kachelriess and Semikoz (2006),
Narayan and Piran (1993) use the empirical two-point autocorrelation function to
detect clustering (TWOPC test). For a collection of n points {Xi} and any angular
distance δ ∈ [0, π], let Nn(δ) denote the random number of pairs {i, j} such that
�(Xi,Xj ) ≤ δ, where � is the geodesic distance. Define the two-point correlation
function wn(δ) = E(Nn(δ)) and its empirical counterpart

ŵn(δ) = ∑
i<j

1[0,δ]
(
�(Xi,Xj )

)
.(21)

Under the null hypothesis, the distribution of ŵn at any δ0 is evaluated using Monte
Carlo simulations. Then, the detection will be based on the comparison between
the empirical correlation function and wn, at some fixed value δ0 or a few different
values. A typical δ0 can be chosen so as to maximize the sensitivity of the test
depending on the application. In some references, however, the probability to ob-
serve a value bigger than ŵn(δ) is plotted on the whole range [0, π] with no δ0
fixed a priori. Consequently, much care is taken when interpreting those values,
as stressed, for instance, in Kachelriess and Semikoz (2006). Here we define the
procedure TWOPC by the decision

T TWOPC = 1
ŵn(δ0)≥tTWOPC ,(22)

where tTWOPC
1−α is the (1 − α) quantile of the distribution of ŵn(δ0) under the null,

evaluated by Monte Carlo simulations, at some δ0 specified a priori.

5. Monte Carlo experiments.

5.1. Experimental setup. In this section we compare numerically the tests de-
fined in Section 4 that are denoted MULTIPLE, PLUGIN, NN and TWOPC.

For T being any of those nonrandomized test procedures, we can tune the pa-
rameters of the procedure to have a prescribed level α, that is, Pg(T = 1) = α. This
is done by Monte Carlo replication. Ten thousand independent random samples of
size n are drawn under the null hypothesis, for g being the uniform density on S

[i.e., g ≡ 1/(4π)] or the stylized exposure function of the Pierre Auger detector
(see Figure 1).

For the MULTIPLE procedure and a given level α, we have chosen

Tj = 1‖f̂j−g‖p>tα′,j
,(23)

where tα′,j is the 1 − α′ quantile of the distribution of ‖f̂j − g‖p under the null
hypothesis. This distribution is evaluated using Monte Carlo replications. Further,
the value α′ is chosen so that

T ′
J � = sup

j=1,...,J �

Tj(24)
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TABLE 1
Power (in %) under (Hc

1 ), under uniform exposure, with ns = 100 and Emin = 1019 eV

n = 25 n = 100

J� 3 4 5 6 3 4 5 6

MULTIPLE p = 1 51 46 41 40 98 98 98 98
p = 2� 52 53 47 47 98 99 98 98
p = ∞ 42 44 42 42 92 91 91 90

PLUGIN p = 1 34 34 34 34 98 98 98 98
p = 2 42 42 42 42 98 98 98 98
p = ∞ 50 50 50 50 92 92 92 92

NN 38 82
TWOPC 45 62

has a first type error probability equal to α. This is arbitrary and the theory to be
written would likely suggest to use a scale dependent level.

The power of the test T is defined by (8). Some clues about this value are ob-
tained by evaluating Pf (T = 1) for particular alternatives f that are given in the
next section. Here again, those quantities are evaluated by Monte Carlo. Note,
however, that the power for a particular alternative only gives an upper bound of
the power in the minimax sense given by the second equation of (8).

In the tables of tests in the main paper (Tables 1 through 3) and on its online
supplement [Tables 1 through 8 in Faÿ et al. (2013)], we represent the power of
four tests. The power of the needlet tests is expressed as a function of the finest
band J � and the power of the norm we use to detect anisotropy (see the online
supplement [Faÿ et al. (2013)] for more details on the actual implementation of
the method).

TABLE 2
Power (in %) under (Hc

1 ), under uniform exposure, with ns = 500 and Emin = 6 × 1019 eV

n = 25 n = 100

J� 3 4 5 6 3 4 5 6

MULTIPLE p = 1 27 39 45 43 76 94 99 98
p = 2� 28 42 50 58 79 96 100 100
p = ∞ 24 35 45 50 69 84 96 97

PLUGIN p = 1 18 18 18 18 72 72 73 73
p = 2 25 28 29 29 78 82 82 82
p = ∞ 33 34 34 34 71 80 80 80

NN 33 99
TWOPC 75 99
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TABLE 3
Power of the tests for three models of (Ha

1 ) with values of δ and sample size varying so that√
nd(f,g) remains constant. It appears that those particular sequences of powers are generally

nondecreasing with the sample size. The observation model uses the Pierre Auger exposure function

n = 25, δ = 0.08 n = 100, δ = 0.04 n = 400, δ = 0.02

J� 3 4 5 6 3 4 5 6 3 4 5 6

MULTIPLE p = 1 14 16 13 13 14 16 14 14 21 20 17 17
p = 2� 19 20 16 16 17 21 20 20 23 21 20 20
p = ∞ 23 26 23 22 29 32 32 30 34 32 30 29

PLUGIN p = 1 11 11 11 11 17 16 16 16 19 19 19 19
p = 2 16 16 16 16 26 27 27 27 32 32 32 32
p = ∞ 23 22 22 22 32 30 30 30 39 39 39 39

NN 8 6 5
TWOPC 35 14 14

The profile cuts of the (axisymmetric) needlets we have used are plotted in the
online supplement.

5.2. Alternatives. We have investigated the performance of the test (power
against level) for sample sets of small to moderate size (n = 25,100,400) and
against different alternatives. Those choices of n mimic the progressive publica-
tion of events by the Pierre Auger Observatory (27 events above 5.7 × 1019 eV in
2008, 69 above 5.5 × 1019 in 2010, a few hundred in the future).

Generally speaking, the physical plausibility of those alternatives is weak [al-
ternative (Hc

1 )], if not null [alternatives (Hb
1 ) and (Hc

1 )]. Our goal is to focus here
on specific departures from isotropy. First we consider unimodal nonisotropic den-
sities, with a Gaussian shape. Then we consider mixtures of densities that would
only be obtained if the sources of the cosmic rays were known to be uniformly
distributed and repeating, and at the same distance from us. Third, the Physics-
inspired model (Hc

1 ) gives rise to nonisotropic patterns with richer frequency con-
tent compared to the previous ones (and nonaxisymmetric clusters). We now give
the precise definitions of the alternatives.

(Ha
1 ). The first family of alternatives is obtained as a mixture of the uniform

density h0 and an over-density at some point of the sphere, with Gaussian-like
axisymmetric profile. Precisely, the density under (Ha

1 ) writes

h(ξ) = (1 − δ)h0 + δhθ (ξ),

where for θ = 0, we put hθ(ξ) := hθ,ξ0(ξ), hθ,ξ0 := Cθ exp(−(ξ · ξ0)
2/2θ2) and

ξ0 = (π/2,0). Such densities are then unimodal, with a bump whose width is
proportional to θ . Typical observations of random draw with such density with
δ = 0.01 and θ = 5◦ or 20◦ are displayed on Figure 4.
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FIG. 4. Densities (first line) and random draws (second line, n = 100) under (Ha
1 ) with δ = 10%

and θ = 5◦ (left) or θ = 20◦ (right).

(Hb
1 ). A second family of alternatives is a toy model for the repeating emission

of events from a small number of sources, as explained in the Introduction. Here
we assume that the ns sources are uniformly distributed, although in a realistic
case, we can expect any type of astrophysical sources to follow the local matter
density of the cosmic structure (which would make the detection of anisotropy
easier). This generalization is straightforward enough that we do not discuss it
further at this stage. Conditionally to those positions, the incidental directions are
distributed along a mixture of ns Gaussian densities centred on the sources (to take
into account the error in the measurement of the incidence angle or the deflection
of the charged particle by Galactic magnetic fields), namely,

h(ξ) =
ns∑

j=1

hθ,ξi
(ξ).

This density is then modulated by the exposure ε of the detector along equation (4).
Such conditional densities are displayed on the first line of Figure 5 with uniform
and Pierre Auger exposures. We considered the cases ns = 10 and ns = 100 and
fixed θ = 10◦. Note that if ns is much bigger than n, it is difficult to detect this
kind of anisotropy (which can be detected only if at least one source has emitted
more than one cosmic ray).

(Hc
1 ). A third and last alternative is obtained by the physical model of cosmic

ray observations described in detail in Section 2. Sources are randomly drawn in
a spherical volume of radius rmax = 70 Mpc, and their flux is assumed inversely
proportional to the square of their distance. The parameters for the simulations
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FIG. 5. Density of X1 conditionally to the random draw of the centers of 100 AGNs (first line) and
random draws with n = 400 (second line). The exposure is uniform on the left, à la Pierre Auger
Observatory on the right.

are taken to be Emax = 1021 eV, α = 4.2. We consider different values for Emin
(namely, 1, 4 or 6 ×1019 eV). Playing on this parameter has an important practical
incidence. Assuming that the distribution of the energy of the cosmic rays is a
power law, P(E > t) ∼ Ct−α+1, lowering the threshold on the selection of the
cosmic rays from 6 × 1019 eV to 4 × 1019 eV (resp., 1019 eV) accounts to increase
the size of the sample (available observations above the threshold) by a factor
(6/4)α−1 � 3.66 (resp., 310). It means that the statistical decision should be made
far easier if the cosmic rays were not too much isotropized by the Galactic fields as
their energies go lower. This effect is illustrated in Figure 6. It is interesting to see if
the methods are still able to detect anisotropy as the cosmic rays become more and
more isotropized. This is a more realistic simulation compared to models (Ha

1 )

and (Hb
1 ). There is no single size for the scatter of the CRs coming for a given

source, nor the same size or directionality for each source, nor the same flux for

FIG. 6. Isotropization of the cosmic rays in model (Hc
1 ) as Emin decreases. There are the exact

same ns = 30 sources in the three cases and n = 1000 observations.
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each source, that hence is interesting specifically for a multiscale analysis with no
prior assumption about a correlation length.

Note that under the alternatives (Hb
1 ) and (Hc

1 ), the procedure is to be under-
stood as a test on the conditional distribution of (Xi)i=1,...,n with respect to the
positions of the “sources”, which are randomly drawn once for all.

5.3. Numerical results and discussion.

Tables. We shall represent some of the results of our simulations with tables
of estimated power of the procedures for given alternatives (in percent), at the
prescribed level α = 0.05. Practically, we let the finest needlet band entering the
MULTIPLE and PLUGIN procedures vary in the set {J � − 2, J � − 1, J �, J � + 1}
where J � is given by (15). The entry (or entries) corresponding to the overall
highest power (before rounding off) among the 26 values is (are) printed in bold
type. We consider three Lp norms, namely, Lp for p = 1,2,∞. It is possible to
use an unbiased estimate of the distance between f̂ and g in the case of the L2

norm. It is referred to as p = 2� (see the online supplement for details)

ROC curves. The receiver operating characteristic (ROC) curves plot the
power p of a procedure as a function of its level α. It is a useful representation for
comparison of different procedures along a wide range of levels. The ROC curves
associated to the TWOPC procedure are a step function because of the discrete
nature of the test statistic. Some of the ROC curves are nonconcave. It should be
recalled, however, that any procedure of this kind can be improved to a random-
ized procedure whose ROC curve is the concave upper envelope of the original
one. Accordingly, the reader’s eyes must actually analyse the upper envelopes of
the ROC curves. Note that the power in the tables has not been modified by this
argument.

ROC curves are represented in plots with four subplots, corresponding to the
four above-mentioned choices of J � in the needlet methods. The ROC curves for
TWOPC and NN procedures are the same in the four subplots. Inset graphs allow
complementary comparison of the methods by zooming on the most relevant levels
(small α).

5.3.1. Some specific results. First, we note that the differences of sensitivity
between the different Lp norms we use are not very strong, probably because we
consider quite regular alternative hypotheses. As expected, the L∞ is a bit more
sensitive to more spiky (unimodal) distributions, whereas more global measures
such as L1 or L2 perform better under the (Hb

1 ) or (Hc
1 ) models. This is illustrated

by some ROC curves in the online supplement. We now illustrate the comparison
of the performances of the four procedure with a few tables and figures.

It appears that the methods MULTIPLE and PLUGIN have a consistent behaviour
when the typical radius of the anisotropic structure is varying. We shall discuss
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further from those cases below. Figure 7 illustrates their good performances even
for small samples under the model (Hc

1 ) that produce clusters of various sizes and
shapes.

The NN procedure performs strikingly worse than others in almost all but the
(Hb

1 ) situations. The good sensitivity to (Hb
1 ) alternatives can be explained in the

following manner. In this case, the points {Xi}i=1,...,n are mainly grouped into
clusters of average scale given by the standard deviation of the Gaussians of the
mixture. If the number of clusters and this standard deviation are too small to cover
significantly the whole observed part of the sphere, then the random distances to
the nearest neighbour are bounded by σ with very high probability, which is not
the case under the null. This makes the distribution of the distance to the nearest
neighbour a very sensitive tool to discriminate between (Hb

1 ) and the null.
Varying the alternatives, it appears that no method outperforms the other in a

uniform way, but it seems that the two needlet methods, if not always optimal,
consistently have a good behaviour. Moreover, the MULTIPLE test is slightly more
sensitive that the PLUGIN one. As an illustration, we represent in Tables 1 and 2
the power of the procedures against the (Hc

1 ) alternative, for sample sizes equal
to 25 and 100, and (Emin, ns) = (1019 eV, 100), and (6 × 1019 eV, 500), respec-
tively. It can be seen from those tables that moving the lower energy limit upwards
makes the detection easier. More tables are available in the online supplement, for
a representative panel of alternatives, containing more or less spiky distributions,
clusters of smoother alternatives, weak or strong anisotropy etc.

It must be stressed that the TWOPC approach often provides a good sensitivity
if not the best at n = 25. For most of the alternatives, however, one or the other
of the needlets methods outperforms TWOPC as n grows. This is exemplified in
Tables 1 and 2 in the case of a (Hc

1 ) alternative. In our application context, the
sample size over a given energy threshold is increasing with time and experiments,
so it must be highlighted that multiscale methods are more and more appropriate
for analysis of future data sets.

5.3.2. Separation rate. We focus here on the behaviour of the power of the
test with respect to n. If rn is the critical rate in the minimax sense [given by equa-
tions (9) and (10)], we should observe an approximately same power for different
sample size and the least favourable alternative densities f̃n as soon as the quantity
rnd(f̃n, g) remains constant.

On Table 3 we have displayed the power of the different procedures for three
different densities corresponding to the alternative (Ha

1 ) and three sample sizes,
keeping the same value for n1/2d(f, g). Indeed, in the (Ha

1 ) case, for any power
norm, d(h,h0) = δd(h0, hθ ). As the power remains roughly the same in (0,1) for
the three values of the parameters, and as n1/2 is an upper bound for the minimax
separation rate in analogy with similar problems on Euclidean spaces, this numer-
ical simulation is consistent with the claim that the needlet based procedures per-
form well at the minimax rate of testing. The increasing value of the power with n



TESTING THE ISOTROPY OF HIGH ENERGY COSMIC RAYS 1065

FIG. 7. ROC curves (true positive rate against false positive rate) for the four methods. For the
needlet methods, the debiased L2 norm is used. Insets display the same curves as in the main plot
with a logarithmic scale in abscissas, to highlight the comparative performances for relevant level
values.
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together with the unbeatable rate of separation
√

n illustrates the fact that we only
have access to upper bounds of the minimax rate. In other words, the densities
under consideration are definitely not the least favourable cases. The comparison
of needlet methods with NN and TWOPC methods tends to be more favourable to
needlets methods as n becomes larger in this case.

5.3.3. Robustness. Assume that the anisotropy detection by the needlet meth-
ods is adaptive. Then, as pre-tuned black boxes, those methods should remain op-
timal on a wide range of alternatives. Some simulations support this claim. Note,
however, that we only explore physically possible alternatives which are smooth
nonuniform densities.

The key parameter of the TWOPC method is the angular size δ0 at which we
compare ŵ(δ) to the distribution of w(δ0) under the null. For sake of fairness in
our comparisons, we should allow some tuning of this parameter. It is clear that the
optimal δ0 is related to the “average scale” of the anisotropy. Though it is difficult
to give a precise and general definition of this former quantity, it should be close to
the value of the parameter θ in the particular case of model (Ha

1 ). Indeed, it appears
from our simulations that TWOPC is better than the needlet methods when θ = 5◦
and worse when θ = 20◦ under (Ha

1 ).
On Figure 8 we have plotted the estimated power of the tests against different

alternatives (Ha
1 ) or (Hc

1 ), and for different parameters for the methods. In the case
of (Ha

1 ), the first line of the figure shows that the optimal δ0 is indeed related to
the parameters θ of the alternative. However, when dealing with alternatives such
as (Hc

1 ) (second line of Figure 8) that give rise to structures at different “scales”,
the optimal choice of δ0 is not clear. By observing the large variations of the power
of the TWOPC procedure with respect to δ0 in both cases, one can conclude that
this procedure should incorporate a data-driven selection of δ0 to be truly efficient.

The situation is strikingly different for the needlet methods. One can observe
from the left column of Figure 8 that the power reaches some plateau after J � >

Jmin in a very consistent way across the different alternatives. This robustness is a
strong point of those methods. The dependence in n is quite weak too. For instance,
taking J � = 4 leads to a small loss of efficiency uniformly with respect to the best
choice for each given situation of sample size and model.

6. Analysis of Auger data. We have run the previous tests on the Auger pub-
lic data made available by the Pierre Auger Collaboration (2010). It is composed
of 69 arrival directions of cosmic rays with energy above 55 EeV and detected
by the Pierre Auger Observatory between 1 January 2004 and 31 December 2009.
Those directional events are plotted on Figure 9. The distributions of the tests un-
der study for n = 69 and under the null hypothesis have been evaluated by Monte
Carlo simulation of length 10.000.

Along with the detection of a correlation between cosmic rays’ directions and
catalogues of potential sources, the Pierre Auger collaboration already performed
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FIG. 8. The empirical power associated with the MULTIPLE (left column) and TWOPC (right
column) procedures with respect to their key parameters J ∗ and δ0, respectively. The prescribed
levels of the tests are 5%. The three models under consideration in the first row are provided by the
alternative (Ha

1 ) with θ = 5◦,10◦ and 20◦. On the second row, the three alternative models are (Hc
1 )

with ns = 500, and Emin = 1019, 4 × 1019 or 6 × 1019 eV. The number of observations is n = 100
everywhere.

a catalogue-free test for anisotropy with no reference to any catalogue, using the
TWOPC procedure. As noticed earlier, the critical value for this method is the
choice of δ0 in (22). The p-value of this test for the 69 UHECRs data set reaches
a minimal value of

p-value(TWOPC) � 0.008

around δ0 � 10.7◦. Recall that in order to be interpretable as a classical p-value for
a single hypothesis testing, this p-value should be computed from an out-of-the-
sample prescription of δ0, which is not the case here. Then this p-value strongly
exaggerates the significance of the detection. Indeed, as already noticed in [Pierre
Auger Collaboration (2010)], we computed that the fraction of isotropic simula-
tions that are as nonisotropic as the real data at some angle between 4◦ and 14◦ is
as high as 10%. We have also computed that

p-value(NN) � 0.07.
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FIG. 9. The 69 arrival directions of cosmic rays with energy above 55 EeV and detected by the
Pierre Auger Observatory up to 31 December 2009 [Pierre Auger Collaboration (2010)]. Their dis-
tribution is obviously nonuniform, due to the incomplete coverage function of the instrument that is
described in Figure 1. Anisotropy tests actually compare the empirical distribution to the exposure
function (see text for details).

The p-values of Table 4 are the p-values computed from the Pierre Auger data set
for our MULTIPLE and PLUGIN procedure.

For the MULTIPLE test, the p-value is defined as the proportion of draws
(under the null) that have a higher single test statistic in at least one value of
j ∈ {1, . . . , J �}. The resulting p-value is quite sensitive to the choice of the highest
band J �, except if one uses the L2-norm. Note that if we take the L2 norm and the
theoretical J � = 2 given by the expression (15), the results for the MULTIPLE test
are not statistically significant. But the Monte Carlo simulations suggest that this
theoretical choice of J � is not optimal for small to medium sample size, being too
small.

The PLUGIN is more stable and consistently considers that the Auger data is
significantly nonisotropic. The almost constant p-values in this case are the conse-
quence of a hard thresholding rule in (16) that cancels all the estimated coefficients
β̂j,k as soon as j ≥ 3 for this data set. This may in turn give a rule-of-thumb rule
to define a data-driven J � for the multiple test.

To conclude on this important data set and this methodology, it appears that the
needlet methods find a stronger statistical evidence of some kind of anisotropy in

TABLE 4
P -values of the MULTIPLE and the PLUGIN tests for Auger data (n = 69)

MULTIPLE test PLUGIN test

J� p = 1 p = 2∗ p = ∞ p = 1 p = 2∗ p = ∞
1 0.957 0.788 0.387 0.956 0.958 0.397
2 0.051 0.112 0.035 0.033 0.037 0.036
3 0.118 0.050 0.004 0.017 0.008 0.005
4 0.434 0.046 0.003 0.017 0.008 0.008
5 0.227 0.095 0.624 0.017 0.008 0.008
6 0.762 0.045 0.341 0.017 0.008 0.008
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the Pierre Auger data. More realistic alternatives and more simulations can help to
choose the J � parameter of the MULTIPLE procedure and additional parameters of
the PLUGIN approach.

7. Conclusion. In this paper we have investigated the problem of the detec-
tion of anisotropy of directional data on the unit sphere, with an application to the
analysis of ultrahigh energy cosmic ray events as observed with a detector such as
the Pierre Auger Observatory. It was important to consider samples whose sizes
are comparable to the sizes of the data sets that are available nowadays for cosmic
rays scientists (about 25 at the beginning of this work, about a hundred now). Al-
though we are mainly interested in small sample performances, we have proposed
a multiple test approach based on a multiresolution analysis of the data, which
could hopefully be proved to be asymptotically optimal in the minimax sense,
a well-known pessimistic framework.

We have proposed, and tested on various simulated data sets, two methods using
the decomposition of the directional data onto a frame of spherical needlets. Their
performance has been compared to other (more specific) approaches based on the
nearest neighbour and on the two-point correlation function. The simulation shows
that the needlet-based methods perform comparatively very well in various situa-
tions. They are competitive with the existing method at a small sample size, and
tend to outperform them from a moderate sample size. Moreover, the “omnibus”
property of the needlets method is interesting for the problem at hand, in which
the type of possible anisotropy (the class of alternative) is not really well known
a priori. In addition, a multiple test based on the use of spherical needlets offers a
good opportunity to extend the method of detection of anisotropies with not only
multiplicity in the scales tested, but also in ranges of energy of the incoming parti-
cles. Indeed, while in this work we have used the energy level as a simple thresh-
old, one could instead implement a detection using the joint directional-energy
information—allowing thus to simultaneously extract information from the high-
est energy cosmic rays, which are not deflected much by Galactic and extragalactic
magnetic fields, and also from lower energy events, more deflected but much more
numerous. In light of our simulations on an energy level-dependent model, the
multiscale approach could lead to stronger conclusion using the CR data that are
not yet made public by the Pierre Auger Observatory.

As in any nonparametric method, there is at least one parameter to be tuned,
often by hand or using more sophisticated data-driven methods such as cross-
validation. In the needlet methods one can tune several parameters (shape of the
needlets, highest scale J �— although there is an asymptotic formula for it, thresh-
olds on the coefficients in the PLUGIN approaches, thresholds on the individual
tests in the MULTIPLE procedure, power norm). It is plausible, however, that a
large range of possible choices for most of these parameters give comparable per-
formance.
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Although we have used needlets that are compactly supported windows in the
harmonic space, it may be arguable that they are not the most appropriate tool.
One could consider, as an alternative, better spatially concentrated functions [see,
e.g., Lan and Marinucci (2009), such as the Mexican needlets] or, in general, try to
optimize the needlet window function given prior knowledge of the physical prob-
lem and of the expected properties of anisotropic distributions of the cosmic ray
direction of incidence. In this spirit, it would be interesting to consider directional
wavelet such as curvelets or ridgelets [see Starck et al. (2006)] to test for specific
strip-like alternative densities. It is also possible to consider nondyadic needlets.
The choice of B ∈ (1,2) allows a finer coverage of the frequency line. The numeri-
cal results presented here have not taken this benefit into full account, and whether
significantly higher power can be obtained by optimizing this number remains to
be investigated.

Finally, in addition to the aforementioned possible extensions of our methods,
we want to stress that the work presented here also opens the way to two lines of
future investigations, one on the applications side and one more theoretical. On the
experimental side, it will be of much interest to apply the method on larger data
sets (for instance, by lowering the energy threshold to increase the available sample
size). On the theoretical side, the validation of the approach has to be investigated
on the basis of some theory in the minimax framework it is designed for.
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SUPPLEMENTARY MATERIAL

Supplement to “Testing the isotropy of high energy cosmic rays with spher-
ical needlets” (DOI: 10.1214/12-AOAS619SUPP; .pdf). In the supplement, we
recall the construction of the needlet decomposition on the sphere, and discuss its
practical usage. We also complete the Section 5 of this paper with more results
obtained from Monte-Carlo simulations.
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