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FEATURE SELECTION GUIDED BY STRUCTURAL INFORMATION

BY MARTIN SLAWSKI1,2, WOLFGANG ZU CASTELL AND GERHARD TUTZ

Saarland University, Helmholtz Zentrum München and University of Munich

In generalized linear regression problems with an abundant number of
features, lasso-type regularization which imposes an �1-constraint on the re-
gression coefficients has become a widely established technique. Deficiencies
of the lasso in certain scenarios, notably strongly correlated design, were un-
masked when Zou and Hastie [J. Roy. Statist. Soc. Ser. B 67 (2005) 301–320]
introduced the elastic net. In this paper we propose to extend the elastic net by
admitting general nonnegative quadratic constraints as a second form of reg-
ularization. The generalized ridge-type constraint will typically make use of
the known association structure of features, for example, by using temporal-
or spatial closeness.

We study properties of the resulting “structured elastic net” regression
estimation procedure, including basic asymptotics and the issue of model se-
lection consistency. In this vein, we provide an analog to the so-called “ir-
representable condition” which holds for the lasso. Moreover, we outline al-
gorithmic solutions for the structured elastic net within the generalized linear
model family. The rationale and the performance of our approach is illustrated
by means of simulated and real world data, with a focus on signal regression.

1. Introduction. We consider regression problems with a linear predictor. Let
X = (X1, . . . ,Xp)� be a random vector of real-valued features/predictors and let
Y be a random response variable taking values in a set Y . Given a realization
x = (x1, . . . , xp)� of X, a prediction ŷ for a specific functional of the distribution
of Y |X = x is obtained via a linear predictor

f (x;β0,β) = β0 + x�β, β = (β1, . . . , βp)�,

and a function ζ : R → Y such that ŷ = ζ(f (x)). Given an i.i.d. sample S =
{(xi , yi)}ni=1 from (Rp × Y)n, an optimal set of coefficients β̂0, β̂ = (β̂1, . . . , β̂p)�
can be determined by minimization of a criterion of the form

(β̂0, β̂) = argmin
(β0,β)

n∑
i=1

L(yi, f (xi;β0,β)),(1)
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where L : Y × R → R
+
0 is a convex loss function. The loss function is chosen ac-

cording to the specific prediction problem, so that large loss represents bad fit to
the observed sample S. Approach (1) usually yields poor estimates β̂0, β̂ if n is
not one order of magnitude larger than p. In particular, if p � n, approach (1)
is not well-defined in the sense that there exist infinitely many minimizers β̂0, β̂ .
One way to cope with a small n/p ratio is to employ a regularizer �(β). A tra-
ditional approach due to Hoerl and Kennard (1970) minimizes the loss in equa-
tion (1) subject to an �2-constraint on β . In the situation that β is supposed to be
sparse, Tibshirani (1996) proposed, under the acronym “lasso,” to work with an
�1-constraint, that is, one maximizes the loss subject to �(β) = ‖β‖1 < s, s > 0.
The latter is particularly attractive if one is interested in feature selection, since one
obtains estimates β̂j , j ∈ {1, . . . , p}, which equal exactly zero, such that feature j

does not contribute to prediction, for which we say that feature j is “not selected.”
Continuous shrinkage [Fan and Li (2001)] and the existence of efficient algorithms
[Efron et al. (2004), Genkin, Lewis and Madigan (2007)] for determining the coef-
ficients are further virtues of the lasso. Its limitations have recently been revealed
by several researchers. Zou and Hastie (2005) pointed out that the lasso need not
be unique in the p � n setting, where the lasso is able to select at most n features
[Rosset, Zhu and Hastie (2004)]. Furthermore, Zou and Hastie stated that the lasso
does not distinguish between “irrelevant” and “relevant but redundant” features. In
particular, if there is a group of correlated features, then the lasso tends to select
one arbitrary member of the group while ignoring the remainder. The combined
regularizer of the elastic net �(β) = α‖β‖1 + (1 − α)‖β‖2, α ∈ (0,1) is shown to
provide remedy in this regard.

A second double regularizer—tailored to one-dimensional signal regression—
is employed by the fused lasso [Tibshirani et al. (2005)], who propagate �(β) =
α‖β‖1 + (1 − α)‖Dβ‖1, where

D: R
p → R

p−1,
(2)

(β1, . . . , βp)� �→ ([β2 − β1], . . . , [βp − βp−1])�
is the first forward difference operator. The total variation regularizer is meaning-
ful whenever there is an order relation, notably a temporal one, among the fea-
tures. The fused lasso has a property which can be beneficial for interpretation:
it automatically clusters the features, since the sequence β̂1, . . . , β̂p is blockwise
constant.

In this paper we study a regularizer which is intermediate between the elastic
net and the fused lasso. Our regularizer combines an �1-constraint with a quadratic
form:

�(β) = α‖β‖1 + (1 − α)β��β,(3)

where � = (ljj ′)1≤j,j ′≤p is assumed to be symmetric and positive semidefinite.
Setting � = I yields the elastic net. The inclusion of � aims at capturing the a
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priori association structure (if available) of the features in more generality than the
fused lasso. Therefore, expression (3) will be referred to as the structured elastic
net regularizer. The structured elastic net estimator is defined as

(β̂0, β̂) = argmin
(β0,β)

n∑
i=1

L(yi, f (xi;β0,β))

(4)
subject to α‖β‖1 + (1 − α)β��β ≤ s, α ∈ (0,1), s > 0,

which is equivalent to the Lagrangian formulation

(β̂0, β̂) = argmin
(β0,β)

n∑
i=1

L(yi, f (xi;β0,β)) + λ1‖β‖1 + λ2β
��β,

(5)
λ1, λ2 > 0.

The rest of the paper is organized as follows: in Section 2 we discuss the choice
of the matrix �, followed by an analysis of some important properties of our pro-
posal (5) in Section 3. Section 4 is devoted to asymptotics and consistency ques-
tions, motivating the introduction of the adaptive structured elastic net. Section 5
presents an algorithmic solution to compute the minimizers (5) in the generalized
linear model family. The practical performance of the structured elastic net is con-
tained in Section 6. Section 7 concludes with a discussion and an outlook. All
proofs can be found in the online supplement supporting this article [Slawski, zu
Castell and Tutz (2010)].

2. Structured features.

2.1. Motivation. A considerable fraction of contemporary regression prob-
lems are characterized by a large number of features, which are either of the same
order of magnitude as the sample size or even several orders larger (p � n). Com-
mon instances thereof are feature sets consisting of sampled signals, pixels of an
image, spatially sampled data, or gene expression intensities. Beside high dimen-
sionality of the feature space, these examples have in common that the feature set
can be arranged according to an a priori association structure. If a sampled signal
does not vary rapidly, the influence of nearby sampling points on the response can
be expected to be similar; correspondingly, this applies to adjacent pixels of an im-
age, or, more generally, to any other form of spatially linked features. In genomics
genes can be categorized into functional groups, or one has prior knowledge of
their functions and interactions within biochemical reaction chains, the so-called
pathways.

Figures 1 and 2 display two well-known examples, phoneme- and handwrit-
ten digit classification. These examples are well apt to illustrate the idea of the
structured elastic net regularizer, since it is sensible to assume that the prediction
problem is not only characterized by smoothness with respect to a given structure,
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FIG. 1. Phoneme data [Hastie, Buja and Tibshirani (1995)]. The upper panel shows several thou-
sand log-periodogramms of the speech frames for the phonemes “aa” (as occuring in “dark”) and
“ao” (as occuring in “water”). The classwise means are given by thick lines. We use linear logistic
regression to predict the phoneme given a log-periodogramm. The lower panel depicts the resulting
coefficients when using the lasso (left panel), a first-order difference penalty (right panel), and a
combination thereof, which we term “structured elastic net” (middle panel).

but also by sparsity: in the phoneme classification example, visually only the first
hundred frequencies seem to carry information relevant to the prediction problem.
A similar rationale applies to the second example, where the arc of the numeral
eight in the lower half of the picture is the eminent characteristic that admits a
distinction from the numeral nine.

2.2. Gauss–Markov random fields. Given a large, but structured set of fea-
tures, its structure can be exploited to cope with high dimensionality in regression
estimation. The estimands {βj }pj=1 form a finite set such that their prior depen-
dence structure can conveniently be described by means of a graph G = (V ,E),
V = {β1, . . . , βp}, E ⊂ V × V . We exclude loops, that is, (βj , βj ) /∈ E for all j .
The edges may additionally be weighted by a function w :E → R, w((βj ,βj ′)) =
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FIG. 2. Handwritten digit recognition data set [Le Cun et al. (1989)]. One observation is given by
a greyscale image composed of 16 × 16 pixels. The upper panel shows the contour of the pixel-wise
means for the numerals “8” and “9.” We use a training set of 1500 observations of eights and
nines as input for linear logistic regression. The lower panel depicts the coefficient surfaces for the
lasso (left panel), a discrete Laplacian penalty according to the grid structure (right panel), and a
combination, the structured elastic net (middle panel).

w((βj ′, βj )) for all edges in E. We will use the notation βj ∼ βj ′ to express
that βj and βj ′ are connected by an edge in G . The weight function can be ex-
tended to a function on V × V by setting w((βj ,βj ′)) = w((βj ′, βj )) = 0 if
(βj , βj ′) /∈ E.

The graph is interpreted in terms of the Gauss–Markov random fields [Besag
(1974); Rue and Held (2001)]. In our setup, the pairwise Markov property reads

¬βj ∼ βj ′ ⇔ βj ⊥⊥ βj ′ |V \ {βj ,βj ′ },(6)

with ⊥⊥ denoting conditional independence. Property (6) is conformed to the fol-
lowing choice for the precision matrix � = (ljj ′)1≤j,j ′≤p:

ljj ′ =

⎧⎪⎪⎨⎪⎪⎩
p∑

k=1

|w((βj ,βk))|, if j = j ′,

−w((βj ,βj ′)), if j �= j ′,
(7)

which is singular in general. If sign{w((βj ,βj ′))} ≥ 0 for all (βj , βj ′) in E, then
� as given in equation (7) is known as the combinatorial graph Laplacian in the



FEATURE SELECTION GUIDED BY STRUCTURAL INFORMATION 1061

FIG. 3. A collection of some graphs. A path and a grid (left panel), a rooted tree (middle panel),
and an irregular graph describing a part of the so-called MAPK signaling pathway (right panel).

spectral graph theory [Chung (1997)]. It is straightforward to verify the following
properties:

•
β��β = ∑

βj∼βj ′
|w(βj ,βj ′)|(βj − sign{w((βj ,βj ′))}βj ′

)2 ≥ 0,(8)

where the sum is over all distinct edges in G , and “distinct” is understood with
respect to the relation (βj , βj ′) = (βj ′, βj ) for all j, j ′.

• If G is connected and sign{w((βj ,βj ′))} ≥ 0 for all (βj , βj ′) in E, the null space
of � is spanned by the vector of ones 1.

While we have started in full generality, the choice w((βj ,βj ′)) ∈ {0,1} for all
j, j ′ will frequently be the standard choice in practice. In this case, the quadratic
form captures local fluctuations of β w.r.t. G . As a simple example, one may take G
as the path on p vertices so that expression (8) equals the summed squared forward
differences

p∑
j=2

(βj − βj−1)
2 = ‖Dβ‖2 = β�D�Dβ,(9)

where D is defined in equation (2). More complex graphical structures can be gen-
erated from simple ones using the notion of Cartesian products of graphs [Chung
(1997), page 37]. For instance (as displayed in the left panel of Figure 3), the
Cartesian product of a p-path and a p′-path equals a p × p′ regular grid, in which
case the standard choice of � is seen to be a discretization of the Laplacian �

acting on functions defined on R
2. Regularizers built up from discrete differences

have already seen frequent use in high-dimensional regression estimation. Exam-
ples comprise penalized discriminant analysis [Hastie, Buja and Tibshirani (1995)]
and spline smoothing [Eilers and Marx (1996)].
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2.3. Connection to manifold regularization. As pointed out by one of the ref-
erees, regularizers of the form (8) are applicable to a variety of learning problems
in which data are supposed to be generated according to a probability measure
supported on a compact, smooth manifold M ⊂ R

p . The canonical regularization
operator acting on smooth functions on M is the Laplace–Beltrami operator �M

[Rosenberg (1997)], which generalizes the Laplacian for Euclidean domains. As
suggested, for example, in Belkin, Niyogi and Sindwhani (2006), given a set of
data points in R

p , a discrete proxy for a potential manifold structure can be ob-
tained by computing a (possibly weighted) neighborhood graph of the points, and,
in turn, a proxy for �M is obtained by a discrete Laplacian of the form (7) resulting
from the neighborhood graph.

Relating these ideas to our framework, one might think of settings where each of
the {xi}ni=1 represents a collection of p points sampled on a compact, smooth man-
ifold M . This is a natural extension of the introductory examples in Section 2.1,
where the corresponding M would be given by an interval and a rectangle, re-
spectively. Assuming a linear relationship between scalar responses {yi}ni=1 and
the predictors {xi}ni=1, we expect the corresponding coefficient vector to be both
sparse and smooth with respect to the manifold structure. Without going into de-
tail, the approach might be useful for predictors with geographical information.
The idea is illustrated in Figure 4 where M is chosen as a sphere embedded in R

3.

FIG. 4. A manifold setting suitable to our regularizer. The black dots represent points at which the
random variables Xj , j = 1, . . . , p, are realized, and the spikes normal to the surface indicate the
size of the corresponding β∗

j , j = 1, . . . , p. Except for the two groups highlighted in the left and right
panel, respectively, the coefficients equal zero. The dashed lines represent the neighborhood graph
obtained by connecting each dot with its four nearest neighbors with respect to the geodesic distance
on the sphere.
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3. Properties.

3.1. Bayesian and geometric interpretation. In the setup of Section 1, con-
sider the regularizer

�(β) = λ1‖β‖1 + λ2β
��β, λ1, λ2 > 0.

It has a nice Bayesian interpretation when the loss function L is of the form

L(y,f (x;β0,β)) = φ−1(
b(f (x)) − yf (x)

) + c(y,φ),(10)

that is, the loss function equals the negative log-likelihood of a generalized linear
model in canonical parametrization, which will primarily be studied in this paper.
Models of this class are characterized by [cf. McCullagh and Nelder (1989)]

Y |X = x ∼ simple exponential family,

ŷ = E[Y |X = x] = μ = d

df
b(f (x)),(11)

var[Y |X = x] = φ
d2

df 2 b(f (x)).

The form (10) is versatile, including classical linear regression with Gaussian er-
rors, logistic regression for classification, and Poisson regression for count data.
Given a loss from the class (10), the regularizer �(β) can be interpreted as the
combined Laplace (double exponential)-Gaussian prior p(β) ∝ exp(−�(β)), for
which the structured elastic net estimator (5), provided p(β0) ∝ 1, is the maxi-
mum posterior (MAP) estimator given the sample S. It is instructive to consider
two predictors, that is, β = (β1, β2)

�. Figure 5 gives a geometric interpretation for
the basic choices

� =
(

1 −1
−1 1

)
and � =

(
1 1
1 1

)
,

corresponding to positive- and negative prior correlation, respectively.
The contour lines of the structured elastic net penalty contain elements of a

diamond and an ellipsoid. The higher λ2 in relation to λ1, the ellipsoidal part be-
comes more narrower and more stretched. The sign of the off-diagonal element of
� determines the orientation of the ellipsoidal part.

3.2. A grouping property. For the elastic net, Zou and Hastie (2005) provided
an upper bound on the absolute distances |β̂elastic net

j − β̂elastic net
j ′ |, j, j ′ = 1, . . . , p,

in terms of the sample correlations, to which Zou and Hastie referred to as “group-
ing property.” We provide similar bounds here. For what follows, let S be a sam-
ple as in Section 1. We introduce a design matrix X = (xij )1≤i≤n

1≤j≤p

and denote by

Xj = (x1j , . . . , xnj )
� the realizations of predictor j in S, and the response vector
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FIG. 5. Level sets {(β1, β2) :λ1(|β1| + |β2|) + λ2(β1 − β2)2 = 1} (left panel, solid lines) and
{(β1, β2) :λ1(|β1|+ |β2|)+λ2(β1 +β2)2 = 1} (left panel, dashed lines) of the structured elastic net
regularizer and {(β1, β2) :λ1(|β1| + |β2|) + λ2|β1 − β2| = 1} of the fused lasso.

is defined by y = (y1, . . . , yn)
�. For the remainder of this section, we assume that

the responses are centered and that the predictors are centered and standardized to
unit Euclidean length w.r.t. the sample S, that is,

n∑
i=1

yi =
n∑

i=1

xij = 0,

n∑
i=1

x2
ij = 1, j = 1, . . . , p.(12)

PROPOSITION 1. Letting p = 2, let the loss function be of the form (10), let
ρ = X�

1 X2 denote the sample correlation of X1 and X2, and let � = 1
2

(1 s
s 1

)
, s ∈

{−1,1}. If −sβ̂1β̂2 > 0, then

|β̂1 + sβ̂1| ≤ 1

2λ2

√
2(1 + sρ)‖y‖.

In particular, in the setting of Proposition 1, we have the implication that if
X1 = −sX2, then β̂1 = −sβ̂2.

3.3. Decorrelation. Let us now consider the important special case

L(y,f (x;β)) = (y − x�β)2,

which corresponds to classical linear regression. The constant term β0 is omitted,
since we work with centered data. The structured elastic net estimator can then be
written as

β̂ = argmin
β

−2y�Xβ + β�[C + λ2�]β + λ1‖β‖1, C = X�X,

(13)
= argmin

β
−2y�Xβ + β�C̃β + λ1‖β‖1, C̃ = X�X + λ2�.
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Note that for standardized predictors, C equals the matrix of sample correla-
tions ρjj ′ = X�

j Xj ′, j, j ′ = 1, . . . , p. With a large number of predictors or el-
ements ρjj ′ with large |ρjj ′ |, C is known to yield severely unstable ordinary
least squares (ols) estimates β̂ols

j , j = 1, . . . , p. If the two underlying random
variables Xj and Xj ′ are highly positively correlated, this will likely translate
to high sample correlations of Xj and Xj ′ , which in turn yield a strongly neg-
ative correlation between β̂ols

j and β̂ols
j ′ and, as a consequence, high variances

var[β̂ols
j ] and var[β̂ols

j ′ ]. In the prevalence of high correlations, performance of the
lasso may degrade as well. For example, Donoho, Elad and Temlyakov (2006)
showed that the lower the mutual coherence maxj,j ′

j �=j ′
|ρj,j ′ |, the more stable is

lasso estimation. The modified matrix C̃ can be written as C̃ = V1/2
� R�V1/2

� ,
V� = diag(1 +λ2

∑p
k=1 |l1k|, . . . ,1 +λ2

∑p
k=1 |lpk|), and the modified correlation

matrix R� has entries

ρ�,jj ′ = ρjj ′ + λ2ljj ′√
1 + ∑p

k=1 |ljk|
√

1 + ∑p
k=1 |lj ′k|

, j, j ′ = 1, . . . , p.

In light of Section 2, the entries of R� combine sample- and prior correlations.
Decorrelation occurs if ρjj ′ ≈ −λ2ljj ′ .

4. Consistency. The asymptotic analysis presented in this section closely fol-
lows the ideas of Knight and Fu (2000) and Zou (2006). Both have studied as-
ymptotics for the lasso in linear regression for a fixed number of predictors under
conditions ensuring

√
n-consistency and asymptotic normality of the ordinary least

squares estimator. Knight and Fu (2000) proved that the lasso estimator β̂ lasso is√
n-consistent for the true coefficient vector β∗ provided λn

1 = O(
√

n). Zou (2006)
has shown that while this choice of λn

1 provides the optimal rate for estimation, it
leads to inconsistent feature selection. Define the active set as A = {j :β∗

j �= 0} and
Ac = {1, . . . , p} \ A and let δ be an estimation procedure producing an estimate
β̂δ . Then δ is said to be selection consistent if

lim
n→∞ P(β̂δ

j,n �= 0) = 1 for j ∈ A,

lim
n→∞ P(β̂δ

j,n = 0) = 1 for j ∈ Ac,

where here and in the following, the sub- or superscript n indicates that the corre-
sponding quantity depends on the sample size n. Moreover, Zou (2006) and Zhao
and Yu (2006) have shown that if λn

1 = o(n) and λn
1/

√
n → ∞, the lasso has to

satisfy a nontrivial condition, the so-called “irrepresentable condition,” to be se-
lection consistent. Zou (2006) proposed the adaptive lasso, a two-step estimation
procedure, to fix this deficiency. In the following, these results will be adapted to
the presence of a second quadratic penalty term.
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THEOREM 1. Define

β̂n = argmin
β

‖yn − Xnβ‖2 + λn
1‖β‖1 + λn

2β
��β.

Assume that λn
1/

√
n → λ0

1 ≥ 0 and λn
2/

√
n → λ0

2 ≥ 0. Consider the random func-
tion

V (u) = −2u�w + u�Cu

+ λ0
1

p∑
j=1

uj sign(β∗
j )I (β∗

j �= 0) + |uj |I (β∗
j = 0)

+ 2λ0
2u��β∗, w ∼ N(0, σ 2C).

Then, under conditions (C.1)–(C.3) in the online supplement,
√

n(β̂n − β∗) D→
argminV (u).

Theorem 1 is analogous to Theorem 2 in Knight and Fu (2000) and estab-
lishes

√
n-consistency of β̂n, provided λn

1 and λn
2 are O(

√
n). Theorem 1 admits

a straightforward extension to the class of generalized linear models [cf. equa-
tion (11)]. Let the true model be defined by

E[Y |X = x] = b′(f (x;β∗)), f (x) = x�β∗.

For the sake of a clearer presentation, we assume that β∗
0 = 0. We study the esti-

mator

β̂n = argmin
β

2φ−1
n∑

i=1

b(f (xi;β)) − yif (xi;β) + λn
1‖β‖1 + λn

2β
��β.(14)

THEOREM 2. For the estimator (14), let λn
1/

√
n → λ0

1 ≥ 0 and λn
2/

√
n →

λ0
2 ≥ 0. Consider the random function

W(u) = −2u�w + u�I u

+ λ0
1

p∑
j=1

uj sign(β∗
j )I (β∗

j �= 0) + |uj |I (β∗
j = 0)

+ 2λ0
2u��β∗, w ∼ N(0, I).

Then under conditions (G.1) and (G.2) in the online supplement,
√

n(β̂n −β∗) D→
argminW(u).

Now let us turn to the question of selection consistency. In the setup of The-
orem 1, if λn

1 and λn
2 both are O(

√
n), then, using arguments similar to those in
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Knight and Fu (2000) and Zou (2006), β̂n is shown not to be selection consistent.
Selection consistency can be achieved if one lets λn

1, λ
n
2 grow more strongly and if

the quantities C, �, and β∗ jointly fulfill a nontrivial condition, which can be seen
as analog to the irrepresentable condition of the lasso [Zou (2006), Zhao and Yu
(2006)].

THEOREM 3. In the situation of Theorem 1, let λn
1/n → 0, λn

1/
√

n → ∞,
λn

2/λ
n
1 → R,0 < R < ∞ and consider the partitioning scheme

β∗ =
(

β∗
A

β∗
Ac

)
, C =

(
CA CAAc

CAcA CAc

)
and

(15)

� =
(

�A �AAc

�AcA �Ac

)
,

so that here and in the following, the subscripts A and Ac refer to active and inac-
tive set, respectively. Then, if selection consistency holds, the following condition
must be fulfilled: there exists a sign vector sA such that

|−CAcAC−1
A (sA + 2R�Aβ∗

A) + 2R�AcAβ∗
A| ≤ 1,

where the inequality is interpreted componentwise.

While this condition is interesting from a theoretical point of view, it is impos-
sible to check in practice, since β∗

A is unknown.
Selection consistency can be achieved by a two-step estimation strategy in-

troduced in Zou (2006) under the name adaptive lasso, which replaces �1-
regularization uniform in βj , j = 1, . . . , p, by a weighted variant J (β) =∑p

j=1 ωj |βj |, where the weights {ωj }pj=1 are determined adaptively as a function

of an “initial estimator” β̂ init:

ωj = |β̂ init
j |−γ , γ > 0, j = 1, . . . , p.(16)

In terms of selection consistency, this strategy turns out to be favorable for our
proposal, too.

THEOREM 4. In the situation of Theorem 1, define

β̂adaptive
n = argmin

β
‖yn − Xnβ‖2 + λn

1

p∑
j=1

ωj |βj | + λn
2β

��β,

where the weights are as in equation (16), and suppose that the initial estimator
satisfies

rn(β̂n − β∗) = OP(1), rn → ∞ as n → ∞.

Furthermore, suppose that

rγ
n λn

1n
−1/2 → ∞, λn

1n
−1/2 → 0, λn

2n
−1/2 → λ0

2 ≥ 0
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as n → ∞. Then:

(1)
√

n(β̂
adaptive
A,n − β∗

A)
D→ N(−λ0

2C−1
A �Aβ∗

A,C−1
A ),

(2) limn→∞ P(β̂
adaptive
Ac,n = 0) = 1.

Theorem 4 implies that the adaptive structured elastic net β̂adaptive is an or-
acle estimation procedure [Fan and Li (2001)] if the bias term in (1) vanishes,
which is the case if β∗

A resides in the null space of �A. Interestingly, if � equals
the combinatorial graph Laplacian (cf. Section 2.2), this happens if and only if
β∗

A has constant entries and A specifies a connected component in the underlying
graph.

Concerning the choice of the initial estimator, the ridge estimator has worked
well for us in practice, provided the ridge parameter is chosen appropriately. While
γ may be treated as a tuning parameter, we have set γ equal to 1 in all our data
analyses. Last, we remark that while Theorem 4 applies to linear regression, it can
be extended to hold for generalized linear models, similarly as we have extended
Theorem 1 to Theorem 2.

5. Computation. This section discusses aspects concerning computation and
model selection for the structured elastic net estimator when the loss function is
the negative log-likelihood of a generalized linear model (10).

5.1. Data augmentation. From the discussions in Section 3.3, it follows that
the structured elastic net for squared loss, assuming centered data, can be recast as
the lasso on augmented data

X̃ =
( X

λ
1/2
2 Q

)
(n+p)×p

, ỹ =
(

y
0

)
(n+p)×1

, � = Q�Q,

and, hence, algorithms available for computing the lasso, notably LARS [Efron et
al. (2004)], may be applied, which computes for fixed λ2 and varying λ1 the piece-
wise linear solution path β̂(λ1;λ2). This approach is parallel to that proposed by
Zou and Hastie (2005) for the elastic net. In addition, the augmented data repre-
sentation is helpful when addressing uniqueness of the structured elastic net in the
p � n setting: if rank(X) + rank(λ

1/2
2 Q) ≥ p and the rows of X combined with

the rows of λ
1/2
2 Q form a linearly independent set, C̃ as defined in equation (13) is

of full rank and, hence, the structured elastic net is unique. Moreover, this shows
that even for p � n, in principle, all features can be selected.

In order to fit arbitrary regularized generalized linear models, the augmented
data representation has to be modified. Without regularization, estimators in gen-
eralized linear models are obtained by iteratively computing weighted least squares



FEATURE SELECTION GUIDED BY STRUCTURAL INFORMATION 1069

estimators:(
β̂

(k+1)
0

β̂(k+1)

)
= ([1 X ]�W(k)[1 X ])−1[1 X ]�W(k)z(k),

z(k) = f(k) + [
W(k)]−1(

y − μ(k)),
f(k) = (

f
(k)
1 , . . . , f (k)

n

)�
, f

(k)
i = β̂

(k)
0 + x�

i β̂(k), i = 1, . . . , n,(17)

μ(k) = (
μ

(k)
1 , . . . ,μ(k)

n

)�
, μ

(k)
i = b′(f (k)

i

)
, i = 1, . . . , n,

W(k) = diag
(
w

(k)
1 , . . . ,w(k)

n

)
, w

(k)
i = φ−1b′′(f (k)

i

)
, i = 1, . . . , n.

Note that the design matrix additionally includes a constant term 1. Turning back to
the structured elastic net, an adaptation of the augmented data approach iteratively
determines(

β̂
(k+1)
0

β̂(k+1)

)
= argmin

(β0,β)

n+p∑
i=1

w̃
(k)
i

(̃
z
(k)
i − x̃�

i

(
β0

β

))2

+ λ1‖β‖1,

with

w̃
(k)
i = w

(k)
i , i = 1, . . . , n, as in equation (17),

w̃
(k)
i = 1, i = (n + 1), . . . , (n + p),

z̃
(k)
i = z

(k)
i , i = 1, . . . , n, as in equation (17),

z̃
(k)
i = 0, i = (n + 1), . . . , (n + p),

x̃i = (1 x�
i )� , i = 1, . . . , n,

x̃i = (0
√

λ2q�
i )� , i = (n + 1), . . . , (n + p),

with q�
i denoting the ith row of Q.

Alternatives to augmented data representation include cyclical coordinate de-
scent in the spirit of Friedman et al. (2007) and a direct modification of Goeman’s
algorithm [Goeman (2007)]. Descriptions can be a found in the full technical re-
port underlying this article [Slawski, zu Castell and Tutz (2009), available on-
line].

6. Data analysis.

6.1. One-dimensional signal regression. In one-dimensional signal regres-
sion, as described, for example, in Frank and Friedman (1993), one aims at
the prediction of a response given a sampled signal x� = (x(t))Tt=1, where the
indices t = 1, . . . , T , refer to different ordered sampling points. For a sample
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S = {({x1(t)}Tt=1, y1), . . . , ({xn(t)}Tt=1, yn)} of pairs consisting of sampled signals
and responses, we consider prediction models of the form

ŷi = ζ

(
β̂0 +

T∑
t=1

xi(t)β̂(t)

)
, i = 1, . . . , n.

6.1.1. Simulation study. Similarly to Tutz and Gertheiss (2010), we simulate
signals x(t), t = 1, . . . , T , T = 100, according to

{x(t)} ∼
5∑

k=1

bk sin
(
tπ(5 − bk)/50 − mk

) + τ(t),

{bk} ∼ U(0,5), {mk} ∼ U(0,2π), {τ(t)} ∼ N(0,0.25),

with U(a, b) denoting the uniform distribution on the interval (a, b). For the coeffi-
cient function β∗(t), t = 1, . . . , T , we examine two cases. In the first case, referred
to as the “bump setting,” we use

β∗(t) =
⎧⎨⎩−{(30 − t)2 + 100}/200, t = 21, . . . ,39,

{(70 − t)2 − 100}/200, t = 61, . . . ,80,
0, otherwise.

In the second case, referred to as the “block setting,”

β∗ = (0, . . . ,0︸ ︷︷ ︸
20 times

,0.5, . . . ,0.5︸ ︷︷ ︸
10 times

,1, . . . ,1︸ ︷︷ ︸
10 times

,0.5, . . . ,0.5︸ ︷︷ ︸
10 times

,0.25, . . . ,0.25︸ ︷︷ ︸
10 times

,0, . . . ,0︸ ︷︷ ︸
40 times

)�.

The form of the signals and coefficient functions are displayed in Figure 6.
For both settings, data are simulated according to

y =
T∑

t=1

x(t)β∗(t) + ε, ε ∼ N(0,5).

FIG. 6. The setting of the simulation study. A collection of five signals (left panel), the coefficient
functions for “bump”—(middle panel) and “block” setting (right panel), respectively.
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For each out of 50 iterations, we simulate i = 1, . . . ,500 i.i.d. realizations and di-
vide them into three parts: a training set of size 200, a validation set of size 100,
and a test set of size 200. Hyperparameters of the methods listed below are opti-
mized by means of the validation set. As performance measures, we compute the
absolute distance L1(β̂,β) = ‖β̂ − β‖1 of true- and estimated coefficients and the
mean squared prediction error on the test set. For methods with built-in feature
selection, we additionally evaluate the goodness of selection in terms of sensitivity
and specificity. For each of the two setups, the simulation is repeated 50 times.
The following methods are compared: ridge regression, generalized ridge regres-
sion with a first difference penalty, P-splines according to Eilers and Marx (1999),
lasso, fused lasso, elastic net, structured elastic net with a first difference penalty,
adaptive structured elastic net, where the weights {ω(t)} are chosen according to
the ridge estimator of the same iteration as ω(t) = 1/|β̂ridge(t)|.

Performance measures are averaged over 50 iterations and displayed in Table 1
(bump setting) and Table 2 (block setting), respectively.

For the bump setting, Figure 7 shows that the double-regularized procedures
employing decorrelation clearly outperform a visibly unstable lasso. Due to a fa-
vorable signal-to-noise ratio, even simplistic approaches such as ridge- or gener-
alized ridge regression show competitive performance with respect to prediction

TABLE 1
Results for the bump setting, averaged over 50 simulations

Method L1(̂β,β∗) PE Sensitivity Specificity

Ridge 0.249 5.35
(5.9 × 10−4) (0.078)

G.ridge 0.238 5.32
(9.9 × 10−4) (0.076)

P-spline 0.241 5.30
(16.0 × 10−4) (0.077)

Lasso 0.271 5.72 0.62 0.65
(23.9 × 10−4) (0.079) (8.9 × 10−3) (0.016)

Fused lasso 0.235 5.30 0.96 0.51
(7.2 × 10−4) (0.075) (5.5 × 10−3) (0.010)

Enet 0.246 5.46 0.93 0.69
(29.9 × 10−4) (0.081) (0.013) (0.032)

S.enet 0.232 5.30 0.98 0.59
(7.6 × 10−4) (0.078) (7.8 × 10−3) (0.029)

Ada.s.enet 0.232 5.25 0.91 0.82
(15.0 × 10−4) (0.075) (21.0 × 10−3) (0.020)

For annotation, see Table 2.
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TABLE 2
Results for the block setting, averaged over 50 simulations. We make use of the following

abbreviations: “PE” for “mean squared prediction error,” “g.ridge” for “generalized ridge,”
“enet” for “elastic net,” “s.enet” for “structured elastic net,” and “ada.s.enet” for “adaptive

structured elastic net.” Standard errors are given in parentheses. For each column, the best
performance is emphasized in boldface

Method L1(̂β,β∗) PE Sensitivity Specificity

Ridge 0.082 5.41
(3.4 × 10−3) (0.080)

G.ridge 0.064 5.35
(1.9 × 10−3) (0.078)

P-spline 0.065 5.34
(1.9 × 10−3) (0.077)

Lasso 0.207 6.12 0.73 0.62
(3.6 × 10−3) (0.089) (7.5 × 10−3) (0.014)

Fused lasso 0.058 5.34 0.99 0.51
(1.9 × 10−3) (0.076) (7 × 10−4) (0.009)

Enet 0.094 5.47 0.95 0.73
(5.0 × 10−3) (0.072) (6.4 × 10−3) (0.083)

S.enet 0.070 5.38 0.99 0.60
(5.0 × 10−3) (0.080) (3.3 × 10−3) (0.027)

Ada.s.enet 0.061 5.32 0.97 0.83
(3.2 × 10−3) (0.69) (8.0 × 10−3) (0.018)

of future observations. In pure numbers, the estimation of β∗(t) is satisfactory
as well. However, the lack of sparsity results into “noise fitting” for those parts
where β∗(t) is zero. For the two settings examined here, the P-spline approach
does not improve over generalized ridge regression, because the two coefficient
functions are not overly smooth. The elastic net considerably improves over the
lasso, but it lacks smoothness. Its numerical inferiority to ridge regression results
from double shrinkage as discussed in Zou and Hastie (2005). The performance of
the structured elastic net is not fully satisfactory. In particular, at the changepoints
from zero- to nonzero parts, there is a tendency to widen unnecessarily the support
of the nonzero sections. This shortcoming is removed by the adaptive structured
elastic net, thereby confirming the theoretical result concerning selection consis-
tency. This quality seems to be supported by the eminent performance with respect
to sensitivity and specificity. The success of the adaptive strategy is also founded
on the good performance of the ridge estimator providing the component-specific
weights ω(t). The block setting is actually tailored to the fused lasso, whose output
are piecewise constant coefficient functions. Nevertheless, it is not optimal, as the
shrinkage of the �1-penalty acts on all coefficients, including those different from
zero. As a result, the fused lasso is outperformed by the adaptive structured elastic
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FIG. 7. Estimated coefficient functions for the bump setting. The pointwise median curve over 50
iterations is represented by a solid line, pointwise 0.05- and 0.95-quantiles are drawn in dashed
lines.

net with respect to prediction, though the structure part is seen to be not fully ap-
propriate in the block setting (cf. Figure 8). As opposed to the bump setting, fitting
the block function seems to be much more difficult to accomplish in general.

6.1.2. Accelerometer data. The “Sylvia Lawry Centre for Multiple Sclerosis
Research e.V.,” Munich, kindly provided us with two accelerometer records of
two healthy female persons, aged between 20 and 30. They were equipped with
a belt containing an accelerometer integrated into the belt buckle before walk-
ing several minutes on a flat surface at a moderate speed. The output are triaxial
(vertical, horizontal, lateral) acceleration measurements at roughly 25,000 sam-
pling points per person. Following Daumer et al. (2007), human gait, if defined
as the temporal evolution of three-dimensional accelerations of the center of mass
of the body, is supposed to be a quasi-periodic process. Every period defines one
gait cycle/double step, which starts with the heel strike and ends with the heel
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FIG. 8. Estimated coefficient functions for the block setting.

strike of the same foot. A single step ends with the heel strike of the other foot.
Therefore, a double step can be seen as a natural unit. As a consequence, de-
composition of the raw signal into pieces, each representing one double step, is
an integral part of data preprocessing, not described in further detail here. Over-
all, we extract i = 1, . . . , n = 406 double steps, 242 from person B (y = 0) and
164 from person A (y = 1), ending up with a sample {(xi , yi)}ni=1, where each
xi = (xi(t)), t = 1, . . . , T = 102, stores the observed vertical acceleration within
double step i, i = 1, . . . , n. For simplicity, we neglect the dependence of consec-
utive double steps within the same person and treat them as independent realiza-
tions. Horizontal- and lateral acceleration are not considered, since they do not
carry information relevant to our prediction problem. We aim at the prediction of
the person (A or B) given a double step pattern, and additionally at the detection of
parts of the signal apt for discriminating between the two persons. We randomly
divide the complete sample into a learning set of size 300 and a test set of size
106, and subsequently carry out logistic regression on the training set, using the
structured elastic net with a squared first difference penalty. Hyperparameters are
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FIG. 9. Coefficient functions for structured elastic net-regularized logistic regression (left panel)
and the fused lasso support vector machine (right panel). Within each panel, the upper panel displays
the overlayed double step patterns of the complete sample (406 double steps). The colors of the curves
refer to the two persons.

determined by ten-fold cross-validation, and the resulting logistic regression model
is used to obtain predictions for the test set. The fused lasso with the hinge loss of
support vector machines is used as competitor. A collection of results is assembled
in Figure 9 and Table 3, from which one concludes that classification is an easy
task, since (nearly) perfect misclassification rates on the test set are achieved. Con-
cerning feature selection, the results of the structured elastic net are comparable to
those of the fused lasso.

6.2. Surface fitting. Figure 10 depicts the surface to be fitted on a 20×20 grid.
The surface can be represented by a discrete function β∗(t, u), t, u = 1, . . . ,20. It
consists of three nonoverlapping truncated Gaussians of different shape and one

TABLE 3
Results of step classification for the fused lasso support vector machine and structured elastic

net-regularized logistic regression. The bound imposed on the 1-norm of β corresponding to λ1 is
denoted by t1, while t2 corresponding to λ2 denotes the bound imposed on the absolute differences∑T

t=2 |β(t) − β(t − 1)| for the fused lasso and the squared differences
∑T

t=2(β(t) − β(t − 1))2 for
the structured elastic net, respectively. Concerning the degrees of freedom of the two procedures, we

take the number of nonzero blocks for the fused lasso. For the structured elastic net, we make
use of a heuristic due to Tibshirani (1996) that rewrites the lasso fit as the weighted ridge fit;

see Slawski, zu Castell and Tutz (2009) for details

t1 t2 Test error Degrees of freedom # nonzero coefficients

Fused lasso
2.5 0.5 0 9 46

Structured elastic net
23 2 1 7.85 61
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FIG. 10. Contours of the surface according to equation (18).

plateau function. We have

β∗(t, u) = B(t, u) + G1(t, u) + G2(t, u) + G3(t, u),

B(t, u) = 1

2
I (t ∈ {10,11,12}, u ∈ {3,4}),(18)

G1(t, u) = max
{

0, exp
(
−(t − 3u − 8)

(
3 0
0 0.25

)(
t − 3
u − 8

))
− 0.2

}
,

G2(t, u) = max
{

0, exp
(
−(t − 7u − 17)

×
(

0.75 0
0 0.75

)(
t − 7

u − 17

))
− 0.2

}
,

G3(t, u) = max
{

0, exp
(
−(t − 15u − 14)

×
(

0.5 −0.25
−0.25 0.5

)(
t − 15
u − 14

))
− 0.2

}
.

Similarly to the simulation study in Section 6.1.1, we simulate a noisy version
of the surface according to

y(t, u) = β∗(t, u) + ε(t, u), {ε(t, u)} i.i.d.∼ N(0,0.252), t, u = 1, . . . ,20.

For each of the 50 runs, we simulate two instances of y(t, u). The first one is used
for training and the second one for hyperparameter tuning. The mean squared error
for estimating β∗ is computed and averaged over 50 runs. Results are summarized
in Figure 11 and Table 4. We compare ridge, generalized ridge with a difference
penalty according to the grid structure, lasso, fused lasso with a total variation
penalty along the grid, structured- and adaptive structured elastic net with the same
difference penalty as for generalized ridge. The elastic net coincides—up to a con-
stant scaling factor—with the lasso/soft thresholding in the orthogonal design case
and is hence not considered.
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FIG. 11. Contours of the estimated surfaces for three selected methods, averaged pointwise over
50 runs.

7. Discussion. The structured elastic net is proposed as a procedure for co-
efficient selection and smoothing. We have established a general notion of struc-
tured features, for which the structured elastic net is able to take advantage of
prior knowledge as opposed to the lasso and the elastic net, which are both purely
data-driven. The structured elastic net may also be regarded as a computation-
ally more convenient alternative to the fused lasso. Conceptually, generalizing the
fused lasso by computing the total variation of the coefficients along a graph is
straightforward. However, due to the nondifferentiability of the structure part of
the fused lasso, computation may be intractable even for moderately sized graphs.

TABLE 4
Results of the simulation, averaged over 50 iterations (standard errors in

parentheses). The columns labeled B , G1, G2, G3, and “zero” contain the mean
prediction error for the corresponding region of the surface. The abbreviations

equal those in Table 2. The prediction error has been rescaled by 100

Method PE B G1 G2 G3 Zero

Ridge 1.20 0.31 0.28 0.20 0.34 0.07
(0.01)

G.ridge 1.17 0.18 0.20 0.14 0.21 0.44
(0.04)

Lasso 1.31 0.37 0.32 0.22 0.39 0.01
(0.01)

Fused lasso 0.67 0.14 0.12 0.08 0.15 0.18
(0.02)

S.enet 0.88 0.22 0.16 0.12 0.23 0.18
(0.02)

Ada.s.enet 0.56 0.15 0.09 0.08 0.18 0.06
(0.02 )
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Turning to the drawbacks of the structured elastic net, it is obvious that model
selection and computation of standard errors and, in turn, the quantification of
uncertainty, are notoriously difficult. A Bayesian approach promises to be superior
in this regard. The lasso can be treated within a Bayesian inference framework
[Park and Casella (2008)], while the quadratic part of the structured elastic net
regularizer is already motivated from a Bayesian perspective in this paper.

With regard to possible directions of future research, we will consider studying
the structured elastic net in combination with other loss functions, for example,
the hinge loss of support vector machines or the check loss for quantile regression.
The asymptotic analysis in this paper is basic in the sense that it is bound to strong
assumptions, and the role of the structure part of the regularizer and its interplay
with the true coefficient vector is not well understood yet, leaving some room for
more profound investigations.
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