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Recent advances in tissue microarray technology have allowed immuno-
histochemistry to become a powerful medium-to-high throughput analysis
tool, particularly for the validation of diagnostic and prognostic biomark-
ers. However, as study size grows, the manual evaluation of these assays
becomes a prohibitive limitation; it vastly reduces throughput and greatly
increases variability and expense. We propose an algorithm—Tissue Array
Co-Occurrence Matrix Analysis (TACOMA)—for quantifying cellular phe-
notypes based on textural regularity summarized by local inter-pixel relation-
ships. The algorithm can be easily trained for any staining pattern, is absent
of sensitive tuning parameters and has the ability to report salient pixels in an
image that contribute to its score. Pathologists’ input via informative training
patches is an important aspect of the algorithm that allows the training for
any specific marker or cell type. With co-training, the error rate of TACOMA
can be reduced substantially for a very small training sample (e.g., with size
30). We give theoretical insights into the success of co-training via thinning
of the feature set in a high-dimensional setting when there is “sufficient” re-
dundancy among the features. TACOMA is flexible, transparent and provides
a scoring process that can be evaluated with clarity and confidence. In a study
based on an estrogen receptor (ER) marker, we show that TACOMA is com-
parable to, or outperforms, pathologists’ performance in terms of accuracy
and repeatability.

1. Introduction. Tissue microarray (TMA) technology was first described by
Wan, Fortuna and Furmanski (1987) and substantially improved by Kononen et al.
(1998) as a high-throughput technology for the assessment of protein expression in
tissue samples. As shown in the top panel of Figure 1, the construction of a TMA
begins with cylindrical cores extracted from a donor block of formalin-fixed and
paraffin-embedded tissues. The cores are transferred to the grid of the recipient
block. This grid is generated by punching cylindrical holes at equal distance into
a precast rectangular mold of solid paraffin wax. Once all the holes are filled with
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FIG. 1. Illustration of the TMA technology and example TMA images. The top panel is reprinted
from Kononen et al. (1998) by courtesy of the Nature Publishing Group and it shows the steps in-
volved in how a TMA image may be produced. The bottom panel displays example TMA images with
the numbers in the left indicating the score of images in the same row.

donor cores, the block is heated to fuse the cores to the wax of the block. Normally,
recipient blocks contain 360 to 480 tissue cores from donor blocks, often in triplate
samples from each block and are thus called tissue micro arrays (TMA). They are
sectioned transversely and each section is captured on a glass slide, such that slides
display a cross section of each core in a grid-like fashion. More than 100 slides
can be generated from each TMA block for analysis with a separate probe. This
procedure standardizes the hybridization process of the probe across hundreds of
tissue samples. The use of TMAs in cancer biology has increased dramatically in
recent years [Camp, Neumeister and Rimm (2008), Giltnane and Rimm (2004),
Hassan et al. (2008), Voduc, Kenney and Nielsen (2008)] for the rapid evaluation
of DNA, RNA and protein expressions on large numbers of clinical tissue samples;
they remain the most efficient method for validating proteomics data and tissue
biomarkers. We limit our discussion to high-density immunohistochemistry (IHC)
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staining, a method used for the measurement of protein expression, as the most
common method for subcellular localization.

The evaluation of protein expression requires the quantification, or scoring, of a
TMA image. The scores can be used for the validation of biomarkers, assessment
of therapeutic targets, analysis of clinical outcome, etc. [Hassan et al. (2008)]. The
bottom panel of Figure 1 gives an example of several TMA images with scores
assigned at a 4-point scale (see Section 4 for details).

Although the construction of TMAs has been automated for large-scale inter-
rogation of markers in tissue samples, several factors limit the use of the TMA
as a high-throughput assay. These include the variability, subjectivity and time-
intensive effort inherent in the visual scoring of staining patterns [Camp, Neumeis-
ter and Rimm (2008), Vrolijk et al. (2003)]. Indeed, a pathologist’s score relies on
subjective judgments about colors, textures, intensities, densities and spatial rela-
tionships. As noted in Giltnane and Rimm (2004), however, the human eye cannot
provide an objective quantification that can be normalized to a reference. In gen-
eral, problems stemming from the subjective and inconsistent scoring by patholo-
gists are well known and have been highlighted by several studies [Bentzen, Buffa
and Wilson (2008), Berger et al. (2005), DiVito and Camp (2005), Kirkegaard
et al. (2006), Thomson et al. (2001), Walker (2006)]. Thus, as study size grows,
the value of TMAs in a rigorous statistical analysis may actually decrease without
a consistent and objective scoring process.

These concerns have motivated the recent development of a variety of tools for
automated scoring, ranging from sophisticated image enhancement tools, tissue
segmentation to computer-assisted pathologist-based scoring. Many are focused
on a particular cellular pattern, with HER2 (exhibiting nuclear staining) being the
most commonly targeted marker; see, for example, Hall et al. (2008), Joshi et al.
(2007), Masmoudi et al. (2009), Skaland et al. (2008), Tawfik et al. (2005). For a
survey of commercial systems, we refer to Mulrane et al. (2008) or Rojo, Bueno
and Slodkowska (2009), and also the review by Cregger, Berger and Rimm (2006)
which acknowledges that, given the rapid changes in this field, this information
may become outdated as devices are abandoned, improved or newly developed.
A property of most automated TMA scoring algorithms is that they rely on various
forms of background subtraction, feature segmentation and thresholds for pixel in-
tensity. Tuning of these algorithms can be difficult and may result in models sensi-
tive to several variables, including staining quality, background antibody binding,
counterstain intensity, and the color and hue of chromogenic reaction products
used to detect antibody binding. Moreover, such algorithms typically require tun-
ing from the vendors with parameters specific to the markers’ staining pattern (e.g.,
nuclear versus cytoplasmic), or even require a dedicated person for such a system.

To address the further need for scoring of TMAs in large biomarker studies,
we propose a framework—called Tissue Array Co-Occurrence Matrix Analysis
(TACOMA)—that is trainable to any staining pattern or tissue type. By seeking
texture-based patterns invariant in the images, TACOMA does not rely on inten-
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sity thresholds, color filters, image segmentation or shape recognition. It recog-
nizes specific staining patterns based on expert input via a preliminary set of im-
age patches. In addition to providing a score or categorization, TACOMA allows
to see which pixels in an image contribute to its score. This clearly enhances inter-
pretability and confidence in the results.

It should be noted that TACOMA is not designed for clinical diagnosis but rather
a tool for use in large clinical studies that involve a range of potential biomarkers.
Since many thousands of samples may be required, the cost and time required
for pathologist-based scoring may be prohibitive and so an efficient automated
alternative to human scoring can be essential. TACOMA is a framework for such
a purpose.

An important concern in biomedical studies is that of the limited training sample
size.2 The size of the training set may necessarily be small due to the cost, time
or human efforts required to obtain them. We adopt co-training [Yarowsky (1995),
Blum and Mitchell (1998)] in the context of TACOMA to substantially reduce
the training sample size. We explore the thinning of the feature set for co-training
when a “natural” split is not readily available but the features are fairly redundant,
and this is supported by our theory that a thinned slice carries about the same
classification power as the whole feature set under some conditions.

The organization of the remainder of this paper is as follows. We describe the
TACOMA algorithm in Section 2, this is followed by a discussion on co-training
to reduce the training sample size with some theoretical insights on the thinning
scheme in Section 3. Then in Section 4, we present our experimental results. We
conclude with a discussion in Section 5.

2. The TACOMA algorithm. The primary challenge TACOMA addresses is
the lack of easily-quantified criteria for scoring: features of interest are not local-
ized in position or size. Moreover, within any region of relevance—one containing
primarily cancer cells—there is no well-defined (quantifiable) shape that character-
izes a pattern of staining (see, e.g., the bottom panel of Figure 1 for an illustration).
The key insight that underlies TACOMA is that, despite the heterogeneity of TMA
images, they exhibit strong statistical regularity in the form of visually observ-
able textures or staining pattern [see, e.g., Figure 2(b)]. And, with the guidance of
pathologists, TACOMA can be trained for this pattern regardless of the cancer cell
type (breast, prostate, etc.) or marker type (e.g., nucleus, cytoplasmic, etc.).

TACOMA captures the texture patterns exhibited by TMA images through
a matrix of counting statistics, the Gray Level Co-occurrence Matrix (GLCM).
Through a small number of representative image patches, TACOMA constructs a
feature mask so that the algorithm will focus on those biologically relevant features
(i.e., a subset of GLCM entries). Besides scoring, TACOMA also reports salient

2The additional issue of label noise was studied elsewhere [Yan et al. (2011)].
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(a)

(b)

FIG. 2. Example images and their GLCMs. (a) Generating the GLCM from an image. This toy
“image” (left) has 3 gray levels, {Dark,Grey,White}. Here, under the spatial relationship (↗,1),
the transition from Grey to White (indicated by ↗) occurs three times; accordingly, the entry of the
GLCM corresponding to the Grey row and White column has a value of 3. (b) Example TMA images.
Images of a tissue sample (left panel) and the Heatmap (right panel) of their GLCM (in log scale).
The GLCM matrices are all 51 × 51; each GLCM cell in the heatmap indicates the frequency of the
corresponding transition. The color scale is illustrated by the color bar on the right.
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image pixels (i.e., those contribute to the scoring of an image) which will be use-
ful for the purpose of training, comparison of multiple TMA images, estimation
of staining intensity, etc. For the rest of this section, we will briefly discuss these
individual building blocks of TACOMA followed by an algorithmic description of
TACOMA.

2.1. The gray level co-occurrence matrix. The GLCM was originally pro-
posed by Haralick (1979) and has proven successful in a variety of remote-sensing
applications [Yan, Bickel and Gong (2006)]. The GLCM, of an image, is a matrix
whose entries count the frequency of transitions between pixel intensities across
neighboring pixels with a particular spatial relationship; see Figure 2. The descrip-
tion here is essentially adopted from Yan, Bickel and Gong (2006). We start by
defining the spatial relationship between a pair of pixels in an image.

DEFINITION. A spatial relationship has two elements, the direction and the
distance of interaction. The set of all possible spatial relationships is defined as

� = D ⊗ L

= {↗,↘,↖,↙,↓,↑,→,←} ⊗ {1, . . . , d},
where D is the set of potential directions and L is the distance of interaction be-
tween the pair of pixels involved in a spatial relationship. The distance of interac-
tion is the minimal number of steps required to move from one pixel to the other
along a given direction. The particular spatial relationships used in our application
are (↗,3), (↘,1) and (↗,1). Details about the choice of these spatial relation-
ships can be seen in Section 4.

Although the definition of spatial relationships can be extended to involve more
pixels [Yan, Bickel and Gong (2006)], we have focused on pairwise relationships
which appear to be sufficient. Next we define the GLCM.

DEFINITION. Let Ng be the number of gray levels in an image.3 For a given
image (or a patch) and a fixed spatial relationship ∼∈ �, the GLCM is defined as

A Ng × Ng matrix such that its (a, b)-entry counts the number of pairs of
pixels, with gray values a and b, respectively, having a spatial relationship ∼,
for a, b ∈ {1,2, . . . ,Ng}.
This definition is illustrated in Figure 2(a) with more realistic examples in Fig-

ure 2(b). Figure 2(b) gives a clear indication as to how the GLCM distinguishes
between TMA images having different staining patterns.

3Often before the computing of GLCM, the gray level of each pixel in an image is scaled linearly
from [1,No] to [1,Ng] for No the predefined number, typically 256, of gray levels in the image.
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FIG. 3. Representative image patches and the induced feature mask. Four pathologist-chosen
patches (left panel) and the feature mask as determined by all patches (right panel, see algorith-
mic description of TACOMA). Nonwhite entries in this matrix indicate the corresponding GLCM
entries to be used in scoring. Note that one and only one feature mask is required throughout.

Our use of the GLCM is nonstandard in that we do not use any of the com-
mon scalar-valued summaries of a GLCM [see Haralick (1979) and Conners and
Harlow (1980)], but instead employ the entire matrix (with masking) in a classi-
fication algorithm [see also Yan, Bickel and Gong (2006)]. A GLCM may have a
large number of entries, typically thousands, however, the exceptional capability of
Random Forests [Breiman (2001)] in feature selection allows us to directly use all
(or a masked subset of) GLCM entries to determine a final score or classification.

2.2. Image patches for domain knowledge. In order to incorporate prior
knowledge about the staining pattern, we mask the GLCM matrix so that the scor-
ing will focus on biologically pertinent features. The masking is realized by first
choosing a set of image patches representing regions that consist predominantly
of cancer cells and are chosen to represent the staining patterns; see Figure 3. The
collection of GLCMs from these patches are then used to define a template of “sig-
nificant entries” (cf. TACOMA algorithm in Section 2.5) for all future GLCMs:
when the GLCM of a new image is formed, only the entries that correspond to
this template are retained. This masking step enforces the idea that features used
in a classifier should not be based on stromal, arterial or other nonpertinent tissue
which may exhibit nonspecific or background staining. Note that only one small
set of image patches is required; these image patches are used to produce a com-
mon feature mask which is applied to all images in both training and scoring.

In this fashion, feature selection is initiated by expert biological knowledge.
This manner of feature selection involves little human effort but leads to substan-
tial gain in both interpretability and accuracy. The underlying philosophy is that
no machine learning algorithms surpass domain knowledge. Since by using image
patches we do not indicate which features to select but instead specify their effect,
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TABLE 1
Performance comparison of RF, SVM and Boosting of a naive Bayes classifier. The result for RF is
adopted from Section 4.1. For SVM, we vary the choice of the kernel from {Gaussian, polynomial,

sigmoid} with the best tuning parameters for Ng ∈ {7,9,13,26,37,51,64,85} and the best result is
reported. For boosting, the best result is reported by varying Ng ∈ {7,9,13,26,37,51,64,85} and

the number of boosting iterations from {1,2,3,5,10,50,100}

Classifier Accuracy

RF 78.57%
SVM 65.24%
Boosting 61.28%

we achieve the benefits of a manual-based feature selection but avoid its difficulty.
This is a novel form of nonparametric, or implicit, feature selection which is ap-
plicable to settings beyond TMAs.

2.3. Random forests. TACOMA uses Random Forests (RF) [Breiman (2001)]
as the underlying classifier. RF was proposed by Breiman and is considered one
of the best classifiers in a high-dimensional setting [Caruana, Karampatziakis and
Yessenalina (2008)]. In our experience, RF achieves significantly better perfor-
mance than SVM and Boosting on the TMA images we use (see Table 1). Addi-
tionally Holmes, Kapelner and Lee (2009) argue that RF is superior to others in
dealing with tissue images. The fundamental building block of RF is a tree-based
classifier which can be nonstable and sensitive to noise. RF takes advantage of
such instability and creates a strong ensemble by bagging a large number of trees
[Breiman (2001)]. Each individual tree is grown on a bootstrap sample from the
training set. For the splitting of tree nodes, RF randomly selects a number of can-
didate features or linear combinations of features and splits the tree node with the
one that achieves the most reduction in the node impurity as defined by the Gini
index [or other measures such as the out of bag (oob) estimates of generalization
error] defined as follows:

φ(p) =
C∑

i=1

pi(1 − pi),(1)

where p = (p1, . . . , pC) denotes the proportion of examples from different classes
and C is the number of different classes. RF grows each tree to the maximum and
no pruning is required. For an illustration of RF, see Figure 4.

To test a future example X, let X fall from each tree for which X receives
a vote for the class of the terminal node it reaches. The final class membership
of X is obtained by a majority vote over the number of votes it receives for each
class. The features are ranked by their respective reduction of node impurity as
measured by the Gini index. Alternatives include the permutation-based measure,
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FIG. 4. Random Forests classification. In this illustration the data points reside in a unit square
(left panel). The two classes are indicated by red and blue dots. The true decision boundary is the
diagonal line shown. RF (center panel) grows many trees. Each tree corresponds to a recursive
partition of the data space. These partitions are represented in the right panel by a sequence of
horizontal and vertical lines; the data space shown here is partitioned by many instances. The RF
classifier eventually leads to a decision boundary (solid black curve) for this two-class classification
problem.

that is, permute variables one at a time and then rank according to the respective
amount of decrease in accuracy (as estimated on oob observations).

2.4. Salient pixels detection. A valuable property of TACOMA is its ability
to report salient pixels in an image that determine its score (see Figure 8). This
property is based on a correspondence between the position of pixels in an image
and entries in its GLCM, and made possible by the remarkable variable-ranking
capability of RF. Here we use the importance measure (Gini index-based) provided
by RF to rank the variables (i.e., entries of the GLCM) and then collect relevant
image pixels associated with the important entries.

Since each entry of a GLCM is a counting statistic involving pairs of pixels,
we can associate the (a, b)-entry of a GLCM with those pixels that make up this
GLCM entry. The set of image pixels that are associated with the (a, b)-entry of a
GLCM is formally represented as

Ga,b = {x, y :x ∼ y, I (x) = a, I (y) = b}.
In the above representation, x and y represent the position of image pixels and we
treat an image I as a map from the position of an image pixel to its gray value. Note
that not all pairs of pixels with x ∼ y such that I (x) = a, I (y) = b correspond to
salient spots in a TMA image. However, if the (a, b)-feature is “important” (e.g.,
as determined by RF), then typically most pixels in the set Ga,b are relevant.

Whereas RF appears to be a black box—taking a large number of GLCM fea-
tures and producing a score—salient pixels provide a quick peek into its internals.
Effectively, RF works in roughly the same manner as a pathologist, that is, they
both use salient pixels to score the TMA images; the seemingly mysterious image
features are merely a form of representation for use by a computer algorithm.
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Algorithm 1 The training in TACOMA
1: for i = 1 to L do
2: compute the GLCM for the ith image patch and denote by Zi ;
3: Mi ← the index set of Zi that survive thresholding at level τi ;
4: end for
5: M ← ⋃L

j=1 Mj ;
6: for k = 1 to n do
7: compute the GLCM of image Ik and keep only entries in index set M ;
8: denote the resulting matrix by Xk ;
9: end for

10: Feed
⋃n

l=1{(Xl, Yl)} into the RF classifier and obtain a classification rule.

2.5. An algorithmic description of TACOMA. Denote the training sample by
(I1, Y1), . . . , (In, Yn) where Ii ’s are images and Yi’s are scores. Additionally, as-
sume there is a set of L “representative” image patches. The training of TACOMA
is described as Algorithm 1.

In the above description, τi is chosen as the median of entries of matrix Zi for
i = 1, . . . ,L. Then, for a new image, TACOMA will: (i) derive the GLCM matrix;
(ii) select the entries with indices in M ; (iii) apply the trained classifier on the
selected entries and output the score. The training and scoring with TACOMA are
illustrated in Figure 5.

3. Co-training with RF. The sample size is an important issue in the scoring
of TMA images, mainly because of the high cost and human efforts involved in
obtaining a large sample of high quality labels. For instance, it may take several

FIG. 5. TACOMA illustrated. The left and right panels illustrate, respectively, model training and
the use of the model on future data.
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FIG. 6. Error rate of TACOMA as the training sample size varies. There are 328 TMA images in
the test sample.

hours for a well-trained pathologist to score 100 TMA images. Unfortunately, it is
often the case that the classification performance drops sharply when the training
sample size is reduced. For example, Figure 6 shows the error rate of TACOMA
when the sample size varies. Our aim is to achieve reasonable accuracy for small
sample size and co-training is adopted for this purpose.

Co-training was proposed in the landmark papers by Yarowsky (1995) and
Blum and Mitchell (1998). It is an effective way in training a model with an
extremely small labeled sample and has been successfully applied in many ap-
plications [Blum and Mitchell (1998), Nigam and Ghani (2000)]. The idea is to
train two separate classifiers (called coupling classifiers) each on a different set of
features using a small number of labeled examples. Then the two classifiers itera-
tively transfer those confidently classified examples, along with the assigned label,
to the labeled set. This process is repeated until all unlabeled examples have been
labeled. For an illustration of the idea of co-training, see Figure 7. Co-training
is relevant here due to the natural redundancy that exists among features that are
based on GLCMs corresponding to different spatial relationships.

FIG. 7. An illustration of co-training.
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Algorithm 2 The co-training algorithm
1: while the set U is not empty do
2: for k = 1,2 do
3: Train RF classifier fk on labeled examples from L using feature set Fk ;
4: Classify examples in the set U with fk ;
5: Under fk , calculate the margin for each observation in U ;
6: pick mk observations, x

(k)
1 , . . . , x

(k)
mk , with the largest margins;

7: end for
8: L ← L ∪ {x(1)

1 , . . . , x
(1)
m1 , x

(2)
1 , . . . , x

(2)
m2 };

9: U ← U \ {x(1)
1 , . . . , x

(1)
m1 , x

(2)
1 , . . . , x

(2)
m2 };

10: end while

A learning mode that is closely related to co-training is self-learning [Nigam and
Ghani (2000)], where a single classifier is used in the “label → transfer → label”
loop (cf. Figure 7). However, empirical studies have shown that co-training is often
superior [Nigam and Ghani (2000)]; the intuition is that co-training allows the two
coupling classifiers to progressively expand the “knowledge boundary” of each
other which is absent in self-learning.

Previous works in co-training use almost exclusively Expectation Maximiza-
tion or Naive Bayes based classifiers where the posterior probability serves as the
“confidence” required by co-training. Here we use RF [Breiman (2001)] where
the margin (to be defined shortly) provided by RF is used as a “natural” proxy for
the “confidence.” The margin is defined through the votes received by an obser-
vation. For an observation x in the test set, let the number of votes it receives for
the ith class be denoted by Ni(x), i = 1, . . . ,C, where C is the number of classes.
The margin of x is defined as

max
i∈{1,...,C}Ni(x) − second

j∈{1,...,C}Nj(x),

where second in the above indicates the second-largest element in a list.
To give an algorithmic description of co-training, let the two subsets of features

be denoted by F1 and F2, respectively. Let the set of labeled and unlabeled ex-
amples be denoted by L and U , respectively. The co-training process proceeds as
Algorithm 2. The final error rate and class membership are determined by a fixed
coupling classifier, say, f1. We set m1 = m2 = 2 in our experiments according to
Blum and Mitchell (1998).

3.1. Feature split for co-training. Co-training requires two subsets of features
(or a feature split). However, co-training algorithms rarely provide a recipe for
obtaining these feature splits. There are several possibilities one can explore.

The first is called a “natural” split, often resulting from an understanding of the
problem structure. A rule of thumb as to what constitutes a natural split is that each
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of the two feature subsets alone allows one to construct an acceptable classifier and
that the two subsets somehow complement each other (e.g., conditional indepen-
dence given the labels). Fortunately, TMA images represented in GLCM’s natu-
rally have such properties. For a given problem, often there exist several spatial
relationships [e.g., (↗,3) and (↘,1) for TMA images studied in this work], with
each inducing a GLCM sufficient to construct a classifier while the “dependence”
among the induced GLCM’s is usually low. Thus, it is ideal to apply co-training
on TMA images using such natural splits.

When there is no natural split readily available, one has to find two proper sub-
sets of features. One way is via random splitting. Co-training via a random split of
features was initially considered by Nigam and Ghani (2000) but has since been
largely overlooked in the machine learning literature. Here we extend the idea of
random splits to “thinning,” which is more flexible and potentially may lead to
a better co-training performance. Specifically, rather than randomly splitting the
original feature set F = {1, . . . , p} into two halves, we select two disjoint subsets
of F with size not necessarily equal but nonvanishing compared to p. This way
of feature splitting leads to feature subsets smaller than F , hence the name “thin-
ning.” One concrete implementation of this is to divide F into a number of, say,
J , equal-sized partitions (each partition is also called a thinned slice of F ). In the
following discussion, unless otherwise stated, thinning always refers to this con-
crete implementation. It is clear that this includes random splits as a special case.
Thinning allows one to construct a self-learning classifier (the features are taken
from one of the J partitions), co-training (randomly pick 2 out of J partitions) and
so on. For a given problem, one can explore various alternatives associated with
thinning but here we shall focus on co-training.

The extension of random split to thinning may lead to improved co-training
performance, as thinning may make features from different partitions less depen-
dent and meanwhile well preserves the classification power in a high-dimensional
setting when there is sufficient redundancy among features (see Section 3.2). The
optimal number of partitions can be selected by heuristics such as the kernel inde-
pendence test [Bach and Jordan (2003), Gretton et al. (2007)], which we leave for
future work.

3.2. Some theoretical insights on thinning. According to Blum and Mitchell
(1998), one essential ingredient of co-training is the “high” confidence of the two
coupling classifiers in labeling the unlabeled examples. This is closely related to
the strength of the two coupling classifiers which is in turn determined by the fea-
ture subsets involved. In this section, we study how much a thinned slice of the
feature set F preserves its classification power. Our result provides insight into
the nature of thinning and is interesting at its own right due to its close connec-
tion to several lines of interesting work [Ho (1998), Dasgupta and Gupta (2002)]
in machine learning (see Section 3.2.2). We present our theoretical analysis in
Section 3.2.1 and list related work in Section 3.2.2. In Supplement A [Yan et al.
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(2012)], we provide additional simulation results related to our theoretical analy-
sis.

3.2.1. Thinning “preserves” the ratio of separation. Our theoretical model is
the Gaussian mixture specified as

�N (μ1,�) + (1 − �)N (μ2,�),(2)

where � ∈ {0,1} indicates the label of an observation such that P(� = 1) = π ,
and N (μ,�) stands for Gaussian distribution with mean μ ∈ R

p and covariance
matrix �. For simplicity, we consider π = 1

2 and the 0–1 loss. We will define the
ratio of separation as a measure of the fraction of “information” carried by the
subset of features due to thinning with respect to that of the original feature set
and show that this quantity is “preserved” upon thinning. For simplicity, we take
J = 2 (i.e., random splits of F ) and similar discussion applies to J > 2.

Let the feature set F be decomposed as

F = F1 ∪ F2 such that F1 ∩ F2 = ∅ and |F1| = p

2
� m.(3)

We will show that each of the two subsets of features, F1 and F2, carries a sub-
stantial fraction of the “information” contained in the original data when p is large,
assuming the data is generated from Gaussian mixture (2).

A quantity that is crucial in our inquiry is

SF = uT
F �−1

F uF ,(4)

where uF = (μ1 − μ2)F � (U1,U2, . . . ,Up)F and here F , as a subscript, indi-
cates that the associated quantity corresponds to the feature set F . We call SF the
separation of the Gaussian mixture induced by the feature set F . The separation
is closely related to the Bayes error rate for classification through a well-known
result in multivariate statistics.

LEMMA 1 [Anderson (1958)]. For Gaussian mixture (2) and 0–1 loss, the
Bayes error rate is given by �(−1

2(uT
F �−1

F uF )1/2) where �(·) is defined as

�(x) = ∫ x
−∞ 1√

2π
e−z2/2 dz.

Let the covariance matrix � be written as

� =
[
A BT

B D

]
,

where we assume block A corresponds to features in F1 after a permutation of
rows and columns. Accordingly, write u as uF = (uF1,uF2) and define SF1 (called
the separation induced by F1) similarly as (4). Now we can define the ratio of
separation for the feature subset F1 as

γ = SF1

SF
.(5)
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To see why definition (5) is useful, we give here a numerical example. Assume
there is a Gaussian mixture defined by (2) such that �100×100 is a tri-diagonal
matrix with diagonals being all 1 and off-diagonals being 0.6, uF = (1, . . . ,1)T .
Suppose one picks the first 50 variables and form a new Gaussian mixture with
covariance matrix A and mixture center distance uF1 . We wish to see how much
is affected in terms of the Bayes error rate. We have

SF = 45.87, �
(−1

2(uT
F �−1

F uF )1/2) = 3.54 × 10−4,

SF1 = 23.32, �
(−1

2(uF1
T A−1uF1)

1/2) = 7.87 × 10−3

and γ = 0.5084. Here the difference between feature set F1 and F is very small in
terms of their classification power. In general, if the dimension is sufficiently high
and γ is nonvanishing, then using a subset of features will not incur much loss in
classification power. In Theorem 2, we will show that, under certain conditions, γ

does not vanish (i.e., γ > c for some positive constant c) so a feature subset is as
good as the whole feature set in terms of classification power.

Our main assumption (i.e., in Theorem 2) is actually a technical one related
to the “local” dependency among components of u after some variable transfor-
mation. The exact context will become clear later in the proof of Theorem 2. For
now, let � have a Cholesky decomposition � = HHT for some lower triangular
matrix H . A variable transformation in the form of y = H−1uF will be intro-
duced. The idea is that we desire � = HHT to possess a structure such that the
components of y = H−1uF are “locally” dependent so that some form of law of
large numbers may be applied. To avoid technical details in the main text, we shall
discuss the assumption in the supplement [Yan et al. (2012)].

Our main result is the following theorem.

THEOREM 2. Assume the data are generated from Gaussian mixture (2). Fur-
ther assume the smallest eigenvalue of �−1, denoted by λmin(�

−1), is bounded
away from 0 under permutations of rows and columns of �. Then, under assump-
tions of Lemma 3 (c.f. Supplement A [Yan et al. (2012)]), the separation induced
by the feature set F1 satisfies

SF1

SF
≥

(
1

2

)−

in probability as p → ∞ where (a)− indicates any constant smaller than a. When
the number of partitions J > 2, the right-hand side is replaced by 1/J .

PROOF. See supplement [Yan et al. (2012)] for proof. �
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3.2.2. Related work. There are mainly two lines of work closely related to
ours. One is the Johnson–Lindenstrauss lemma and related [Johnson and Linden-
strauss (1984), Dasgupta and Gupta (2002)]. The Johnson–Lindenstrauss (or J–L)
lemma states that, for Gaussian mixtures in high-dimensional space, upon a ran-
dom projection to a low-dimensional subspace, the separation between the mix-
ture centers in the projected space is “comparable” to that in the original space
with high probability. The difference is that the random projection in J–L is car-
ried out via a nontrivial linear transformation and the separation is defined in terms
of the Euclidean distance whereas, in our work, random projection is performed
coordinate-wise in the original space and we define the separation with the Maha-
lanobis distance.

The other related work is the random subspace method [Ho (1998)], an early
variant of the RF classifier ensemble algorithm, that is, comparable to bagging and
Adaboost in terms of empirical performance. The random subspace method grows
a tree by randomly selecting half of the features and then constructs a tree-based
classifier. However, beyond simulations there has been no formal justification for
the random selection of half of the features. Our result provides support on this
aspect. In a high dimensional data setting where the features are “redundant,” our
result shows that a randomly-selected half of the features can lead to a tree com-
parable, in terms of classification power, to a classifier that uses all the features;
meanwhile the random nature of the set of features used in each tree makes the
correlation between trees small, so good performance can be expected.

Our theoretical result, when used in co-training, can be viewed as a mani-
festation of the “blessings of the dimensionality” [Donoho (2000)]. For high-
dimensional data analysis, the conventional wisdom is to do dimension reduction
or projection pursuit. As a result, the “redundancy” among the features is typically
not used and, in many cases, even becomes the nuisance one strives to get rid of.
This is clearly a waste. When the “redundancy” among features is complemen-
tary, such redundancy actually allows one to construct two coupling learners from
which co-training can be carried out. It should be emphasized that the splitting of
the feature set works because of redundancy. We believe the exploration of this
type of redundancy will have important impact in high-dimensional data analysis.

4. Applications on TMA images. To assess the performance of TACOMA,
we evaluate a collection of TMA images from the Stanford Tissue Microarray
Database, or STMAD [see Marinelli et al. (2007) and http://tma.stanford.edu/].
TMAs corresponding to the potential expression of the estrogen receptor (ER)
protein in breast cancer tissue are used since ER is a histologically well-studied
marker that is expressed in the cell nucleus. An example of TMA images can
be seen in Figure 2. There are 641 TMA images in this set and each image has
been assigned a score from {0,1,2,3}. The scoring criteria are as follows: “0”
representing a definite negative (no staining of cancer cells), “3” a definitive pos-
itive (a majority of cancer cells show dark nucleus staining) and “2” for positive

http://tma.stanford.edu/
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(a minority of cancer cells show nucleus staining or a majority show weak nucleus
staining). The score “1” indicates ambiguous weak staining in a minority of can-
cer cells. The class distribution of the scores is (65.90%,2.90%,7.00%,24.20%).
Such an unbalanced class distribution makes the scoring task even more challeng-
ing. In our experiments, we assess the accuracy by the proportion of images in
the test sample that receives the same score by a scoring algorithm as that given
by the reference set (e.g., STMAD). We split the images into a training and a test
set of sizes 313 and 328, respectively. In the following, we will first describe our
choice of various design options and parameters, and then report performance of
TACOMA on a large training set (i.e., a set of 313 TMA images) and small training
set (i.e., a set of 30 TMA images) with co-training in Section 4.1 and Section 4.2,
respectively.

We use three spatial relationships, (↗,3), (↘,1) and (↗,1), in our experi-
ments. In particular, (↗,3) is used in our experiment on TACOMA for a large
training set, while (↘,1) is used along with (↗,3) in our co-training experiment
and (↗,1) in an additional experiment (see Table 3). Often (↗,1) is the default
choice in applications; we use (↗,3) here to reflect the granularity of the visual
pattern seen in the images. Indeed, as the staining patterns in TMA images for ER
markers occur only in the nucleus, (↗,3) leads to a slightly better scoring per-
formance than (↘,1) according to our experiment on TACOMA; moreover, no
significant difference is observed for TACOMA when simply concatenating fea-
tures derived from (↗,3) and (↘,1). (↘,1) is used in co-training in hoping that
it is less correlated to features derived from (↗,3) than others, as these two are on
the orthogonal directions.

For a good balance of computational efficiency, discriminative power, as well
as ease of implementation, we take Ng = 51 (our experiments are not particularly
sensitive to the choice of Ng in the range of 40 to 60) and apply uniform quan-
tization over the 256 gray levels in our application. One can, of course, further
explore this, but we would not expect a substantial gain in performance due to the
limitation of a computer algorithm (or even human eyes) in distinguishing subtle
differences in gray levels given a moderate sample size.

We use the R package “randomForest”4 in this work. There are two important
parameters, the number of trees in the ensemble and the number of features to
explore at each node split. These are searched through {50,100,200,500} and
{0.5

√
p,

√
p,2

√
p} (

√
p is the default value suggested by the R package for p the

number of features fed to RF), respectively, in this work and the best test set error
rates are reported. More information on RF can be found in Breiman (2001).

4Originally written in Fortran by Leo Breiman and Adele Cutler, and later ported to R by Andy
Liaw and Matthew Wiener.
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4.1. Performance on large training set. The full set of 313 TMA images
in the training set are used in this case. We run TACOMA on the training set
(scores given by STMAD) and apply the trained classifier to the test set images
to obtain TACOMA scores. Then, we blind STMAD scores in the test set of
328 images (100 of which are duplicated so totally there are 428 images) and
have them reevaluated by two experienced pathologists from two different institu-
tions. The 100 duplicates allow us to evaluate the self-consistency of the patholo-
gists.

Although the scores from STMAD do not necessarily represent ground truth,
they serve as a fixed standard with respect to which the topics of accuracy and
reproducibility can be examined. On the test set of 328 TMA images, TACOMA
achieves a classification accuracy of 78.57% (accuracy defined as the proportion
of images receiving the same score as STMAD). We argue this is close to the op-
timal. The Bayes rate is estimated for this particular data example (represented as
GLCMs) with a simulation using a 1-nearest neighbor (1NN) classifier. The Bayes
rate refers to the theoretically best classification rate given the data distribution.
With the same training and test sets as RF classification, the accuracy achieved by
1NN is around 60%. According to a celebrated theorem of Cover and Hart (1967),
the error rate by 1NN is at most twice that of the Bayes rule. This result implies an
estimate of the Bayes rate at around 80% subject to small sample variation (the es-
timated Bayes rates on the original image or its quantized version are all bounded
above by this number according to our simulation). Thus, TACOMA is close to
optimal.

In the above experiments, we use four image patches. To see if TACOMA
is sensitive to the choice of image patches, we conduct experiments over a
range of different patch sets and achieve an average accuracy at 78.66 ± 0.52%.
Such an accuracy indicates that TACOMA is robust to the choices of image
patches.

It is worth reemphasizing that all reports of test errors for TMA images are
not based on absolute truth, as all scores given to these images are subjectively
provided by a variable human scoring process.

Salient spots detection. The ability of TACOMA to detect salient pixels is
demonstrated in Figure 8 where image pixels are highlighted in white if they are
associated with a significant scoring feature. These highlighted pixels are veri-
fied by the pathologists to be indicative. With relatively few exceptions, these
locations correspond to areas of stained nuclei in cancer cells. We emphasize
that these highlighted pixels indicate features most important for classification
as opposed to identifying every property indicative of ER status. The high-
lighted pixels facilitate interpretation and the comparison of images by patholo-
gists.
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FIG. 8. The salient pixels (highlighted in white). The left panel displays top features (indices of
GLCM entries) from the classifier where the x-axis and y-axis indicate the row and column of the
GLCM entries. The middle and right panels display images having scores 3 and 0, respectively; the
pixels highlighted in white are those that correspond to the GLCM entries shown in the left panel.
Note the highlighted pixels in the right panel are notably absent. For visualization, only part of the
images are shown (see Supplement B [Yan et al. (2012)] for larger images).

The experiments with pathologists. The superior classification performance of
TACOMA is also demonstrated by scores provided by the two pathologists. These
two copies of scores, along with STMAD, provide three independent pathologist-
based scores. Among these, 142 images receive a unanimous score. Consequently,
these may be viewed as a reference set of “true” scores against which the accuracy
of TACOMA might be evaluated (accuracy being defined as the proportion of im-
ages receiving the same score as the reference set). Here, TACOMA achieves an
accuracy of 90.14%; see Figure 9.

FIG. 9. Classification performance of TACOMA. On the STMAD test set TACOMA achieves an ac-
curacy of 78.57%. On the 142 images assigned a unanimous score by two pathologists and STMAD,
TACOMA agrees on about 90%.
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Scores provided by the two pathologists are also used to assess their self-
consistency. Here self-consistency is defined as the proportion of repeated images
receiving an identical score by the same pathologist. Consensus among different
pathologists is an issue of concern [Penna et al. (1997), Walker (2006)]. In order to
obtain information about the self-consistency of pathologist-based scores, 100 im-
ages are selected from the set of 328 images. These 100 images are rotated and/or
inverted, and then mixed at random with the 328 images to avoid recognition (so
each pathologist actually scored a total of 428 TMA images). The self-consistency
rates of the two pathologists are found to be in the range 75–84%. Of course, one
desirable feature of any automated algorithm such as TACOMA is its complete
(i.e., 100%) self-consistency.

Performance comparison of RF to SVM and boosting. The classification algo-
rithm chosen for TACOMA is RF. Some popular alternatives include support vec-
tor machines (SVM) [Cortes and Vapnik (1995)], Boosting [Freund and Schapire
(1996)] and Bayesian network [Pearl (1985)], etc. Using the same training and test
set as that for RF, we conduct experiments with SVM as well as Boosting of a
naive Bayes classifier. The input features for both SVM and Boosting are the en-
tries of the GLCM. We use the Libsvm [Chang and Lin (2001)] software for SVM.
The naive Bayes classifier is adopted from Yan, Bickel and Gong (2006). The idea
is to find the class that maximizes the posterior probability for a new observation,
denoted by (I (x) = ax, x ∈ {1,2, . . . ,Ng} ⊗ {1,2, . . . ,Ng}) for a fixed Ng . That
is, we seek to solve

arg max
k∈{0,1,2,3} Prob{k|I (1,1) = a1,1, . . . , I (Ng,Ng) = aNg,Ng }

under the assumption that (I (1,1), . . . , I (Ng,Ng)) follows a multinomial distri-
bution. More details can be found in Yan, Bickel and Gong (2006). The results are
shown in Table 1. We can see that RF outperforms SVM and Boosting by a large
margin. This is consistent with observations made by Holmes, Kapelner and Lee
(2009).

4.2. Experiments on small training sets. We conduct experiments on co-
training with natural splits and thinning. For natural splits, we use GLCM’s corre-
sponding to two spatial relationships, (↗,3) and (↘,1), as features. For thinning,
we combine features corresponding to (↗,3) and (↘,1) and then split this com-
bined feature set.

The number of labeled examples is fixed at 30 (compared to 313 in experiments
with a large training set). This choice is designed to make it easy to get a nonempty
class 1 (which carries only about 2.90% of the cases). We suspect this number can
be further reduced without suffering much in learning accuracy. The test set is the
same as that in Section 4.1. The result is shown in Table 2. One interesting obser-
vation is that co-training by thinning achieves an accuracy very close to that by
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TABLE 2
Performance of RF and co-training by thinning on TMA images. The unlabeled set is taken as the

test set in Section 4.1 and the labeled set is randomly sampled from the corresponding training set.
The subscript for “thinning” indicates the number of partitions. The results are averaged over 100

runs and over the two coupling classifiers for co-training

Scheme Error rate

RF on (↗,3) ∪ (↘,1) 34.36%
Thinning2 on (↗,3) ∪ (↘,1) 34.21%
Thinning3 on (↗,3) ∪ (↘,1) 34.18%

Co-training by natural split on (↗,3) and (↘,1) 27.49%
Co-training by thinning2 on (↗,3) ∪ (↘,1) 27.89%
Co-training by thinning3 on (↗,3) ∪ (↘,1) 27.62%

natural splits. Additionally, Table 2 lists error rates given by RF on features corre-
sponding to (↗,3) ∪ (↘,1) and its thinned subsets. Here thinning of the feature
set does not cause much loss in RF performance, consistent with our discussion in
Section 3.2.

4.3. Experiments of TACOMA on additional data sets. This study focuses on
the ER marker for which the staining is nuclear. However, the TACOMA algo-
rithm can be applied with equal ease to markers that exhibit cell surface, cytoplasm
or other staining patterns. Additional experiments are conducted on the Stanford
TMA images corresponding to three additional protein markers: CD117, CD34
and NMB. These three sets of TMA images are selected for their large sample
size and relatively few missing scores (excluded from experiment). The results
are shown in Table 3. In contrast, the automated scoring of cytoplasmic mark-
ers is often viewed as more difficult and refined commercial algorithms for these
were reportedly not available in a recent evaluation [Camp, Neumeister and Rimm
(2008)] of commercial scoring methods.

TABLE 3
Accuracy of TACOMA on TMA images corresponding to protein markers CD117, CD34, NMB and
ER. Except for ER (which has a fixed training and test set), we use (↗,1) and 80% of the instances

for training and the rest for test; this is repeated for 100 runs and results averaged

Marker Staining #Instances Accuracy

ER Nucleus 641 78.57%
CD117 Cell surface 1063 81.08%
NMB Cytoplasmic 1036 84.17%
CD34 Cytoplasmic and cell surface 908 76.44%
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5. Discussion. We have presented a new algorithm that automatically scores
TMA images in an objective, efficient and reproducible manner. Our contribu-
tions include the following: (1) the use of co-occurrence counting statistics to
capture the spatial regularity inherent in a heterogeneous and irregular set of
TMA images; (2) the ability to report salient pixels in an image that deter-
mine its score; (3) the incorporation of pathologists’ input via informative train-
ing patches which makes our algorithm adaptable to various markers and cell
types; (4) a very small training sample is achievable with co-training and we
have provided some theoretical insights into co-training via thinning of the fea-
ture set. Our experiments show that TACOMA can achieve performance compa-
rable to well-trained pathologists. It uses the similar set of pixels for scoring as
that would be used by a pathologist and is not adversely sensitive to the choice
of image patches. The theory we have developed on the thinning scheme in co-
training gives insights on why thinning may rival the performance of a natural
split in co-training; a thinned slice may be as good as the whole feature set in
terms of classification power, hence, thinning can lead to two strong coupling
classifiers that will be used in co-training and this is what a natural split may
achieve.

The utility of TACOMA lies in large population-based studies that seek to eval-
uate potential markers using IHC in large cohorts. Such a study may be compro-
mised by a scoring process, that is, protracted, prohibitively expensive or poorly
reproducible. Indeed, a manual scoring for such a study could require hundreds
of hours of pathologists’ time without achieving a reproducibly consistent set of
scores. Experiments with several IHC markers demonstrate that our approach has
the potential to be as accurate as manual scoring while providing a fast, objective,
inexpensive and highly reproducible alternative. Even more generally, TACOMA
may be adopted to other types of textured images such as those appearing in re-
mote sensing applications. These properties provide obvious advantages for any
subsequent statistical analysis in determining the validity or clinical utility of a
potential marker. Regarding reproducibility, we note that the scores provided by
two pathologists in our informal pilot study revealed an intra-observer agreement
of around 80% and an accuracy only in the range of 70%, as defined by the
STMAD reference set (excluding all images deemed unscorable by the patholo-
gists). This low inter-observer agreement may be attributed to a variety of fac-
tors, including a lack of a subjective criteria used for scoring or the lack of train-
ing against an established standard. This performance could surely be improved
upon, but it highlights the inherent subjectivity and variability of human-based
scoring.

In summary, TACOMA provides a transparent scoring process that can be eval-
uated with clarity and confidence. It is also flexible with respect to marker patterns
of cellular localization: although the ER marker is characterized by staining of the
cell nucleus, TACOMA applies with comparable ease and success to cytoplasmic
or other marker staining patterns (see Table 3 in Section 4.3).
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A software implementation of TACOMA is available upon request and the as-
sociated R package will be made available to the R project.

Acknowledgments. The authors would like to thank the Associate Editor and
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SUPPLEMENTARY MATERIAL

Supplement A: Assumption A1, proof of Theorem 2 and simulations on
thinning (DOI: 10.1214/12-AOAS543SUPPA; .pdf). We provide a detailed de-
scription of Assumption A1, a sketch of the proof of Theorem 2 and simulations
on the ratio of separation upon thinning under different settings.

Supplement B: TMA images with salient pixels marked (DOI: 10.1214/12-
AOAS543SUPPB; .pdf). This supplement contains a close view of some TMA
images where the salient pixels are highlighted.
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