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Data on functional disability are of widespread policy interest in the
United States, especially with respect to planning for Medicare and Social
Security for a growing population of elderly adults. We consider an extract of
functional disability data from the National Long Term Care Survey (NLTCS)
and attempt to develop disability profiles using variations of the Grade of
Membership (GoM) model. We first describe GoM as an individual-level
mixture model that allows individuals to have partial membership in several
mixture components simultaneously. We then prove the equivalence between
individual-level and population-level mixture models, and use this property
to develop a Markov Chain Monte Carlo algorithm for Bayesian estimation
of the model. We use our approach to analyze functional disability data from
the NLTCS.

1. Introduction.

1.1. Background. Data on functional disability are of widespread policy in-
terest in the United States, especially with respect to planning Medicare and So-
cial Security spending for a growing population of elderly adults. The concept of
functional disability reflects difficulties in performing activities that are considered
normal for everyday living. These activities are usually divided into two types,
namely, basic and instrumental activities of daily living (ADL and IADL). ADL
and IADL outcomes are considered essential in health services research and form
a cornerstone of geriatric medicine. In this article we present a Bayesian analy-
sis of functional disability among a sample of elderly individuals in the National
Long Term Care Survey (NLTCS), using basic and extended Grade of Membership
(GoM) models for multivariate binary response data.
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The NLTCS began in 1982 and now extends over six waves through 2004, mak-
ing it an important source of information on possible changes in disability over
time among the elderly Americans. The NLTCS data on functional disability have
been used to generate some major findings, such as a persistent decline in chronic
disability among the elderly Americans [Manton and Gu (1999) and Manton, Gu
and Lamb (2006a, 2006b)].

It is common practice to analyze functional disability data by using totals where
individual scores are added together for all items or by subsets [Manton and Gu
(1999)]. Statistically, adherence to the Rasch model (1960) can provide researchers
with a formal justification for reducing the multivariate data down to such total
scores. It is often the case, however, that functional disability data have a high
amount of heterogeneity that is not explainable by the Rasch model. It may be
possible to circumvent this problem by reducing the set of functional disability
items under consideration, as was illustrated, for example, in the gerontology liter-
ature by Spector and Fleishman (1998). This approach, however, obviously ignores
potentially relevant information contained in the excluded items.

In this paper we use individual-level mixtures to account for heterogeneity in
functional disability data measured with a given battery of items without con-
sidering the issue of item reduction. We contrast the individual-level mixture as-
sumption with population-level mixture models that assume individuals can be
members of one and only one subpopulation, such as latent class models [Good-
man (1974), Lazarsfeld and Henry (1968)]. The central idea of all individual-level
mixture models is to allow an individual’s membership to be a mixture with re-
spect to population components [Blei, Jordan and Ng (2003), Pritchard, Stephens
and Donnelly (2000), Woodbury, Clive and Garson (1978)]. A natural example of
individual-level mixtures is genetic makeup of individuals who have various de-
grees of ancestry in several subpopulations of origin [Pritchard, Stephens and Don-
nelly (2000)]. Such admixed individuals do not simply belong to one of the original
subpopulations with some degree of uncertainty, but their genetic makeup is actu-
ally composed of genes that originated from different subpopulations. Specifically,
we use the Grade of Membership (GoM) model introduced in 1978 by Woodbury,
Clive and Garson (1978) and develop its extension to address the following ques-
tions: How many mixture categories are in the functional disability data under the
assumption of mixed membership? What are characteristics of each mixture cate-
gory? What is the population distribution of the individual membership scores?

We begin by introducing the NLTCS in Section 2. Next, we describe the GoM
model and its relationship to latent class models via the fundamental representa-
tion theorem in Section 3. We use this result to develop a fully Bayesian approach
in Section 4.1, and describe a variational approximation approach as an alterna-
tive estimation method in Section 4.2. Section 5 develops the extended mixture
GoM model and corresponding estimation techniques. Section 6 considers the
question of dimensionality selection in terms of the optimal number of mixture
categories. Section 7 describes results from simulation studies. Finally, we present
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an individual-level mixture analysis of the NLTCS functional disability data and
provide discussions in Sections 8 and 9.

2. National Long Term Care Survey functional disability data. The
NLTCS aims to assess chronic disability in the U.S. Medicare-enrolled popu-
lation age 65 or older [Corder and Manton (1991)]. The survey began in 1982
with a screening survey instrument that selected community-dwelling chronically
disabled (based on basic and instrumental activities of daily living) persons for
detailed in-home interviews. Once individuals screened-in, the NLTCS followed
them longitudinally. The second wave of the survey was in 1984, and all subse-
quent waves occurred in five-year intervals with the most recent wave completed
in 2004. The NLTCS replenishes its sample at each wave in order to reflect the cur-
rent U.S. population 65 and older. While additional components have come and
gone from post-1982 waves of the NLTCS, key disability questions have stayed
the same. For more information on the NLTCS, see Corder and Manton (1991),
Manton, Corder and Stallard (1997), Singer and Manton (1998).

We consider an extract from the NLTCS that contains data on 6 activities
of daily living (ADL) and 10 instrumental activities of daily living (IADL) for
community-dwelling elderly from 1982, 1984, 1989 and 1994 survey waves. These
16 binary functional disability measures are described in detail in Manton, Corder
and Stallard (1993). The 6 ADL items include basic activities of hygiene and per-
sonal care (eating, getting in/out of bed, getting around inside, dressing, bathing,
and getting to the bathroom or using toilet). The 10 IADL items include basic ac-
tivities necessary to reside in the community (doing heavy housework, doing light
housework, doing laundry, cooking, grocery shopping, getting about outside, trav-
elling, managing money, taking medicine and telephoning). Positive responses are
coded as 1 = disabled, and negative as 0 = healthy. In the NLTCS, positive ADL
responses mean that during the past week the activity had not been, or was not ex-
pected to be, performed without the aid of another person or the use of equipment;
positive IADL responses mean that a person usually could not, or was not going
to be able to, perform the activity because of a disability of a health problem. For
a more in-depth discussion, see Manton, Corder and Stallard (1993) and Erosheva
and White (2006).

At each wave, the survey sample is representative of the 65 years and older U.S.
population at that point in time. High follow-up rates and consistency in ADL and
IADL questions over time make the NLTCS a unique source of data for study-
ing complex questions such as the dynamics of population changes in disability.
Manton and Gu (1999) and Manton, Gu and Lamb (2006a, 2006b) used weighted
total numbers of impaired ADL and IADL to show declines in disability, but the
important question of “Why?” [Cutler (2001)] still remains open. We believe that
in order to move forward in our understanding of why disability is declining so
rapidly and whether the decline can be expected to continue, an important first
step is to describe heterogeneous multivariate disability manifestations.
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Our ultimate goal is to develop a longitudinal version of the GoM model. Our
analysis in this paper represents an attempt to learn disability mixture profiles that
describe the underlying structure of functional disability in the chronically dis-
abled community-dwelling elderly U.S. population. We make three simplifying as-
sumptions in this analysis. First, we assume that the nature of the mixture compo-
nents stays the same over time. For a longitudinal version of the GoM model, keep-
ing profiles the same over time and allowing the population distribution among
the profiles to change would allow us to obtain an estimable model. For similar
reasons, the assumption of time-invariant latent classes is common in latent class
transition modeling [see Reboussin et al. (1998), e.g.]. In addition, our exploratory
analysis where we analyzed each wave separately using the GoM model, yielded
profiles whose characteristics were fairly stable over time, thus confirming that
the assumption of profile time-invariance is reasonable in our case. Second, we
assume no inter-dependencies between longitudinal records on the same individ-
uals. Violations of this assumption may affect efficiency of our estimates but will
not introduce bias. Third, we ignore the sample weights associated with differen-
tial probabilities of selection into the NLTCS. In fact, we have yet to understand
how if at all we could incorporate the weights into the modeling process. We view
these three assumptions necessary for this first step toward understanding changes
in disability over time.

3. The grade of membership (GoM) model and its latent class representa-
tion. The GoM model originate in the context of medical applications: when a
diagnosis is uncertain, partial membership reflects this uncertainty through allow-
ing different disease symptoms to correspond to different stages of the disease.
GoM applications now cover a wide spectrum of studies, ranging from studying
depression [Davison et al. (1989)] and schizophrenia [Manton et al. (1994)] to an-
alyzing complex genotype-phenotype relations [Manton et al. (2004)]; for a recent
review, see Erosheva and Fienberg (2005). The model remains relatively unfamil-
iar to statistical audiences, however. Despite a multitude of published large-scale
GoM applications, there are few statistical publications that explore basic GoM
properties and demonstrate the model’s utility with similar examples [Erosheva
(2005), Potthoff (2000), Wachter (1999)].

In particular, the relationship between individual-level and population-level
mixture models does not appear to be clearly formulated in the literature.
Singer (1989) describes the GoM model as a new type of model that is not equiva-
lent to usual mixture models. Likewise, when comparing the GoM and latent class
models, in their 1994 book, Manton, Woodbury and Tolley (1994) concluded: “la-
tent class model is nested in the GoM model structure. . . ,” but “. . . if we allow
latent class model to have more classes, then it is potentially possible to “fit” the
realized data set as well as with GoM” (page 45). On the other hand, Haberman
(1995) in his review of Manton et al., suggested that the GoM model is a special
case of latent class models. He pointed out that a set of constraints imposed upon a
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latent class model can specify a distribution of manifest variables that is identical
to that specified by the GoM model.

In this Section we describe the GoM and latent class models and present the
fundamental representation theorem of equivalence between individual-level and
population-level mixture models [Erosheva (2006)].

GoM and latent class models. Let x = (x1, x2, . . . , xJ ) be a vector of polyto-
mous manifest variables, where xj takes on values lj ∈ Lj = {1,2, . . . ,Lj }, j =
1,2, . . . , J , and Lj denotes the number of possible outcomes. Let X = ∏J

j=1 Lj

be the set of all possible outcomes for vector x.
To define the GoM model, let K be the number of mixture components (extreme

profiles), and let g = (g1, g2, . . . , gK) be a latent partial membership vector of K

nonnegative random variables that sum to 1. For discrete data, each extreme profile
is characterized by a vector of conditional response probabilities, when a given kth
component of the partial membership vector is 1 and the others are 0:

λkjlj = pr(xj = lj |gk = 1), k = 1,2, . . . ,K,

j = 1,2, . . . , J,(1)

lj = 1,2, . . . ,Lj .

The set of conditional response probabilities must satisfy the following constraints:∑
lj∈Lj

λkjlj = 1, k = 1,2, . . . ,K; j = 1,2, . . . , J.

Given partial membership vector g ∈ [0,1]K , the conditional distribution of
manifest variable xj is given by a convex combination of the extreme profiles’
conditional response probabilities, that is,

pr(xj = lj |g) =
K∑

k=1

gkλkjlj , j = 1,2, . . . , J, lj = 1,2, . . . ,Lj .(2)

The local independence assumption states that manifest variables are condition-
ally independent, given latent variables. Under this assumption, the conditional
probability of observing response pattern l is

f GoM(l|g) = pr(x = l|g)

=
J∏

j=1

pr(xj = lj |g) =
J∏

j=1

(
K∑

k=1

gkλkjlj

)
, l ∈ X.

The local independence assumption is common in latent structure models [Lazars-
feld and Henry (1968)]; it says that latent variables fully account for associations
among the observed responses.
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Let us denote the distribution of g by D(g). Integrating out the latent vari-
able g, we obtain the marginal distribution for response pattern l in the form of an
individual-level mixture

f GoM(l) = pr(x = l) =
∫

f GoM(l|g)dD(g)

(3)

=
∫ J∏

j=1

(
K∑

k=1

gkλkjlj

)
dD(g), l ∈ X.

Using similar notation, we can derive the K-class population-level mixture (la-
tent class) model as a special case of the K-profile GoM model by restricting com-
ponents of the partial membership vector to only take values 0 and 1. Denote the
restricted version of the membership vector by g∗ and its probability mass func-
tion by πk = pr(g∗

k = 1). Assuming local independence, we see that the marginal
distribution of the manifest variables under the latent class model simplifies to the
K-component summation:

f LCM(l) = pr(x = l) =
∫

f LCM(l|g∗) dD(g∗)
(4)

=
K∑

k=1

πk

J∏
j=1

λkjlj , l ∈ X.

The probability of observing response pattern l is the sum of the probabilities of
observing l from each of the latent classes, weighted by their relative sizes, πk .
One can visualize the relationship between sets of individual-specific response
probabilities under the GoM and latent class models with the same number of
mixture categories using a geometric approach [Erosheva (2005)].

Fundamental representation theorem. Note that the GoM marginal or integrated
likelihood in equation (3) does not simplify to a summation of K components.
This is in contrast to the functional form of the likelihood for a population-level
mixture of K latent classes in equation (4). If we relax the requirement of equality
of the number of latent classes and extreme profiles, however, following Haberman
(1995), we can construct a latent class model such that its marginal distribution of
manifest variables is exactly the same as that under the GoM model.

Consider a vector of J polytomous latent variables z = (z1, z2, . . . , zJ ), each
taking on values from the set of integers {1,2, . . . ,K}. Vector z here is the latent
classification variable. Denote by Z = {1,2, . . . ,K}J the set of all possible vec-
tors z. As before, X = ∏J

j=1 Lj is the set of all possible outcomes for vector x.
Then X×Z is the index set for the cross-classification of the manifest variables x

and latent classification variables z.
To obtain a latent class representation of the GoM model, we must find a way to

interchange the summation and the product operator in equation (3). The following
lemma provides algebra which allows us to do so.
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LEMMA 3.1. For any two positive integers J and K , and for any two sets of
real numbers {ak, k = 1,2, . . . ,K} and {bkj , k = 1,2, . . . ,K, j = 1,2, . . . , J },

J∏
j=1

K∑
k=1

akbkj = ∑
z∈Z

J∏
j=1

azj
bzj j ,

where z = (z1, z2, . . . , zJ ) is such that z ∈ Z = ∏J
j=1{1,2, . . . ,K}.

Define the distribution over latent classes z ∈ Z, conditional on the distribution
of membership vector g ∈ [0,1]K :

πz = ED

(
J∏

j=1

gzj

)
.(5)

If (g1, g2, . . . , gK) has a joint distribution D(g) on [0,1]K , such that g1 + g2 +
. . . + gK = 1, then πz is a probability measure on Z. From the functional form
of πz, it also follows that latent classification variables z1, z2, . . . , zJ are exchange-
able.

To specify the conditional distribution of the manifest variables given the latent
variables z, we need two additional assumptions. First, assume that xj depends
only on the j th component of the latent indicator variable z:

pr(xj = lj |z) = pr(xj = lj |z1, z2, . . . , zJ ) = pr(xj = lj |zj ),(6)

where zj ∈ {1,2, . . . ,K}, and lj ∈ {1, . . . ,Lj } is the observed value of manifest
variable xj . In essence, equation (6) postulates that manifest variable xj is directly
influenced only by the j th component of the latent classification vector z. Second,
assume that conditional response probabilities in equation (6) are given by

pr(xj = lj |zj ) = λzj j lj , zj = 1,2, . . . ,K,

j = 1,2, . . . , J,(7)

lj = 1,2, . . . ,Lj ,

where the set of λs is the same as the set of conditional response probabilities for
the GoM model. These structural parameters must also satisfy the constraints:

Lj∑
lj=1

λzj j lj = 1, for all z ∈ Z, j ∈ {1,2, . . . , J }.

Under the local independence assumption, we obtain the probability of observ-
ing response pattern l for the latent class model as

f ∗(l) = ∑
z∈Z

πz

(
J∏

j=1

λzj j lj

)
, l ∈ X,(8)
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where the probability of latent class z is the expected value of a J -fold product
of the membership scores πz = ED(

∏J
j=1 gzj

). Thus, the probability of observing
response pattern l in equation (8) is the sum of the conditional probabilities of
observing l from each of the latent classes, weighted by the latent class probabili-
ties.

Consider the marginal probability of an arbitrary response pattern l ∈ X for
the GoM model provided by equation (3). Applying lemma 3.1 with ak = gk ,
bkj = λkjlj , and using properties of expectation, we obtain the marginal proba-
bility:

f GoM(l) = ∑
z∈Z

{
ED

(
J∏

j=1

gzj

)(
J∏

j=1

λzj j lj

)}
,

which is exactly the same as in equation (8). It follows that the GoM model is
equivalent to a latent class model with a distribution on the latent classes given
by a functional form of the distribution of membership scores. This equivalence
statement can be generalized via the following fundamental representation theo-
rem:

THEOREM 3.2. Given J manifest variables, any individual-level mixture
model with K components can be represented as a constrained population-level
mixture model with KJ components.

The fundamental representation theorem applies to a wider class of mixed mem-
bership models introduced by Erosheva (2002).

4. Estimation algorithms for the standard GoM model.

4.1. Bayesian estimation algorithm.

Data augmentation. The fundamental representation theorem leads us naturally
to a data augmentation approach in the spirit of those described by Tanner (1996).
In this Section we present the Bayesian estimation algorithm for the GoM model,
described earlier in Erosheva (2003).

Denote by x the set of observed responses xij for all subjects. Denote by λ

the set of conditional response probabilities. For the functional disability data,
λkj = pr(xj = 1|gk = 1) is the probability of being disabled on activity j for a
complete member of extreme profile k. For subject i, augment observed responses
with realizations of the latent classification variables zi = (zi1, . . . , ziJ ). Denote
by z the set of latent classifications zij on all items for all individuals. In the fol-
lowing, we use notation p(·) to refer to both probability density and probability
mass functions.
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We assume the distribution of membership scores is Dirichlet with pa-
rameters α. The joint probability model for the parameters and augmented
data is

p(x, z,g,λ, α) = p(λ, α) · p(x, z,g|λ, α)

= p(λ, α)

N∏
i=1

[p(zi |gi)p(xi |λ, zi) · D(gi |α)],

where

p(zi |gi) =
J∏

j=1

K∏
k=1

g
zijk

ik ,

p(xi |λ, zi) =
J∏

j=1

K∏
k=1

(
λ

xij

kj (1 − λkj )
1−xij

)zijk ,

Dir(gi |α) = �(
∑

k αk)

�(α1) · · ·�(αK)
g

α1−1
i1 · · ·gαK−1

iK ,

and latent classification indicators zijk are such that zijk = 1, if zij = k, and
zijk = 0 otherwise.

We assume the prior on extreme profile response probabilities λ is independent
of the prior on the hyperparameters α. We further assume that the prior distribu-
tion of extreme profile response probabilities treats items and extreme profiles as
independent. Thus,

p(λ, α) = p(α)

K∏
k=1

J∏
j=1

p(λkj ).(9)

We take p(λkj ) to be Beta(η1, η2), and, for simplicity, in what follows we use
η1 = η2 = 1.

If the hyperparameters α are known, it is possible to obtain complete condi-
tional distributions and use standard software such as BUGS1 to obtain a posterior
distribution of the model parameters [Erosheva (2002)]. In reality, the hyperpara-
meters are unlikely to be known and need to be estimated. Setting hyperparame-
ters to some fixed values without prior knowledge may bias conclusions and affect
model choice in individual-level mixture models [see the discussion in Airoldi
et al. (2007)].

If we assume that the Dirichlet parameter vector α is unknown, we obtain sam-
ples from its posterior distribution via a Metropolis–Hastings step within the Gibbs
sampler. Consider a reparameterization of α = (α1, . . . , αK) with α0 = ∑K

k=1 αk

1The Bayesian inference using Gibbs Sampling project software [Spiegelhalter et al. (1996)]. For
details see http://www.mrc-bsu.cam.ac.uk/bugs/.

http://www.mrc-bsu.cam.ac.uk/bugs/
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and ξ = (ξ1, . . . , ξK), where ξk = αk/α0. Then components of vector ξ reflect
proportions of the item responses that belong to each mixture category, and α0 re-
flects the spread of the membership distribution. The closer α0 is to zero, the more
probability is concentrated near the mixture categories; similarly, the larger α0

is, the more probability is concentrated near the population average membership
score.

We assume that α0 and ξ are independent since they govern two unrelated qual-
ities of the distribution of the GoM scores. We also assume that the prior distrib-
ution on the GoM scores is independent of the prior distribution on the structural
parameters. The joint distribution of the parameters and augmented data is

p(λ)p(α0)p(ξ)

(
N∏

i=1

D(gi |α)

)
N∏

i=1

J∏
j=1

K∏
k=1

(
gikλ

xij

kj (1 − λkj )
1−xij

)zijk .(10)

In the absence of a strong prior opinion about hyperparameters α0 and ξ , we take
the prior distribution p(ξ) to be uniform on the simplex and p(α0) to be a proper
diffuse gamma distribution.

Sampling from the posterior distribution.

• Imputation step: We use a multinomial complete conditional distribution to
obtain the (m + 1)st draw of latent class indicator variables zij for each i =
1, . . . ,N , j = 1, . . . , J :

z
(m+1)
ij ∼ Mult(1,p1, . . . , pK), pk ∝ gikλ

xij

kj (1 − λkj )
1−xij .(11)

• Posterior step:
– Sampling λ. We use the complete conditional distribution to obtain the

(m + 1)st draw of conditional response probabilities λkj , k = 1, . . . ,K, j =
1, . . . , J :

λ
(m+1)
kj ∼ Beta

(
1 +

N∑
i=1

xij zijk,1 +
N∑

i=1

(zijk − xij zijk)

)
.(12)

– Sampling g. We use the complete conditional distribution to obtain the (m +
1)st draw of membership scores gi , i = 1, . . . ,N :

g
(m+1)
i ∼ D

(
α1 +

J∑
j=1

zij1, . . . , αK +
J∑

j=1

zijK

)
.(13)

– Sampling α0 and ξ . Here we require Metropolis–Hastings steps.
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Sampling α0. Let the prior p(α0) be Gamma(τ, β) with shape parameter τ and
inverse scale parameter β . The full conditional distribution for α0, up to a constant
of proportionality, is

p(α0| · · ·) ∝ ατ−1
0 exp

[
−

(
β −

K∑
k=1

ξk

N∑
i=1

loggik

)
α0

]
(14)

×
[

�(α0)

�(ξ1α0) · · ·�(ξKα0)

]N

,

where · · · in p(α0| · · ·) stands for all other variables.
In order to obtain the (m + 1)st draw of α0 with the Metropolis–Hastings algo-

rithm, we

1. Draw a candidate point α∗
0 from a proposal distribution p(α∗

0 |α(m)
0 );

2. Calculate the proposal ratio

rα0 = p(α∗
0 | · · ·)p(α

(m)
0 |α∗

0)

p(α
(m)
0 | · · ·)p(α∗

0 |α(m)
0 )

;

3. Assign α
(m+1)
0 = α∗

0 with probability min{1, rα0}, otherwise assign α
(m+1)
0 =

α
(m)
0 .

We take the proposal distribution p(α∗
0 |α(m)

0 ) to be gamma with the expected

value set at the value of the last draw, α
(m)
0 , and the shape parameter ω > 1. The

inverse scale parameter for the proposal distribution is then ω/α
(m)
0 , where ω plays

the role of the tuning parameter for the Metropolis–Hastings step. The proposal
ratio for the (m + 1)st draw of α0 is the product of the likelihood component and
the component that accounts for the asymmetric proposal distribution:

rα0 = rL
α0

· rA
α0

,

where

rL
α0

=
(

α∗
0

α
(m)
0

)τ−1

exp

[
−

(
β −

K∑
k=1

ξk

N∑
i=1

loggik

)(
α∗

0 − α
(m)
0

)]

×
[
�(α∗

0)�(ξ1α
(m)
0 ) · · ·�(ξKα

(m)
0 )

�(α
(m)
0 )�(ξ1α

∗
0) · · ·�(ξKα∗

0)

]N

,

rA
α0

=
(

α
(m)
0

α∗
0

)2ω−1

exp
[−ω

(
α

(m)
0 /α∗

0 − α∗
0/α

(m)
0

)]
.
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Sampling ξ . The full conditional distribution for ξ , up to a constant of propor-
tionality, is

p(ξ | · · ·) ∝ exp

[
α0

K∑
k=1

ξk

N∑
i=1

loggik

][
�(α0)

�(ξ1α0) · · ·�(ξKα0)

]N

,(15)

where · · · in p(ξ | · · ·) stands for all other variables.
The Metropolis–Hastings sampling algorithm to obtain the (m + 1)st draw of ξ

has three steps:

1. Draw a candidate point ξ∗ from a proposal distribution p(ξ∗|ξ (m));
2. Calculate the proposal ratio

rξ = p(ξ∗| · · ·)p(ξ (m)|ξ∗)
p(ξ (m)| · · ·)p(ξ∗|ξ (m))

;

3. Assign ξ (m+1) = ξ∗ with probability min{1, rξ }, otherwise assign ξ (m+1) =
ξ (m).

We chose the proposal distribution for ξ to be Dir(ξ∗|ηKξ
(m)
1 , . . . , ηKξ

(m)
K ). The

proposal distribution is centered at the previous draw and has reasonably small
variance for each component, ξ

(m)
k (1− ξ

(m)
k )/(ηK +1). The proposal ratio for ξ is

rξ = exp

[
α0

K∑
k=1

N∑
i=1

loggik

(
ξ∗
k − ξ

(m)
k

)][
�(ξ

(m)
1 α0) · · ·�(ξ

(m)
K α0)

�(ξ∗
1 α0) · · ·�(ξ∗

Kα0)

]N

× �(ηKξ
(m)
1 ) · · ·�(ηKξ

(m)
K )

�(ηKξ∗
1 ) · · ·�(ηKξ∗

K)
· (ξ

(m)
1 )ξ

∗−1 · · · (ξ (m)
K )ξ

∗−1

(ξ∗
1 )ξ

(m)−1 · · · (ξ∗
K)ξ

(m)−1
,

where η is a tuning parameter.

4.2. Variational approximation. Variational approximation methods provide
an alternative estimation approach by approximating a joint posterior distribution
when the likelihood is intractable [see Jordan et al. (1999)]. They assume the model
parameters are unknown but fixed. For the GoM model, the integrated likelihood
for an individual

p(x|α,λ) =
∫ J∏

j=1

(
K∑

k=1

gkλ
xj

kj (1 − λkj )
1−xj

)
Dα(dg),(16)

does not have a closed form solution (the individual index i is omitted to sim-
plify the notation). To compute the joint posterior distribution p(g, z|x,α,λ) of
the GoM scores g = (g1, . . . , gK) and the latent classifications variables z =
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(z1, . . . , zJ ), we consider N independent fully factorized joint distributions, one
for each individual:

q(g, z|γ,φ) = q(g|γ )

J∏
j=1

q(zj |φj ).

Here, (γ,φ) is a set of free variational parameters, where γ = (γ1, . . . , γK) and φ
is the matrix φjk , j = 1, . . . , J , k = 1, . . . ,K . Assuming q(g|γ ) = Dir(g|γ ) and
q(zj |φj ) = Mult(1, φj1, . . . , φjK), we employ Jensen’s inequality to approximate
the log-likelihood by a lower bound which becomes a function of the variational
parameters, (γ,φ).

We derive (pseudo) maximum likelihood estimates of the model parameters
(α,λ) by using an approximate EM algorithm. In the E-step, we obtain values
of variational parameters (γ,φ) that yield the tightest possible lower bound. In the
M-step, we maximize the lower bound with respect to the parameters of the model,
(α,λ).

Given the current estimates of the model parameters (α,λ), the E step consists
of updates:

φjk ∝ λ
xj

kj (1 − λkj )
1−xj ×

(
�(γk) − �

(
K∑

k=1

γk

))
,(17)

γk = αk +
J∑

j=1

φjk.(18)

where ψ(·) is the digamma function.
Given the current values of the free parameters (γ,φ), we find (pseudo) MLE

of λ in a closed form:

λkj ∝
N∑

i=1

φijkxij ,

where i is the individual index. Since no closed form solution is available for the
pseudo MLE of α, we need to use an iterative method to maximize the lower bound
with respect to α. The gradient and the Hessian for the Newton–Raphson algorithm
are as follows:

∂L

∂αk

= N

(
�

(
K∑

k=1

αk

)
− �(αk)

)
+

N∑
i=1

(
�(γik) − �

(
K∑

k=1

γik

))
,(19)

∂L

∂αk1αk2

= N

(
δk1=k2 · � ′(αk1) − � ′

(
K∑

k2=1

αk2

))
.(20)

Computations for the variational approximation are simpler and less time-
consuming than for MCMC, but the quality of approximation depends on a specific
functional form of the likelihood.
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The C code for our implementation of the estimation algorithms for the GoM
model is provided as part of supplemental material available at http://imstat.org/
aoas/supplements.

5. Extended GoM mixture and its estimation. Although there is no time
dimension in the basic GoM model, the latent class representation essentially de-
scribes individuals as stochastic “movers.” Here, individuals may move between
extreme profiles when they respond to different items on the questionnaire. With
this observation, it is natural to extend the GoM model to incorporate potential
“stayers,” or those individuals that provide item responses in a deterministic fash-
ion, analogous to longitudinal mover-stayer models [Blumen, Kogan and Hol-
land (1955)]. In the extended GoM mixture model, one compartment represents
“movers” determined by the GoM part and other compartments represent different
kinds of “stayers” determined by specific extreme profiles or by particular cells in
the contingency table. The extended GoM model can also be seen as a combina-
tion of latent class and GoM mixture modeling analogous to the extended finite
mixture model by Muthen and Shedden (1999).

For our analysis in this paper, we introduce one compartment of “stayers” for
a specific cell in the table, and leave the question of choosing the number and na-
ture of compartments open. Our choice of the “stayers” cell was motivated by two
observations. First, in the functional disability data from the NLTCS, the cell that
corresponds to the healthy people who report no disabilities is particularly difficult
to fit with the standard GoM model. Thus, the excess of healthy people can be
thought of as a set of outliers with respect to the standard GoM model. Second, it
is known that elderly people move not only from being healthy to being disabled
but also from being disabled to being healthy [Gill, Hardy and Williams (2002),
Gill and Kurland (2003), Lynch, Brown and Harmsen (2003), Manton (1988)].
Therefore, even though the NLTCS participants are initially screened for chronic
disability, it is reasonable to assume the presence of healthy “stayers” in the data.
Accordingly, we assume that some proportion of people has zero probability to
report a functional activity problem at the time of the survey and that everyone
else has nonzero chances to report a functional disability problem according to
the basic GoM model. Our specific example of extended GoM mixture model
can also be thought of as analogous to zero-inflated Poisson regression [Lambert
(1992)].

Parameter estimation for the compartmental GoM model would be identical to
the estimation for the standard GoM model if we knew how many individuals are
healthy “stayers.” Given that the number of healthy “stayers” is not observed, we
need to modify parameter estimation taking into account a deterministic compo-
nent.

More formally, we assume existence of: (1) a deterministic compartment of
healthy individuals and (2) a stochastic GoM compartment. We denote by θ =
(θ1, θ2) the respective weights such that θ1 + θ2 = 1. Assume individuals in the

http://lib.stat.cmu.edu/aoas/126/
http://lib.stat.cmu.edu/aoas/126/
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healthy compartment have no disabilities with probability 1. The distribution of
responses for “movers” is given by the GoM model with parameters α,λ.

We further augment the data with compartmental indicators to derive the follow-
ing modifications for the MCMC sampling algorithm. Let N be the total number of
individuals in the sample and n

(m)
2 be the expected value of the all-zero cell count

for the GoM compartment at the mth iteration. The expected value of the all-zero
cell count from the healthy compartment, n

(m)
1 , can be obtained by subtracting

n
(m)
2 from the observed all-zero cell count. Denote the number of individuals with

at least one positive and at least one zero response in their response pattern by nmix.
The total number of individuals from the GoM compartment at the mth iteration
is then n

(m)
2 + nmix. We let the prior distribution for compartmental weights θ be

uniform on the simplex, and update θ at the end of the posterior step with

θ
(m+1)
1 = θ

(m)
1 + n

(m)
2 − n

(m+1)
2

N
,(21)

θ
(m+1)
2 = n

(m+1)
2 + nmix

N
= 1 − θ

(m+1)
1 .(22)

We can easily generalize the algorithm to more than two compartments.

6. Model selection: Choice of dimensionality.

Choice of dimensionality: Overview. Statistical model selection methods include
the Pearson’s chi-square goodness of fit test [Pearson (1900)], cross-validation
techniques [Hastie, Tibshirani and Friedman (2001)], penalized likelihood criteria
such as the Akaike information criterion (AIC) [Akaike (1973)], the Bayesian In-
formation Criterion (BIC) [Pelleg and Moore (2000), Schwartz (1978)] and Bayes
factors [Kass and Raftery (1995)], reversible jump MCMC techniques [Green
(1995)], deviance information criteria (DIC) [Spiegelhalter et al. (2002)] and more
recent simulation-based analogues to AIC and BIC, called Akaike Information
Criterion Monte Carlo (AICM) and Bayesian Information Criterion Monte Carlo
(BICM) [Raftery et al. (2007)], among others.

Some of these criteria, AIC and BIC in particular, have been criticized as being
not applicable for assessing the number of mixture components due to violations
of the regularity conditions [McLachlan and Peel (2000)]. However, in spite of
this, researchers continue to apply both criteria and to study their performance in
a mixture context. Findings in population-level mixture models suggest that AIC
tends to overestimate the correct number of components [Celeux and Soromenho
(1996)], while BIC shows better results [Leroux (1992), Roeder and Wasserman
(1997)].

Questions of dimensionality choice in mixed membership or individual-level
mixture models have been approached by several authors [Airoldi et al. (2007),
Blei, Ng and Jordan (2001), Erosheva (2002), Griffiths and Steyvers (2004),
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Pritchard, Stephens and Donnelly (2000)]. With one recent exception [Airoldi et
al. (2007)], however, comparative performances of different selection criteria were
not examined. Here, we provide an overview of several computationally feasible
criteria and present results from a simulation study where we compare their per-
formance in the context of the GoM model.

Model selection criteria: Overview. The Pearson chi-square test is one of the
most common goodness-of-fit tests. It is not easily applicable to large sparse ta-
bles because of a large number of very small counts and, in the present context,
because of the way in which the estimation is done, even if sparseness wasn’t a
problem, it wouldn’t follow the usual chi-square distribution. We find it instruc-
tive, nonetheless, to examine deviations between expected and observed counts
for cells with large observed values via the sum of squared Pearson residuals, see
Bishop, Fienberg and Holland (1975). We refer to this criterion as the truncated
sum of squared Pearson residuals (SSPR) criterion or χ2

tr.
To calculate the truncated SSPR criterion, one needs to obtain expected values

for selected response patterns r = (r1, . . . , rJ ), where rj = 0 or 1. For example,

using draws from the posterior distribution, α
(s)
k and λ

(s)
kj , s = 1, . . . , S, and a draw

g(s) = (g
(s)
1 , . . . , g

(s)
K ) from Dir(α(s)), the expected count for response pattern r

can be computed as

Expected Count =
(

1

S

S∑
s=1

J∏
j=1

(
K∑

k=1

g
(s)
k

(
λ

(s)
kj

)rj (1 − λ
(s)
kj

)1−rj

))
× N.

Note that label switching could present a problem for calculating posterior means
and the model selection criteria based on them [Stephens (2000)].

For the variational approximation, the expected count for response pattern r can
be obtained as follows. Let α̂ and λ̂ be the pseudo MLE obtained via variational
approximation and let g(s), s = 1, . . . , S, be draws from Dir(α̂), for some large S

(e.g., S = 5000). Then, the expected count for response pattern r can be computed
as above but with λ̂kj in place of λ

(s)
kj and with g

(s)
k computed using Dir(α̂).

A general formulation of the BIC is based on the log-likelihood �(x; θ) and a
maximum likelihood estimate θ̂ :

BIC = −2�(x; θ̂ ) + p log(N),

where p is the number of free parameters in the model and N is the number of data
points. To obtain the BIC for the GoM model, we need to evaluate the integrated
log-likelihood �(x; θ) at the maximum likelihood estimate of the parameter vector
θ = (λ, α). Since the GoM integrated likelihood is intractable, we use variational
methods described in Section 4.1 to obtain an approximation to the BIC:

B̃IC = −2�̃(x; λ̂, α̂) + p log(N),
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where λ̂ and α̂ are the (pseudo) maximum likelihood estimates obtained via varia-
tional approximation and �̃(x; λ̂, α̂) is the lower bound on the log-likelihood. Mod-
els with larger values of B̃IC are preferable.

Bayesian measures of model complexity and fit, namely, DIC, AICM, and
BICM, are analogous to AIC and BIC but are based solely on posterior simula-
tion. While these criteria are attractive because of their computational simplicity
for a given MCMC simulation, they may present other challenges such as choice
of the parameters in focus [Spiegelhalter et al. (2002)].

A general formulation of DIC is based on the concepts of Bayesian deviance
and the effective number of parameters. Bayesian deviance is defined as

D(θ) = −2�(θ) + 2 log(h(x)),

where �(θ) = logp(x|θ) and h(x) is a function of the data only. Defining the
effective number of parameters as

pD = D(θ) − D(�θ),

we compute DIC as follows:

DIC = D(�θ) + 2pD.

If we focus on GoM parameters θ = (g,λ), we can compute a version of DIC
directly using S draws from the posterior distribution, g

(s)
ik and λ

(s)
kj , s = 1, . . . , S.

The two pieces that we need to compute for DIC are

D(�g,λ) = −2
N∑

i=1

J∑
j=1

log

(
K∑

k=1

gikλkj
xij

(1 − λkj )
1−xij

)
,

where gik = 1
S

∑S
s=1 g

(s)
ik , and λkj = 1

S

∑S
s=1 λ

(s)
kj , and,

D(g,λ) = −2
1

S

S∑
s=1

N∑
i=1

J∑
j=1

log

(
K∑

k=1

g
(s)
ik

(
λ

(s)
kj

)xij
(
1 − λ

(s)
kj

)1−xij

)
.

Models with smaller values of DIC are preferable.
AICM is a penalized version of the posterior mean of the log-likelihoods

AICM = 2
(
�(θ) − s2

�(θ)

)
,

that can be obtained using only the draws from the posterior simulation [Raftery
et al. (2007)]. For the GoM model, the two pieces we need to compute are

�(θ) = 1

S

S∑
s=1

�
(
θ(s)) and s2

� = 1

S

S∑
s=1

(
�
(
θ(s)) − �(θ)

)2
,

where θ = (g,λ). Notice that �(θ) = −D(θ)/2.
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7. Simulation study. We conducted a simulation study to investigate perfor-
mance of the MCMC and variational approximation methods with respect to para-
meter recovery and dimensionality selection. Here, we briefly report main findings
from this study.

We selected data generating designs to reflect several important features of func-
tional disability data. Most noticeably, contingency tables on disability data often
have a large number of zero or very small observed cell counts and several very
large cell counts. Large cell counts typically include the all-zero and the all-one
response patterns.

We considered 3- and 7-profile data generation scenarios. In the first scenario,
we generated 5,000 individual responses on 16 binary items using the GoM model
with K∗ = 3 extreme profiles. We chose the profiles to be considered as “healthy,”
“disabled” and “intermediate” by their conditional response probabilities. Respec-
tive proportions of the profiles were 0.7,0.2 and 0.1, and the hyperparameter was
set at α0 = 0.25 to reflect the fact that individual responses to most items come
from one extreme profile.

In the second scenario, we generated 5,000 individual responses to 10 bi-
nary items using the GoM model with 7 extreme profiles. We chose conditional
response probabilities for 4 profiles so that they could be considered as “very
healthy,” “healthy,” “disabled” and “very disabled.” The other 3 intermediate pro-
files did not follow the ordering. Profile proportions ranged from 0.05 for one of
the intermediate profiles to 0.4 for the “healthy” profile, and the hyperparameter
was set at α0 = 0.2.

Under both scenarios, we carried out parameter estimation using the MCMC
and variational approximation methods for the true values of K∗. The variational
methods consistently provided better estimation for the observed count at the all-
zero pattern, however, the MCMC approach yielded an overall better fit for the sec-
ond scenario with K∗ = 7. For K∗ = 3, conditional probabilities for the “healthy”
and “disabled” profiles were recovered very well with both estimation methods.
For the intermediate profile, the variational approximation consistently overesti-
mated and the MCMC consistently underestimated the conditional response prob-
abilities. Parameter recovery was noticeably better for K∗ = 3 than for K∗ = 7.
This could indicate that the number of items and the sample size in the second
scenario were too small to provide reliable distinction among different grades of
membership, given the selected extreme profiles and hyperparameter values. Vari-
ational estimates of the profiles’ proportions were closer to the true values than
corresponding MCMC estimates under both scenarios. In addition, the MCMC
estimates of profile proportions had smaller range than the VA estimates.

For the MCMC method, given a sufficiently long run, the starting values of λ

did not seem to influence the results, up to a relabeling of the extreme profiles. For
smaller values of K , the posterior means obtained through MCMC simulations
were very similar for all starting points considered. For this reason we did not
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TABLE 1
Choices of optimal K according to different model selection criteria

Criterion Method K∗ = 3 K∗ = 7

χ2
tr VA 3 7

χ2
tr MCMC 5 7

BIC VA 2 7
DIC MCMC 5 9
AICM MCMC 3 7
BICM MCMC 2 5

use several starting points in higher dimensional cases that would have required
substantial increases of computing time.

To investigate performance of different fit indices, we fitted the generated data
sets using both the MCMC and variational methods separately for several values
of K . For true K∗ = 3, models fitted with K = 2,3,4,5 were considered; for
true K∗ = 7, models fitted with K = 5,7,9 were considered. Table 1 summarizes
results of six goodness-of-fit criteria, two of which rely on the variational approx-
imation method, while the rest rely on the full MCMC calculations. The values
of χ2

tr were calculated for response patterns with observed counts ≥ 30 in the first
case and ≥ 40 in the second case.

We see that χ2
tr obtained with the variational method and AICM criteria perform

well for both data generating scenarios, while BICM underestimates and DIC over-
estimates the true number of profiles in both cases. The variational approximation
to BIC underestimates the model complexity for the 3-profile case, while it points
to the true optimal number of profiles in the 7-profile case.

8. Analysis of the NLTCS functional disability data. Data on 16 binary
ADL and IADL items, pooled across four survey waves, 1982, 1984, 1989 and
1994, form a 216 contingency table.2 The total sample size is 21,574. Item mar-
ginal frequencies range from 0.1 for difficulty with eating to 0.7 for doing heavy
housework. About 80% of cells in the contingency table have observed counts that
are less than 5; 24 cells have observed counts greater than 100. These 24 most
frequent response patterns account for 42% of the total observations (Table 2).

From an interpretative standpoint, it is often desirable to have data that satisfy
latent unidimensionality, as in the well-known Rasch model. We formally tested
the hypothesis of latent unidimensionality, following the approach of Holland
and Rosenbaum (1986), using series of Mantel–Haenszel tests to detect negative
conditional association among the 16 variables. We concluded that no monotone

2The full table is available for downloading from STATLIB at http://lib.stat.cmu.edu/ under the
label NLTCS.

http://lib.stat.cmu.edu/aoas/126/
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TABLE 2

Expected cell counts for 24 most frequent response patterns under the basic GoM model with K profiles

Number of latent profiles K

n Response pattern Observed 3 4 5 6 7 8 9 10 15

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3853 2569 2055 2801 2889 3093 2941 3269 3016 3031
2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 216 225 172 177 186 180 180 202 205 187
3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1107 1135 710 912 993 914 937 1010 944 940
4 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 188 116 76 113 200 199 181 190 198 201
5 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 122 64 88 58 199 90 89 116 127 127
6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 351 344 245 250 274 274 259 331 303 357
7 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 206 20 23 116 86 80 137 116 111 149
8 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 303 200 126 324 255 236 213 273 264 325
9 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 182 44 71 170 169 162 200 172 187 219

10 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 108 51 39 162 105 85 117 97 108 116
11 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 106 32 94 94 123 125 133 142 157 136
12 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 195 219 101 160 46 25 24 25 31 27
13 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 198 127 111 108 341 170 169 189 200 163
14 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 196 41 172 90 104 224 214 174 187 160
15 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 123 96 86 132 131 120 109 95 108 110
16 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 176 136 162 97 67 167 149 152 167 157
17 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 120 144 104 41 57 47 96 75 72 80
18 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 101 127 90 54 41 68 72 70 74 124
19 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 102 44 38 22 18 18 85 103 85 61
20 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 107 88 104 96 84 87 43 37 31 73
21 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 104 269 239 202 52 50 50 63 53 66
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 164 214 246 272 274 276 224 166 143 115
23 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 153 291 261 266 250 230 235 189 167 137
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 660 233 270 362 419 418 582 612 474 423
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unidimensional latent structure model (e.g., one-factor or unidimensional logistic
item response models) can provide an acceptable fit for the NLTCS data on 16
ADL/IADL items. Having rejected latent unidimensionality, our next step is to use
the GoM analysis to determine characteristics and the number of disability profiles
in the data.

The most apparent feature of the data is the very large observed count of
“healthy” people. Almost 18% report no disabilities (Table 2), despite the fact
that the majority of the NLTCS survey participants had been screened-in earlier
as chronically disabled. A large fraction of “healthy” respondents includes disabil-
ity recoveries, as well as survey supplements of the healthy and oldest-old in the
1994 wave. Since most of the “healthy” individuals have been identified earlier as
chronically disabled, it is important to incorporate these responses in our model.
We use the compartmental GoM model to estimate weights of deterministically
healthy and partially disabled components. In doing so, we allow the extended
GoM model to fit the observed count for the all-zero pattern. In addition, we ex-
amine the impact of the introduction of the “healthy” compartment on parameter
estimates and on model choice.

8.1. GoM analysis.

MCMC sampling. We applied the fully Bayesian approach from Section 4 to es-
timate the posterior distribution of the GoM model parameters with the number of
extreme profiles ranging from K = 3 to K = 15. Extreme profiles for K = 2 were
identified as “healthy” and “disabled,” making the K = 2 GoM model a monotone
unidimensional latent structure model. Having rejected latent unidimensionality
earlier, we only considered results for K = 3 and beyond in the rest of our analy-
sis.

We expected individual vectors of membership scores to be dominated by one
component, hence, we set the prior for α0 to be Gamma(2,10). We chose the
prior for the relative proportions ξ to be uniform on the simplex and put uniform
independent priors on the conditional response probabilities λ.

We fit the models sequentially in the order of K . For the GoM model with K

extreme profiles, we set starting values for λ to the estimated conditional response
probabilities from the latent class model with K classes. We took the posterior
mean of α0 from the GoM model with K − 1 extreme profiles to be the starting
value for α0 for the GoM model with K extreme profiles. We chose starting values
for the hyperparameters ξ to be equal to the latent class weights estimated from
the K class model.

For each value of K , we adjusted the tuning parameters ω (for α0) and δ (for ξ )
to reach a compromise between the acceptance rates of the Metropolis–Hastings
steps and the amount of mixing. The acceptance rates for α0 and ξ varied respec-
tively from 11% and 28% in lower dimensions to 5% and 9% in higher dimensions.
Since the acceptance rates were low, we introduced thinning parameter q and kept
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every qth draw and discarded the rest; q varied from 10 in lower dimensions to
140 in higher dimensions.

Choosing the length of a burn-in period did not appear to be a problem with our
data. The chains generally did not experience long burn-in periods, except when
starting values for the hyperparameters were very far from the posterior means.
The burn-in period varied from 10,000 iterations in lower dimensions to 60,000 in
higher dimensions.

For each parameter, we monitored univariate convergence via Geweke diagnos-
tics, and Heidelberger and Welch stationarity and interval halfwidth tests, available
from the CODA package [Best, Cowles and Vines (1996)]. In addition, we visu-
ally examined plots of successive iterations. To assess convergence of the mul-
tivariate posterior, we examined successive values of the log-likelihood with the
same set of methods. The chains needed far fewer iterations to converge in poste-
rior means than they needed to converge in distribution for all parameters and the
log-likelihood.

We ran all chains long enough to reach acceptable convergence levels. We had
to consider larger number of iterations for higher values of K to accommodate
slow convergence of the hyperparameters due to slow mixing of the chains. The
additional iterations needed to satisfy convergence criteria for hyperparameters
(after the other parameters have reached convergence) had negligible effect on the
posterior means of the conditional response probabilities.

Model selection. Table 2 provides 24 response patterns with observed cell counts
≥ 100 and corresponding expected counts obtained using draws from the posterior
distribution for each K = 3, . . . ,9,10,15. We observe that the model with K = 9
replicated the marginal pattern abundance best. It is especially evident that models
with K = 10 and K = 15 did not fit the three largest cell counts as well as the
9-profile model.

To select the number of profiles, we used all of the criteria that performed well
in our simulation study described in Section 6 (the truncated SSPR criterion, the
variational approximation to the BIC, and the AICM). We also calculated DIC for
a further comparison, although it overestimated the correct number of profiles in
the simulation study.

Table 3 gives values of the truncated SSPR criterion, χ2
tr, for three different

levels of truncation, over cells with observed counts ≥ 100,25 and 10. All three
criteria indicate that the K = 9 model has a better fit in an absolute sense, that is,
without correcting for differences in the degrees of freedom.

Figure 1 shows plots of the DIC, the BIC approximation, the AICM and the
truncated SSPR criterion for the 100 level of truncation. All criteria agree that the
optimal number of profiles is greater than 7. Recall that in the 7-profile simulation
study the AICM, the BIC approximation, and the truncated SSPR criterion all
obtained the correct number of components. For the NLTCS data, these criteria
point to 7, 10 and 9 profiles, respectively. Although the DIC overestimated the
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TABLE 3
Truncated sum of squared Pearson residuals, χ2

tr, for the basic GoM model with K profiles, with
different levels of truncation

Number of latent profiles K

Level 3 4 5 6 7 8 9 10 15

≥100 4889 5032 1840 2202 2458 1908 1582 1602 1604
≥25 14562 10458 6153 4337 3566 2194 1803 1997 1946
≥10 52288 20625 10839 7766 6251 4534 3931 4276 4258

correct number of profiles in our simulation study, it indicates that 9 profiles is the
optimal number for the NLTCS functional disability data. The value of K = 9 is
in agreement with the results from truncated SSPR, but is less than the optimal
choice of K = 10 identified by BIC.

We used the following steps to verify that no label switching had occurred in
the MCMC chains. First, we postulated that label switching occasions should be
visible as jumps in trace plots of the MCMC iterations when the extreme profiles
are well separated in the multidimensional space. We found extreme profiles to

FIG. 1. Goodness-of-fit criteria for the basic GoM model.
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TABLE 4
Posterior mean estimates for the basic GoM model with 9 profiles

Extreme profile number (k)

1 2 3 4 5 6 7 8 9

λ̂k,1 0.001 0.035 0.002 0.005 0.239 0.002 0.738 0.001 0.002
λ̂k,2 0.001 0.071 0.003 0.269 0.891 0.437 0.967 0.001 0.001
λ̂k,3 0.001 0.285 0.001 0.706 0.994 0.875 0.976 0.001 0.004
λ̂k,4 0.009 0.158 0.029 0.076 0.674 0.080 0.970 0.004 0.013
λ̂k,5 0.070 0.550 0.171 0.453 0.974 0.627 0.998 0.039 0.266
λ̂k,6 0.011 0.114 0.026 0.208 0.774 0.317 0.894 0.005 0.026
λ̂k,7 0.008 0.985 0.973 0.607 0.999 0.948 0.999 0.007 0.761
λ̂k,8 < 0.001 0.524 0.019 0.005 0.669 0.034 0.955 < 0.001 0.011
λ̂k,9 0.001 0.909 0.093 0.034 0.864 0.412 0.997 0.001 0.208
λ̂k,10 0.001 0.822 0.014 0.001 0.694 0.067 0.998 0.001 0.055
λ̂k,11 0.002 0.977 0.080 0.077 0.920 0.856 0.995 0.002 0.752
λ̂k,12 0.042 0.692 0.146 0.933 0.950 0.998 0.936 0.076 0.448
λ̂k,13 0.037 0.836 0.109 0.219 0.838 0.847 0.894 0.037 0.849
λ̂k,14 0.012 0.626 0.013 0.002 0.230 0.144 0.908 0.007 0.282
λ̂k,15 0.022 0.489 0.055 0.029 0.345 0.068 0.909 0.010 0.127
λ̂k,16 0.024 0.386 0.021 0.007 0.061 0.027 0.768 0.017 0.099
ξ̂k 0.095 0.107 0.111 0.114 0.115 0.114 0.114 0.114 0.114
α̂0 0.095

ADL items: (1) eating, (2) getting in/out of bed, (3) getting around inside, (4) dressing, (5) bathing,
(6) using toilet. IADL items: (7) doing heavy housework, (8) doing light housework, (9) doing laun-
dry, (10) cooking, (11) grocery shopping, (12) getting about outside, (13) traveling, (14) managing
money, (15) taking medicine, (16) telephoning.

be well separated in the multidimensional space for all K < 9. That is, there was
at least one item for which posterior means were at least two standard deviations
away from each other for each pair of the profiles (Table 4). We then visually
monitored chains to identify jumps that could correspond to label permutations
in the posterior distribution. We observed no jumps for models with K < 9 and
concluded that no label switching occurred in those chains.

We weren’t able to carry out analogous assessments for the GoM models with
K = 9 and higher since the profiles were no longer well separated (compare, e.g.,
profiles k = 1 and 8 in Table 4.3) It is possible that label-switching did occur in
those cases which would question validity of posterior mean estimates and the
use of DIC and AICM. However, given that the approximate BIC, which is not

3Standard deviation estimates are provided as part of supplemental material available at
http://imstat.org/aoas/supplements.

http://lib.stat.cmu.edu/aoas/126/
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impacted by label switching, indicated K∗ = 10, a choice of an optimal K around
that value seems reasonable.

We examined the estimated profiles for K = 7 and K = 9 GoM models. Con-
trary to our expectations, we did not find the interpretation of the 7-profile model
to be more appealing from a substantive point of view. Therefore, we report the
estimated profiles for the 9-profile GoM model that is identified as the optimal
by truncated SSPR criteria. Table 4 provides posterior means and standard devi-
ations for the conditional response probabilities, λkj = pr(xj = 1|gk = 1); these
are probabilities of being disabled on activity j for a complete member of ex-
treme profile k. Estimation via variational methods yielded similar results in terms
of profile interpretation, although variational estimates of conditional probabilities
were generally closer to the boundaries of the parameter space.

Given that the fit of the all-zero pattern is still not very good for the 9-profile
GoM model, we turn to the extended GoM mixture model, incorporating a “deter-
ministically” healthy compartment.

8.2. The extended GoM mixture analysis.

MCMC sampling. We carried out the extended GoM mixture analysis for K =
3, . . . ,9,10, as described in Section 5. We chose initial values, ran MCMC sam-
plers, and determined convergence similarly as in Section 8.1. We set an initial
value for the weight of the healthy compartment θ1 to be a positive fraction that is
less than the observed proportion of individuals with all-zero responses.

Model selection. Table 5 provides the expected and observed cell counts for the
23 most frequent response patterns; we excluded the all-zero pattern since the ex-
tended GoM mixture fits it precisely. It is difficult to choose among K = 7,8 or 9
based on the expected counts in Table 5, but the model for K = 8 shows the best fit
as indicated by truncated SSPR over the differing levels of truncation in Table 6.

Analogously to the standard GoM model, we computed a version of AICM and
a version of DIC obtained directly from the MCMC output. The AICM plot in
Figure 2 picks K∗ = 7 profiles, while the DIC plot in Figure 2 suggests the choice
of K∗ = 8 profiles for the extended GoM mixture model, which is consistent with
the SSPR selection. We therefore examine the 8-profile extended GoM mixture
model.

Table 7 provides the conditional response probabilities for the 8 profiles that
we interpret in detail at the end of this section.4 Similarly to results from the stan-
dard GoM model with 9 profiles, estimated profile weights ξ̂k , k = 1, . . . ,K , are all
close to 1/K . Estimated proportions of the healthy compartment for K = 3, . . . ,10
range from 14% to around 16% (Table 8). The estimated proportion of determin-
istically healthy individuals from the 8-profile GoM mixture model is θ̂1 = 0.15
with the standard error of 0.006.

4Standard deviation estimates are provided as part of supplemental material available at
http://imstat.org/aoas/supplements.

http://lib.stat.cmu.edu/aoas/126/
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TABLE 5
Expected cell counts for 23 most frequent response patterns under extended GoM mixture model

with K profiles and a healthy compartment

Number of latent profiles K

n Response pattern Observed 3 4 5 6 7 8 9 10

2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 216 77 133 139 151 136 152 201 148
3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1107 587 661 835 856 799 897 933 845
4 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 188 142 162 203 204 197 194 258 167
5 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 122 209 59 118 84 86 113 173 97
6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 351 117 195 170 200 213 225 279 212
7 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 206 14 21 143 184 176 125 94 150
8 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 303 229 247 253 260 246 255 310 236
9 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 182 56 63 213 230 192 195 156 197

10 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 108 75 73 122 122 114 98 113 87
11 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 106 56 76 119 120 106 158 125 102
12 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 195 38 26 38 29 26 36 33 31
13 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 198 287 139 222 183 183 177 244 148
14 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 196 107 106 71 191 193 188 164 190
15 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 123 138 76 115 117 105 96 98 116
16 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 176 85 121 75 166 142 160 149 169
17 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 120 119 86 44 38 76 79 66 96
18 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 101 65 70 45 68 60 73 74 98
19 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 102 33 32 15 17 89 108 106 111
20 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 107 74 99 64 99 41 40 39 40
21 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 104 89 90 39 57 52 66 71 92
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 164 198 243 218 269 222 189 155 148
23 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 153 262 240 222 200 241 212 192 172
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 660 223 272 346 359 610 581 556 564

Comparison of results for the basic and the extended GoM mixture models. The
optimal dimensionality values identified by truncated SSPR, AICM and DIC cri-
teria for the extended GoM mixture model are one less than the correspond-

TABLE 6
Truncated sum of squared Pearson residuals, χ2

tr, for extended GoM mixture models with K profiles
and a healthy compartment, with different levels of truncation

Number of latent profiles K

Level 3 4 5 6 7 8 9 10

≥100 6169 4493 2541 2171 1666 1139 1265 1285
≥25 13611 8689 4605 4246 2582 1739 2211 2276
≥10 24638 14736 9120 6647 4678 3738 4028 4215
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FIG. 2. DIC (left) and AICM (right) for the GoM mixture model.

ing optimal values for the basic GoM model. The presence of the deterministic
healthy compartment therefore reduces the optimal number of profiles by one in
the NLTCS disability data.

The preferred dimensionality choices are K∗ = 9 and K∗ = 8 for the basic GoM
and extended GoM mixture models, respectively. Comparing DIC values for these
models, we observe that the extended GoM mixture model provides an improved
fit to the data. Comparing the estimated conditional response probabilities, we ob-
serve that all but two “healthy” profiles from the 9-profile basic GoM model match
seven estimated profiles from the 8-profile GoM mixture model closely (see k = 6
in Table 7 and k = 7 in Table 4, e.g.). Moreover, the two “healthy” profiles from
the 9-profile basic GoM model do not differ by much (see k = 1 and k = 8 in
Table 4); in fact, taking standard errors into account, they are identical.5 The un-
matched profile from the 8-profile GoM mixture model (k = 1 in Table 7) is the
new healthy profile.

To aid interpretation, we compare the profiles’ estimated conditional response
probabilities to the average probabilities for each functional disability item. We
would like to see by how much the frequency of disability occurrence for each
profile differs from the average frequency of occurrence of the same functional
disability in the population as a whole. Relative frequencies for profile k, obtained
as

λkj /λj , j = 1, . . . ,16,(23)

where λj is the marginal probability for item j , indicate how frequently each dis-
ability is observed for a complete member of the extreme profile in relation to the
population average (Table 9). For example, a complete member of extreme profile
6 is about seven times more likely to need help with eating than individuals in the
NLTCS sample need on average (11%).

5MCMC estimation in our simulation studies identified emerging identical, up to a standard error,
profiles when the number of fitted profiles was greater than the number of profiles that generated the
data.
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TABLE 7
Posterior mean estimates for the extended GoM mixture model with 8 extreme profiles and a

healthy compartment

Extreme profile number (k)

1 2 3 4 5 6 7 8

λ̂k,1 0.004 0.243 0.002 0.008 0.002 0.740 0.034 0.002
λ̂k,2 0.005 0.900 0.448 0.288 0.003 0.970 0.079 0.001
λ̂k,3 0.003 0.996 0.889 0.742 0.001 0.978 0.296 0.005
λ̂k,4 0.025 0.685 0.083 0.081 0.029 0.972 0.158 0.013
λ̂k,5 0.196 0.978 0.634 0.445 0.165 0.998 0.554 0.263
λ̂k,6 0.039 0.783 0.327 0.212 0.024 0.897 0.116 0.024
λ̂k,7 0.101 0.999 0.946 0.604 0.938 0.999 0.982 0.772
λ̂k,8 0.001 0.686 0.032 0.005 0.017 0.956 0.525 0.013
λ̂k,9 0.002 0.873 0.412 0.036 0.088 0.998 0.908 0.221
λ̂k,10 0.002 0.705 0.065 0.001 0.014 0.998 0.820 0.057
λ̂k,11 0.038 0.923 0.858 0.081 0.067 0.995 0.975 0.769
λ̂k,12 0.234 0.949 0.998 0.916 0.146 0.934 0.697 0.444
λ̂k,13 0.180 0.838 0.853 0.212 0.095 0.892 0.833 0.834
λ̂k,14 0.046 0.222 0.141 0.002 0.010 0.909 0.619 0.278
λ̂k,15 0.057 0.343 0.066 0.029 0.053 0.909 0.484 0.122
λ̂k,16 0.066 0.054 0.025 0.005 0.020 0.768 0.379 0.092
ξ̂ 0.104 0.120 0.126 0.129 0.130 0.130 0.130 0.130
α̂0 0.103
θ̂1 0.146

ADL items: (1) eating, (2) getting in/out of bed, (3) getting around inside, (4) dressing, (5) bathing,
(6) using toilet. IADL items: (7) doing heavy housework, (8) doing light housework, (9) doing laun-
dry, (10) cooking, (11) grocery shopping, (12) getting about outside, (13) traveling, (14) managing
money, (15) taking medicine, (16) telephoning.

Table 9 shows values for relative probabilities greater than 1 in red ink. Among
estimated extreme profiles in the 8-profile GoM mixture model, we find one
healthy profile (k = 1) with all relative frequencies less than the corresponding
population averages, while all other profiles have at least one activity with relative

TABLE 8
Posterior mean estimates and standard deviations of the proportion in the healthy compartment for

the extended GoM mixture model with K profiles

K 3 4 5 6 7 8 9 10

θ̂1 0.162 0.159 0.152 0.148 0.152 0.146 0.141 0.154
SD(θ̂1) 0.0024 0.004 0.0045 0.0054 0.0047 0.0061 0.006 0.0045
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TABLE 9
Functional disabilities average frequencies and relative frequencies by profile for the K = 8 GoM

mixture model and for two healthy profiles from the basic K = 9 GoM model (green labels).
Relative frequencies greater than 1 are in red

frequency greater than the population average. In addition, we find that each esti-
mated profile in the 8-profile GoM mixture model has a unique set of functional
disabilities with relative frequencies greater than the corresponding population av-
erages (no two rows in the table have identical placements of values in red ink).
We can say then that the estimated 8-profile GoM mixture solution defines a set
of admissible profiles in the terminology of Berkman, Singer and Manton (1989).
Moreover, taking into account standard errors of the estimates (not shown), we
notice that all 8 disability profiles are now well separated.
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FIG. 3. Functional disabilities relative frequencies for extreme profile pairs for the K = 8 GoM
mixture model. Horizontal lines indicate average frequencies in the sample.

Extreme profiles in black in Table 9 are the seven profiles from the 8-profile
GoM mixture model that match corresponding profiles from the 9-profile basic
GoM model closely. The two differing healthy profiles from the basic 9-profile
GoM model are shown in green ink, and the new healthy profile from the GoM
mixture model is in blue.

While Table 9 allows us to view all estimated profiles in relation to one other, it
is not easy to trace each profile separately on this plot. Pairwise plots in Figure 3
allow us to view individual profiles in detail. Profile k = 2 exhibits relative con-
ditional probabilities greater than 1 for all activities except managing money and
telephoning. Relative probabilities for transferring in/out of bed, dressing, toilet-
ing, and light housework for this profile are at least three times the corresponding
averages in the population.

Profiles k = 3 and k = 4 show patterns of frequencies that are somewhat similar
to each other, indicating frequent difficulties with mobility activities, with profile 3
having noticeably higher frequencies on laundry, grocery shopping, and traveling.

Profile k = 6 is the profile of seriously disabled with most of the disability fre-
quencies greater than 0.8 and greater than the corresponding average frequencies
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in the population. For a complete member of this profile, difficulties with each eat-
ing, dressing, light housework, managing money, taking medicine, and telephoning
occur at least four times more often than in the NLTCS sample on average. Profile
k = 5 points to low probabilities for most ADL and IADL items, but has a spike
at the probability for doing heavy housework. An individual corresponding to this
profile has difficulties with heavy housework one and a half times more often than
the average chronically disabled person. This is a significant increase, given that
the average frequency to experience difficulty with heavy housework is 0.68 in the
NLTCS sample.

Profile k = 8 shows disability frequencies that are slightly higher than the aver-
age for heavy housework, grocery shopping, traveling and managing money. Pro-
file k = 7 exhibits high frequencies for all IADL items, especially for those with
significant cognitive components such as cooking, managing money and telephon-
ing.

Having the profile interpretations at hand, we recall that they represent extreme
types of chronically disabled individuals aged 65 and over. Apart from an esti-
mated 15% of healthy individuals who have no disabilities with probability one,
each (partially disabled) person in the population can be described through a vec-
tor of membership scores for the eight estimated profiles. Since the hyperparameter
estimate α̂0 = 0.103 is small, the posterior distribution of grades of membership
is bathtub-shaped, which means that membership vectors are dominated by one
component for a majority of individuals. Even though we focus on the population
parameters in this paper, it is possible to use MCMC output to examine posterior
distributions for each individual. One could also compute posterior estimates of
various quantities of interest, such as the percentage of individuals in the sample
that have membership vectors dominated by one profile (with gk > 0.95, e.g.).

9. Discussion. Models that allow for specification of continuous latent con-
structs are increasingly popular among researchers in the social, behavioral, and
health sciences since many latent variables of interest can be thought of as hav-
ing fine gradations. When substantive theory justifies distinct latent categories as
well as continuous latent variables, approaches that describe heterogeneity of indi-
viduals with respect to those discrete categories often focus on class membership
probabilities. To give a few examples, Foody et al. (1992) emphasize the utility of
posterior probabilities of class membership in the area of remote sensing; Muthen
and Shedden (1999) model the class membership probability as a function of co-
variates in a study of alcohol dependence; Roeder, Lynch and Nagin (1999) address
a similar issue by modeling uncertainty in latent class assignments in a criminol-
ogy case study. The GoM model also addresses the issue of uncertainty in class
membership, but by using a different approach that directly incorporates degrees
of membership as model parameters.

Standard methods of estimating the GoM model described in Manton, Wood-
bury and Tolley (1994) do not rely on the GoM representation as a discrete
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mixture model and have questionable properties [Haberman (1995)], including
instability of MLEs due to ridges in the likelihood function which are often
present. The Bayesian GoM estimation algorithm developed originally in Ero-
sheva (2002, 2003), on which the present paper is largely based, leans heavily on
the structure provided by the latent class representation and has several advantages
over likelihood-based estimation procedures for the GoM model. It is worth em-
phasizing one more time that the developed latent class representation of the GoM
model places identical probability structure on observable variables and, hence,
cannot possibly be distinguished from the continuous mixture GoM model on the
basis of data [Erosheva (2006)].

Understanding the latent class representation of the GoM model, and thus view-
ing it as a special instance of individual-level or mixed membership models, makes
it easier to establish direct connections with models from other areas. For exam-
ple, although a clustering model with admixture developed for genetic data by
Pritchard, Stephens and Donnelly (2000) and the standard GoM model appear to
be quite different, they are both instances of the more general mixed-membership
representation. The generalization is flexible enough to accommodate models for
other data structures such as text documents [Erosheva, Fienberg and Lafferty
(2004)].

Our goal for the NLTCS analysis in this paper was to explore the population
characteristics of disability patterns as measured by the 16 ADL and IADL vari-
ables. Incorporation of covariates in the GoM modeling would be an obvious next
step of great interest to social science researchers.

The preferred number of components identified by statistical criteria represents
our best guess at the latent dimensionality in the NLTCS data under the GoM
mixture model with a deterministically healthy compartment. Our choice of di-
mensionality is based on a number of assumptions, some of which may be worth
exploring further. In particular, the assumption of local independence for the full
set of ADL and IADL variables may be questionable. One possible approach to
relax this assumption suggested by a reviewer is to focus on fitting the GoM mod-
els separately for the set of ADL and for the set of IADL variables, producing two
sets of correlated GoM scores. Such a split-GoM model may turn out to be more
appealing to disability researchers and to produce gains in interpretability. We ex-
pect to consider this and other forms of model simplification as we work toward
our ultimate goal of developing a longitudinal version of the GoM model.
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