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We introduce a new method for forecasting emergency call arrival rates
that combines integer-valued time series models with a dynamic latent fac-
tor structure. Covariate information is captured via simple constraints on the
factor loadings. We directly model the count-valued arrivals per hour, rather
than using an artificial assumption of normality. This is crucial for the emer-
gency medical service context, in which the volume of calls may be very low.
Smoothing splines are used in estimating the factor levels and loadings to im-
prove long-term forecasts. We impose time series structure at the hourly level,
rather than at the daily level, capturing the fine-scale dependence in addition
to the long-term structure.

Our analysis considers all emergency priority calls received by Toronto
EMS between January 2007 and December 2008 for which an ambulance
was dispatched. Empirical results demonstrate significantly reduced error in
forecasting call arrival volume. To quantify the impact of reduced forecast er-
rors, we design a queueing model simulation that approximates the dynamics
of an ambulance system. The results show better performance as the fore-
casting method improves. This notion of quantifying the operational impact
of improved statistical procedures may be of independent interest.

1. Introduction. Considerable attention has been paid to the problem of how
to best deploy ambulances within a municipality to minimize their response times
to emergency calls while keeping costs low. Sophisticated operations research
models have been developed to address issues such as the optimal number of ambu-
lances, where to place bases, and how to move ambulances in real time via system-
status management [Swersey (1994); Goldberg (2004); Henderson (2009)]. How-
ever, methods for estimating the inputs to these models, such as travel times on
road networks and call arrival rates, are ad hoc. Use of inaccurate parameter esti-
mates in these models can result in poor deployment decisions, leading to low per-
formance and diminished user confidence in the software. We introduce methods
for estimating the demand for ambulances, that is, the total number of emergency
calls per period, that are highly accurate, straightforward to implement, and have
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the potential to simultaneously lower operating costs while improving response
times.

Current practice for forecasting call arrivals is often rudimentary. For instance,
to estimate the call arrival rate in a small region over a specific time period, for
example, next Monday from 8–9 a.m., simple estimators have been constructed by
averaging the number of calls received in the corresponding period in four pre-
vious weeks: the immediately previous two weeks and the current and previous
weeks of the previous year. Averages of so few data points can produce highly
noisy estimates, with resultant cost and efficiency implications. Excessively large
estimates lead to over-staffing and unnecessarily high costs, while low estimates
lead to under-staffing and slow response times. Setzler, Saydam and Park (2009)
document an emergency medical service (EMS) agency which extends this simple
moving average to twenty previous observations: the previous four weeks from
the previous five years. A more formal time series approach is able to account for
possible differences from week to week and allows inclusion of neighboring hours
in the estimate.

We generate improved forecasts of the call-arrival volume by introducing an
integer-valued time series model with a dynamic latent factor structure for the
hourly call arrival rate. Day-of-week and week-of-year effects are included via
simple constraints on the factor loadings. The factor structure allows for a signifi-
cant reduction in the number of model parameters. Further, it provides a systematic
approach to modeling the diurnal pattern observed in intraday counts. Smoothing
splines are used in estimating the factor levels and loadings. This may introduce
a small bias in some periods, but it offers a significant reduction in long-horizon
out-of-sample forecast-error variance. This is combined with integer-valued time
series models to capture residual dependence and to provide adaptive short-term
forecasts. Our empirical results demonstrate significantly reduced error in fore-
casting hourly call-arrival volume.

Few studies have focused specifically on EMS call arrival rates, and of those
that have proposed methods for time series modeling, most have been based on
Gaussian linear models. Even with a continuity correction, this method is highly
inaccurate when the call arrival rate is low, which is typical of EMS calls at the
hourly level. Further, it conflicts with the Poisson distribution assumption used in
operations research methods for optimizing staffing levels. For example, Channouf
et al. (2007) forecast EMS demand by modeling the daily call arrival rate as Gaus-
sian, with fixed day-of-week, month-of-year, special day effects and fixed day-
month interactions. They also consider a Gaussian autoregressive moving-average
(ARMA) model with seasonality and special day effects. Hourly rates are later esti-
mated either by adding hour-of-day effects or assigning a multinomial distribution
to the hourly volumes, conditional on the daily call volume estimates.

Setzler, Saydam and Park (2009) provide a comparative study of EMS call vol-
ume predictions using an artificial neural network (ANN). They forecast at various
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temporal and spatial granularities with mixed results. Their approach offered a sig-
nificant improvement at low spatial granularity, even at the hourly level. At a high
spatial granularity, the mean square forecast error (MSFE) of their approach did
not improve over simple binning methods at a temporal granularity of three hours
or less.

Methods for the closely related problem of forecasting call center demand have
received much more study. Bianchi, Jarrett and Choudary Hanumara (1998) and
Andrews and Cunningham (1995) use ARMA models to improve forecasts for
daily call volumes in a retail company call center and a telemarketing center, re-
spectively. A dynamic harmonic regression model for hourly call center demand
is shown in Tych et al. (2002) to outperform seasonal ARMA models. Their ap-
proach accounts for possible nonstationary periodicity in a time series. The major
drawback common to these studies is that the integer-valued observations are as-
sumed to have a continuous distribution, which is problematic during periods with
low arrival rates.

The standard industry assumption is that hourly call-arrival volume has a Pois-
son distribution. The Palm–Khintchine theorem—stating that the superposition of
a number of independent point processes is approximately Poisson—provides a
theoretical basis for this assumption [see, e.g., Whitt (2002)]. Brown et al. (2005)
provide a comprehensive analysis of operational data from a bank call center and
thoroughly discuss validating classical queueing theory, including this theorem.
Henderson (2005) states that we can expect the theorem to hold for typical EMS
data because there are a large number of callers who can call at any time and each
has a very low probability of doing so.

Weinberg, Brown and Stroud (2007) use Bayesian techniques to fit a nonhomo-
geneous Poisson process model for call arrivals to a commercial bank’s call center.
This approach has the advantage that forecast distributions for the rates and counts
may be easily obtained. They incorporate smoothness in the within-day pattern.
They implement a variance stabilizing transformation to obtain approximate nor-
mality. This approximation is most appropriate for a Poisson process with high
arrival rates, and would not be appropriate for our application in which very low
counts are observed in many time periods.

Shen and Huang (2008b) apply the same variance stabilizing transformation
and achieve better performance than Weinberg, Brown and Stroud (2007). They
use a singular value decomposition (SVD) to reduce the number of parameters in
modeling arrival rates. Their approach is used for intraday updating and forecasts
up to one day ahead.

Shen and Huang (2008a) propose a dynamic factor model for 15-minute call
arrivals to a bank call center. They assume that call arrivals are a Cox process.
A Cox process [cf. Cox and Isham (1980)] is a Poisson process with a stochastic
intensity, that is, a doubly stochastic Poisson process. The factor structure reduces
the number of parameters by explaining the variability in the call arrival rate with
a small number of unobserved variables. Estimation proceeds by iterating between
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an SVD and fitting Poisson generalized linear models to successively estimate
the factors and their respective loadings. The intensity functions are assumed to
be serially dependent. Forecasts are made by fitting a simple autoregressive time
series model to the factor score series.

We assume that the hourly EMS call-arrival volume has a Poisson distribution.
This allows parsimonious modeling of periods with small counts, conforms with
the standard industry assumption, and avoids use of variance stabilizing transfor-
mations. We assume the intensity function is a random process and that it can be
forecast using previous observations. This has an interpretation very similar to a
Cox process, but is not equivalent since the random intensity is allowed to depend
on not only its own history, but also on previous observations. We partition the
random intensity function into stationary and nonstationary components.

Section 2 describes the general problem and our data set. Section 3 presents
the proposed methodology. We consider a dynamic latent factor structure to model
the nonstationary pattern in intraday call arrivals and greatly reduce the number of
parameters. We include day-of-week and week-of-year covariates via simple con-
straints on the factor loadings of the nonstationary pattern. Smoothing splines are
easily incorporated into estimation of the proposed model to impose a smooth evo-
lution in the factor levels and loadings, leading to improved long-horizon forecast
performance. We combine the factor model with stationary integer-valued time se-
ries models to capture the remaining serial dependence in the intensity process.
This is shown to further improve short-term forecast performance of our approach.
A simple iterative algorithm for estimating the proposed model is presented. It can
be implemented largely through existing software. Section 4 assesses the perfor-
mance of our approach using statistical metrics and a queueing model simulation.
Section 5 gives our concluding remarks.

2. Notation and data description. We assume that over short, equal-length
time intervals, for example, one hour periods, the latent call arrival intensity func-
tion can be well approximated as being constant, and that all data have been ag-
gregated in time accordingly. We suppose aggregated call arrivals follow a nonho-
mogeneous counting process {Yt : t ∈ Z}, with discrete time index t . Underlying
this is a latent, real-valued, nonnegative intensity process {λt : t ∈ Z}. We further
assume that conditional on λt , Yt has a Poisson distribution with mean λt .

As shown in Figure 1, the pattern of call arrivals over the course of a typical
day has a distinct shape. After quickly increasing in the late morning, it peaks in
the early afternoon, then slowly falls until it troughs between 5 and 6 a.m. See
Section 4 for more discussion. In our analysis, we consider an arrival process that
has been repeatedly observed over a particular time span, specifically, a 24 hour
day. Let

{yt : t = 1, . . . , n} ≡ {yij : i = 1, . . . , d; j = 1, . . . ,m}
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FIG. 1. Mean number of calls per hour by day of the week.

denote the sequence of call arrival counts, observed over time period t , which
corresponds one-to-one with the j th sub-period of the ith day, so that n = dm.
Our baseline approach is to model the arrival intensity λt for the distinct shape of
intraday call arrivals using a small number of smooth curves.

We consider two disjoint information sets for predictive conditioning. Let Ft =
σ(Y1, . . . , Yt ) denote the σ -field generated by Y1, . . . , Yt , and let X = {x1, . . . ,xn}
denote any available deterministic covariate information about each observation.
We incorporate calendar information such as day-of-week and week-of-year in our
analysis. We define λt as the conditional expectation of Yt given Ft−1 and X. We
defined this above as the mean of Yt . In our model these coincide; however, this
mean may not be the same as the conditional expectation since λt may depend on
other unobserved random variables. Let μt = E(Yt |X) > 0 denote the conditional
mean of Yt given only the covariates X. Let

λt = E(Yt |Ft−1,X) = μtE(Yt/μt |Ft−1,X) = μtηt ,(1)

in which ηt > 0 is referred to as the conditional intensity inflation rate (CIIR). By
construction,

E(ηt |X) = E(E(Yt |Ft−1,X)|X)/μt = E(Yt |X)/μt = 1.

The CIIR process is intended to model any remaining serial dependence in call
arrival counts after accounting for available covariates. In the EMS context we hy-
pothesize that this dependence is due to sporadic events such as inclement weather
or unusual traffic patterns. Since information regarding these events may not be
available or predictable in general, we argue that an approach such as ours which
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explicitly models the remaining serial dependence will lead to improved short-
term forecast accuracy. In Section 3 we consider a dynamic latent factor model
estimated with smoothing splines for modeling μt , various time series models for
modeling ηt , and finally a conditional likelihood algorithm for estimating the latent
intensity process λt via estimation of ηt given μt .

The call arrival data used consists of all emergency priority calls received by
Toronto EMS between January 1, 2007 and December 31, 2008 for which an am-
bulance was dispatched. This includes some calls not requiring lights-and-sirens
response, but does not include scheduled patient transfers. We include only the
first call arrival time in our analysis when multiple calls are received for the same
event. The data were processed to exclude calls with no reported location. These
removals totaled less than 1% of the data.

Many calls resulted in multiple ambulances being dispatched. Exploratory anal-
ysis revealed that the number of ambulances deployed for a single emergency did
not depend on the day of the week, the week of the year, or exhibit any serial de-
pendence. However, such instances were slightly more prevalent in the morning
hours. Our analysis of hourly ambulance demand defines an event as a call arrival
if one or more ambulances are deployed.

We removed seven days from the analysis because there were large gaps, over
at least two consecutive hours, in which no emergency calls were received. These
days most likely resulted from malfunctions in the computer-aided dispatch system
which led to failures in recording calls for extended periods. Strictly speaking,
it is not necessary to remove the entire days; however, we did so since it had a
negligible impact on our results and it greatly simplified out-of-sample forecast
comparisons and implementation of the simulation studies in Section 4.

Finally, we gave special consideration to holidays. We found that the intraday
pattern on New Year’s Eve and Day was fundamentally different from the rest of
the year and removed these days from our analysis. This finding is similar to the
conclusions of Channouf et al. (2007) who found that New Year’s Day and the
dates of the Calgary Stampede were the only days requiring special consideration
in their methodology when applied to the city of Calgary. In practice, staffing de-
cisions for holidays require special planning and consideration of many additional
variables.

3. Modeling. Factor models provide a parsimonious representation of high
dimensional data in many applied sciences, for example, econometrics [cf. Stock
and Watson (2002)]. We combine a dynamic latent factor model with integer-
valued time series models. We include covariates via simple constraints on the
factor loadings. We estimate the model using smoothing splines to impose smooth
evolution in the factor levels and loadings. The factor model provides a parsimo-
nious representation of the nonstationary pattern in intraday call arrivals, while
the time series models capture the remaining serial dependence in the arrival rate
process.
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3.1. Dynamic latent factor model. For notational simplicity, assume m con-
secutive observations per day are available for d consecutive days with no omis-
sions in the record. Let Y = (yij ) denote the d × m matrix of observed counts for
each day i over each sub-period j . Let μij = E(Yij |X), and let M = (μij ) de-
note the corresponding d × m latent nonstationary intensity matrix. To reduce the
dimension of the intensity matrix M, we introduce a K-factor model.

We assume that the intraday pattern of expected hourly call arrivals on the log
scale can be well approximated by a linear combination of (a small number) K

factors or functions, denoted by fk for k = 1, . . . ,K . The factors are orthogonal
length-m vectors. The intraday arrival rate model μi over a particular day i is
given by

logμi = Li1f1 + · · · + LiK fK.(2)

Each of the factors fk varies as a function over the periods within a day, but they are
constant from one day to the next. Day-to-day changes are modeled by allowing
the various factor loadings Lik to vary across days. When K is much smaller than
either m or d , the dimensionality of the general problem is greatly reduced. In
practice, K must be chosen by the practitioner; we provide some discussion on
choosing K in Section 4.

In matrix form we have

log M = LFT,(3)

in which F = (f1, . . . , fK) denotes the m × K matrix of underlying factors and
L denotes the corresponding d × K matrix of factor loadings, both of which are
assumed to have full column rank. Although other link functions are available, the
component-wise log transformation implies a multiplicative structure among the
K common factors and ensures a positive estimate of each hourly intensity μij .
Since neither F nor L are observable, the expression (3) is not identifiable. We
further require FTF = I to alleviate this ambiguity and we iteratively estimate F
and L.

3.2. Factor modeling with covariates via constraints. To further reduce the
dimensionality, we impose a set of constraints on the factor loading matrix L. Let
H denote a d × r full rank matrix (r < d) of given constraints (we discuss later
what these should be for EMS). Let B denote an r × K matrix of unconstrained
factor loadings. These unconstrained loadings B linearly combine to constitute the
constrained factor loadings L, such that L = HB. Our factor model may now be
written as

log M = LFT = HBFT.

A considerable reduction in dimensionality occurs when r is much smaller than d .
Constraints to assure identifiability are standard in factor analysis. The con-

straints we now consider incorporate auxiliary information about the rows and
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columns of the observation matrix Y to simplify estimation and to improve out-
of-sample predictions. Similar constraints have been used in Takane and Hunter
(2001), Tsai and Tsay (2010) and Matteson and Tsay (2011).

For example, the rows of H might consist of incidence vectors for particular
days of the week, or special days which might require unique loadings on the
common factors. We may choose to constrain all weekdays to have identical factor
loadings and similarly constrain weekend days. However, this approach is much
more general than simple equality constraints, as demonstrated below.

The intraday pattern of hourly call arrivals varies from one day to the next,
although the same general shape is maintained. As seen in Figure 1, different days
of the week exhibit distinct patterns. We do not observe large changes from one
week to the next, but there are significant changes over the course of the year.
We allow loadings to slowly vary from week to week. Both of these features are
incorporated into the factor loadings L by specifying appropriate constraints H.
Let

log M = LFT = HBFT = (H(1) H(2) )

(
B(1)

B(2)

)
FT,(4)

in which the first term corresponds to day-of-week effects and the second to
smoothly varying week-of-year effects. H(1) is a d × 7 matrix in which each row
H(1)

i is an incidence vector for the day-of-week. Similarly, H(2) is a d × 53 matrix

in which each row H(2)
i is an incidence vector for the week-of-year. (We use a 53

week year since the first and last weeks may have fewer than 7 days.) The 7 × K

matrix B(1) = (b(1)
1 , . . . ,b(1)

K ) contains unconstrained factor loadings for the day-

of-week and B(2) = (b(2)
1 , . . . ,b(2)

K ) is a 53 × K matrix of factor loadings for the
week-of-year.

3.3. Factor model estimation via smoothing splines. We assume that as the
nonstationary intensity process μij varies over the hours j of each day i, it does
so smoothly. If each of the common factors fk ∈ R

m varies smoothly over sub-
periods j , then the smoothness of μij is guaranteed for each day. Increasing the
number of factors reduces possible discontinuities between the end of one day
and the beginning of the next. To incorporate smoothness into the model (2), we
use Generalized Additive Models (GAMs) in the estimation of the common fac-
tors fk . GAMs extend generalized linear models, allowing for more complicated
relationships between the response and predictors by modeling some predictors
nonparametrically [see, e.g., Hastie and Tibshirani (1990); Wood (2006)]. GAMs
have been successfully used for count-valued data in the study of fish populations
[cf. Borchers et al. (1997); Daskalov (1999)]. The factors fk = fk(j) are a smooth
function of the intraday time index covariate j . The loadings L are defined as be-
fore. If the loadings L were known covariates, equation (2) would be a varying
coefficient model [cf. Hastie and Tibshirani (1993)].



FORECASTING EMS CALL ARRIVAL RATES 1387

There are several excellent libraries available in the statistical package R [R
Development Core Team (2009)] for fitting GAMs, thus making them quite easy
to implement. We used the gam function from the mgcv library [Wood (2008)]
extensively. Other popular libraries include the gam package [Hastie (2009)] and
the gss package [Gu (2010)]. See Wood [(2006), Section 5.6] for an introduction
to GAM estimation using R.

In estimation of the model (2) via the gam function, we have used thin plate
regression splines with a ten-dimensional basis, the Poisson family, and the log-
link function. Thin plate regression splines are a low rank, isotropic smoother with
many desirable properties. For example, no decisions on the placement of knots
is needed. They are an optimal approximation to thin plate splines and, with the
use of Lanczos iteration, they can be fit quickly even for large data sets [cf. Wood
(2003)].

When the factors F are treated as a fixed covariate, the factor model can again
be interpreted as a varying coefficient model. Given the calendar covariates X, let

logμij = Fj1L
T
1i + · · · + FjKLT

Ki

=
K∑

k=1

Fjk

{
H(1)T

i b(1)
k + H(2)T

i b(2)
k

}
(5)

=
K∑

k=1

Fjk

{
b

(1)
k (xi ) + b

(2)
k (xi )

}
,

in which b
(1)
k (xi ) is a piece-wise constant function of the day-of-week, and b

(2)
k (xi )

is a smoothly varying function over the week-of-year. We may again proceed with
estimation via the gam function in R. Day-of-week covariates are simply added to
the linear predictor as indicator variables. These represent a level shift in the daily
loadings on each of the factors fk . In our application it is appropriate to assume a
smooth transition between the last week of one year and the first week of the next.
To ensure this in estimation of b

(2)
k (xi ), we use a cyclic cubic regression spline for

the basis [cf. Wood (2006), Section 5.1]. Iterative estimation of F, and L via B, for
a given number of factors K is discussed in Section 3.5.

We allow the degree of smoothness for the factors fk and the loadings func-
tion b

(2)
k (xi ) to be automatically estimated by generalized cross validation (GVC).

We expect short term serial dependence in the residuals for our application. For
smoothing methods in general, if autocorrelation between the residuals is ignored,
automatic smoothing parameter selection may break down [see, e.g., Opsomer,
Wang and Yang (2001)]. The proposed factor model may be susceptible to this if
the number of days included is not sufficiently large compared to the number of
smooth factors and loadings, or if the residuals are long-range dependent. We use
what is referred to as a performance iteration [cf. Gu (1992)] versus an outer itera-
tion strategy which requires repeated estimation for many trial sets of the smooth-
ing parameters. The performance iteration strategy is much more computationally
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efficient for use in the proposed algorithm, but convergence is not guaranteed, in
general. In particular, cycling between pairs of smoothing parameters and coef-
ficient estimates may occur [cf. Wood (2006), Section 4.5], especially when the
number of factors K is large.

3.4. Adaptive forecasting with time series models. Let êt = Yt/μ̂t denote the
multiplicative residual in period t implied by the fitted values μ̂t from a fac-
tor model estimated as described in the previous sections. Time series plots of
this residual process appear stationary, but exhibit some serial dependence. In
this section we consider time series models for the latent CIIR process ηt =
E(Yt/μt |Ft−1,X) to account for this dependence.

To investigate the nature of the serial dependence, we study the bivariate rela-
tionship between the êt process versus several lagged values of the process êt−�.
Scatterplots reveal a roughly linear relationship. Residual autocorrelation and par-
tial autocorrelation plots for one of the factor models fit in Section 4 are given
in Figure 5(b) and (c). These quantify the strength of the linear relationship as
the lag � increases. It appears to persist for many periods, with an approximately
geometric rate of decay as the lag increases.

To explain this serial dependence, we first consider a generalized autoregressive
linear model, defined by the recursion

ηt = ω + αêt−1 + βηt−1.(6)

To ensure positivity, we restrict ω > 0 and α,β ≥ 0. When μt is constant, the
resulting model for Yt is an Integer-GARCH(1,1) (IntGARCH) model [e.g.,
Ferland, Latour and Oraichi (2006)]. It is worth noting some properties of this
model for the constant μt case. To ensure the stationarity of ηt , we further require
that α +β < 1. This sum determines the persistence of the process, with larger val-
ues of α leading to more adaptability. When this stationarity condition is satisfied,
and ηt has reached its stationary distribution, the expectation of ηt given X is

E(ηt |X) = ω/(1 − α − β).

To ensure E(ηt |X) = 1 for the fitted model, we may parameterize ω = 1 − α − β .
This constraint is simple enough to enforce for the model (6) and we do so. How-
ever, additional parameter constraints such as this may make numerical estimation
intractable in more complicated models and they are not enforced by us in the
models outlined below.

When μt is a nonstationary process, the conditional intensity

λt = μtηt

is also nonstationary. Since E(ηt |X) = 1, we interpret ηt as the stationary multi-
plicative deviation, or inflation rate, between λt and μt . The λt process is mean
reverting to the μt process. Let

ε̂t = Yt /̂λt
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denote the multiplicative standardized residual process given an estimated CIIR
process η̂t . If a fitted model defined by (6) sufficiently explains the observed linear
dependence in êt , then an autocorrelation plot of ε̂t should be statistically insignif-
icant for all lags �. As a preview, the standardized residual autocorrelation plot
for one such model fit in Section 4 is given in Figure 5(d). The serial correlation
appears to have been adequately removed.

Next, we formulate three different nonlinear generalizations of (6) that may
better characterize the serial dependence, and possibly lead to improved forecasts.
The first is an exponential autoregressive model defined as

ηt = αêt−1 + [β + δ exp(−γ η2
t−1)]ηt−1,(7)

in which α,β, δ, γ > 0. Exponential autoregressive models are attractive in ap-
plication because of their threshold-like behavior. For large ηt−1, the functional
coefficient for ηt−1 is approximately β , and for small ηt−1 it is approximately
β + δ. Additionally, the transition between these regimes remains smooth. As in
Fokianos, Rahbek and Tjøstheim (2009), for α + β < 1 one can verify the ηt pro-
cess has a stationarity version when μt is constant.

We also consider a piecewise linear threshold model

ηt = ω + αêt−1 + βηt−1 + (γ êt−1 + δηt−1)I{̂et−1 /∈(c1,c2)},(8)

in which I is an indicator variable and the threshold boundaries satisfy 0 < c1 <

1 < c2 < ∞. To ensure positivity of ηt , we assume ω,α,β > 0, (α + γ ) > 0, and
(β + δ) > 0. Additionally, we take δ ≤ 0 and γ ≥ 0, such that when êt−1 is outside
the range (c1, c2) the CIIR process ηt is more adaptive, that is, puts more weight on
êt−1 and less on ηt−1. When μt is constant, the ηt process has a stationary version
under the restriction α + β + γ + δ < 1; see Woodard, Matteson and Henderson
(2010). In practice, the threshold boundaries c1 and c2 are fixed during estimation,
and may be adjusted as necessary after further exploratory analysis. We chose
c1 = 1/1.15 and c2 = 1.15, that is, thresholds at 15% above and below 1.

Finally, we consider a model with regime switching at deterministic times, let-
ting

ηt = (ω1 +α1êt−1 +β1ηt−1)I{t∈(t1,t2)} + (ω2 +α2êt−1 +β2ηt−1)I{t /∈(t1,t2)}.(9)

This model is appropriate assuming the residual process has two distinct regimes
for different periods of the day. For example, one regime could be for normal
workday hours with the other regime being for the evening and early morning
hours. No stationarity is possible for this model. A drawback of this model is that
the process has jumps at t1 and t2. As was the case for c1 and c2 in (8), t1 and t2
are fixed during estimation. After exploratory analysis, we chose t1 = 10 a.m. and
t2 = 4 p.m.



1390 MATTESON, MCLEAN, WOODARD AND HENDERSON

3.5. Estimation algorithm. The estimation procedure below begins with an it-
erative algorithm for estimating the factor model from Sections 3.1–3.3 through
repeated use of the gam function from the mgcv library in R. Any serial depen-
dence is ignored during estimation of μt for simplicity. Given estimates for the
factor model μ̂t , conditional maximum likelihood is used to estimate the condi-
tional intensity λt via one of the time series models given in (6)–(9) for the CIIR
process ηt .

1. Initialization:
(a) Fix K and H.
(b) Choose some c ∈ (0,1) and define Yc = (yij ∨ c).
(c) Apply a singular value decomposition (SVD) to find log(Yc) = U0D0VT

0 .

(i) Let U(1:K)
0 denote the first K columns of the left singular matrix U0.

(ii) Let V(1:K)
0 denote the first K columns of the right singular matrix V0.

(iii) Let D(1:K)
0 denote the upper-left K ×K sub-matrix of D0, the diagonal

matrix of singular values.
(d) Assign L0 = U(1:K)

0 D(1:K)
0 and F0 = V(1:K)

0 .
No smoothing is performed and the constraints H are omitted in initializa-
tion.

2. Update:
(a) Fit the Poisson GAM model described in Section 3.3 with F = Fn and H as

fixed covariates.

• Assign Bn∗ as the estimated parameter values from this fit and let Ln∗ =
HBn∗ .

(b) Fit the Poisson GAM model described in Section 3.3 with L = Ln∗ as a
fixed covariate.

• Assign Fn∗ as the estimated parameter values from this fit.

(c) Apply an SVD to find Bn∗FT
n∗ = Un+1Dn+1VT

n+1.

(i) Assign Bn+1 = U(1:K)
n+1 D(1:K)

n+1 .

(ii) Assign Fn+1 = V(1:K)
n+1 .

(iii) Assign Ln+1 = HBn+1.
(d) Let log Mn+1 = Ln+1FT

n+1.
3. Repeat the update steps recursively until convergence.

Convergence is reached when the relative change in M is sufficiently small.
After convergence we can recover log μ̂t from the rows of the final estimate of
log M. These values are then treated as fixed constants during estimation of ηt .
We use conditional maximum likelihood to estimate the parameters (ω,α,β, . . .)

associated with a time series model for ηt . The recursion defined by (6)–(9) re-
quires initialization by choosing a value for η1; the estimates are conditional on
the chosen initialization.
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We may always specify the joint distribution PY of the observations Y as an iter-
ated product of successive conditional distributions PYt for Yt given (Yt−1, . . . , Y1)

as

PY (yT , yT −1, . . . , y2, y1) = PY1(y1)

T∏
t=2

PYt (yt |yt−1, . . . , y1).

We follow the standard convention of fixing PY1(y1) = 1 in estimation. For large
sample sizes the practical impact of this decision is negligible. We may therefore
write the log likelihood function as the sum of iterated conditional log likelihood
functions. The conditional distribution for the observations is assumed to be Pois-
son with mean λt = μtηt .

For uninterrupted observations over periods 1, . . . , T , we define the log likeli-
hood function as

�(ω,α,β, . . . |M̂,Y, η1) =
T∑

t=2

�t (ω,α,β, . . . |yt , yt−1, μ̂t , μ̂t−1, ηt−1)

=
T∑

t=2

(yt logλt − λt − logyt !)(10)

=
T∑

t=2

(
yt log(μ̂tηt ) − μ̂tηt − logyt !).

This recursion requires an initial value for η1. For simplicity, we use its expected
value, η1 = 1. When there are gaps in the observation record, equation (10) is cal-
culated over every contiguous block of observations. This requires reinitialization
of ηt = 1 at the beginning of each block. The log likelihood for the blocks are then
added together to form the entire log likelihood. The maximum likelihood esti-
mate is the argmax of this quantity, subject to the constraints given in Section 3.4.
Finally, ηt is estimated by the respective recursion given by equations (6)–(9) with
parameters replaced by their estimates, again with reinitialization of ηt = 1 at the
beginning of each contiguous block of observations. Blocks were large enough in
our application that the effect of reinitialization was negligible.

4. Empirical analysis. Using the data described in Section 2, we perform the
following analysis: (a) we define various statistical goodness-of-fit metrics suitable
for the proposed models; based on in-sample performance, these metrics are used
to determine the number of factors K for use in the dynamic factor models. (b) We
compare the out-of-sample forecast performance for the factor model in (3), the
factor model with constraints in (4), and the factor model with constraints and
smoothing splines in (5). These comparisons help ascertain the improvement from
each refinement and validate the proposed selection methods for K . (c) For the
latter factor model, we compare the out-of-sample forecast performance with the
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addition of the CIIR process, via use of the various time series models defined
in Section 3.4. (d) We quantify the practical impact of these successive statistical
improvements with a queueing application constructed to approximate ambulance
operations.

4.1. Interpreting the fitted model. The mean number of calls was approxi-
mately 24 per hour for 2007 and 2008, and no increasing or decreasing linear trend
in time was detected during this period. We partition the observations by year into
two data sets referred to as 2007 and 2008, respectively. Each year is first regarded
as a training set, and each model is fit individually to each year. The opposite year
is subsequently used as a test set to evaluate the out-of-sample performance of
each fitted model. To account for missing days, we reinitialize the CIIR process ηt

in the first period following each day of missing data. This was necessary at most
five times per year including the first day of the year.

We found the factor model fit with constraints, smoothing splines, and K = 4
factors to be the most appropriate of the factor models considered. The estimated
factors fk for 2008 are shown in Figure 2(a). Each of the four factors varies
smoothly over the hours of the day via use of smoothing splines. The first factor
f1 is strictly positive and the least variable. It appears to capture the mean diurnal
pattern. The factor f2 appears to isolate the dominant relative differences between
weekdays and weekend days. The defining feature of f3 and f4 is the large increase
late in the day, corresponding closely to the relative increase observed on Friday
and Saturday evenings. However, f3 decreases in the morning, while f4 increases in
the morning and decreases in the late afternoon. As K increases, additional factors
become increasingly more variable over the hours of the day. Too many factors
result in overfitting the model, as the extra factors capture noise.

The corresponding daily factor loadings L for the first four weeks of 2008 are
shown in Figure 2(b). The loadings (L1−14.5) are shown to simplify comparisons.
The much higher loadings on f1 confirm its interpretation as capturing the mean.
The peaks on Fridays coincide with Friday having the highest average number of
calls, as seen in Figure 1. Weekdays get a positive loading on f2, while weekend
days get negative loading. Loadings on f3 are lowest on Sundays and Mondays and
loadings on f4 are largest on Fridays and Saturdays. As K increases, the loadings
on additional factors become increasingly close to zero. This partially mitigates the
overfitting described above. Factors with loadings close to zero have less impact
on the fitted values μ̂t . Nevertheless, they can still reduce out-of-sample forecast
performance.

The daily factor loadings for all of 2008 are shown in Figure 2(c). The relative
magnitude of each loading vector with respect to day-of-week is constant. This
results from use of the constraint matrix H(1) in (4). As the loadings vary over the
days of the week, they also vary smoothly over the course of the year, via use of the
constraint matrix H(2) and the use of cyclic smoothing splines in estimation of B(2)

in (4). The loadings on f1 show how the expected number of calls per day varies
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FIG. 2. 2008 fitted (a) factor levels fk (log-linear scale) and [(b) and (c)] corresponding factor loadings Lk· (log-linear scale) for a factor model fit
with constraints, smoothing splines and K = 4 factors. (L1· − 14.5) is shown for easier comparison.
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FIG. 3. The estimated intensity process μ̂i , for every day in 2008, for a factor model fit with con-
straints, smoothing splines and K = 4 factors, colored by day-of-week, and shaded light to dark by
week-of-year.

over the year. The week to week variability in the other loadings influences how
the days of the week change relative to each other over the year. Figure 3 shows

FIG. 4. 2007 percentage in-sample relative goodness-of-fit improvement by addition of one factor
(K → K + 1) for a factor model fit with constraints and smoothing splines.
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FIG. 5. (a) Sample autocorrelation function for hourly call arrival counts yt . Residual êt = yt /μ̂t

(b) autocorrelation and (c) partial autocorrelation functions for fitted factor model μ̂t with k = 4
factors using factor and loading constraints and smoothing splines. (d) Standardized residual
ε̂t = yt /̂λt = yt /(μ̂t η̂t ) autocorrelation function for fitted factor model with fitted IntGARCH(1,1)

model for ηt . Dashed lines give approximate 95% confidence levels.

the estimated intensity process μ̂i for every day in 2008, shaded by day-of-week.
The curves vary smoothly over the hours of the day. The fit for each day of the
week keeps the same relative shape, but it varies smoothly over the weeks of the
year.

Section 3.4 described incorporating time series models to improve the short-
term forecasts of a factor model. The models capture the observed serial depen-
dence in the multiplicative residuals from a fitted factor model; see Figure 5. Pa-
rameter estimates and approximate standard errors for the IntGARCH model are
given in Supplemental material (Table 1). A fitted factor model μ̂t using con-
straints, smoothing splines and K = 4, as well as the factor model including a
fitted IntGARCH(1,1) model λ̂t , are also shown in Figure 6(a), with the observed
call arrivals per hour for Weeks 8 and 9 of 2007. The λ̂t process is mean reverting
about the μ̂t process. They are typically close to each other, but when they differ by
a larger amount, they tend to differ for several hours at a time. The corresponding
fitted CIIR process η̂t is shown in Figure 6(b). This clearly illustrates the depen-
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FIG. 6. Weeks 8 and 9 of 2007: (a) observed call arrivals per hour yt , fitted K = 4 dynamic
factor model μ̂t using constraints and smoothing splines, and factor model λ̂t including fitted
IntGARCH(1,1); (b) the fitted conditional intensity inflation process η̂t from the IntGARCH(1,1)

model.

dence and persistence exhibited in Figure 6(a). The CIIR process ranges between
±6% during this period. With a mean of 24 calls per hour, this range corresponds
to λ̂t varying about μ̂t by about ±1.5 expected calls per hour.

4.2. Goodness of fit and model selection. To evaluate the fitted values and
forecasts of the proposed models, three types of residuals are computed: multi-
plicative, Pearson and Anscombe. Their respective formulas for the Poisson distri-
bution are given by

r̂M,t = yt

λ̂t

− 1, r̂P ,t = yt − λ̂t√
λ̂t

, r̂A,t = (3/2)(y
2/3
t − λ̂

2/3
t )

λ̂
1/6
t

.

We refer to the root mean square error (RMSE) of each metric as RMSME,
RMSPE and RMSAE, respectively. The multiplicative residual is defined as be-
fore and is a natural choice given the definition for the CIIR. Since the variance
of a Poisson random variable is equal to its mean, the Pearson residual is quite
standard. However, the Pearson residual can be quite skewed for the Poisson dis-
tribution [cf. McCullagh and Nelder (1989), Section 2.4]. The Anscombe residual
is derived as a transformation that makes the distribution of the residuals as close
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to Gaussian as possible while suitably scaling to stabilize the variance. See Pierce
and Schafer (1986) for further discussion of residuals for generalized linear mod-
els. While the three methods always yielded the same conclusion, we found use
of the Anscombe residuals gave a more robust assessment of model accuracy and
simplified paired comparisons between the residuals of competing models.

The three RMSE metrics were used for both in- and out-of-sample model com-
parisons. For in-sample comparisons of the factor models, we also computed the
deviance of each fitted model μ̂t . As a goodness-of-fit metric, deviance is derived
from the logarithm of a ratio of likelihoods. For a log likelihood function �(μ|Y),
it is defined as

−2{�(μ = μ̂|Y) − �(μ = Y|Y)},
in general. For a fitted factor model, ignoring serial dependence, the deviance cor-
responding to a Poisson distribution is

2
n∑

t=1

{yt log(yt/μ̂t ) − (yt − μ̂t )},

in which the first term is zero if yt = 0.
We compare the fitted models’ relative reduction in deviance and RMSE as we

increase the number of factors K . Figure 4 shows these results for factor mod-
els fit to 2007 data with constraints and smoothing splines. The results for other
models and for 2008 were very similar. This plot may be interpreted similarly to
a scree plot in PCA by identifying the point at which performance tapers off and
the marginal improvement from additional factors is negligible. Under each sce-
nario we consistently selected K = 4 factors through this graphical criterion. To
further justify this as a factor selection strategy, we also consider the impact the
number of factors K has on out-of-sample performance for each of the proposed
models below. This approach is straightforward, but it does not fully account for
the uncertainty on the number of factors. Bayesian estimation would require spe-
cialized computation, but it may improve model assessment [see, e.g., Lopes and
West (2004)].

4.3. Out-of-sample forecast performance. Out-of-sample comparisons were
made by fitting models to the 2007 training set and forecasting on the 2008 test
set, and vice versa. To make predictions comparable from one year to the next, we
align corresponding calendar weeks of the year, not days of the year. This ensures
that estimates for Sundays are appropriately compared to Sundays, etc.

The first model considered was the simple prediction (SP) method. This simple
moving average involving four observations was defined in the Introduction. Next,
the forecasts of various factor models (FM) were considered. For K = 1, . . . ,6,

we evaluated the forecasts from the FM in (3), the FM with constraints in (4), and
the FM with constraints and smoothing splines in (5). Finally, for the latter FM,
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with K = 4, we calculate the implied fit from the training set with the inclusion
of the CIIR process via the various time series models defined in Section 3.4. We
compute the forecast RMSE of each model for the three residual types, for both
years.

The forecast results are shown in Table 1. The basic FMs did slightly worse
than the SP both years. With only one year of observations, these FMs tend to
overfit the training set data, even with a small number of factors. The FMs with
constraints give a very significant improvement over the previous models. The
forecast RMSE is lowest at K = 4 for the 2007 test set, and at K = 3 for the 2008
test set. There was also a very large decrease between K = 1 and K = 2. The
FMs with constraints and smoothing splines offered an additional improvement.
The forecast RMSE is lowest at K = 4 for both test sets. With the addition of
the IntGARCH model for the CIIR process to this model, the RMSE improved
again. Application of the nonlinear time series models instead offered only a slight
improvement over the IntGARCH model.

With only one year of training data, each FM begins to overfit with K = 5
factors. Results were largely consistent regardless of the residual used, but the
Anscombe residuals were the least skewed and allowed the simplest pairwise com-
parisons. Although the FMs with constraints had superior in-sample performance,
the use of smoothing splines reduced the tendency to over-fit and resulted in im-
proved forecast performance. The CIIR process offered improvements in fit over
FMs alone.

We also fit each of the nonlinear time series models discussed in Section 3.4
using a FM with K = 4. The regime switching model had the best performance.
It had the lowest RMSE for both test sets. The exponential autoregressive and the
piecewise linear threshold models performed similarly to the IntGARCH model
for both test sets. Although the nonlinear models consistently performed better
in-sample, their out-of-sample performance was similar to the IntGARCH model.

4.4. Queueing model simulation to approximate ambulance operations. To
comprehensively improve ambulance operations, it would be advantageous to si-
multaneously model the service duration of dispatched ambulances in addition to
the demand for ambulance service. Unfortunately, such information was not avail-
able. We are currently working with Toronto EMS to use our improved estimates
of call arrival rates to improve staffing in their dispatch call center. Extending our
approach to a spatial-temporal forecasting model will likely be used to help deter-
mine when and where to deploy ambulances.

We present a simulation study that uses a simple queueing system to quantify
the impact that improved forecasts have on staffing decisions and relative operating
costs, for the Toronto data. The queueing model is a simplification of ambulance
operations that ignores the spatial component. Similar queueing models have been
used frequently in EMS modeling [see Swersey (1994), page 173]. This goodness-
of-fit measure facilitates model comparisons and a similar approach may be useful
in other contexts.
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TABLE 1

Root mean square multiplicative, Pearson, and Anscombe errors for fitting model to 2007 and forecasting 2008, and vice versa

2007 model, 2008 residuals 2008 model, 2007 residuals

Model Constraint Smoothing RMSME RMSPE RMSAE RMSME RMSPE RMSAE

Simple prediction NA NA 0.2696 1.1955 1.1849 0.2661 1.1902 1.1925

Factor model, K = 1 No No 0.2722 1.2369 1.2237 0.2657 1.2183 1.2263
Factor model, K = 2 No No 0.2721 1.2357 1.2225 0.2661 1.2197 1.2277
Factor model, K = 3 No No 0.2727 1.2374 1.2239 0.2659 1.2182 1.2262
Factor model, K = 4 No No 0.2729 1.2383 1.2249 0.2666 1.2206 1.2283
Factor model, K = 5 No No 0.2732 1.2395 1.2260 0.2670 1.2220 1.2294
Factor model, K = 6 No No 0.2733 1.2401 1.2270 0.2668 1.2217 1.2294

Factor model, K = 1 Yes No 0.2638 1.1863 1.1756 0.2575 1.1633 1.1721
Factor model, K = 2 Yes No 0.2402 1.0938 1.0888 0.2333 1.0722 1.0875
Factor model, K = 3 Yes No 0.2392 1.0877 1.0829 0.2324 1.0688 1.0848
Factor model, K = 4 Yes No 0.2413 1.0945 1.0889 0.2347 1.0761 1.0912
Factor model, K = 5 Yes No 0.2425 1.0994 1.0933 0.2363 1.0817 1.0961
Factor model, K = 6 Yes No 0.2436 1.1051 1.0988 0.2377 1.0858 1.0999

Factor model, K = 1 Yes Yes 0.2633 1.1837 1.1731 0.2573 1.1615 1.1703
Factor model, K = 2 Yes Yes 0.2371 1.0844 1.0805 0.2310 1.0643 1.0803
Factor model, K = 3 Yes Yes 0.2347 1.0744 1.0710 0.2289 1.0561 1.0728
Factor model, K = 4 Yes Yes 0.2344 1.0730 1.0696 0.2288 1.0549 1.0715
Factor model, K = 5 Yes Yes 0.2347 1.0740 1.0706 0.2289 1.0549 1.0714
Factor model, K = 6 Yes Yes 0.2347 1.0739 1.0705 0.2289 1.0551 1.0716

Time series and FM, K = 4 Yes Yes – – – – – –
IntGARCH – – 0.2308 1.0571 1.0570 0.2274 1.0442 1.0580
IntExpGARCH – – 0.2308 1.0570 1.0569 0.2274 1.0441 1.0579
IntThreshGARCH – – 0.2308 1.0571 1.0570 0.2275 1.0443 1.0580
IntRsGARCH – – 0.2299 1.0540 1.0554 0.2274 1.0433 1.0565

A Yes in the constraints column implies that the factor model was fit using the constraints outlined in Section 3.2. A Yes in the smoothing column indicates
that the model was fit using smoothing splines as described in Section 3.3.
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We use the terminology employed in the call center and queueing theory litera-
ture throughout the section; for our application, servers are a proxy for ambulances,
callers or customers are those requiring EMS, and a server completing service is
equated to an ambulance completing transport of a person to a hospital, etc. As
before, let yt denote the observed number of call arrivals during hour t . Our ex-
periment examines the behavior of a simple M/M/s queueing system. The arrival
rate in time period t is λt . During this period, let st denote the number of servers
at hand. For simplicity, we assume that the service rate ν for each server is the
same, and constant over time. Furthermore, intra-hour arrivals occur according to
a Poisson process with rate λt , and service times of callers are independent and
exponentially distributed with rate ν.

As in Section 4.3, models are calibrated on one year of observations and fore-
casts for λt are made for the other year. Each model’s forecasts λ̂t are then used to
determine corresponding staffing levels ŝt for the system.

To facilitate comparisons of short-term forecasts, we assume that the number of
servers can be changed instantaneously at the beginning of each period. In practice,
it is possible to adjust the number of ambulances in real time, but not to the degree
that we assume here.

Each call has an associated arrival time and service time. When a call arrives, the
caller goes immediately into service if a server is available, otherwise it is added to
the end of the queue. A common goal in EMS is to ensure that a certain proportion
of calls are reached by an ambulance within a prespecified amount of time. We
approximate this goal by instead aiming to answer a proportion, θ , of calls imme-
diately; this is a standard approximation in queueing applications in many areas
including EMS [Kolesar and Green (1998)]. For each call arrival, we note whether
or not the caller was served immediately. As servers complete service, they imme-
diately begin serving the first caller waiting in the queue, otherwise they await new
arrivals if the queue is currently empty. One simulation replication of the queueing
system simulates all calls in the test year.

To implement the queueing system simulation, it is first necessary to simulate
arrival and service times for each caller in the forecast period. We use the ob-
served number of calls for each hour yt as the number of arrivals to the system
in period t . Since arrivals to the system are assumed to follow a Poisson process,
we determine the yt call arrival times using the well-known result that, conditional
on the total number of arrivals in the period [t, t + 1], the arrival times have the
same distribution as the order statistics of yt independent Uniform(t, t + 1) ran-
dom variables. We exploit this relationship to generate the intra-hour arrival times
given the observed arrival volume yt . The service times for each call are generated
independently with an Exponential(ν) distribution.

The final input is the initial state of the queue within the system. We generate
an initial number of callers in the queue as Poisson(y1), then independently gener-
ate corresponding Exponential(ν) residual service times for each of these callers.
This initialization is motivated through an infinite-server model; see, for example,
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Kolesar and Green (1998). Whenever there is a missing day, in either the test set
or corresponding training set period, we similarly reinitialize the state of the queue
but with y1 replaced by the number of calls observed in the first period following
the missing period. These initializations are common across the different forecast-
ing methods to allow direct comparisons.

To evaluate forecast performance, we define a cost function and an appropriate
method for determining server levels from arrival rate estimates. Let nt denote the
number of callers served immediately in period t . The hourly cost function is given
by

C(nt , yt , st ) = Pen(nt , yt ) + st ,

in which

Pen(nt , yt ) =
{

0, if nt ≥ θyt ,
q(yt − nt ), otherwise,

θ ∈ (0,1) is the targeted proportion of calls served immediately, and q ≥ 0 is the
cost of not immediately serving a customer, relative to the cost of staffing one
server for one hour. The total cost, with respect to the hourly server cost, for the
entire forecast period is

C = ∑
t

C(nt , yt , st ) = ∑
t

Pen(nt , yt ) + ∑
t

st .

This approach, where penalties for poor service are balanced against staffing costs,
is frequently used; see, e.g., Andrews and Parsons (1993), Harrison, Zeevi and
Shum (2005).

At time t − 1, the number of call arrivals and the number served immediately
are random variables, denoted as Yt and Nt , respectively. A natural objective is to
choose staffing levels that minimize the hourly expected cost as

ŝt = argmin
st∈N

E{C(Nt , Yt , st )|Ft−1,X},(11)

in which Yt is assumed to have a Poisson distribution with mean equal to the ar-
rival rate forecast λ̂t . The staffing levels are then a function of arrival rate forecasts,
ŝt (̂λt ). We approximate this expectation numerically by randomly generating J in-
dependent realizations as Yt,j ∼ Poisson(̂λt ). Then, for each Yt,j we simulate one
independent realization of Nt . For a fixed value of st the expectation is approx-
imated by J−1 ∑J

t=1{Pen(Nt,j , Yt,j ) + st }. We found that J = 25,000 provided
adequate accuracy.

Independent realizations of Nt |Yt require running the queueing system forward
one hour, but this is very computationally intensive. To approximate Nt |Yt , we use
a Binomial distribution. Let Nt,j |Yt,j ∼ Binomial{Yt,j , g(̂λt , st , ν)}. The function
g gives the steady state probability that a customer is served immediately for a
queueing system with a constant arrival rate, server level and service rate, λ̂t , st
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and ν, respectively. Derivation of this function is available in any standard text on
queueing theory [e.g., Gross and Harris (1998), Chapter 2].

Let pi denote the long run proportion of time such a system contains i customers
and let ρ = λ/(νs). Then

g(λ, s, ν) =
⎧⎨
⎩ 1 − λsp0

s!νs(1 − ρ)
, if ρ < 1,

0, if ρ ≥ 1,

in which p−1
0 =

c−1∑
u=0

ru

u! + rc

c!(1 − ρ)
for ρ < 1.

When ρ ≥ 1, the arrival rate is faster than the net service rate, and the system is
unstable; the long run probability that a customer is served immediately is zero.
The binomial approximation greatly reduces the computational costs and provides
reasonable results, though it tends to underestimate the true variability of Nt |Yt

due to the positive correlation in successive caller delays.
A final deliberation is needed on the removal of servers when ŝt decreases. In

our implementation, idle servers were removed first, and, if necessary, busy servers
were dropped in ascending order with respect to remaining service time. We also
considered random selection of servers to be dropped. Doing so produced highly
variable results, and is under further study. To further simplify the implementation,
if it was necessary to drop a busy server, it was simply discarded, along with any
remaining service time for that caller. The effect of this simplification depends on
the service rate ν; our results did not appear to be sensitive to this simplification.

Simulation of the queueing system is now rather straightforward. On each it-
eration i, we note whether each caller was served immediately or not. Forecast
performance is assessed by examining the total cost C(i) = ∑

t C(n
(i)
t , yt , ŝt ) over

the test period. For both years, we performed 100 simulations over the test year for
each forecast method. To demonstrate the robustness of this methodology, we per-
formed the experiment for several different values of the queuing system’s param-
eters. Specifically, all combinations of q ∈ {2,5,10}, ν ∈ {1, 2

3}, and θ ∈ {0.8,0.9}
were considered, after consultation with EMS experts.

Results for the mean hourly cost over the 100 simulations for each forecasting
method, for each test year, are summarized in Figure 7. We see that the mean
hourly cost is lowest for the FM w/ IntGARCH, followed by the FM only, and
finally by SP. All pairwise differences in mean were highly significant; the smallest
t-ratio was 80. In fact, this ordering in performance held for almost every iteration
of the queueing system, not just on average.

The mean percentage of callers served immediately can be found in Figure 8.
The total number of server hours

∑
ŝt used was also recorded for each model for

each set of parameter values. A table containing the values of all these quantities
can be found in the online supplemental material. Both mean percentage served
immediately and mean hourly cost increase with q . For each test year, for each
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FIG. 7. Mean total per period cost over 100 simulations for different forecasting methods and
different values of q , ν and θ . Plots (a)–(d) use the 2008 test set and plots (e)–(h) use 2007 as the
test set. The vertical lines represent ±1 standard deviation.

level of (q, ν, θ),
∑

t ŝt differed by between one and three thousand server-hours,
for the different models.

5. Conclusions. Our analysis was motivated by a data set provided by
Toronto EMS. The proposed forecasting method allows parsimonious modeling
of the dependent and nonstationary count-valued EMS call arrival process. Our
method is straightforward to implement and demonstrates substantial improve-
ments in forecast performance relative to simpler forecasting methods. We mea-
sured the impact of our successive refinements to the model, showing the merit of
factor model estimation with covariates and smoothing splines. The factor model
was able to capture the nonstationary behavior exhibited in call arrivals. Introduc-
tion of the CIIR process allowed adaptive forecasts of deviations from this diurnal
pattern.

Assessing the impact that different arrival rate forecasts can have on call cen-
ters and related applications has received very little attention in the literature. Our
data-based simulation approach is straightforward to implement, and was able to
clearly distinguish the effectiveness of each forecasting method. The simulation
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FIG. 8. Mean percentage served immediately for the entire test set over 100 simulations for differ-
ent forecasting methods and different values of q , ν and θ . Plots (a)–(d) use the 2008 test set and
plots (e)–(h) use 2007 as the test set. The vertical lines represent ±1 standard deviation.

results coincide with the out-of-sample RMSE analysis in Section 4.3 and provide
a practical measure of forecast performance. Relative operating cost is a natural
metric for measuring call arrival rate forecasts, and our implementation may easily
be extended to many customized cost functions and a wide variety of applications.

Ultimately, we seek to strengthen emergency medical service by improving
upon relevant statistical methodology. Future work will consider inclusion of addi-
tional covariates and study of other nonlinear time series models. Bayesian meth-
ods which directly model count-valued observations have desirable properties for
inference and many applications, and are under study. Spatial and spatial–temporal
analysis of call arrivals will also offer new benefits to EMS.
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SUPPLEMENTARY MATERIAL

Supplement A: Additional tables (DOI: 10.1214/10-AOAS442SUPPA; .pdf).
Tables 1 and 2.

http://dx.doi.org/10.1214/10-AOAS442SUPPA
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Supplement B: Estimation algorithms (DOI: 10.1214/10-AOAS442SUPPB;
.R). R code for estimating the models in Section 3 and for calculating the RMSE
metrics in Section 4.

Supplement C: Simulation algorithms (DOI: 10.1214/10-AOAS442SUPPC;
.R). R code for implementing the queueing model simulation in Section 4.4.
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