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PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS
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Prediction of the remaining life of high-voltage power transformers is
an important issue for energy companies because of the need for planning
maintenance and capital expenditures. Lifetime data for such transformers
are complicated because transformer lifetimes can extend over many decades
and transformer designs and manufacturing practices have evolved. We were
asked to develop statistically-based predictions for the lifetimes of an energy
company’s fleet of high-voltage transmission and distribution transformers.
The company’s data records begin in 1980, providing information on instal-
lation and failure dates of transformers. Although the dataset contains many
units that were installed before 1980, there is no information about units that
were installed and failed before 1980. Thus, the data are left truncated and
right censored. We use a parametric lifetime model to describe the lifetime
distribution of individual transformers. We develop a statistical procedure,
based on age-adjusted life distributions, for computing a prediction interval
for remaining life for individual transformers now in service. We then extend
these ideas to provide predictions and prediction intervals for the cumulative
number of failures, over a range of time, for the overall fleet of transformers.

1. Introduction.

1.1. Background. Electrical transmission is an important part of the US en-
ergy industry. There are approximately 150,000 high-voltage power transmission
transformers in service in the US. Unexpected failures of transformers can cause
large economic losses. Thus, prediction of remaining life of transformers is an im-
portant issue for the owners of these assets. The prediction of the remaining life
can be based on historical lifetime information about the transformer population
(or fleet). However, because the lifetimes of some transformers extend over several
decades, transformer lifetime data are complicated.

This paper describes the analysis of transformer lifetime data from an energy
company. Based on the currently available data, the company wants to know the
remaining life of the healthy individual transformers in its fleet and the rate at
which these transformers will fail over time. To protect sensitive and proprietary
information, we will not use the name of the company. We also code the name of
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the transformer manufacturers and modify the serial numbers of the transformers
in the data. We use a parametric lifetime model to describe the lifetime distribution
of individual transformers. We present a statistical procedure for computing a pre-
diction interval for remaining life for individuals and for the cumulative number
failing in the future.

The energy company began careful archival record keeping in 1980. The
dataset provided to us contains complete information on all units that were in-
stalled after 1980 (i.e., the installation dates of all units and date of failure for
those that failed). We also have information on units that were installed before
January 1, 1980 and failed after January 1, 1980. We do not, however, have any
information on units installed and failed before 1980. Thus, transformers that were
installed before 1980 must be viewed as transformers sampled from truncated dis-
tribution(s). Units that are still in service have lifetimes that are right censored.
Hence, the data are left truncated and right censored. For those units that are left
truncated or right censored (or both), the truncation times and censoring times
differ from unit-to-unit because of the staggered entry of the units into service.

There are standard statistical methods for estimating distribution parameters
with truncated data described, for example, in Meeker and Escobar (2003) and
Meeker and Escobar [(1998), Chapter 11], but such methods appear not to be
available in commercial software. Meeker and Escobar (2008), a free package for
reliability data analysis, does allow for truncated data. Most of the computations
needed to complete this paper, however, required extending this software.

In this paper we outline a general methodology for reliability prediction in com-
plicated situations that involve the need for dealing with stratification, truncation,
and censoring. In addition to describing our approach for dealing with these com-
plications, we show how to produce calibrated prediction intervals by using the
random weighted bootstrap and an approximation based on a refined central limit
theorem.

1.2. A general approach to statistical prediction of transformer life. Our ap-
proach to the prediction problem will be divided into the following steps.

1. Stratification: A simple lifetime model fit to a pooled mixture of disparate
populations can lead to incorrect conclusions. For example, engineering knowl-
edge suggests that there is an important difference between old transformers and
new transformers because old transformers were over-engineered. Thus, we first
stratify all transformers into relatively homogeneous groups that have similar life-
time distributions. This grouping will be based on manufacturer and date of in-
stallation. The groupings will be determined from a combination of knowledge of
transformer failure mechanisms, manufacturing history, and data analysis. Each
group will have its own set of parameters. The parameters will be estimated from
the available lifetime data by using the maximum likelihood (ML) method. We
may, however, be able to reduce the number of parameters needed to be estimated
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by, for example, assuming a common shape parameter across some of the groups
(from physics of failure, we know that similar failure modes can often be expected
to be described by distributions with similar shape parameters).

2. Lifetime distribution: Estimate the lifetime probability distribution for each
group of transformers from the available lifetime data.

3. Remaining life distribution: Identify all transformers that are at risk to fail
(the “risk set”). Each of these transformers belongs to one of the above-mentioned
groups of transformers. For each transformer in the risk set, compute an estimate of
the distribution of remaining life (this is the conditional distribution of remaining
life, given the age of the individual transformer).

4. Expected number of transformers failing: Having the distribution of re-
maining life on each transformer that is at risk allows the computation of the esti-
mated expected number of transformers failing in each future interval of time (e.g.,
future months). We use this estimated expected number failing as a prediction of
population behavior.

5. Prediction intervals: It is also important to compute prediction intervals
to account for the statistical uncertainty in the predictions (statistical uncertainty
accounts for the uncertainty due to the limited sample size and the variability in
future failures, but assumes that the statistical model describing transformer life is
correct).

6. Sensitivity analysis: To compute our predictions, we need to make assump-
tions about the stratification and lifetime distributions. There is not enough infor-
mation in the data or from the engineers at the company to be certain that these
assumptions are correct. Thus, it is important to perturb the assumptions to assess
their effect on answers.

1.3. Overview. The rest of the paper is organized as follows. Section 2 de-
scribes our exploratory analysis of the transformer lifetime data and several poten-
tially important explanatory variables. Section 3 describes the model and methods
for estimating the transformer lifetime distributions. Section 4 gives details on
stratifying the data into relatively homogeneous groups and our regression analy-
ses. Section 5 shows how estimates of the transformer lifetime distributions lead
to age-adjusted distributions of remaining life for individual transformers and how
these distributions can be used as a basis for computing a prediction interval for
remaining life for individual transformers. Section 6 provides predictions for the
cumulative number of failures for the overall population of transformers now in
service, as a function of time. Section 7 presents sensitivity analysis on the pre-
diction results. Section 8 concludes with some discussion and describes areas for
future research.

2. The transformer lifetime data. The dataset used in our study contains 710
observations with 62 failures. Table 1 gives a summary of the number of failed,
censored, and truncated units for the different manufacturers. Figure 1 is an event
plot of a systematic subset of the data.
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TABLE 1
Summary of the number of failed, censored, and truncated units for

the different manufacturers

Manufacturer Failed Censored Truncated Total

MA 9 37 0 46
MB 6 44 49 50
MC 23 127 122 150
MD 6 22 27 28
ME 9 150 137 159
Other 9 268 106 277

2.1. Failure mechanism. Transformers, for the most part, fail when voltage
stress exceeds the dielectric strength of the insulation. The insulation in a trans-
former is made of a special kind of paper. Over time, the paper will chemically
degrade, leading to a loss in dielectric strength, and eventual failure. The rate of
degradation depends primarily on operating temperature. Thus, all other things be-
ing equal, transformers that tend to run at higher load, with correspondingly higher

FIG. 1. Service-time event plot of a systematic subset of the transformer lifetime data. The numbers
in the left panel of the plot are counts for each line.
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temperatures, would be expected to fail sooner than those running at lower loads.
Events such as short circuits on the transmission grid can cause momentary ther-
mal spikes that can be especially damaging to the insulation.

2.2. Early failures. Seven units failed within the first 5 years of installation.
The lifetimes for these units are short compared with the vast majority of units that
failed or will fail with age greater than 10 years. These early failures are believed
to have been due to a defect related failure mode that is different from all of the
other failures. The inclusion of these early failures in the analysis leads to an in-
dication of an approximately constant hazard function for transformer life, which
is inconsistent with the known predominant aging failure mode. Thus, we consid-
ered these early failures to be right censored at the time of failure. This is justified
because the primary goal of our analysis is to model the failure mode for the future
failures for the remaining units. It is reasonable to assume that there are no more
defective units in the population for which predictions are to be generated.

2.3. Explanatory variables. Engineering knowledge suggests that the insula-
tion type and cooling classes may have an effect on the lifetime of transformers.
Thus, the effects that these two variables have on lifetime are studied in this paper.

Insulation. The transformers are rated at either a 55 or 65 degree rise. This
variable defines the average temperature rise of the winding, above ambient, at
which the transformer can operate in continuous service. For example, a 55 degree-
rise rated transformer operated at a winding temperature of 95 degrees should, if
the engineering model describing this phenomena is adequate, have the same life
as a 65 degree-rise rated transformer operated at a winding temperature of 105
degrees. The two categories of the insulation class are denoted by “d55” and “d65,”
respectively.

Cooling. A transformer’s cooling system consists of internal and external sub-
systems. The internal subsystem uses either natural or forced flow of oil. Forced
flow is more efficient. The external cooling system uses either air or water cooling.
Water cooling is more efficient. The external cooling media circulation is again
either natural or forced. Forced circulation is usually used on larger units and is
more efficient but is activated only when the temperature is above a certain thresh-
old. The cooling methods for the transformers in the data are categorized into four
groups: natural internal oil and natural external air/water (NINE), natural internal
oil and forced external air/water (NIFE), forced internal oil and forced external
air/water (FIFE), and unknown.
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3. Statistical lifetime model for left truncated and right censored data.

3.1. The lifetime model. We denote the lifetime of a transformer by T and
model this time with a log-location-scale distribution. The most commonly used
distributions for lifetime, the Weibull and lognormal, are members of this family.
The cumulative distribution function (c.d.f.) of a log-location-scale distribution
can be expressed as

F(t;μ,σ) = �

[
log(t) − μ

σ

]
,

where � is the standard c.d.f. for the location-scale family of distributions (lo-
cation 0 and scale 1), μ is the location parameter, and σ is the scale parameter.
The corresponding probability density function (p.d.f.) is the first derivative of the
c.d.f. with respect to time and is given by

f (t;μ,σ) = 1

σ t
φ

[
log(t) − μ

σ

]
,

where φ is the standard p.d.f. for the location-scale family of distributions. The
hazard function is h(t;μ,σ) = f (t;μ,σ)/[1 − F(t;μ,σ)]. For the lognormal
distribution, replace � and φ above with �nor and φnor, the standard normal c.d.f.
and p.d.f., respectively. The c.d.f. and p.d.f. of the Weibull random variable T are

F(t;μ,σ) = �sev

[
log(t) − μ

σ

]
and f (t;μ,σ) = 1

σ t
φsev

[
log(t) − μ

σ

]
,

where �sev(z) = 1− exp[− exp(z)] and φsev(z) = exp[z− exp(z)] are the standard
(i.e., μ = 0, σ = 1) smallest extreme value c.d.f. and p.d.f., respectively. The c.d.f.
and p.d.f. of the Weibull random variable T can also be expressed as

F(t;η,β) = 1−exp
[
−

(
t

η

)β]
and f (t;η,β) =

(
β

η

)(
t

η

)β−1

exp
[
−

(
t

η

)β]
,

where η = exp(μ) is the scale parameter and β = 1/σ is the shape parameter.
If the Weibull shape parameter β > 1, the Weibull hazard function is increasing
(corresponding to wearout); if β = 1, the hazard function is a constant; and if
β < 1, the hazard function is decreasing. The location-scale parametrization is,
however, more convenient for regression analysis.

3.2. Censoring and truncation. Right-censored lifetime data result when un-
failed units are still in service (unfailed) when data are analyzed. A transformer
still in service in March 2008 (the “data-freeze” point) is considered as a censored
unit in this study.

Truncation, which is similar to but different from censoring, arises when failure
times are observed only when they take on values in a particular range. When
the existence of the unseen “observation” is not known for observations that fall
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outside the particular range, the data that are observed are said to be truncated.
Because we have no information about transformers that were installed and failed
before 1980, the units that were installed before 1980 and failed after 1980 should
be modeled as having been sampled from a left-truncated distribution(s). Ignoring
truncation causes bias in estimation.

3.3. Maximum likelihood estimation. Let ti denote the lifetime or survival
time of transformer i, giving the number of years of service between the time
the transformer was installed until it failed (for a failed transformer) or until the
data-freeze point (for a surviving transformer). Here, i = 1, . . . , n, where n is the
number of transformers in the dataset. Let τL

i be the left truncation time, giving
the time at which the life distribution of transformer i was truncated on the left.
More precisely, τL

i is the number of years between the transformer’s manufactur-
ing date and 1980 for transformers installed before 1980. Let νi be the truncation
indicator. In particular, νi = 0 if transformer i is truncated (installed before 1980)
and νi = 1 if transformer i is not truncated (installed after 1980). Let ci be the
censoring time (time that a transformer has survived) and let δi be the censoring
indicator. In particular, δi = 1 if transformer i failed and δi = 0 if it was censored
(not yet failed).

The likelihood function for the transformer lifetime data is

L(θ |DATA) =
n∏

i=1

f (ti; θ)δiνi ×
[

f (ti; θ)

1 − F(τL
i ; θ)

]δi (1−νi)

(1)

× [1 − F(ci; θ)](1−δi )νi ×
[

1 − F(ci; θ)

1 − F(τL
i ; θ)

](1−δi )(1−νi)

.

Here θ is a vector that gives the location parameter (μi) and scale parameters (σi)
for each transformer. The exact structure of θ depends on the context of the model.
For example, in Section 4.1, we stratify the data into J groups with nj transformers
in group j and fit a single distribution to each group. For this model we assume that
observations from group j have the same location (μj ) and scale parameters (σj ).
Thus,

θ = (μ1, . . . ,μ1︸ ︷︷ ︸
Group 1

, . . . ,μJ , . . . ,μJ︸ ︷︷ ︸
GroupJ

, σ1, . . . , σ1︸ ︷︷ ︸
Group 1

, . . . , σJ , . . . , σJ︸ ︷︷ ︸
GroupJ

)′.

For notational simplicity, we also use F(ti; θ) = F(ti;μi, σi) and f (ti; θ) =
f (ti;μi, σi). In our regression models, μi may depend on the values of the ex-
planatory variables. The ML estimate θ̂ is obtained by finding the values of the
parameters that maximize the likelihood function in (1).
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4. Stratification and regression analysis.

4.1. Stratification. As described in Section 1.2, we need to stratify the data
into relatively homogeneous groups. Manufacturer and installation year were used
as preliminary stratification variables. The choice of installation year as the strati-
fication variable is strongly motivated by the design change of transformers. There
is a big difference between the old transformers and new transformers. The engi-
neers indicate that old transformers were over-engineered and can last a long time.
For example, there are transformers installed in 1930s that are still in service, as
shown in Figure 1. Due to the competition in the transformer manufacture indus-
try and the need of reducing manufacturing costs, the new transformers are not as
“strong” as old ones.

The transformers manufactured by the same manufacturer were divided into two
groups (New and Old) based on age (installation year). We chose the cutting year
for this partitioning to be 1987. In Section 7.1 we give the results of a sensitivity
analysis that investigated the effects of changing the cutting year. There are only
one or two failures in some groups (i.e., MC_New, ME_New, and Other_New).
These groups were combined together as MC.ME.Other_New. Note that all MA
units were installed after 1990 and all MB units were installed before 1987.

Figure 2 is a multiple Weibull probability plot showing the nonparametric and
the Weibull ML estimates of the c.d.f. for all of the individual groups. The non-
parametric estimates (those points in Figure 2) are based on the method for trun-
cated/censored data described in Turnbull (1976). The points in Figure 2 were
plotted at each observed lifetime (censored units were not plotted) and at the mid-
point of the step of the Turnbull c.d.f. estimates, as suggested in Meeker and Es-
cobar [(1998), Section 6.4.2] and Lawless [(2003), Section 3.3]. Table 2 gives the
ML estimates and standard errors of the Weibull distribution parameters for each
group.

Note that the nonparametric and the parametric estimates in Figure 2 do not
agree well for the Old groups. This is due to the truncation in these groups. When
sampling from a truncated distribution, the ML estimator based on the likelihood
in (1) is consistent. The nonparametric estimator used in the probability plots, how-
ever, is not consistent if all observations are truncated. Because almost all of the
observations are truncated in the Old groups, we would not expect the parametric
and nonparametric estimates to agree well, even in moderately large finite samples.

Based on the ML estimates for the individual groups, the dataset was partitioned
into two large groups: the Old group with slowly increasing hazard rate (β̂ ≈ 2),
and the New group with a more rapidly increasing hazard rate (β̂ ≈ 5). The Old
group consists of MB_Old, MC_Old, Other_Old, and ME_Old, and the New group
consists of MA_New and MC.ME.Other_New. When we do regression analyses
in Section 4.4, we assume that there is a common shape parameter for all of the
transformers in the Old group and a different common shape parameter for all of
the transformers in the New group. This assumption is supported by the lifetime
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FIG. 2. Weibull probability plot with the ML estimates of the c.d.f.s for each of the individual groups

data, as can be seen in Figure 2, and by doing likelihood ratio tests (details not
given here).

4.2. Distribution choice. We also fit individual lognormal distributions and
made a lognormal probability plot (not shown here) that is similar to Figure 2.
Generally, the Weibull distributions fit somewhat better, both visually in the prob-
ability plot and in terms of the loglikelihood values of the ML estimates. There is
a physical/probabilistic explanation for this conclusion. In the transformer, there
are many potential locations where the voltage stress could exceed the dielectric
stress. The transformer will fail the first time such an event occurs. That is, a trans-
former’s lifetime is controlled by the distribution of a minimum. The Weibull dis-
tribution is one of the limiting distribution of minima.

TABLE 2
Weibull ML estimates of parameters and standard errors for each group

Group η̂ ŝeη̂
̂β ŝe

̂β
Failures Total

MA_New 18.39 1.607 5.83 1.796 6 46
MC.ME.Other_New 32.75 8.920 4.09 1.594 4 167
MB_Old 150.27 97.953 1.54 1.057 6 50
MC_Old 157.81 61.187 1.10 0.381 20 133
MD 136.81 109.638 0.51 0.499 6 28
Other_Old 93.49 36.751 3.26 1.288 5 137
ME_Old 124.85 44.351 2.66 0.952 8 149
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4.3. A problem with the MD group data. As shown in Table 2, the estimate of
the Weibull shape parameter for the MD group is β̂ = 0.51, implying a strongly
decreasing hazard function. Such a decreasing hazard is not consistent with the
known aging failure mode of the transformer insulation. This problem with the
estimation is caused by the extremely heavy truncation. More details about this
estimation problem are available in the supplemental article [Hong, Meeker, and
McCalley (2009)]. As a remedy, in the estimation and modeling stage, we exclude
the MD units. When we make the predictions, however, we include the MD_Old
units that are currently in service in the Old group and the single MD_New unit in
the New group based on engineering knowledge about the designs.

4.4. Regression analysis. In this section we extend the single distribution
models fit in Section 4.1 to regression models. For details on parametric re-
gression analysis for lifetime data, see, for example, Lawless (2003) or Meeker
and Escobar [(1998), Chapter 17]. In our models, the location parameter μ is
treated as a function of explanatory variable x, denoted by μ(x) = g(x,β), where
x = (x1, x2, . . . , xp)′ and β = (β0, β1, . . . , βp)′. In the case of linear regression
g(x,β) = x′β .

In the next two sections we fit separate regression models for the strata identified
in Section 4.1. The explanatory variables considered in the regression modeling
are Manufacturer, Insulation, and Cooling, all of which are categorical
variables.

The Old group. Table 3 compares the loglikelihood values for the Weibull re-
gression models fit to the Old group. Likelihood ratio tests show that Manufac-
turer and Insulation are not statistically important (i.e., the values of the
loglikelihood for Models 2 and 3 are only slightly larger then that for Model 1).
Hence, the final model for the Old group is μ(x) = Cooling. Table 4 gives ML
estimates and confidence intervals for parameters for the final model for the Old
group. Figure 3a gives the Weibull probability plot showing the Weibull regression
estimate of the c.d.f.s for the different cooling categories. The slopes of the fit-
ted lines are the same because of the constant shape parameter assumption in our
model.

TABLE 3
Model comparison for the Old group based on the Weibull distribution

Model Loglikelihood

1 μ(x) = Cooling −103.663
2 μ(x) = Manufacturer + Cooling −100.268
3 μ(x) = Manufacturer + Cooling + Insulation −100.198
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TABLE 4
Weibull ML estimates and confidence intervals for the Old group

Parameter MLE Std. err. 95% lower 95% upper

η̂(NIFE) 127.22 25.112 86.401 187.317
η̂(FIFE) 92.66 17.305 64.251 133.607
η̂(NINE) 346.47 186.249 120.808 993.665
η̂(Unknown) 32.12 4.750 24.042 42.927
β̂ 2.22 0.357 1.624 3.045

The New group. Table 5 compares the loglikelihood values for the Weibull re-
gression models fit to the New group. Insulation is not in the model because
it only has one level in the New group. Likelihood ratio tests show that Manu-
facturer is statistically important. Hence, the final model for the New group
is μ(x) = Manufacturer. Table 6 gives ML estimates and confidence intervals
for the final regression model parameters for the New group. Figure 3b is a Weibull
probability plot showing the ML estimates of the c.d.f.s for the two manufacturers
in this group.

5. Predictions for the remaining life of individual transformers. In this
section we develop a prediction interval procedure to capture, with 100(1 − α)%
confidence, the future failure time of an individual transformer, conditional on
survival until its present age, ti . The prediction interval is denoted by [T~ i , T̃i]. The
c.d.f. for the lifetime of a transformer, conditional on surviving until time ti , is

F(t |ti; θ) = Pr(T ≤ t |T > ti) = F(t; θ) − F(ti; θ)

1 − F(ti; θ)
, t ≥ ti .(2)

FIG. 3. Weibull probability plots showing the ML estimates of the c.d.f.s for the Old group and the
New group regression models.
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TABLE 5
Model comparison for the New group based on the Weibull distribution

Model Loglikelihood

4 μ(x) = μ −25.268
5 μ(x) = Manufacturer −20.138
6 μ(x) = Manufacturer + Cooling −18.089

This conditional c.d.f. provides the basis of our predictions and prediction inter-
vals.

5.1. The naive prediction interval procedure. A simple naive prediction in-
terval procedure (also known as the “plug-in” method) provides an approximate
interval that we use as a start toward obtaining a more refined interval. The pro-
cedure simply takes the ML estimates of the parameters and substitutes them into
the estimated conditional probability distributions in (2) (one distribution for each
transformer). The estimated probability distributions can then be used as a basis
for computing predictions and prediction intervals. Let 100(1 − α)% be the nom-
inal coverage probability. The coverage probability is defined as the probability
that the prediction interval procedure will produce an interval that captures what it
is intended to capture.

The naive 100(1 − α)% prediction interval for a transformer having age ti is
[T~ i , T̃i], where T~ i and T̃i satisfy F(T~ i |ti , θ̂) = αl,F (T̃i |ti , θ̂) = 1 − αu. Here αl
and αu are the lower and upper tail probabilities, respectively, and αl +αu = α. We
choose αl = αu = α/2. This simple procedure ignores the uncertainty in θ̂ . Thus,
the interval coverage probability of this simple procedure is generally smaller than
the nominal confidence level. The procedure needs to be calibrated so that it will
have a coverage probability that is closer to the nominal confidence level.

5.2. Calibration of the naive prediction interval. Calibration of the naive pre-
diction interval procedure to account for statistical uncertainty can be done through
asymptotic expansions [Komaki (1996), Barndorff-Nielsen and Cox (1996)] or by

TABLE 6
Weibull ML estimates and confidence intervals for the New group

Parameter MLE Std. err. 95% lower 95% upper

η̂(MA_New) 18.94 1.850 15.641 22.936
η̂(MC.ME.Other_New) 29.29 4.548 21.602 39.706
β̂ 5.01 1.229 3.098 8.104
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using Monte Carlo simulation/bootstrap re-sampling methods [Beran (1990), Es-
cobar and Meeker (1999)]. Lawless and Fredette (2005) show how to use a predic-
tive distribution approach that provides intervals that are the same as the calibrated
naive prediction interval.

In practice, simulation is much easier and is more commonly used to calibrate
naive prediction interval procedures. In either case, the basic idea is to find an
input value for the coverage probability (usually larger than the nominal value)
that gives a procedure that has the desired nominal coverage probability. In general,
the actual coverage probability of a procedure employing calibration is still only
approximately equal to the nominal confidence level. The calibrated procedure, if
it is not exact (i.e., actual coverage probability is equal to the nominal), can be
expected to provide a much better approximation than the naive procedure.

5.3. The random weighted bootstrap. Discussion of traditional bootstrap re-
sampling methods for lifetime/survival data can be found, for example, in Davison
and Hinkley (1997). Due to the complicated data structure and sparsity of fail-
ures over the combinations of different levels of explanatory variables, however,
the traditional bootstrap method is not easy to implement and may not perform
well. Bootstrapping with the commonly used simple random sampling with re-
placement with heavy censoring can be problematic, as it can result in bootstrap
samples without enough failures for the estimation of parameters (only about 9%
of the transformers had failed). A parametric bootstrap would require distribution
assumptions on the truncation time and censoring time and this information is not
available. The stratification, regression modeling, and especially the left trunca-
tion lead to other difficulties with bootstrapping. The random weighted likelihood
bootstrap procedure, introduced by Newton and Raftery (1994), provides a versa-
tile, effective, and easy-to-use method to generate bootstrap samples for such more
complicated problems. The procedure uses the following steps:

1. Simulate random values Zi, i = 1,2, . . . , n, that are i.i.d. from a distribution
having the property E(Zi) = [Var(Zi)]1/2.

2. The random weighted likelihood is L∗(θ |DATA) = ∏n
i=1[Li(θ |DATA)]Zi ,

where Li(θ |DATA) is the likelihood contribution from an individual observa-
tion.

3. Obtain the ML estimate θ̂
∗

by maximizing L∗(θ |DATA).
4. Repeat steps 1–3 B times to get B bootstrap samples θ̂

∗
b, b = 1,2, . . . ,B .

Barbe and Bertail [(1995), Chapter 2] discuss how to choose the random weights
by using an Edgeworth expansion. Jin, Ying, and Wei (2001) showed that the dis-
tribution of

√
n(̂θ

∗ − θ̂) (given the original data) can be used to approximate the
distribution of

√
n(̂θ −θ), if one uses i.i.d. positive random weights generated from

continuous distribution with E(Zi) = [Var(Zi)]1/2. They pointed out that the re-
sampling method is rather robust for different choices of the distribution of Zi , un-
der this condition. We used Zi ∼ Gamma(1,1) in this paper. We also tried alterna-
tive distributions, such as the Gamma(1,0.5), Gamma(1,2), and Beta(

√
2 − 1,1).
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The resulting intervals were insensitive to the distribution used, showing similar
robustness for our particular application.

5.4. Calibrated prediction intervals. For an individual transformer with age
ti , the calibrated prediction interval of remaining life can be obtained by using the
following procedure. Lawless and Fredette’s predictive distribution [Lawless and
Fredette (2005)] are used here:

1. Simulate T ∗
ib, b = 1, . . . ,B , from distribution F(t |ti , θ̂).

2. Compute U∗
ib = F(T ∗

ib|ti , θ̂∗
b), b = 1, . . . ,B .

3. Let ul
i , u

u
i be, respectively, the lower and upper α/2 sample quantiles of

U∗
ib, b = 1, . . . ,B . The 100(1 − α)% calibrated prediction interval can be ob-

tained by solving for T~ i and T̃i in F(T~ i |ti θ̂) = ul
i and F(T̃i |ti , θ̂) = uu

i , respec-
tively.

5.5. Prediction results. In this section we present prediction intervals for the
remaining life for individual transformers based on using the Weibull distribution
and a stratification cutting at year 1987. Figure 4 shows 90% prediction intervals
for remaining life for a subset of individual transformers that are at risk. The Years
axis is logarithmic.

FIG. 4. Weibull distribution 90% prediction intervals for remaining life for a subset of individual
at-risk transformers.
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There are some interesting patterns in these results. In particular, for a group of
relatively young transformers in the same group (young relative to expected life)
and with the same values of the explanatory variable(s), the prediction intervals
are similar (but not exactly the same because of the conditioning on actual age).
For a unit in such a group (i.e., one that has been in service long enough to have its
age fall within the prediction intervals for the younger units), however, the lower
endpoints of the interval are very close to the current age of the unit. Intervals for
such units can be rather short, indicating that, according to our model, they are at
high risk to failure. See, for example, unit MA_New200 in Figure 4. Interestingly,
as we were finishing this work, we learned of a recent failure of a transformer that
had such a prediction interval.

Units, like MA_New200, that are predicted to be at especially high risk for
failure in the near term are sometimes outfitted with special equipment to continu-
ously (hourly) monitor, communicate, and archive transformer condition measure-
ments that are useful for detecting faults that may lead to failure. These measure-
ments are taken from the transformer insulating oil and most commonly indicate
the presence of dissolved gases but also may indicate other attributes, including
moisture content and loss of dielectric strength. Dissolved gas analysis (DGA)
is automatically-performed by these monitors and is important in the transformer
maintenance process, because it can be used to predict anomalous and dangerous
conditions such as winding overheating, partial discharge, or arcing in the trans-
former. Without such a monitor, DGA is performed by sending an oil sample to
a laboratory. These lab tests are routinely performed on a 6–12 month basis for
healthy transformers but more frequently if a test indicates a potential problem.
If an imminent failure can be detected early enough, the transformer can be op-
erated under reduced loading until replaced, to avoid costly catastrophic failures
that sometimes cause explosions. Lab testing, although generally useful, exposes
the transformer to possible rapidly deteriorating failure conditions between tests.
Continuous monitoring eliminates this exposure but incurs the investment price
of the monitoring equipment. Although this price is typically less than 1% of the
transformer cost, the large number of transformers in a company’s fleet prohibits
monitoring of all of them.

6. Prediction for the cumulative number of failures for the population.
This section describes a method for predicting the cumulative number of future
failures in the population, as a function of time. For the population of transform-
ers, we will predict the cumulative number of failures by the end of each month
for the next 10 years. We also compute corresponding calibrated pointwise predic-
tion intervals, quantifying the statistical uncertainty and failure process variability.
Such predictions and intervals are needed for planning of capital expenditures.

6.1. Population prediction model. From (2), for an individual transformer that
has survived and has age ti at the data-freeze time, the conditional probability of
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failure between age ti and a future age twi (the amount of time in service for trans-
former i at a specified date in the future) is ρi = F(twi |ti , θ). The ML estimator of
ρi is ρ̂i = F(twi |ti , θ̂). Note that the times ti and twi differ among the transformers
because of different dates of entry into the transformer population.

The total number of future failures between the times when the individual
transformers have ages ti and twi is K = ∑n∗

i=1 Ii , where Ii ∼ Bernoulli(ρi),
i = 1,2, . . . , n∗. Here n∗ is the number of transformers that are at risk. Thus,
K is a sum of independent nonidentical Bernoulli random variables. In general,
there is not a simple closed-form expression for FK(k|θ), the c.d.f. of K . Monte
Carlo simulation can be used to evaluate the c.d.f. of K , to any degree of accuracy
[e.g., using the algorithm in Escobar and Meeker (1999), Section A.3]. The Monte
Carlo approach, however, is computationally intensive when the number of non-
identically distributed components is large. Poisson approximation and a normal
approximation based on the ordinary central limit theorem (CLT) have been sug-
gested in the past. Here, we use an approach suggested by Volkova (1996) which
is based on a refined CLT that makes a correction based on the skewness in the
distribution of K . In particular, the estimated c.d.f. of K can be approximated by

FK(k|̂θ) = GK

[
k + 0.5 − μK(̂θ)

σK(̂θ)
, θ̂

]
, k = 0,1, . . . , n∗,

where GK(x, θ̂) = �nor(x) + γK(̂θ)(1 − x2)φnor(x)/6, and

μK(̂θ) = Ê(K) =
n∗∑
i=1

ρ̂i , σK (̂θ) = [V̂ar(K)]1/2 =
[

n∗∑
i=1

ρ̂i(1 − ρ̂i)

]1/2

,

γK (̂θ) = [V̂ar(K)]−3/2Ê[K − μK(̂θ)]3 = σ−3
K (̂θ)

n∗∑
i=1

ρ̂i(1 − ρ̂i)(1 − 2ρ̂i)

are estimates of the mean, standard deviation, and skewness of the distribution
of K , respectively.

6.2. Calibrated prediction intervals. The calibrated prediction interval [K~ , K̃]
for the cumulative number of failures at a specified date in the future can be ob-
tained by using the following procedure:

1. Simulate I ∗
i from Bernoulli(ρ̂i ), i = 1,2, . . . , n∗, and compute K∗ = ∑n∗

i=1 I ∗
i .

2. Repeat step 1 B times to get K∗
b , b = 1,2, . . . ,B .

3. Compute U∗
Kb = FK(K∗

b |̂θ∗
b), b = 1,2, . . . ,B .

4. Let ul
K,uu

K be, respectively, the lower and upper α/2 sample quantiles of
U∗

Kb, b = 1, . . . ,B . The 100(1 − α)% calibrated prediction interval can be ob-
tained by solving for K~ and K̃ in FK(K~ |̂θ) = ul

K and FK(K̃ |̂θ) = uu
K , respec-

tively.

Note that the uncertainty in ρ̂i has been accounted because ρ̂i is a function of θ̂ .
The uncertainty θ̂ is accounted by the bootstrap.
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FIG. 5. Weibull distribution predictions and prediction intervals for the cumulative number of fu-
ture failures. Number of units in risk set: Old 449, New 199.

6.3. Prediction results. In this section we present the results for predicting the
cumulative number of failures for the population of transformers that are at risk,
based on the Weibull distribution regression model with the stratification cutting
at year 1987. Figure 5 shows the predictions for the cumulative number of failures
and 90% and 95% pointwise prediction intervals separately for the Old and the
New groups. Note the difference in the size of the risk sets for these two groups.
Figure 6 gives similar predictions for the Old and New groups combined. Figure 7
shows predictions and 90% and 95% pointwise prediction intervals for manufac-
turers MA (New group) and MB (Old group).

7. Sensitivity analysis and check for consistency.

7.1. Sensitivity analysis. The prediction interval procedures account only for
statistical uncertainty. Model uncertainty (e.g., the data might be from either the
Weibull or lognormal or some other distribution) is also an important source of un-
certainty for the prediction. In some situations, the model uncertainty can dominate
statistical uncertainty, especially when the sample size is large. Thus, when data or
engineering knowledge do not unambiguously define the model, it is important to
do a sensitivity analyses for the predictions by perturbing model assumptions.

Distribution assumption. We did sensitivity analyses to assess the effect that
the assumed underlying distribution has on predictions. Figure 8 compares the pre-
dicted cumulative number of future failures and the corresponding 90% prediction
intervals for the lognormal and Weibull distributions. For the Old group, the pre-
dictions are not highly sensitive to the distribution assumption. Predictions for the
New group, however, are somewhat sensitive to the distribution assumption. This
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FIG. 6. Weibull distribution predictions and prediction intervals for the cumulative number of fu-
ture failures with the Old and New groups combined. 648 units in risk set.

difference is partly due to a larger amount of extrapolation for the New group than
the Old group over the next 10 years. As is generally the case with extrapolation in
time, the lognormal predictions are more optimistic than the Weibull predictions.

FIG. 7. Weibull distribution predictions and prediction intervals for the cumulative number of fu-
ture failures for manufacturers MA and MB. Number of units in the risk set: MA 37, MB 44.
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FIG. 8. Sensitivity analysis for the effect that transformer lifetime distribution assumption has on
the predicted cumulative number of future failures.

Cutting year. We also did sensitivity analyses to assess the effect that using
different Old/New cut points has on predictions. The results are shown in Figure 9.
Changes to the cutting year have little effect in the Old group. The results in the
New group are more sensitive to this choice. Note that in Figure 9b, the prediction
intervals for cutting year 1990 get wider than other cutting years when time is
increasing. This occurrence is caused by the fact that there is only one failure in
the MC.ME.Other_New group if cutting year 1990 is used, and, thus, the random

FIG. 9. Sensitivity analysis for the effect that cutting year for the MC transformers has on the mean
predicted number of failures.
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weighted bootstrap samples have more variabilities than using other cutting years.
As mentioned in Section 4.1, we use 1987 as the cut year; this is on the pessimistic
side of the sensitivity analysis results for the New group.

7.2. Check for consistency. As a part of the model diagnostics, a check for
the consistency of the model was done to assess the prediction precision of the
model. Generally, we would like to do this by holding out more recent failures
when building the prediction model and then using the model to predict “future”
failures that have already occurred. In our transformer application, however, there
are not enough data to do this. Instead we used model parameter estimates based
on all of the data for this check. To do the check, we move the data-freeze date
back to 1994 and those units that went into service after 1994 are added into the
risk set when they enter service. Then, we use our model to predict the fraction
of units failing from 1994 to 2007. Figure 10 gives a plot of the predicted frac-
tion failing and the corresponding nonparametric estimates based on the Turnbull
nonparametric estimator. Figure 10 also shows 90% pointwise prediction intervals.
The zigzag in the prediction intervals is caused by the new units entering into the
risk set over the time period. The prediction results agree reasonably well with the
nonparametric estimate. The slight disagreement in the New group (well within
the prediction bounds) is due to a small difference in the behavior of the units that
failed before and after the assumed 1994 data-freeze point for the check.

8. Discussion and areas for future research. In this paper we developed
a generic statistical procedure for the reliability prediction problem that can be
used with complicatedly censored and truncated data. This prediction interval pro-

FIG. 10. Back check of the model: parametric predictions compared with Turnbull nonparametric
estimates.
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cedure has broader applications, such as in field reliability prediction for warranty
data [i.e., Ion et al. (2007) where only point predictions were given].

In our data analyses, we found that some transformers manufactured by par-
ticular manufacturers, for example, MA, tend to have shorter lives. We suggested
that the company should pay particular attention to these transformers. Although
the prediction intervals for the individual transformers are often too wide to be di-
rectly useful in determining when a transformer should be replaced, the quantita-
tive information does provide a useful ranking for setting priorities in maintenance
scheduling and for selecting transformers that need special monitoring attention or
more frequent inspections to assess their health. The prediction intervals for the
cumulative number of failures over time for the population of the transformers are
useful for capital planning.

The prediction intervals for individual transformers tend to be wide. If usage
and/or environmental information for the individual transformers were available
(e.g., load, ambient temperature history, and voltage spikes, etc.), it would be pos-
sible to build a better predictive model that would more accurately predict individ-
ual lifetimes. Models in Nelson (2001) and Duchesne (2005) can be used in this
direction. Further developments would, however, be needed to compute appropri-
ate prediction interval procedures.

If engineering knowledge can provide information about the shape parameter of
the lifetime distribution of the transformer or regression coefficients, the Bayesian
approach could be used to take advantage of the prior information and could nar-
row the width of the prediction intervals. Regression analysis can be done directly
on remaining life. Methods described in Chen (2007) can provide other modeling
and prediction possibilities but require alternative parametric assumptions.

The transformer dataset used in our study contained only limited information
about the causes of failure. As explained in Section 2.1, however, the predominant
failure mechanism is related to degradation of the paper-like insulating material. In
other prediction problems there can be multiple causes of failure. Particularly when
these failure modes behave differently, have different costs, or when the informa-
tion is to be used for engineering decisions, it is important to analyze and predict
the failure modes separately (e.g., using methods similar to traditional competing
risk analysis). In these applications such extension raises some interesting tech-
nical challenges, such as dealing with dependency among the failures modes that
one would expect in field data. For example, it is easy to show that there will be
positive dependence between failure mode lifetime distributions when analysis is
done in terms of time in service when failure are driven by the amount of use and
there is use-rate variability in the population.

This paper has focused on the prediction of transformer life. There are many
other potential applications for this kind of work, ranging from aging aircraft to
consumer products. There are also important links to the important area of System
Health Management. In our experience, each lifetime prediction problem requires
somewhat different lifetime modeling tools and methods, but the basic idea of



878 Y. HONG, W. Q. MEEKER AND J. D. MCCALLEY

using the distribution of remaining life for individual units in the population that
are at risk for prediction is a constant.
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SUPPLEMENTARY MATERIAL

Supplement to “Prediction of remaining life of power transformers based
on left truncated and right censored lifetime data” (DOI: 10.1214/08-
AOAS231SUPP; .pdf). This supplement provides a description of the difficulties
that we had in fitting a model to describe the failure behavior of the MD group
data. The problems arise because of the large amount of truncation in this particu-
lar group.
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