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NONPARAMETRIC BAYESIAN SPARSE FACTOR MODELS WITH
APPLICATION TO GENE EXPRESSION MODELING

BY DAVID KNOWLES1 AND ZOUBIN GHAHRAMANI2

University of Cambridge

A nonparametric Bayesian extension of Factor Analysis (FA) is proposed
where observed data Y is modeled as a linear superposition, G, of a poten-
tially infinite number of hidden factors, X. The Indian Buffet Process (IBP) is
used as a prior on G to incorporate sparsity and to allow the number of latent
features to be inferred. The model’s utility for modeling gene expression data
is investigated using randomly generated data sets based on a known sparse
connectivity matrix for E. Coli, and on three biological data sets of increasing
complexity.

1. Introduction. Principal Components Analysis (PCA), Factor Analysis
(FA) and Independent Components Analysis (ICA) are models which explain ob-
served data, yn ∈ R

D , in terms of a linear superposition of independent hidden
factors, xn ∈ R

K , so

yn = Gxn + εn,(1)

where G is the factor loading matrix and εn is a noise vector, usually assumed to
be Gaussian. These algorithms can be expressed in terms of performing inference
in appropriate probabilistic models. The latent factors are usually considered as
random variables, and the mixing matrix as a parameter to estimate. In both PCA
and FA the latent factors are given a standard (zero mean, unit variance) normal
prior. In PCA the noise is assumed to be isotropic, whereas in FA the noise co-
variance is only constrained to be diagonal. A standard approach in these models
is to integrate out the latent factors and find the maximum likelihood estimate of
the mixing matrix. In ICA the latent factors are assumed to be heavy-tailed, so it
is not usually possible to integrate them out. In this paper we take a fully Bayesian
approach, viewing not only the hidden factors but also the mixing coefficients as
random variables whose posterior distribution given data we aim to infer.

Sparsity plays an important role in latent feature models, and is desirable for
several reasons. It gives improved predictive performance, because factors irrele-
vant to a particular dimension are not included. Sparse models are more readily
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interpretable since a smaller number of factors are associated with observed di-
mensions. In many real world situations there is an intuitive reason why we expect
sparsity: for example, in gene regulatory networks a transcription factor will only
regulate genes with specific motifs. In our previous work [Knowles and Ghahra-
mani (2007)] we investigated the use of sparsity on the latent factors xn, but this
formulation is not appropriate in the case of modeling gene expression, where, as
described above, a transcription factor will regulate only a small set of genes, cor-
responding to sparsity in the factor loadings, G. Here we propose a novel approach
to sparse latent factor modeling where we place sparse priors on the factor loading
matrix, G. The Bayesian Factor Regression Model of West et al. (2007) is closely
related to our work in this way, although the hierarchical sparsity prior they use
is somewhat different. An alternative “soft” approach to incorporating sparsity is
to put a Gamma(a, b) (usually exponential, i.e., a = 1) prior on the precision of
each element of G independently, resulting in the elements of G being marginally
Student-t distributed a priori; see Fokoue (2004), Fevotte and Godsill (2006), and
Archambeau and Bach (2009). A LASSO-based approach to generating a sparse
factor loading has also been developed [Zou, Hastie and Tibshirani (2004); Witten,
Tibshirani and Hastie (2009)]. We compare these sparsity schemes empirically in
the context of gene expression modeling.

A problematic issue with this type of model is how to choose the latent dimen-
sionality of the factor space, K . Model selection can be used to choose between
different values of K , but generally requires significant manual input and still re-
quires the range of K over which to search to be specified. Zhang et al. (2004)
applied Reversible Jump MCMC to PCA, which has many of the advantages of
our approach: a posterior distribution over the number of latent dimensions can
be approximated, and the number of latent dimensions could potentially be un-
bounded. However, RJ MCMC is considerably more complex to implement for
sparse Factor Analysis than our proposed framework.

We use the Indian Buffet Process [Griffiths and Ghahramani (2006)], which de-
fines a distribution over infinite binary matrices, to provide sparsity and a frame-
work for inferring the appropriate latent dimension of the data set using a straight-
forward Gibbs sampling algorithm. The Indian Buffet Process (IBP) allows a
potentially unbounded number of latent factors, so we do not have to specify a
maximum number of latent dimensions a priori. We denote our model “NSFA” for
“Nonparametric Sparse Factor Analysis.” Our model is closely related to that of
Rai and Daumé III (2008), and is a simultaneous development.

2. The model. We will define our model in terms of equation (1). Let Z be
a binary matrix whose (d, k)th element represents whether observed dimension d

includes any contribution from factor k. We then model the mixing matrix by

p(gdk|Zdk, λk) = Zdk N (gdk;0, λ−1
k ) + (1 − Zdk)δ0(gdk),(2)
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FIG. 1. Graphical model.

where λk is the inverse variance (precision) of the kth factor and δ0 is a delta func-
tion (point-mass) at 0. Distributions of this type are sometimes known as “spike
and slab” distributions. We allow a potentially infinite number of hidden sources,
so that Z has infinitely many columns, although only a finite number will have
nonzero entries. This construction allows us to use the IBP to provide sparsity and
define a generative process for the number of latent factors.

We assume independent Gaussian noise, εn, with diagonal covariance matrix
� . We find that for many applications assuming isotropic noise is too restrictive,
but this option is available for situations where there is strong prior belief that all
observed dimensions should have the same noise variance. The latent factors, xn,
are given Gaussian priors. Figure 1 shows the complete graphical model.

2.1. Defining a distribution over infinite binary matrices. We now define our
infinite model by taking the limit of a series of finite models.

Start with a finite model. We derive the distribution on Z by defining a finite
K model and taking the limit as K → ∞. We then show how the infinite case
corresponds to a simple stochastic process.

We have D dimensions and K hidden sources. Recall that zdk of matrix Z tells
us whether hidden source k contributes to dimension d . We assume that the prob-
ability of a source k contributing to any dimension is πk , and that the rows are
generated independently. We find

P(Z|π) =
K∏

k=1

D∏
d=1

P(zdk|πk) =
K∏

k=1

π
mk

k (1 − πk)
D−mk,(3)

where mk = ∑D
d=1 zdk is the number of dimensions to which source k contributes.

The inner term of the product is a binomial distribution, so we choose the conjugate
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Beta(r, s) distribution for πk . For now we take r = α
K

and s = 1, where α is the
strength parameter of the IBP. The model is defined by

πk|α ∼ Beta
(

α

K
,1

)
,(4)

zdk|πk ∼ Bernoulli(πk).(5)

Due to the conjugacy between the binomial and beta distributions, we are able to
integrate out π to find

P(Z) =
K∏

k=1

(α/K)�(mk + α/K)�(D − mk + 1)

�(D + 1 + α/K)
,(6)

where �(·) is the Gamma function.

Take the infinite limit. Griffiths and Ghahramani (2006) define a scheme to
order the nonzero rows of Z which allows us to take the limit K → ∞ and find

P(Z) = αK+∏
h>0 Kh! exp (−αHD)

K+∏
k=1

(D − mk)!(mk − 1)!
N ! ,(7)

where K+ is the number of active features (i.e., nonzero columns of Z), HD =∑D
j=1

1
j

is the Dth harmonic number, and Kh is the number of rows whose entries
correspond to the binary number h.

Go to an Indian Buffet. This distribution corresponds to a simple stochastic
process, the Indian Buffet Process. Consider a buffet with a seemingly infinite
number of dishes (hidden sources) arranged in a line. The first customer (observed
dimension) starts at the left and samples Poisson(α) dishes. The ith customer
moves from left to right sampling dishes with probability mk

i
where mk is the

number of customers to have previously sampled dish k. Having reached the end
of the previously sampled dishes, he tries Poisson(α

i
) new dishes. Figure 2 shows

two draws from the IBP for two different values of α.
If we apply the same ordering scheme to the matrix generated by this process

as for the finite model, we recover the correct exchangeable distribution. Since the
distribution is exchangeable with respect to the customers, we find by considering
the last customer that

P(zkt = 1|z−kn) = mk,−t

D
,(8)

where mk,−t = ∑
s �=t zks , which is used in sampling Z. By exchangeability and

considering the first customer, the number of active sources for each dimension
follows a Poisson(α) distribution, and the expected number of entries in Z is
Dα. We also see that the number of active features K+ = ∑D

d=1 Poisson(α
d
) =

Poisson(αHD).
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(a) (b)

FIG. 2. Draws from the one parameter IBP for two different values of α. (a) α = 4. (b) α = 8.

3. Related work. The Bayesian Factor Regression Model (BFRM) of West
et al. (2007) is closely related to the finite version of our model. The key difference
is the use of a hierarchical sparsity prior. Each element of G has prior of the form

gdk ∼ (1 − πdk)δ0(gdk) + πdk N (gdk;0, λ−1
k ).

The finite IBP model is equivalent to setting πdk = πk ∼ Beta(α/K,1) and then
integrating out πk . In BFRM a hierarchical prior is used:

πdk ∼ (1 − ρk)δ0(πdk) + ρk Beta
(
πdk;am,a(1 − m)

)
,

where ρk ∼ Beta(sr, s(1 − r)). Nonzero elements of πdk are given a diffuse prior
favoring larger probabilities [a = 10, m = 0.75 are suggested in West et al. (2007)],
and ρk is given a prior which strongly favors small values, corresponding to a
sparse solution (e.g., s = D, r = 5

D
).

Note that on integrating out πdk , the prior on gdk is

gdk ∼ (1 − mρk)δ0(gdk) + mρk N (gdk;0, λ−1
k ).

This hierarchical sparsity prior is motivated by improved interpretability in
terms of less uncertainty in the posterior as to whether an element of G is nonzero.
However, this comes at a cost of significantly increased computation and reduced
predictive performance, suggesting that the uncertainty removed from the posterior
was actually important.

The LASSO-based Sparse PCA (SPCA) method of Zou, Hastie and Tibshirani
(2004) and Witten, Tibshirani and Hastie (2009) has similar aims to our work in
terms of providing a sparse variant of PCA to aid interpretation of the results.
However, since SPCA is not formulated as a generative model, it is not necessar-
ily clear how to choose the regularization parameters or dimensionality without
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resorting to cross-validation. In our experimental comparison to SPCA, we adjust
the regularization constants such that each component explains roughly the same
proportion of the total variance as the corresponding standard (nonsparse) princi-
pal component.

4. Inference. Given the observed data Y, we wish to infer the hidden sources
X, which sources are active Z, the mixing matrix G, and all hyperparameters. We
use Gibbs sampling, but with Metropolis–Hastings (MH) steps for sampling new
features. We draw samples from the marginal distribution of the model parame-
ters given the data by successively sampling the conditional distributions of each
parameter in turn, given all other parameters.

Since we assume independent Gaussian noise, the likelihood function is

P(Y|G,X,ψ) =
N∏

n=1

1

(2π)D/2|ψ |1/2

(9)

× exp
(
−1

2
(yn − Gxn)

T ψ−1(yn − Gxn)

)
,

where ψ is a diagonal noise covariance matrix.

Notation. We use − to denote the “rest” of the model, that is, the values of all
variables not explicitly conditioned upon in the current state of the Markov chain.
The r th row and cth column of matrix A are denoted Ar: and A:c respectively.

Mixture coefficients. We first derive a Gibbs sampling step for an individual
element of the IBP matrix, Zdk , determining whether factor k is active for dimen-
sion d . Recall that λk is the precision (inverse covariance) of the factor loadings
for the kth factor. The ratio of likelihoods can be calculated using equation (9).
Integrating out the (d, k)th element of the factor loading matrix gdk [whose prior
is given by equation (2)], we obtain

P(Y|Zdk = 1,−)

P (Y|Zdk = 0,−)
=

∫
P(Y|gdk,−)N (gdk;0, λ−1

k ) dgdk

P (Y|gdk = 0,−)
(10)

=
√

λk

λ
exp

(
1

2
λμ2

)
,(11)

where we have defined λ = ψ−1
d XT

k:Xk: + λk and μ = ψ−1
d

λ
XT

k:Êd: with the matrix

of residuals Ê = Y − GX evaluated with gdk = 0. The dominant calculation is that
for μ since the calculation for λ can be cached. This operation is O(N) and must
be calculated D × K times, so sampling the IBP matrix, Z, and factor loading
matrix, G, is order O(NDK).
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From the exchangeability of the IBP, we can imagine that dimension d was the
last to be observed, so that the ratio of the priors is

P(Zdk = 1|−)

P (Zdk = 0|−)
= m−d,k

N − 1 − m−d,k

,(12)

where m−d,k is the number of dimensions for which factor k is active, excluding
the current dimension d . Multiplying equations (11) and (12) gives the expression
for the ratio of posterior probabilities for Zdk being 1 or 0, which is used for
sampling. If Zdk is set to 1, we sample gdk|− ∼ N (μ,λ−1) with μ,λ defined as
for equation (11).

Adding new features. Z is a matrix with infinitely many columns, but the
nonzero columns contribute to the likelihood and are held in memory. However,
the zero columns still need to be taken into account since the number of active
factors can change. Let κd be the number of columns of Z which contain 1 only in
row d , that is, the number of features which are active only for dimension d . Note
that due to the form of the prior for elements of Z given in equation (12), κd = 0
for all d after a sampling sweep of Z. Figure 3 illustrates κd for a sample Z matrix.

New features are proposed by sampling κd with a MH step. It is possible to
integrate out either the new elements of the mixing matrix, g (a 1 × κd vector), or
the new rows of the latent feature matrix, X′ (a κd ×N matrix), but not both. Since
the latter generally has higher dimension, we choose to integrate out X′ and include
gT as part of the proposal. Thus, the proposal is ξ = {κd,g}, and we propose a

FIG. 3. A diagram to illustrate the definition of κd , for d = 10.



NONPARAMETRIC BAYESIAN SPARSE FACTOR MODELS 1541

move ξ → ξ∗ with probability J (ξ∗|ξ). In this case ξ = ∅ since, as noted above,
κd = 0 initially. The simplest proposal, following Meeds et al. (2006), would be to
use the prior on ξ∗, that is,

J (ξ) = P(κd |α) · p(g|κd, λk) = Poisson(κd;γ ) · N(g;0, λ−1
k ),

where γ = α
D−1 .

Unfortunately, the rate constant of the Poisson prior tends to be so small that
new features are very rarely proposed, resulting in slow mixing. To remedy this,
we modify the proposal distribution for κd and introduce two tunable parameters,
π and λ:

J (κd) = (1 − π)Poisson(κd;λγ ) + π1(κd = 1).(13)

Thus, the Poisson rate is multiplied by a factor λ, and a spike at κd = 1 is added
with mass π . The proposal is accepted with probability min (1, aξ→ξ∗) where

aξ→ξ∗ = P(ξ∗|−, Y )J (ξ |ξ∗)
P (ξ |−, Y )J (ξ∗|ξ)

(14)

= P(Y |ξ∗,−)P (κd |α)p(g|κd, λk)

P (Y |−)J (κd)p(g|κd, λk)
= al · ap,

where

al = P(Y |ξ∗,−)

P (Y |−)
,(15)

ap = P(κd |α)

J (κd)
= Poisson(κd;γ )

Poisson(κd;λγ )
.(16)

Note that we take J (ξ |ξ∗) = 1 since ξ = ∅. To calculate the likelihood ratio, al ,
we need the collapsed likelihood under the new proposal:

P(Yd:|ξ∗,−) =
N∏

n=1

∫
P(Ydn|ξ∗,x′

n,−)P (x′
n) dx′(17)

=
N∏

n=1

(2πψ−1
d )−1/2(2π)κd/2|M|−1/2

(18)

× exp
(

1

2
(mT

n Mmn − ψ−1
d Ê2

dn)

)
,

where we have defined M = ψ−1
d ggT + Iκd

and mn = M−1ψ−1
d gÊdn with the

matrix of residuals Ê = Y − GX. The likelihood under the current sample is

P(Yd:|ξ,−) =
N∏

n=1

(2πψ−1
d )−1/2 exp

(
−1

2
ψ−1

d Ê2
dn

)
.(19)
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Substituting these likelihood terms into the expression for the ratio of likelihood
terms, al , gives

al = (2π)Nκd/2|M|−N/2 exp
(

1

2

∑
n

mT
n Mmn

)
.(20)

We found that appropriate scheduling of the sampler improved mixing, par-
ticularly with respect to adding new features. The final scheme we settled on is
described in Algorithm 1.

IBP parameters. We can choose to sample the IBP strength parameter α, with
conjugate Gamma(e, f ) prior (note that we use the inverse scale parameteriza-
tion of the Gamma distribution). The conditional prior of equation (7) acts as the
likelihood term and the posterior update is as follows:

P(α|Z) ∝ P(Z|α)P (α) = Gamma(α;K+ + e, f + HD),(21)

where K+ is the number of active sources and HD = ∑D
j=1

1
j

is the Dth harmonic
number.

The remaining sampling steps are standard, but are included here for complete-
ness.

Latent variables. Sampling the columns xn of the latent variable matrix X for
each t ∈ [1, . . . ,N], we have

P(xn|−) ∝ P(yn|xn,−)P (xn) = N (xn;μn,�),(22)

where we have defined � = GT ψ−1G + I and μn = �−1GT ψ−1yn. Note that
since � does not depend on n, we only need to compute and invert it once per
iteration. Calculating � is order O(K2D), and inverting it is O(K3). Calculating
μt is order O(KD) and must be calculated for all N xt ’s, a total of O(NKD).
Thus, sampling X is order O(K2 + K3 + NKD).

Factor precision. If the mixture coefficient prior precisions λk are constrained
to be equal, we have λk = λ ∼ Gamma(c, d). The posterior update is then given
by λ|G ∼ Gamma(c +

∑
k mk

2 , d + ∑
d,k G2

dk).
However, if the variances are allowed to be different for each column of G, we

set λk ∼ Gamma(c, d), and the posterior update is given by λk|G ∼ Gamma(c +
mk

2 , d + ∑
d G2

dk). In this case we may also wish to share power across factors,
in which case we also sample d . Putting a Gamma prior on d such that d ∼
Gamma(c0, d0), the posterior update is d|λk ∼ Gamma(c0 + cK,d0 + ∑K

k=1 λk).
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Noise variance. The additive Gaussian noise can be constrained to be isotropic,
in which case the inverse variance is given a Gamma prior: ψ−1

d = ψ−1 ∼
Gamma(a, b) which gives the posterior update ψ−1|− ∼ Gamma(a + ND

2 , b +∑
d,n Ê2

dn).
However, if the noise is only assumed to be independent (which we have found

to be more appropriate for gene expression data), then each dimension has a sep-
arate noise variance, whose inverse is given a Gamma prior: ψ−1

d ∼ Gamma(a, b)

which gives the posterior update ψ−1
d |− ∼ Gamma(a + N

2 , b + ∑
n E2

dn) where

the matrix of residuals Ê = Y − GX. We can share power between dimensions by
giving the hyperparameter b a hyperprior Gamma(a0, b0) resulting in the Gibbs
update b|− ∼ Gamma(a0 + aD,b0 + ∑D

d=1 ψ−1
d ). This hierarchical prior results

in soft coupling between the noise variances in each dimension, so we will refer to
this variant as sc.

Algorithm 1 One iteration of the NSFA sampler
for d = 1 to D do

for k = 1 to K do
Sample Zdk

end for
Sample κd

end for
for n = 1 to N do

Sample X:n
end for
Sample α,φ,λg

5. Results. We compare the following models:

• FA—Bayesian Factor Analysis; see, for example, Kaufman and Press (1973) or
Rowe and Press (1998).

• AFA—Factor Analysis with ARD prior to determine active sources.
• FOK—The sparse Factor Analysis method of Fokoue (2004), Fevotte and God-

sill (2006) and Archambeau and Bach (2009).
• SPCA—The Sparse PCA method of Zou, Hastie and Tibshirani (2004).
• BFRM—Bayesian Factor Regression Model of West et al. (2007).
• SFA—Sparse Factor Analysis, using the finite IBP.
• NSFA—The proposed model: Nonparametric Sparse Factor Analysis.

Note that all of these models can be learned using the software package we
provide simply by using appropriate settings.
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5.1. Synthetic data. Since generating a connectivity matrix Z from the IBP
itself would clearly bias toward our model, we instead use the D = 100 gene by
K = 16 factor E. Coli connectivity matrix derived in Kao et al. (2004) from Reg-
ulonDB and current literature. We ignore whether the connection is believed to be
up or down regulation, resulting in a binary matrix Z. We generate random data
sets with N = 100 samples by drawing the nonzero elements of G (corresponding
to the elements of Z which are nonzero), and all elements of X, from a zero mean
unit variance Gaussian, calculating Y = GX + E, where E is Gaussian white noise
with variance set to give a signal to noise ratio of 10.

Here we will define the reconstruction error Er as

Er(G, Ĝ) = 1

DK

K∑
k=1

min
k̂∈{1,...,K̂}

D∑
d=1

(Gdk − G
dk̂

)2,

where Ĝ, K̂ are the inferred quantities. Although we minimize over permutations,
we do not minimize over rotations since, as noted in Fokoue (2004), the sparsity
of the prior stops the solution being rotation invariant. We average this error over
the last ten samples of the MCMC run. This error function does not penalize infer-
ring extra spurious factors, so we will investigate this possibility separately. The
precision and recall of active elements of the Z achieved by each algorithm (af-
ter thresholding for the nonsparse algorithms) are presented in the Supplementary
Material, but omitted here since the results are consistent with the reconstruction
error.

The reconstruction error for each method with different numbers of latent fea-
tures is shown in Figure 4. Ten random data sets were used and for the sampling
methods (all but SPCA) the results were averaged over the last ten samples out
of 1000. Unsurprisingly, plain Factor Analysis (FA) performs the worst, with in-
creasing overfitting as the number of factors is increased. For K̂ = 20 the variance
is also very high, since the four spurious features fit noise. Using an ARD prior
on the features (AFA) improves the performance, and overfitting no longer occurs.
The reconstruction error is actually less for K̂ = 20, but this is an artifact due to
the reconstruction error not penalizing additional spurious features in the inferred
G. The Sparse PCA (SPCA) of Zou, Hastie and Tibshirani (2004) shows improved
reconstruction compared to the nonsparse methods (FA and AFA), but does not
perform as well as the Bayesian sparse models. Sparse factor analysis (SFA), the
finite version of the full infinite model, performs very well. The Bayesian Fac-
tor Regression Model (BFRM) performs significantly better than the ARD factor
analysis (AFA), but not as well as our sparse model (SFA). It is interesting that
for BFRM the reconstruction error decreases significantly with increasing K̂ , sug-
gesting that the default priors may actually encourage too much sparsity for this
data set. Fokoue’s method (FOK) only performs marginally better than AFA, sug-
gesting that this “soft” sparsity scheme is not as effective at finding the underlying
sparsity in the data. Overfitting is also seen, with the error increasing with K̂ . This
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FIG. 4. Boxplot of reconstruction errors for simulated data derived from the E. Coli connectivity
matrix of Kao et al. (2004). Ten data sets were generated and the reconstruction error calculated for
the last ten samples from each algorithm. Numbers refer to the number of latent factors used, K . a1
denotes fixing α = 1. sn denotes sharing power between noise dimensions.

could potentially be resolved by placing an appropriate per factor ARD-like prior
over the scale parameters of the Gamma distributions controlling the precision of
elements of G. Finally, the Nonparametric Sparse Factor Analysis (NSFA) pro-
posed here and in Rai and Daumé III (2008) performs very well. With fixed α = 1
(a1) or inferring α, we see very similar performance. Using the soft coupling (sc)
variant which shares power between dimensions when fitting the noise variances
seems to reduce the variance of the sampler, which is reasonable in this example
since the noise was in fact isotropic.

Since the reconstruction error does not penalize spurious factors, it is important
to check that NSFA is not scoring well simply by inferring many additional fac-
tors. Histograms for the number of latent features inferred for the nonparametric
sparse model are shown in Figure 5. This represents an approximate posterior over
K . For fixed α = 1 the distribution is centered around the true value of K = 16,
with minimal bias (EK = 16.1). The variance is significant (standard deviation of
1.46), but is reasonable considering the noise level (SNR = 10) and that in some
of the random data sets, elements of Z which are 1 could be masked by very small
corresponding values of G. This hypothesis is supported by the results of a similar
experiment where G was set equal to Z. In this case, the sampler always converged
to at least 16 features, but would also sometimes infer spurious features from noise
(results not shown). When inferring α some bias and skew are noticeable. The
mean of the posterior is now at 18.3 with standard deviation 2.0, suggesting there
is little to gain from sampling α in this data.
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FIG. 5. Histograms of the number of latent features inferred by the nonparametric sparse FA sam-
pler for the last 100 samples out of 1000. Left: With α = 1. Right: Inferring α.

5.2. Convergence. NSFA can suffer from slow convergence if the number of
new features is drawn from the prior. Figure 6 shows how the different proposals
for κd effect how quickly the sampler reaches a sensible number of features. If
we use the prior as the proposal distribution, mixing is very slow, taking around
5000 iterations to converge, as shown in Figure 6(a). If a mass of 0.1 is added at
κd = 1 [see equation (13)], then the sampler reaches the equilibrium number of
features in around 1500 iterations, as shown in Figure 6(b). However, if we try
to add features even faster, for example, by setting the factor λ = 50 in equation
(13), then the sampling noise is greatly increased, as shown in Figure 6(c), and the
computational cost also increases significantly because so many spurious features
are proposed only to be rejected.

5.3. Biological data: E. Coli time-series dataset. To assess the performance
of each algorithm on the biological data where no ground truth is available, we
calculated the test set log likelihood under the posterior. Ten percent of entries
from Y were removed at random, ten times, to give ten data sets for inference. We

(a) (b) (c)

FIG. 6. The effect of different proposal distributions for the number of new features. (a) Prior.
(b) Prior plus 0.1I(κ = 1). (c) Factor λ = 50.
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(a) (b)

FIG. 7. Results on E. Coli time-series data set from Kao et al. (2004) (N = 24, D = 100, 3000
MCMC iterations). (a) Log likelihood of test data under each model based on the last 100 MCMC
samples. The boxplots show variation across 10 different random splits of the data into training and
test sets. (b) Number of active latent features during a typical MCMC run of the NSFA model.

do not use mean square error as a measure of predictive performance because of
the large variation in the signal to noise ratio across gene expression level probes.

The test log likelihood achieved by the various algorithms on the E. Coli data
set from Kao et al. (2004), including 100 genes at 24 time-points, is shown in Fig-
ure 7(a). On this simple data set incorporating sparsity doesn’t improve predictive
performance. Overfitting the number of latent factors does damage performance,
although using the ARD or sparse prior alleviates the problem. Based on predictive
performance of the finite models, five is a sensible number of features for this data
set: the NSFA model infers a median number of 4 features, with some probability
of there being 5, as shown in Figure 7(b).

5.4. Breast cancer data set. We assess these algorithms in terms of predic-
tive performance on the breast cancer data set of West et al. (2007), including 226
genes across 251 individuals. We find that all the finite models are sensitive to the
choice of the number of factors, K . The samplers were found to have converged
after around 1000 samples according to standard multiple chain convergence mea-
sures, so 3000 MCMC iterations were used for all models. The predictive log like-
lihood was calculated using the final 100 MCMC samples. Figure 8(a) shows test
set log likelihoods for 10 random divisions of the data into training and test sets.
Factor analysis (FA) shows significant overfitting as the number of latent features
is increased from 20 to 40. Using the ARD prior prevents this overfitting (AFA),
giving improved performance when using 20 features and only slightly reduced
performance when 40 features are used. The sparse finite model (SFA) shows an
advantage over AFA in terms of predictive performance as long as underfitting
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(a)

(b)

(c)

FIG. 8. Results on breast cancer data set (N = 251, D = 226, 3000 MCMC iterations). (a) Pre-
dictive performance: log likelihood of test (the 10% missing) data under each model based on the
last 100 MCMC samples. Higher values indicate better performance. The boxplots show variation
across 10 different random splits of the data into training and test sets. (b) CPU time (in seconds)
per iteration, averaged across the 3000 iteration run. (c) CPU time (in seconds) per iteration divided
by the number of features at that iteration, averaged across all iterations.

does not occur: performance is comparable when using only 10 features. How-
ever, the performance of SFA is sensitive to the choice of the number of factors,
K . The performance of the sparse nonparametric model (NSFA) is comparable
to the sparse finite model when an appropriate number of features is chosen, but
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avoids the time consuming model selection process. Fokoue’s method (FOK) was
run with K = 20 and various settings of the hyperparameter d which controls
the overall sparsity of the solution. The model’s predictive performance depends
strongly on the setting of this parameter, with results approaching the performance
of the sparse models (SFA and NSFA) for d = 10−4. The performance of BFRM
on this data set is noticeably worse than the other sparse models.

We now consider the computation cost of the algorithms. As described in Sec-
tion 4, sampling Z and G takes order O(NKD) operations per iteration, and sam-
pling X takes O(K2 + K3 + ND). However, for the moderate values encountered
for data sets 1 and 2, the main computational cost is sampling the nonzero elements
of G, which takes O((1 − s)DK) where s is the sparsity of the model. Figure 8(c)
shows the mean CPU time per iteration divided by the number of features at that
iteration. Naturally, straight FA is the fastest, taking only around 0.025s per iter-
ation per feature. The value increases slightly with increasing K , suggesting that
here the O(K2D + K3) calculation and inversion of λ, the precision of the condi-
tional on X, must be contributing. The computational cost of adding the ARD prior
is negligible (AFA). The CPU time per iteration is just over double for the sparse
finite model (SFA), but the cost actually decreases with increasing K , because the
sparsity of the solution increases to avoid overfitting. There are fewer nonzero ele-
ments of G to sample per feature, so the CPU time per feature decreases. The CPU
time per iteration per feature for the nonparametric sparse model (NSFA) is some-
what higher than for the finite model because of the cost of the feature birth and
death process. However, Figure 8(b) shows the absolute CPU time per iteration,
where we see that the nonparametric model is only marginally more expensive
than the finite model of appropriate size K̂ = 15 and cheaper than choosing an
unnecessarily large finite model (SFA with K = 20, 40). Fokoue’s method (FOK)
has comparable computational performance to the sparse finite model, but inter-
estingly has increased cost for the optimal setting of d = 10−4. The parameter
space for FOK is continuous, making search easier but requiring a normal ran-
dom variable for every element of G. BFRM pays a considerable computational
cost for both the hierarchical sparsity prior and the DP prior on X. SPCA was not
run on this data set, but results on the synthetic data in Section 5.1 suggest it is
somewhat faster than the sampling methods, but not hugely so. The computational
cost of SPCA is ND2 + mO(D2K + DK2 + D3) in the N > D case (where m

is the number of iterations to convergence) and ND2 + mO(D2K + DK2) in the
D > N case, taking the limit λ → ∞. In either case an individual iteration of
SPCA is more expensive than one sampling iteration of NSFA (since K < D), but
fewer iterations will generally be required to reach convergence of SPCA than are
required to ensure mixing of NSFA.

5.5. Prostate cancer data set. Figure 9 shows the predictive performance of
AFA, FOK and NSFA on the prostate cancer data set of Yu et al. (2004), for ten
random splits into training and test data. The boxplots show variation from ten
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FIG. 9. Test set log likelihoods on Prostate cancer data set from Yu et al. (2004), including 12557
genes across 171 individuals (1000 MCMC iterations).

random splits into training and test data. The large number of genes (D = 12557
across N = 171 individuals) in this data set makes inference slower, but the prob-
lem is manageable since the computational complexity is linear in the number of
genes. Despite the large number of genes, the appropriate number of latent factors,
in terms of maximizing predictive performance, is still small, around 10 (NSFA in-
fers a median of 12 factors). This may seem small relative to the number of genes,
but it should be noted that the genes included in the breast cancer and E. Coli data
sets are those capturing the most variability. Surprisingly, SFA actually performed
slightly worse on this data set than AFA. Both are highly sensitive to the number
of latent factors chosen. NSFA, however, gives better predictive log likelihoods
than either finite model for any fixed number of latent factors K . Running 1000
iterations of NSFA on this data set takes under 8 hours. BFRM and FOK were
impractically slow to run on this data set.

6. Discussion. We have seen that in both the E. Coli and breast cancer data
sets that sparsity can improve predictive performance, as well as providing a more
easily interpretable solution. Using the IBP to provide sparsity is straightforward,
and allows the number of latent factors to be inferred within a well-defined theo-
retical framework. This has several advantages over manually choosing the num-
ber of latent factors. Choosing too few latent factors damages predictive perfor-
mance, as seen for the breast cancer data set. Although choosing too many latent
factors can be compensated for by using appropriate ARD-like priors, we find
this is typically more computationally expensive than the birth and death process
of the IBP. Manual model selection is an alternative but is time consuming. Fi-
nally, we show that running NSFA on full gene expression data sets with 10000+
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genes is feasible so long as the number of latent factors remains relatively small.
An interesting direction for this research is how to incorporate prior knowledge,
for example, if certain transcription factors are known to regulate specific genes.
Incorporating this knowledge could both improve the performance of the model
and improve interpretability by associating latent variables with specific transcrip-
tion factors. Another possibility is incorporating correlations in the Indian Buffet
Process, which has been proposed for simpler models [Doshi-Velez and Ghahra-
mani (2009); Courville, Eck and Bengio (2009)]. This would be appropriate in a
gene expression setting where multiple transcription factors might be expected to
share sets of regulated genes due to common motifs. Unfortunately, performing
MCMC in all but the simplest of these models suffers from slow mixing.
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SUPPLEMENTARY MATERIAL

Graphs of precision and recall for the synthetic data experiment. (DOI:
10.1214/10-AOAS435SUPP; .pdf). The precision and recall of active elements of
the Z matrix achieved by each algorithm (after thresholding for the nonsparse al-
gorithms) on the synthetic data experiment, described in Section 5.1. The results
are consistent with the reconstruction error.
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