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MEASURING SAMPLE QUALITY WITH DIFFUSIONS1
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Stein’s method for measuring convergence to a continuous target distri-
bution relies on an operator characterizing the target and Stein factor bounds
on the solutions of an associated differential equation. While such operators
and bounds are readily available for a diversity of univariate targets, few mul-
tivariate targets have been analyzed. We introduce a new class of characteriz-
ing operators based on Itô diffusions and develop explicit multivariate Stein
factor bounds for any target with a fast-coupling Itô diffusion. As example
applications, we develop computable and convergence-determining diffusion
Stein discrepancies for log-concave, heavy-tailed and multimodal targets and
use these quality measures to select the hyperparameters of biased Markov
chain Monte Carlo (MCMC) samplers, compare random and deterministic
quadrature rules and quantify bias-variance tradeoffs in approximate MCMC.
Our results establish a near-linear relationship between diffusion Stein dis-
crepancies and Wasserstein distances, improving upon past work even for
strongly log-concave targets. The exposed relationship between Stein factors
and Markov process coupling may be of independent interest.

1. Introduction. Consider a target probability distribution P with finite
mean, continuously differentiable density p and support on all of R

d . We will
name the set of all such distributions P1. We assume that p can be evaluated up to
its normalizing constant but that exact expectations under P are unattainable for
most functions of interest. We will therefore use a weighted sample, represented
as a discrete distribution Qn =∑n

i=1 q(xi)δxi
, to approximate intractable expec-

tations EP [h(Z)] with tractable sample estimates EQn[h(X)] =∑n
i=1 q(xi)h(xi).

Here, the support of Qn is a collection of distinct sample points x1, . . . , xn ∈ R
d ,

and the weight q(xi) associated with each point is governed by a probability mass
function q . We assume nothing about the process generating the sample points, so
they may be the product of any random or deterministic mechanism.
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Our ultimate goal is to develop a computable quality measure suitable for com-
paring any two samples approximating the same target distribution. More pre-
cisely, we seek to quantify how well EQn approximates EP in a manner that, at
the very least, (i) indicates when a sample sequence is converging to P , (ii) iden-
tifies when a sample sequence is not converging to P and (iii) is computationally
tractable. A natural starting point is to consider the maximum error incurred by the
sample approximation over a class of scalar test functions H,

dH(Qn,P ) � sup
h∈H

∣∣EP

[
h(Z)

]−EQn

[
h(X)

]∣∣.(1)

When H is convergence determining, the measure (1) is an integral probability
metric (IPM) [69], and dH(Qn,P ) converges to zero only if the sample sequence
(Qn)n≥1 converges in distribution to P .

While a variety of standard probability metrics are representable as IPMs [69],
the intractability of integration under P precludes us from computing most of
these candidate quality measures. Recently, Gorham and Mackey [36] sidestepped
this issue by constructing a class of test functions h known a priori to have zero
mean under P . Their resulting quality measure—the Langevin graph Stein dis-
crepancy—satisfied our computability and convergence detection requirements
(Desiderata (i) and (iii)) and detected sample sequence nonconvergence (Desidera-
tum (ii)) for strongly log concave targets with bounded third and fourth derivatives
[65].

Our first contribution is to show that the Langevin Stein discrepancy in fact de-
termines convergence for all smooth, distantly dissipative target distributions by
explicitly lower and upper bounding the Langevin Stein discrepancy by standard
Wasserstein distances. Distant dissipativity is a substantial relaxation of log con-
cavity that covers a variety of common non-log concave targets like Gaussian mix-
tures and robust Student’s t regression posteriors. This contribution greatly extends
the range of applicability of the Langevin Stein discrepancy.

Because heavy-tailed distributions are never distantly dissipative, as a second
contribution, we extend the computable Stein discrepancy framework of [36] to
accommodate heavy-tailed target distributions by introducing a new class of mul-
tivariate Stein operators based on general Itô diffusions. These operators can be
used as drop-in replacements for the commonly used Langevin operator in appli-
cations.

As a third contribution, we establish a near linear relationship between the intro-
duced diffusion Stein discrepancies S(Qn,T ,G‖·‖) and standard Ls Wasserstein
distances Ws,‖·‖(Qn,P ) � infX∼Qn,Z∼P E[‖X − Z‖s]1/s . Namely,

W1,‖·‖(Qn,P ) ≤ C1S(Qn,T ,G‖·‖)max
(
1, log

(
1/S(Qn,T ,G‖·‖ )

))
and

S(Qn,T ,G‖·‖) ≤ C2W2,‖·‖(Qn,P )

for constants C1,C2 > 0 determined by Theorem 7 and Proposition 8. This im-
proves upon prior analyses even in the case of strongly log concave targets.
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Our primary contribution underlies these three advances. By relating Stein’s
method to Markov process coupling rates in Section 2, we prove that every suffi-
ciently fast coupling Itô diffusion gives rise to explicit, uniform multivariate Stein
factor bounds on the derivatives of Stein equation solutions. Stein factor bounds
are central to Stein’s method of measuring distributional convergence, and while
a wealth of bounds are available for univariate targets (see, e.g., [10, 11, 89] for
explicit bounds or [57] for a recent review), Stein factors for continuous multivari-
ate distributions have largely been relegated to Gaussian [4, 9, 30, 38, 68, 70, 80],
Dirichlet [29] and strongly log-concave [65] target distributions. Our approach,
which exposes a general relationship between Stein factors and Markov process
coupling times, extends the reach of Stein’s method to the stationary distributions
of all fast coupling Itô diffusions.

In Section 3, we provide examples of practically checkable sufficient condi-
tions for fast coupling and illustrate the process of verifying these conditions for
canonical log-concave, heavy-tailed and multimodal targets. Section 4 describes a
practical algorithm for computing diffusion Stein discrepancies using a geometric
spanner and linear programming. In Section 5, we complement the principal theo-
retical contributions of this work with several simple numerical examples illustrat-
ing how diffusion Stein discrepancies can be deployed in practice. In particular, we
use our discrepancies to select the hyperparameters of biased samplers, compare
random and deterministic quadrature rules and quantify bias-variance tradeoffs in
approximate Markov chain Monte Carlo. A discussion of related and future work
follows in Section 6, and all proofs are deferred to the Appendices.

NOTATION. For r ∈ [1,∞], let ‖·‖r denote the �r norm on R
d . We will

use ‖·‖ as a generic norm on R
d satisfying ‖·‖ ≥ ‖·‖2 and define the associ-

ated dual norms, ‖v‖∗ � supu∈Rd :‖u‖=1 〈u, v〉 for vectors v ∈ R
d and ‖W‖∗ �

supu∈Rd :‖u‖=1 ‖Wu‖∗ for matrices W ∈ R
d×d . Let ej be the j th standard basis

vector, ∇j be the partial derivative ∂
∂xj

, and λmin(·) and λmax(·) be the small-
est and largest eigenvalues of a symmetric matrix. For any real vector v and
tensor T , let ‖v‖op � ‖v‖2 and ‖T ‖op � sup‖u‖2=1 ‖T [u]‖op. For each suffi-
ciently differentiable vector- or matrix-valued function g, we define the bound
M0(g) � supx∈Rd ‖g(x)‖op and the kth order Hölder coefficients

Mk(g) � sup
x,y∈Rd ,x �=y

‖∇
k�−1g(x) − ∇
k�−1g(y)‖op

‖x − y‖{k}
2

for k > 0,

where {k} � k − 
k − 1� and ∇0 is the identity operator. For each differentiable
matrix-valued function a, we let 〈∇, a(x)〉 =∑

j ej

∑
k ∇kajk(x) represent the di-

vergence operator applied to each row of a and define the Lipschitz coefficients
Fk(a) � supx∈Rd ,‖v1‖2=1,...,‖vk‖2=1 ‖∇ka(x)[v1, . . . , vk]‖F for ‖·‖F the Frobenius
norm. Finally, when the domain and range of a function f can be inferred from
context, we write f ∈ Ck to indicate that f has k continuous derivatives.
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2. Stein’s method. In the early 1970s, Charles Stein [88] introduced a pow-
erful three-step approach to upper-bounding a reference IPM dH:

1. First, identify an operator T that maps input functions2 g : Rd → R
d in a

domain G into mean-zero functions under P , that is,

EP

[
(T g)(Z)

]= 0 for all g ∈ G.

The operator T and its domain G define the Stein discrepancy [36],

S(Qn,T ,G) � sup
g∈G
∣∣EQn

[
(T g)(X)

]∣∣
= sup

g∈G
∣∣EQn

[
(T g)(X)

]−EP

[
(T g)(Z)

]∣∣= dT G(Qn,P ),
(2)

a quality measure which takes the form of an integral probability metric while
avoiding explicit integration under P .

2. Next, prove that, for each test function h in the reference class H, the Stein
equation

(3) h(x) −EP

[
h(Z)

]= (T gh)(x)

admits a solution gh ∈ G. This step ensures that the reference metric dH lower
bounds the Stein discrepancy (Desideratum (ii)) and, in practice, can be carried
out simultaneously for large classes of target distributions.

3. Finally, use whatever means necessary to upper bound the Stein dis-
crepancy and thereby establish convergence to zero under appropriate conditions
(Desideratum (i)). Our general result, Proposition 8, suffices for this purpose.

While Stein’s method is traditionally used as analytical tool to establish rates of
distributional convergence, we aim, following [36], to develop the method into a
practical computational tool for measuring the quality of a sample. We begin by
assessing the convergence properties of a broad class of Stein operators derived
from Itô diffusions. Our efforts will culminate in Section 4, where we show how
to explicitly compute the Stein discrepancy (2) given any sample measure Qn and
appropriate choices of T and G.

2.1. Identifying a Stein operator. To identify an operator T that generates
mean-zero functions under P , we will appeal to the elegant and widely applicable
generator method construction of Barbour [3, 4] and Götze [38]. These authors
note that if (Zt )t≥0 is a Feller process with invariant measure P , then the infinites-
imal generator A of the process, defined pointwise by

(Au)(x) = lim
t→0

(
E
[
u(Zt) | Z0 = x

]− u(x)
)
/t(4)

2Real-valued g are also common, but Rd -valued g are more convenient for our purposes.
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satisfies EP [(Au)(Z)] = 0 under very mild restrictions on u and A. Gorham and
Mackey [36] developed a Langevin Stein operator based on the generator of a
specific Markov process—the Langevin diffusion described in (D1). Here, we will
consider a broader class of continuous Markov processes known as Itô diffusions.

DEFINITION 1 (Itô diffusion [72], Definition 7.1.1). A (time-homogeneous)
Itô diffusion with starting point x ∈ R

d , Lipschitz drift coefficient b :Rd →R
d and

Lipschitz diffusion coefficient σ : Rd → R
d×m is a stochastic process (Zt,x)t≥0

solving the Itô stochastic differential equation

dZt,x = b(Zt,x) dt + σ(Zt,x) dWt with Z0,x = x ∈ R
d,(5)

where (Wt)t≥0 is an m-dimensional Wiener process.

As the next theorem (distilled from [64], Theorem 2, and [75], Section 4.6)
shows, it is straightforward to construct Itô diffusions with a given invariant mea-
sure P (see also [49, 52]).

THEOREM 2 ([64], Theorem 2, and [75], Section 4.6). Fix an Itô diffusion
with C1 drift and diffusion coefficients b and σ , and define its covariance coeffi-
cient a(x) � σ(x)σ (x)�. P ∈ P1 is an invariant measure of this diffusion if and
only if b(x) = 1

2
1

p(x)
〈∇,p(x)a(x)〉 + f (x) for a nonreversible component f ∈ C1

satisfying 〈∇,p(x)f (x)〉 = 0 for all x ∈ R
d . If f is P -integrable, then

b(x) = 1

2

1

p(x)

〈∇,p(x)
(
a(x) + c(x)

)〉
(6)

for c a differentiable P -integrable skew-symmetric d × d matrix-valued function
termed the stream coefficient [16, 56]. In this case, for all u ∈ C2 ∩ dom(A), the
infinitesimal generator (4) of the diffusion takes the form

(Au)(x) = 1

2

1

p(x)

〈∇,p(x)
(
a(x) + c(x)

)∇u(x)
〉
.3(7)

REMARKS. Theorem 2 does not require Lipschitz assumptions on b or σ .
An example of a nonreversible component which is not P -integrable is f (x) =
v/p(x) for any constant vector v ∈ R

d . Prominent examples of P -targeted diffu-
sions include:

3We have chosen an atypical form for the infinitesimal generator in (7), as it will give rise to a
first-order differential operator (8) with more desirable properties. One can check, for instance, that
the first-order operator (T g)(x) = 2〈b(x), g(x)〉 + 〈a(x),∇g(x)〉 derived from the standard form of
the generator, (Au)(x) = 〈b(x),∇u(x)〉 + 1

2 〈a(x),∇2u(x)〉, fails to satisfy Proposition 3 whenever
the nonreversible component f (x) �≡ 0.



MEASURING SAMPLE QUALITY WITH DIFFUSIONS 2889

(D1) the (overdamped) Langevin diffusion (also known as the Brownian or
Smoluchowski dynamics) [75], Sections 6.5 and 4.5, where a ≡ I and c ≡ 0;

(D2) the preconditioned Langevin diffusion [90], where c ≡ 0 and a ≡ σσ� for
a constant diffusion coefficient σ ∈ R

d×m;
(D3) the Riemannian Langevin diffusion [33, 52, 83], where c ≡ 0 and a is not

constant;
(D4) the nonreversible preconditioned Langevin diffusion (see, e.g., [20, 64,

81]), where a ≡ σσ� for σ ∈ R
d×m constant and c not identically 0;

(D5) and the second-order or underdamped Langevin diffusion [45], where we
target the joint distribution P ⊗N (0, I ) on R

2d with

a ≡ 2
(

0 0
0 I

)
and c ≡ 2

(
0 −I

I 0

)
.

We will present detailed examples making use of these diffusion classes in Sec-
tions 3 and 5.

Theorem 2 forms the basis for our Stein operator of choice, the diffusion Stein
operator T , defined by substituting g for 1

2∇u in the generator (7):

(T g)(x) = 1

p(x)

〈∇,p(x)
(
a(x) + c(x)

)
g(x)

〉
.(8)

T is an appropriate choice for our setting as it depends on P only through ∇ logp

and is therefore computable even when the normalizing constant of p is unavail-
able. One suitable domain for T is the classical Stein set [36] of 1-bounded func-
tions with 1-bounded, 1-Lipschitz derivatives:

G‖·‖ �
{
g :Rd

→R
d
∣∣∣ sup
x �=y∈Rd

max
(∥∥g(x)

∥∥∗,∥∥∇g(x)
∥∥∗, ‖∇g(x) − ∇g(y)‖∗

‖x − y‖
)

≤ 1
}
.

Indeed, our next proposition, proved in Appendix A, shows that, on this domain,
the diffusion Stein operator generates mean-zero functions under P .

PROPOSITION 3. If T is the diffusion Stein operator (8) for P ∈ P1 with a, c ∈
C1 and a, c, b (6) P -integrable, then EP [(T g)(Z)] = 0 for all g ∈ G‖·‖ .

Together, T and G‖·‖ give rise to the classical diffusion Stein discrepancy
S(Qn,T ,G‖·‖), our primary object of study in Sections 2.2 and 2.3.



2890 GORHAM, DUNCAN, VOLLMER AND MACKEY

2.2. Lower bounding the diffusion Stein discrepancy. To establish that the
classical diffusion Stein discrepancy detects nonconvergence (Desideratum (ii)),
we will lower bound the discrepancy in terms of the L1 Wasserstein distance,
dW‖·‖2

= W1,‖·‖2 , a standard reference IPM generated by

H = W‖·‖2 �
{
h : Rd →R

∣∣ sup
x �=y∈Rd

∣∣h(x) − h(y)
∣∣≤ ‖x − y‖2

}
.

The first step is to show that, for each h ∈ W‖·‖2 , the solution gh to the Stein
equation (3) with diffusion Stein operator (8) has low-order derivatives uniformly
bounded by target-specific constants called Stein factors.

Explicit Langevin diffusion (D1) Stein factor bounds are readily available for
a wide variety of univariate targets4 (see, e.g., [10, 11, 89] for explicit bounds or
[57] for a recent review). In contrast, in the multivariate setting, efforts to establish
Stein factors have focused on Gaussian [4, 9, 30, 38, 68, 70, 80], Dirichlet [29] and
strongly log-concave [65] targets with preconditioned Langevin (D2) operators.
To extend the reach of the literature, we will derive multivariate Stein factors for
targets with fast-coupling Itô diffusions. Our measure of coupling speed is the
Wasserstein decay rate.

DEFINITION 4 (Wasserstein decay rate). Let (Pt )t≥0 be the transition semi-
group of an Itô diffusion (Zt,x)t≥0 defined via

(Ptf )(x) � E
[
f (Zt,x)

]
for all measurable f, x ∈ R

d, and t ≥ 0.

For any nonincreasing integrable function r : R≥0 → R, we say that (Pt )t≥0 has
Wasserstein decay rate r if

dW‖·‖2
(δxPt , δyPt ) ≤ r(t)dW‖·‖2

(δx, δy) for all x, y ∈ R
d and t ≥ 0,(9)

where δxPt denotes the distribution of Zt,x .

Our next result, proved in Appendix B, shows that the smoothness of a solution
gh to a Stein equation is controlled by the rate of Wasserstein decay, and hence by
how quickly two diffusions with distinct starting points couple. The Stein factor
bounds on the derivatives of uh and gh may be of independent interest for estab-
lishing rates of distributional convergence.

THEOREM 5 (Stein factors from Wasserstein decay). Fix any Lipschitz h. If an
Itô diffusion has invariant measure P ∈ P1, transition semigroup (Pt )t≥0, Wasser-
stein decay rate r and infinitesimal generator A (4), then

(10) uh �
∫ ∞

0
EP

[
h(Z)

]− Pthdt

4The Langevin operator recovers Stein’s density method operator [89] when d = 1.
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is twice continuously differentiable and satisfies

M1(uh) ≤ M1(h)

∫ ∞
0

r(t) dt and h −EP

[
h(Z)

]= Auh.

Hence, gh � 1
2∇uh solves the Stein equation (3) with diffusion Stein operator (8)

whenever A has the form (7). If the drift and diffusion coefficients b and σ have
locally Lipschitz second derivatives and a right inverse σ−1(x) for each x ∈ R

d

and h ∈ C2 with bounded second derivatives, then

(11) M2(uh) ≤ M1(h)(β1 + β2),

where

β1 = r(0)
(
2M0

(
σ−1)+ r(0)M1(σ )M0

(
σ−1)+ r(0)

√
α
)
, and

β2 = r(0)

(
eγ2M0

(
σ−1)+ eγ2M1(σ )M0

(
σ−1)+ 2

3
eγ4

√
α

)∫ ∞
0

r(t) dt

for γρ � ρM1(b) + ρ2−2ρ
2 M1(σ )2 + ρ

2 F1(σ )2, α � M2(b)2

2M1(b)+4M1(σ )2 + 2F2(σ )2. If,

additionally, ∇3b and ∇3σ are locally Lipschitz and h ∈ C3 with bounded third
derivatives, then, for all ι ∈ (0,1),

(12) M3−ι(uh) ≤ M1(h)
1

K

(
1

ι
+
∫ ∞

0
r(t) dt

)
for K > 0 a constant depending only on M1:3(σ ),M1:3(b), M0(σ

−1) and r .

REMARK. Theorems 1 and 2 of Pardoux and Veretennikov [73] also bound
the solutions of the Stein equation (3). However, for generic Lipschitz h, [73],
Theorems 1 and 2, provide inexplicit constants; only guarantee the polynomial
growth of gh and its derivatives, not uniform boundedness; and require bounded
σ , a strong assumption which rules out the heavy-tailed examples of Section 3.

A first consequence of Theorem 5, proved in Appendix D, concerns Stein oper-
ators (8) with constant covariance and stream matrices a and c. In this setting, fast
Wasserstein decay implies that the diffusion Stein discrepancy converges to zero
only if the Wasserstein distance does (Desideratum (ii)).

THEOREM 6 (Stein discrepancy lower bound: constant a and c). Consider
an Itô diffusion with diffusion Stein operator T (8) for P ∈ P1, Wasserstein decay
rate r , constant covariance and stream matrices a and c and Lipschitz drift b(x) =
1
2(a + c)∇ logp(x). If sr �

∫∞
0 r(t) dt , then

dW‖·‖2
(Qn,P ) ≤ 3sr max

(
S(Qn,T ,G‖·‖),

3

√
S(Qn,T ,G‖·‖)

√
2E
[‖G‖2

]2(2M1(b) + 1

sr

)2)
,

(13)

where G ∈ R
d is a standard normal vector and M1(b) ≤ 1

2‖a + c‖opM2(logp).
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Theorem 6 in fact provides an explicit upper bound on the Wasserstein distance
in terms of the Stein discrepancy and the Wasserstein decay rate. Under additional
smoothness assumptions on the coefficients, the explicit relationship between Stein
discrepancy and Wasserstein distance can be improved and extended to diffusions
with nonconstant diffusion coefficient, as our next result, proved in Appendix E,
shows.

THEOREM 7 (Stein discrepancy lower bound: nonconstant a and c). Consider
an Itô diffusion for P ∈ P1 with diffusion Stein operator T (8), Wasserstein de-
cay rate r and Lipschitz drift and diffusion coefficients b (6) and σ with locally
Lipschitz second derivatives. If sr �

∫∞
0 r(t) dt , then

dW‖·‖2
(Qn,P )

≤ 2 max
(
S(Qn,T ,G‖·‖)max(sr , β1 + β2),√

S(Qn,T ,G‖·‖)
√

2/π(β1 + β2)ζ
)
,

for β1, β2 defined in Theorem 5 and

ζ � E
[‖G‖2

](
1 + 2M1(b)sr + M∗

1 (m)(β1 + β2)
)
,

where G ∈ R
d is a standard normal vector, m � a + c, and M∗

1 (m) �
supx �=y ‖m(x) − m(y)‖∗

op/‖x − y‖2.

If, additionally, ∇3b and ∇3σ are locally Lipschitz, then

dW‖·‖2
(Qn,P )

≤ 2S(Qn,T ,G‖·‖)max
(

max(sr , β1 + β2),

e max
(

d1/4√ζ√
K

,

√
d

K

)(
sr + max

(
log
(
1/S(Qn,T ,G‖·‖ )

)
,1
)))

,

(14)

for a constant K > 0 depending only on M1:3(σ ),M1:3(b), M0(σ
−1) and r .

REMARK. The log(1/S(Qn,T ,G‖·‖ )) term in (14) reflects the potential non-
smoothness of the Stein equation solution gh studied in Theorem 5. Indeed, for
d ≥ 2 and standard multivariate Gaussian P , there exist Lipschitz h with infinite
M2(gh) [78], Remark 2.

In Section 3, we will present practically checkable conditions implying fast
Wasserstein decay and discuss both broad families and specific diffusion-target
pairings covered by this theory.
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2.3. Upper bounding the diffusion Stein discrepancy. In upper bounding the
Stein discrepancy, one classically aims to establish rates of convergence to P for
specific sequences (Qn)

∞
n=1. Since our interest is in explicitly computing Stein

discrepancies for arbitrary sample sequences, our general upper bound in Proposi-
tion 8 serves principally to provide sufficient conditions under which the classical
diffusion Stein discrepancy converges to zero.

PROPOSITION 8 (Stein discrepancy upper bound). Let T be the diffusion Stein
operator (8) for P ∈P1. If m � a + c and b (6) are P -integrable,

S(Qn,T ,G‖·‖) ≤ inf
X∼Qn,Z∼P

(
E
[
2
∥∥b(X) − b(Z)

∥∥+ ∥∥m(X) − m(Z)
∥∥]

+E
[(

2
∥∥b(Z)

∥∥+ ∥∥m(Z)
∥∥)min

(‖X − Z‖,2
)])

≤ Ws,‖·‖(Qn,P )
(
2M

‖·‖
1 (b) + M

‖·‖
1 (m)

)
+ Ws,‖·‖(Qn,P )t21−t

E
[(

2
∥∥b(Z)

∥∥+ ∥∥m(Z)
∥∥)s/(s−t)](s−t)/s

for any s ≥ 1 and t ∈ (0,1]. Moreover, for μ0 � E[e2‖b(Z)‖+‖m(Z)‖],
S(Qn,T ,G‖·‖) ≤ W1,‖·‖(Qn,P )

(
2M

‖·‖
1 (b) + M

‖·‖
1 (m)

)
+ min

(
W1,‖·‖(Qn,P ),2

)
log
(
(eμ0)/min

(
W1,‖·‖(Qn,P ),2

))
.

This result, proved in Appendix F, complements the Wasserstein distance lower
bounds of Section 2.2 and implies that, for Lipschitz and sufficiently integrable m

and b, the diffusion Stein discrepancy converges to zero whenever Qn converges
to P in Wasserstein distance.

2.4. Extension to nonuniform Stein sets. For any c1, c2, c3 > 0, our analyses
and algorithms readily accommodate the nonuniform Stein set

Gc1:3‖·‖ �
{
g :Rd

→R
d
∣∣∣ sup
x �=y∈Rd

max
(‖g(x)‖∗

c1
,
‖∇g(x)‖∗

c2
,
‖∇g(x) − ∇g(y)‖∗

c3‖x − y‖
)

≤ 1
}
.

This added flexibility can be valuable when tight upper bounds on a reference IPM,
like the Wasserstein distance, are available for a particular choice of Stein factors
(c1, c2, c3). When such Stein factors are unknown or difficult to compute, we rec-
ommend the parameter-free classical Stein set and graph Stein set of the sequel
as practical defaults, since the classical Stein discrepancy is strongly equivalent to
any nonuniform Stein discrepancy.
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PROPOSITION 9 (Equivalence of nonuniform Stein discrepancies). For any
c1, c2, c3 > 0,

min(c1, c2, c3)S(Qn,T ,G‖·‖) ≤ S
(
Qn,T ,Gc1:3‖·‖

)
≤ max(c1, c2, c3)S(Qn,T ,G‖·‖).

REMARK. The short proof follows exactly as in [36], Proposition 4.

3. Sufficient conditions for Wasserstein decay. Since the Stein discrepancy
lower bounds of Section 2 depend on the Wasserstein decay (9) of the chosen dif-
fusion, we next provide examples of practically checkable sufficient conditions
for Wasserstein decay and illustrate the process of verifying these conditions for
a selection of diffusion-target pairings. These pedagogical examples serve to suc-
cinctly illustrate the process of verifying our assumptions and do not represent the
full scope of applicability.

3.1. Uniform dissipativity. It is well known (see, e.g., [7], equation (7)) that
the Langevin diffusion (D1) enjoys exponential Wasserstein decay whenever
logp is k-strongly log concave, that is, when the drift b = 1

2∇ logp satisfies
〈b(x) − b(y), x − y〉 ≤ − k

2‖x − y‖2
2 for k > 0. An analogous uniform dissipativity

condition gives explicit exponential decay for a generic Itô diffusion.

THEOREM 10 (Wasserstein decay: uniform dissipativity). Fix k > 0 and G �
0, and let ‖w‖2

G � 〈w,Gw〉, for any vector or matrix w ∈ R
d×d ′

, d ′ ≥ 1. An Itô
diffusion with drift and diffusion coefficients b and σ satisfying

2
〈
b(x) − b(y),G(x − y)

〉+ ∥∥σ(x) − σ(y)
∥∥2
G

≤ −k‖x − y‖2
G for all x, y ∈R

d

has Wasserstein decay rate (9) r(t) = e−kt/2√λmax(G)/λmin(G).

REMARK. The proof of Theorem 10 in Appendix G holds even when the drift
b is not Lipschitz, yields the same decay rate for W2,‖·‖2 , and relies on a syn-
chronous coupling of Itô diffusions, mimicking [7], Section 1.

Hence, if the drift b of an Itô diffusion is −k/2-one-sided Lipschitz, that is,

2
〈
b(x) − b(y),G(x − y)

〉≤ −k‖x − y‖2
G for all x, y ∈ R

d(15)

and some G � 0, and the diffusion coefficient σ is
√

k′-Lipschitz, that is,∥∥σ(x) − σ(y)
∥∥2
G ≤ k′‖x − y‖2

G for all x, y ∈ R
d,

then, whenever k′ < k, the diffusion exhibits exponential Wasserstein decay. with
rate e−(k−k′)t/2√λmax(G)/λmin(G).
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EXAMPLE 1 (Bayesian logistic regression with Gaussian prior). A one-sided
Lipschitz drift arises naturally in the setting of Bayesian logistic regression [32],
a canonical model of binary outcomes y ∈ {−1,1} given measured covariates v ∈
R

d . Consider the log density of a Bayesian logistic regression posterior based on
a dataset of L observations (vl, yl) and a N (μ,�) prior:

logp(β) = −1

2

∥∥�−1/2(β − μ)
∥∥2

2︸ ︷︷ ︸
multivariate Gaussian prior

−
L∑

l=1

log
(
1 + exp

(−yl〈vl, β〉))︸ ︷︷ ︸
logistic regression likelihood

+ const.

Here, our inferential target is the unobserved parameter vector β ∈ R
d . Since

−�−1 � ∇2 logp(β)

= −�−1 −
L∑

l=1

eyl〈vl,β〉

(1 + eyl〈vl,β〉)2 vlv
�
l � −�−1 − 1

4

L∑
l=1

vlv
�
l ,

the P -targeted preconditioned Langevin diffusion (D2) drift b(β) = 1
2�∇ logp(β)

satisfies (15) with k = 1 and G = �−1 and M1(b) ≤ 1
2‖I + 1

4�
∑L

l=1 vlv
�
l ‖op.

Hence, the diffusion enjoys geometric Wasserstein decay (Theorem 10) and a
Wasserstein lower bound on the Stein discrepancy (Theorem 6).

EXAMPLE 2 (Bayesian Huber regression with Gaussian prior). Huber’s least
favorable distribution provides a robust error model for the regression of a continu-
ous response y ∈R onto a vector of measured covariates v ∈R

d [46]. Given L ob-
servations (vl, yl) and a N (μ,�) prior on an unknown parameter vector β ∈ R

d ,
the Bayesian Huber regression log posterior takes the form

logp(β) = −1

2

∥∥�−1/2(β − μ)
∥∥2

2︸ ︷︷ ︸
multivariate Gaussian prior

−
L∑

l=1

ρc

(
yl − 〈vl, β〉)︸ ︷︷ ︸

Huber’s least favorable likelihood

+ const.

where ρc(r) � 1
2r2

I[|r| ≤ c] + c(|r| − 1
2c)I[|r| > c] for fixed c > 0. Since ρ ′

c(r) =
min(max(r,−c), c) is 1-Lipschitz, ρc is convex, and the Hessian of the log
prior is −�−1, the P -targeted preconditioned Langevin diffusion (D2) drift
b(β) = 1

2�∇ logp(β) satisfies (15) with k = 1 and G = �−1 and M1(b) ≤
1
2‖I + �

∑L
l=1 vlv

�
l ‖op. This is again sufficient for exponential Wasserstein decay

and a Wasserstein lower bound on the Stein discrepancy.

3.2. Distant dissipativity, constant σ . When the diffusion coefficient σ is con-
stant with a � 1

2σσ� invertible, Eberle [22] showed that a distant dissipativity
condition is sufficient for exponential Wasserstein decay. Specifically, if we define
a one-sided Lipschitz constant conditioned on a distance r > 0,

−κ(r) = sup
{
2
(
b(x) − b(y)

)�
a−1(x − y)/r2 : (x − y)�a−1(x − y) = r2},
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then [22], Corollary 2, establishes exponential Wasserstein decay whenever κ is
continuous with lim infr→∞ κ(r) > 0 and

∫ 1
0 rκ(r)− dr < ∞. For a Lipschitz drift,

this holds whenever b is dissipative at large distances, that is, whenever, for some
k > 0, we have κ(r) ≥ k for all r sufficiently large [22], Lemma 1.

EXAMPLE 3 (Gaussian mixture with common covariance). Consider an m-
component mixture density p(x) =∑m

j=1 wjφj (x), where the component weights

wj ≥ 0 sum to one and φj is the density of a N (μj ,�) distribution on R
d . Fix

any x, y ∈ R
d . If ‖�−1/2(x − y)‖2 = r , the P -targeted preconditioned Langevin

diffusion (D2) with drift b(z) = 1
2a∇ logp(z) and a = � satisfies

2
(
b(x) − b(y)

)�
a−1(x − y)

= (∇ logp(x) − ∇ logp(y)
)�

(x − y)

= −r2 + 〈�−1/2(μ(x) − μ(y)
)
,�−1/2(x − y)

〉≤ −r2 + r�,

by Cauchy–Schwarz and Jensen’s inequality, for � � supj,k ‖�−1/2(μj − μk)‖2,

μ(x) �∑m
j=1 πj (x)μj , and πj (x) � wjφj (x)

p(x)
. Moreover, by the mean value theo-

rem, Cauchy–Schwarz and Jensen’s inequality, we have, for each v ∈ R
d ,

2
〈
�−1/2(b(x) − b(y)

)
, v
〉

= 〈
�−1/2(∇μ(z) − I

)
(x − y), v

〉
= 〈(

�−1/2S(z)�−1/2 − I
)
�−1/2(x − y), v

〉≤ ‖v‖2
∥∥�−1/2(x − y)

∥∥
2L,

for some z ∈ R
d , S(x) � 1

2
∑m

j=1
∑m

k=1 πj (x)πk(x)(μj − μk)(μj − μk)
�, and

L � supj,k |1−‖�−1/2(μj − μk)‖2
2/2|. Hence, b is Lipschitz, and κ(r) ≥ 1

2 when
r > 2�, so our diffusion enjoys exponential Wasserstein decay [22], Lemma 1,
and a Stein discrepancy upper bound on the Wasserstein distance.

3.3. Distant dissipativity, nonconstant σ . Using a combination of synchro-
nous and reflection couplings, Wang [94], Theorem 2.6, showed that diffusions
satisfying a distant dissipativity condition exhibit exponential Wasserstein decay,
even when the diffusion coefficient σ is nonconstant. In Appendix H, we combine
the coupling strategy of [94], Theorem 2.6, with the approach of [22] for diffusions
with constant σ to obtain the following explicit Wasserstein decay rate for distantly
dissipative diffusions with bounded σ−1.

THEOREM 11 (Wasserstein decay: distant dissipativity). Let (Pt )t≥0 be the
transition semigroup of an Itô diffusion with drift and diffusion coefficients b

and σ . Define the truncated diffusion coefficient

σ0(x) = (
σ(x)σ (x)� − λ2

0I
)1/2 for some λ0 ∈ [0,1/M0

(
σ−1)]
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and the distance-conditional dissipativity function

κ(r) = inf
{
−2α

(〈
b(x) − b(y), x − y

〉+ 1

2

∥∥σ0(x) − σ0(y)
∥∥2
F

− 1

2

∥∥(σ0(x) − σ0(y)
)�

(x − y)
∥∥2

2/r2
)/

r2 : ‖x − y‖2 = r

}(16)

for any m0 ≤ infx �=y
‖(σ0(x)−σ0(y))�(x−y)‖2‖x−y‖2

and α � 1/(λ2
0 + m2

0/4).
If the constants R0 = inf{R ≥ 0 : κ(r) ≥ 0,∀r ≥ R} and R1 = inf{R ≥ R0 :

κ(r)R(R − R0) ≥ 8,∀r ≥ R} satisfy R0 ≤ R1 < ∞, then

dW‖·‖2
(δxPt ,δyPt ) ≤ 2ϕ(R0)

−1e−ctdW‖·‖2
(δx, δy)(17)

for all x, y ∈ R
d and t ≥ 0, where 1

c
= α

∫ R1
0

∫ s
0 exp(1

4

∫ s
t uκ−(u) du)dt ds, ϕ(r) =

e− 1
4

∫ r
0 sκ−(s) ds and κ−(s) = max(−κ(s),0).

REMARK 1. Theorem 11 holds even when the drift b is not Lipschitz.

The Wasserstein decay rate (17) in Theorem 11 has a simple form when the dif-
fusion is dissipative at large distances and κ is bounded below. These rates follow
exactly as in [22], Lemma 1.

COROLLARY 12. Under the conditions of Theorem 11, suppose that, for
R,L ≥ 0 and K > 0, κ(r) ≥ −L for r ≤ R and κ(r) ≥ K for r > R. Then

α−1c−1 ≤

⎧⎪⎪⎨⎪⎪⎩
e − 1

2
R2 + e

√
8K−1R + 4K−1 if LR2

0 ≤ 8,

8
√

2π

RL1/2

(
L−1 + K−1) exp

(
LR2

8

)
+ 32R−2K−2 if LR2

0 > 8.

EXAMPLE 4 (Multivariate Student’s t regression with pseudo-Huber prior).
The multivariate Student’s t distribution is also commonly employed as a robust
error model for the linear regression of continuous responses y ∈ R

L onto mea-
sured covariates V ∈ R

L×d [58, 95]. Under a pseudo-Huber prior [44], a Bayesian
multivariate Student’s t regression posterior takes the form

p(β) ∝ exp
(
δ2
(
1 −

√
1 + ‖β/δ‖2

2

))
︸ ︷︷ ︸

pseudo-Huber prior

(
1 + 1

ν
(y − Vβ)��−1(y − Vβ)

)−(ν+L)/2

︸ ︷︷ ︸
multivariate Student’s t likelihood

for fixed δ, ν > 0 and � � 0. Introduce the shorthand ψλ(r) � 2
√

1 + r2/δ2 − λ2

for each λ ∈ [0,
√

2) and ξ(β) � 1 + 1
ν
(y − Vβ)��−1(y − Vβ). Since

∇ logp(β) = −2β/ψ0
(‖β‖2

)+ (
1 + ν

L

)
V ��−1(y − Vβ)/ξ(β)
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is bounded, no P -targeted preconditioned Langevin diffusion (D2) will satisfy
the distant dissipativity conditions of Section 3.2. However, we will show that
whenever V �V � 0, the Riemannian Langevin diffusion (D3) with σ(β) =√

ψ0(‖β‖2)I ∈ R
d×d , a(β) = 1

2ψ0(‖β‖2)I , and b(β) = a(β)∇ logp(β) +
〈∇, a(β)〉 satisfies the Wasserstein decay preconditions of Corollary 12.

Indeed, fix any λ0 ∈ (0,1/M0(σ
−1)) = (0,

√
2). Since M1(

√
ψλ) ≤ 1

δ
√

2−λ2
,

M1(ψλ) ≤ 2
δ
, and M2(ψλ) ≤ 2

δ2 , σ0, σ , a and ∇a are all Lipschitz. The drift b is
also Lipschitz, since ∇ logp and the product of a(β) and

∇2 logp(β)

= −2I/ψ0
(‖β‖2

)+ 8ββ�/
(
δ2ψ3

0
(‖β‖2

))
+
(

1 + ν

L

)(
2V ��−1(y − Vβ)(y − Vβ)��−1V /ξ2(β)

− V ��−1V /ξ(β)
)

are bounded. Hence, κ (16) is bounded below. Moreover, the the Hölder continuity
of x �→ √

x, Cauchy–Schwarz and the triangle inequality imply

κ(r) ≥ inf‖β−β ′‖2=r

2α

r2

(〈
b
(
β ′)− b(β),β − β ′〉

− d − 1

2

∣∣√ψλ0

(‖β‖2
)−√

ψλ0

(∥∥β ′∥∥
2

)∣∣2)
≥ 2α − 2α

r

(
d − 1

δ
+ M1(ψ0)

+ sup
β

(
1 + ν

L

)
ψ0
(‖β‖2

)∥∥V ��−1(y − Vβ)
∥∥

2/ξ(β)

)

≥ 2α − 2α

r

(
d + 1

δ

+ sup
s

(
1 + ν

L

)
2(1 + s/δ)(‖V ��−1y‖2 + s‖V ��−1V ‖op)

1 + 1
ν

max(0, s/‖(V ��−1V )−1‖op − ‖�−1y‖2)2

)
.

Letting ζ represent the supremum in the final inequality, we see that κ(r) ≥ α =
1/λ2

0 whenever r ≥ 2(d+1
δ

+ ζ ). Hence, Corollary 12 delivers exponential Wasser-
stein decay. A Wasserstein lower bound on the Stein discrepancy now follows from
Theorem 7, since M2(

√
ψ0) ≤ 1√

2δ2 , M3(ψ0) ≤ 96
25

√
5δ3 , and a(β)∇2 logp(β) is

Lipschitz, and hence M2(σ ) and M2(b) are bounded.

4. Computing Stein discrepancies. In this section, we introduce a computa-
tionally tractable Stein discrepancy that inherits the favorable convergence proper-
ties established in Sections 2 and 3. We will directly port the spanner discrepancy
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methodology developed and detailed in [36] and use our new diffusion operators
as drop-in replacements for the overdamped Langevin operators advocated in [36].
While we only explicitly discuss target distributions supported on all of Rd , con-
strained domains of the form (α1, β1) × · · · × (αd,βd) where −∞ ≤ αi < βi ≤ ∞
for all 1 ≤ i ≤ d can be handled by introducing boundary constraints as in [36],
Section 4.4.

4.1. Spanner Stein discrepancies. For any sample Qn, Stein operator T , and
Stein set G, the Stein discrepancy S(Qn,T ,G) is recovered by solving an opti-
mization problem over functions g ∈ G. For example, if we write m � a + c and
b(x) � 1

2
1

p(x)
〈∇,p(x)m(x)〉, the classical diffusion Stein discrepancy is the value

S(Qn,T ,G‖·‖)

= sup
g

n∑
i=1

q(xi)
(
2
〈
b(xi), g(xi)

〉+ 〈m(xi),∇g(xi)
〉)

s.t. max
(∥∥g(x)

∥∥∗,∥∥∇g(x)
∥∥∗, ‖∇g(x) − ∇g(y)‖∗

‖x − y‖
)

≤ 1, ∀x, y ∈ R
d .

For all Stein sets, the diffusion Stein discrepancy objective is linear in g and only
queries g and ∇g at the n sample points underlying Qn. However, the classi-
cal Stein set G‖·‖ constrains g at all points in its domain, resulting in an infinite-
dimensional optimization problem.5

To obtain a finite-dimensional problem that is convergence-determining and
straightforward to optimize, we will make use of the graph Stein sets of [36]. For
a given graph G = (V ,E) with V = supp(Qn), the graph Stein set,

G‖·‖,Qn,G =
{
g : max

(∥∥g(v)
∥∥∗,∥∥∇g(v)

∥∥∗, ‖g(x) − g(y)‖∗

‖x − y‖ ,

‖∇g(x) − ∇g(y)‖∗

‖x − y‖
)

≤ 1,

‖g(x) − g(y) − ∇g(x)(x − y)‖∗
1
2‖x − y‖2

≤ 1,

‖g(x) − g(y) − ∇g(y)(x − y)‖∗
1
2‖x − y‖2

≤ 1,∀(x, y) ∈ E,v ∈ V

}
,

imposes boundedness constraints only at sample points and smoothness constraints
only at pairs of sample points enumerated in the edge set E. The graph is termed
a t-spanner [14, 76] if each edge (x, y) ∈ E is assigned the weight ‖x − y‖, and,

5When d = 1, the problem reduces to a finite-dimensional convex quadratically constrained
quadratic program with linear objective as in [36], Theorem 9.
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for all x′ �= y′ ∈ V , there exists a path between x′ and y′ in the graph with total
path weight no greater than t‖x′ − y′‖. Remarkably, for any linear Stein operator
T , a spanner Stein discrepancy S(Qn,T ,G‖·‖,Qn,Gt ) based on a t-spanner Gt is
equivalent to the classical Stein discrepancy in the following strong sense, imply-
ing Desiderata (i) and (ii).

PROPOSITION 13 (Equivalence of classical and spanner Stein discrepancies).
If Gt = (supp(Qn),E) is a t-spanner for t ≥ 1, then

S(Qn,T ,G‖·‖) ≤ S(Qn,T ,G‖·‖,Qn,Gt ) ≤ κdt2S(Qn,T ,G‖·‖)

where κd is independent of (Qn,P,T ,Gt) and depends only on d and ‖·‖.

REMARK. The proof relies on the Whitney–Glaeser extension theorem [86],
Theorem 1.4, of Glaeser [34] and follows exactly as in [36], Propositions 5 and 6.

When d = 1, a t-spanner with exactly n−1 edges is obtained in O(n logn) time
for all t ≥ 1 by introducing edges just between sample points that are adjacent in
sorted order. More generally, if ‖·‖ is an �p norm, one can construct a 2-spanner
with O(κ ′

dn) edges in O(κ ′
dn log(n)) expected time where κ ′

d is a constant that
depends only on the norm ‖·‖ and the dimension d [43]. Hence, a spanner Stein
discrepancy can be computed by solving a finite-dimensional convex optimization
problem with a linear objective, O(n) variables and O(κ ′

dn) convex constraints,
making it an appealing choice for a computable quality measure (Desideratum
(iii)).

4.2. Decoupled linear programs. Moreover, if we choose the norm ‖·‖ =
‖·‖1, the graph Stein discrepancy optimization problem decouples into d inde-
pendent linear programs (LPs) that can be solved in parallel using off-the-shelf
solvers. Indeed, for any G = (supp(Qn),E), S(Qn,T ,G‖·‖1,Qn,G) equals

d∑
j=1

sup
ψj∈Rn,�j∈Rd×n

n∑
i=1

q(xi)

(
2bj (xi)ψji +

d∑
k=1

mjk(xi)�jki

)

s.t. ‖ψj‖∞ ≤ 1,‖�j‖∞ ≤ 1, and for all i �= l, (xi, xl) ∈ E

max
( |ψji − ψjl|

‖xi − xl‖1
,
‖�j(ei − ek)‖∞

‖xi − xl‖1
,
|ψji − ψjl − 〈�jei, xi − xl〉|

1
2‖xi − xl‖2

1

,

|ψji − ψjl − 〈�jei, xl − xi〉|
1
2‖xi − xl‖2

1

)
≤ 1,

(18)

where ψji and �jki represent the values gj (xi) and ∇kgj (xi) respectively. There-
fore, our recommended quality measure is the 2-spanner diffusion Stein discrep-
ancy with ‖·‖ = ‖·‖1. Its computation is summarized in Algorithm 1. An efficient
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Algorithm 1 Spanner diffusion Stein discrepancy, S(Qn,T ,G‖·‖1,Qn,G2)

input: sample Qn, target score ∇ logp, covariance coefficient a, stream coeffi-
cient c

G2 ← 2-spanner of V = supp(Qn)

for j = 1 to d do (in parallel)
τj ← Optimal value of j th coordinate linear program (18) with graph G2

return
∑d

j=1 τj

implementation of Algorithm 1, integrated with 11 linear program solver options,
is publicly available via our Julia package.6

5. Numerical illustrations. In this section, we complement the principal the-
oretical contributions of this work with several simple numerical illustrations
demonstrating how diffusion Stein discrepancies can be deployed in practice. We
will use our proposed quality measures to select hyperparameters for biased sam-
plers, to quantify a bias-variance trade-off for approximate MCMC, and to com-
pare deterministic and random quadrature rules. In each case, we choose experi-
mental settings in which a notion of surrogate ground truth is available for external
validation. We solve all linear programs using Julia for Mathematical Program-
ming [62] with the Gurobi 6.0.4 solver [40] and use the C++ greedy spanner
implementation of Bouts et al. [5] to compute our 2-spanners. Our timings were
obtained on a single core of an Intel Xeon CPU E5-2650 v2 @ 2.60 GHz. Code
reconstructing all experiments is available on the Julia package site.5

5.1. A simple example. We first present a simple example to illustrate several
Stein discrepancy properties. For a Gaussian mixture target P (Example 3) with

p(x) ∝ e− 1
2 (x−�

2 )2 + e− 1
2 (x+�

2 )2
and � > 0, we simulate one i.i.d. sequence of

sample points from P and a second i.i.d. sequence from N (−�
2 ,1), which repre-

sents only one component of P . For various mode separations �, Figure 1 shows
that the Langevin spanner Stein discrepancy (D1) applied to the first n Gaussian
mixture sample points decreases to zero at a n−1/2 rate, while the discrepancy
applied to the single mode sequence stays bounded away from zero. However,
Figure 1 also indicates that larger sample sizes are needed to distinguish between
the mixture and single mode sample sequences when � is large. This accords
with our theory (see Example 3, Corollary 12 and Theorem 6), which implies that
both the Langevin diffusion Wasserstein decay rate and the bound relating Stein to
Wasserstein degrade as the mixture mode separation � increases.

6https://jgorham.github.io/SteinDiscrepancy.jl/

https://jgorham.github.io/SteinDiscrepancy.jl/
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FIG. 1. Stein discrepancy for normal mixture target P with � mode separation (Section 5.1).

5.2. Selecting sampler hyperparameters. Stochastic Gradient Riemannian
Langevin Dynamics (SGRLD) [74] with a constant step size ε is an approximate
MCMC procedure designed to accelerate posterior inference. Unlike asymptoti-
cally correct MCMC algorithms, SGRLD has a stationary distribution that devi-
ates increasingly from its target P as its step size ε grows. On the other hand, if ε

is too small, SGRLD fails to explore the sample space sufficiently quickly. Hence,
an appropriate setting of ε is paramount for accurate inference.

To demonstrate the value of diffusion Stein discrepancies for hyperparameter
selection, we analyzed a biometric data set of L = 202 athletes from the Aus-
tralian Institute of Sport that was previously the focus of a heavy-tailed regression
analysis [87]. In the notation of Example 4, we used SGRLD to conduct a Bayesian
multivariate Student’s t regression (ν = 10, � = I ) of athlete lean body mass onto
red blood count, white blood count, plasma ferritin concentration and a constant
regressor of value 1/

√
L with a pseudo-Huber prior (δ = 0.1) on the unknown

parameter vector β ∈ R
4.

After standardizing the output variable and nonconstant regressors and ini-
tializing each chain with an approximate posterior mode found by L-BFGS
started at the origin, we ran SGRLD with minibatch size 30, metric G(β) =
1/(2

√
1 + ‖β/δ‖2

2)I , and a variety of step sizes ε to produce sample sequences of
length 200,000 thinned to length 2000. We then selected the step size that deliv-
ered the highest quality sample—either the maximum effective sample size (ESS,
a popular MCMC mixing diagnostic based on asymptotic variance [6]) or the min-
imum Riemannian Langevin spanner Stein discrepancy with a(β) = G−1(β). The
longest discrepancy computation consumed 6s for spanner construction and 65s to
solve a coordinate optimization problem. As a surrogate measure of ground truth,
we also generated a sample Q∗ of size 2 × 108 from the Metropolis-adjusted Rie-
mannian Langevin Algorithm (MARLA) [33] with metric G and compute the me-
dian bivariate marginal Wasserstein distance dW‖·‖1

between each SGRLD sample
and Q∗ thinned to 5000 points [41].

Figure 2(a) shows that ESS, which does not account for stationary distribution
bias, selects the largest step size available, ε = 10−2. As seen in Figure 2(b), this
choice results in samples that are greatly overdispersed when compared with the
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FIG. 2. Step size selection, stochastic gradient Riemannian Langevin dynamics (Section 5.2).

ground truth MARLA sample Q∗. At the other extreme, the selection ε = 10−7

produces greatly underdispersed samples due to slow mixing. The Stein discrep-
ancy chooses an intermediate value, ε = 10−4. The same value minimizes the sur-
rogate ground truth Wasserstein measure and produces samples that most closely
resemble the Q∗ in Figure 2(b).

5.3. Quantifying a bias-variance trade-off. Approximate random walk
Metropolis–Hastings (ARWMH) [54] with tolerance parameter ε is a biased
MCMC procedure that accelerates posterior inference by approximating the stan-
dard MH correction. Qualitatively, a smaller setting of ε produces a more faithful
approximation of the MH correction and less bias between the chain’s stationary
distribution and the target distribution of interest. A larger setting of ε leads to
faster sampling and a more rapid reduction of Monte Carlo variance, as fewer
datapoint likelihoods are computed per sampling step. We will quantify this bias-
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FIG. 3. Bias-variance trade-off curves for approximate random walk MH (Section 5.3).

variance trade-off as a function of sampling time using the Langevin spanner Stein
discrepancy.

In the notation of Example 2, we conduct a Bayesian Huber regression analysis
(c = 1) of the log radon levels in 1190 Minnesota households [31] as a function of
the log amount of uranium in the county, an indicator of whether the radon reading
was performed in a basement and an intercept term. A N (0, I ) prior is placed on
the coefficient vector β . We run ARWMH with minibatch size 5 and two settings
of the tolerance threshold ε (0.1 and 0.2) for 107 likelihood evaluations, discard the
sample points from the first 105 evaluations, and thin the remaining points to se-
quences of length 1000. Figure 3 displays the Langevin spanner Stein discrepancy
applied to the first n points in each sequence as a function of the likelihood eval-
uation count, which serves as a proxy for sampling time. As expected, the higher
tolerance sample (ε = 0.2) is of higher Stein quality for a small computational bud-
get but is eventually overtaken by the ε = 0.1 sample with smaller asymptotic bias.
The longest discrepancy computation consumed 0.8s for the spanner and 20.1s for
a coordinate LP.

To provide external support for the Stein discrepancy quantification, we gen-
erate a Metropolis-adjusted Langevin chain [84] of length 108 as a surro-
gate Q∗ for the target P and display several measures of expectation error
between X ∼ Qn and Z ∼ Q∗ in Figure 3: the normalized predictive error
maxl |E[〈X − Z,vl/‖vl‖∞〉]| for vl the lth datapoint covariate vector, the mean
error maxj |E[Xj−Zj ]|

maxj |EQ∗ [Zj ]| and the second moment error maxj,k |E[XjXk−ZjZk]|
maxj,k |EQ∗ [ZjZk]| . We see

that the Stein discrepancy provides comparable results without the need for an
additional surrogate chain.

5.4. Comparing quadrature rules. Stein discrepancies can also measure the
quality of deterministic sample sequences designed to improve upon Monte Carlo
sampling. For the Gaussian mixture target of Section 5.1, Figure 4 compares the
median quality of 50 sample sequences generated from four quadrature rules re-
cently studied in [55], Section 4.1: i.i.d. sampling from P , Quasi-Monte Carlo
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(QMC) sampling using a deterministic quasirandom number generator, Frank–
Wolfe (FW) kernel herding [2, 13] and fully-corrective Frank–Wolfe (FCFW) ker-
nel herding [55]. The quality judgments of the Langevin spanner Stein discrepancy
(D1) closely mimic those of the L1 Wasserstein distance dW‖·‖ , which is com-
putable for simple univariate targets [92]. Each Stein discrepancy was computed
in under 0.03s.

Under both diagnostics and as previously observed in other metrics [55], the
i.i.d. samples are typically of lower median quality than their deterministic coun-
terparts. More surprisingly and in contrast to past work focused on very smooth
function classes [55], FCFW underperforms FW and QMC in our diagnostics for
larger sample sizes. Apparently FCFW, which is heavily optimized for smooth
function integration, has sacrificed approximation quality for less smooth test func-
tions. For example, Figure 4 shows that QMC offers a better quadrature estimate
than FCFW for h1(x) = max{0,1 − minj∈{1,2} |x − μj |}, a 1-Lipschitz approxi-
mation to the indicator of being within one standard deviation of a mode.

In addition to providing a sample quality score, the Stein discrepancy optimiza-
tion problem produces an optimal Stein function g∗ and an associated test function
h∗ = T g∗ that is mean zero under P and best distinguishes the sample Qn from
the target P . Figure 4 gives examples of these maximally discriminative functions
h∗ for a target mode separation of � = 5 and length 200 sequences from each

FIG. 4. Left: Quadrature rule quality comparison for Gaussian mixture targets P with mode sepa-
ration � (Section 5.4). Right: (Top) Sample histograms with p overlaid (� = 5, n = 200). (Bottom)
Optimal discriminating test functions h∗ = T g∗ from Stein program.
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quadrature rule. We also display the associated sample histograms with overlaid
target density. The optimal FCFW function reflects the jagged nature of the FCFW
histogram.

6. Connections and conclusions. We developed quality measures suitable
for comparing the fidelity of arbitrary “off-target” sample sequences by generating
infinite collections of known target expectations.

Alternative quality measures. The score statistic of Fan et al. [25] and the
Gibbs sampler convergence criteria of Zellner and Min [96] account for some sam-
ple biases but sacrifice differentiating power by exploiting only a finite number of
known target expectations. For example, when P = N (0,1), the score statistic
[25] cannot differentiate two samples with the same means and variances. Maxi-
mum mean discrepancies (MMDs) over characteristic reproducing kernel Hilbert
spaces [39] do detect arbitrary distributional biases but are only computable when
the chosen kernel functions can be integrated under the target. In practice, one of-
ten approximates MMD using a sample from the target, but this requires a separate
trustworthy sample from P .

While we have focused on the graph and classical Stein sets of [36], our dif-
fusion Stein operators can also be paired with the reproducing kernel Hilbert
space unit balls advocated in [15, 37, 60, 71] to form tractable kernel diffusion
Stein discrepancies or with the random feature functions advocated in [48] to
form random feature diffusion Stein discrepancies. We have also restricted our
attention to Stein operators arising from diffusion generators. These take the form
(T g)(x) = 1

p(x)
〈∇,p(x)m(x)g(x)〉 with m = a + c for a(x) positive semidefinite

and c(x) skew-symmetric. More generally, if the matrix m possesses eigenvalues
having a negative real part, then the resulting operator need not correspond to a
diffusion process. Such operators fall into the class of pseudo-Fokker–Planck op-
erators which have been studied in the context of quantum optics [82]. As noted in
[18, 19], it is possible to obtain corresponding stochastic dynamics in an extended
state space by introducing complex-valued noise terms; these operators may merit
further study in future work.

Alternative inferential tasks. While our chief motivation is sample quality
measurement, our work is also directly applicable to a variety of inferential tasks
that currently rely on the Langevin operator introduced by [36, 71], including
control variate design [71], goodness-of-fit testing [15, 60], variational inference
[12, 61, 79] and importance sampling [59]. The Stein factor bounds of Theo-
rem 5 can also be used, in the manner of [42, 50, 67], to characterize the er-
ror of numerical discretizations of diffusions. These works convert bounds on
the solutions of Poisson equations—Stein factors—into central limit theorems for
EQn[h(X)] − EP [h(Z)], confidence intervals for EP [h(Z)], and mean-squared
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error bounds for the estimate EQn[h(X)]. Teh et al. [91] and Vollmer et al. [93] ex-
tended these approaches to obtain error estimates for approximate discretizations
of the Langevin diffusion on R

d , while, independently of our work, Huggins and
Zou [47] established error estimates for Itô diffusion approximations with biased
drifts and constant diffusion coefficients. By Theorem 5, their results also hold for
Itô diffusions with nonconstant diffusion coefficients. Following the release of the
present paper and with the aim of analyzing discretization error for the overdamped
Langevin diffusion, Fang et al. [26], Theorem 3.1, derived multivariate Stein factor
bounds for a class of strongly log-concave distributions. Our Theorem 5 with the
choice ι = 1/ log(1/ε) provides Stein factors of the same form but applies also to
nonlog-concave targets and more general diffusions.

Alternative targets. Our exposition has focused on the Wasserstein distance
dW‖·‖ , which is only defined for distributions with finite means. A parallel de-
velopment could be made for the Dudley metric [69] to target distributions with
undefined mean. The work of Cerrai [8] also suggests that the Lipschitz condition
on our drift and diffusion coefficients can be relaxed.

APPENDIX A: PROOF OF PROPOSITION 3

Fix any g ∈ G‖·‖ . Since g and ∇g are bounded and b, a, and c are P -integrable,
EP [(T g)(Z)] is finite. Define the ball Br = {x ∈ R

d : ‖x‖2 ≤ r} with nr(z) the
outward facing unit normal vector for each z on the boundary ∂Br . Since z �→
p(z)(a(z)+ c(z))g(z) is in C1, we may apply the dominated convergence theorem
and then the divergence theorem to obtain

EP

[
(T g)(Z)

]= lim
r→∞

∫
Br

〈∇,p(z)
(
a(z) + c(z)

)
g(z)

〉
dz

= lim
r→∞

∫
∂Br

〈
nr(z),

(
a(z) + c(z)

)
g(z)p(z)

〉
dz.

Let f (r) = M0(g)
∫
∂Br

‖a(z) + c(z)‖opp(z) dz. Since g and nr are bounded,∫
∂Br

〈
nr(z),

(
a(z) + c(z)

)
g(z)p(z)

〉
dz ≤ f (r).

The coarea formula [1] and the integrability of a and c further imply that∫ ∞
0

f (r) dr =
∫
Rd

M0(g)
∥∥a(z) + c(z)

∥∥
opp(z) dz < ∞.

Hence, lim infr→∞ f (r) = 0, and therefore EP [(T g)(Z)] = 0.

APPENDIX B: PROOF OF THEOREM 5

Fix any x ∈ R
d and h ∈ W‖·‖2 with EP [h(Z)] = 0. Since the drift and diffu-

sion coefficients are Lipschitz, [53], Theorem 3.4, guarantees that the diffusion
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(Zt,x)t≥0 is well defined. Using the shorthand sr �
∫∞

0 r(t) dt , we will show that
the posited function uh (10) exists and solves the Poisson equation

h = Auh(19)

with infinitesimal generator A, that uh is Lipschitz, that uh has a continuous
Hessian, that uh has a bounded and Hölder continuous Hessian under additional
smoothness assumptions.

Existence of uh and solving the Poisson equation (19). Consider the set
L � (1 + ‖x‖2

2)C0(R
d) = {(1 + ‖x‖2

2)f : f ∈ C0(R
d)}, where C0(R

d) is the set
of continuous functions vanishing at infinity. Equipped with the norm ‖f ‖L =
supx∈Rd |f (x)|/(1 + ‖x‖2

2), the set L is a Banach space [85]. As noted in [17], the
space L can also be characterized as the closure of the set of bounded continuous
functions, Cb(R

d), in the set {f : Rd → R : ‖f ‖L < ∞}. To discuss the well-
posedness of the Poisson equation (19), we first show that the transition semigroup
of an Itô diffusion is strongly continuous on L.

PROPOSITION 14. The transition semigroup (Pt )t≥0 of an Itô diffusion with
Lipschitz drift and diffusion coefficients is strongly continuous on L.

PROOF. Fix any f ∈ L and x ∈ R
d . We first show that (Ptf )(x) converges

pointwise to f (x) as t → 0+. Since the associated Itô process (Zt,x)t≥0 is almost
surely pathwise continuous [53], Theorem 3.4, and f is continuous in a neighbor-
hood of x, it follows that f (Zt,x) → f (x) as t → 0+, almost surely. Moreover,
[28], Section 5, Corollary 1.2, implies that

E

[
sup

0≤t≤1

∣∣f (Zt,x)
∣∣]≤ ‖f ‖L

(
1 +E

[
sup

0≤t≤1
‖Zt,x‖2

2

])
≤ C‖f ‖L

(
1 + ‖x‖2

2
)
,

for some C > 0 depending only on M1(b) and M1(σ ). The dominated convergence
theorem now yields the desired pointwise convergence.

To prove the strong continuity of (Pt )t≥0, it suffices, by [23], Theorem I.5.8,
p. 40, to verify that (Pt )t≥0 is weakly continuous, that is, that l(Ptf ) → l(f ), as
t → 0+, for all elements l of the dual space L∗. To this end, fix any l ∈ L∗. By the
Riesz–Markov theorem for L [17], Theorem 2.4, there exists a finite signed Radon
measure μ such that

(20) l(f ) =
∫
Rd

f (x)μ(dx) and
∫
Rd

(
1 + ‖x‖2

2
)|μ|(dx) = ‖l‖L∗,

for ‖·‖L∗ the dual norm. By Jensen’s inequality and [28], Section 5, Corollary 1.2,

∀t,
∥∥(Ptf )(x)

∥∥
2 ≤ E

[∣∣f (Zt,x)
∣∣]

≤ ‖f ‖LE
[
1 + ‖Zt,x‖2

2
]≤ C‖f ‖L

(
1 + ‖x‖2

2
)
.
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Since 1 + ‖x‖2
2 is |μ|-integrable by (20), dominated convergence gives

lim
t→0+ l(Ptf ) = lim

t→0+

∫
Rd

(Ptf )(x)μ(dx) =
∫
Rd

f (x)μ(dx) = l(f ),

yielding the result. �

Consider the infinitesimal generator A of the semigroup (Pt )t≥0 on L with

dom(A) =
{
f ∈ L : lim

t→0+
Ptf − f

t
exists in the ‖·‖L norm

}
.

Since Pt is strongly continuous on L and h ∈ L with M1(h) ≤ 1 and EP [h(Z)] =
0, [24], Proposition 1.5, implies that

h − Pth = −A
∫ t

0
Pshds = Auh,t for uh,t � −

∫ t

0
Pshds.

The stationarity of P and the definitions of dW‖·‖2
and r imply that

‖Pth‖L = ∥∥Pth − EP [h]∥∥L
= sup

x∈Rd

∣∣EP

[
Pth(x) − Pth(Z)

]∣∣/(1 + ‖x‖2
2
)

≤ sup
x∈Rd

EP [dW‖·‖2
(δxPt , δZPt )]

1 + ‖x‖2
2

≤ r(t) sup
x∈Rd

EP [‖x − Z‖2]
1 + ‖x‖2

2

,

and hence ‖Pth‖L → 0 as t → ∞, since P has a finite mean, and r(t) → 0 as
t → ∞ as r is integrable and monotonic. Arguing similarly,

‖uh,t − uh,t ′‖L ≤
∥∥∥∥∫ t ′

t
EP

[
dW‖·‖2

(δxPs, δZPs)
]
ds

∥∥∥∥
L

≤ sup
x∈Rd

EP [‖x − Z‖2]
1 + ‖x‖2

2

∫ t ′

t
r(s) ds.

Thus, it follows that (uh,t )t>0 is a Cauchy sequence in L with limit uh =∫∞
0 Pshds ∈ L. Thus, (h − Pth,uh,t ) → (h,uh) in the graph norm on L × L,

and since A is closed [24], Corollary 1.6, uh ∈ dom(A) and h = Auh.

REMARK. The choice of the Banach space is crucial for the argument above.
As noted in [66] and contrary to the claim in [4], the semigroup (Pt )t≥0 fails
to be strongly continuous over the Banach space L̃ � (1 + ‖x‖2

2)Cb(R
d) when

(Zt,x)t≥0 is an Ornstein–Uhlenbeck process, that is, a Langevin diffusion (D1)
with a multivariate Gaussian invariant measure.



2910 GORHAM, DUNCAN, VOLLMER AND MACKEY

Lipschitz continuity of uh. To demonstrate that uh is Lipschitz, we choose an
arbitrary v ∈ R

d , and apply the definition of the Wasserstein distance, the assumed
decay rate, and the integrability of r to obtain∥∥uh(x + v) − uh(x)

∥∥
2 ≤

∫ ∞
0

∥∥E[h(Zt,x) − h(Zt,x+v)
]∥∥

2 dt

≤
∫ ∞

0
dW‖·‖(δxPt ,δx+vPt ) dt

≤ dW‖·‖(δx, δx+v)sr = ‖v‖2sr < ∞.

Continuity of ∇2uh. Since uh ∈ dom(A) is a continuous solution of the Pois-
son equation (19), and since the infinitesimal generator agrees with the character-
istic operator of a diffusion when both are defined [72], p. 129, Theorem 5.9 of
[21] implies that uh ∈ C2.

Boundedness of ∇2uh. Instantiate the additional preconditions of (11), and
assume that M0(σ

−1),F2(σ ),M2(b) < ∞, or else (11) is vacuous. Lemma 15,
established in Appendix C, shows that the semigroup Pth admits a bounded con-
tinuous Hessian, which is integrable in t .

LEMMA 15 (Semigroup Hessian estimate). Suppose that the drift and diffu-
sion coefficients b and σ of an Itô diffusion are Lipschitz with Lipschitz gradients
and locally Lipschitz second derivatives. If the transition semigroup (Pt )t≥0 has
Wasserstein decay rate r , and σ(x) has a right inverse σ−1(x) for each x ∈ R

d ,
then, for all t > 0 and any f ∈ C2 with bounded first and second derivatives, Ptf

is twice continuously differentiable with

M1(Ptf ) ≤ M1(f )r(t) and(21)

M2(Ptf ) ≤ inf
t0∈(0,t]M1(f )r(t − t0)

√
1

t0
et0γ2M0

(
σ−1)

+ M1(f )r(t − t0)r(0)et0γ2M1(σ )M0
(
σ−1)(22)

+ M1(f )r(t − t0)
√

t0r(0)et0γ4
2

3

√
α

for γρ � ρM1(b) + ρ2−2ρ
2 M1(σ )2 + ρ

2 F1(σ )2, α � M2(b)2

2M1(b)+4M1(σ )2 + 2F2(σ )2.

The dominated convergence theorem now implies that the Hessian of uh is ob-
tained by differentiating twice under the integral sign. The advertised bound (11)
on ∇2uh follows by replacing the infimum on the right-hand side of the semigroup
bound (22) with the selection t0 = min(t,1), applying the bound emin(t,1)γρ ≤ eγρ

for each γρ and t , and integrating the result over t .
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Hölder continuity of ∇2uh. Finally, instantiate the additional preconditions
of (12), and fix any ι ∈ (0,1). The integral representation (10) of uh, the dominated
convergence theorem, and Jensen’s inequality imply

M1−ι

(∇2uh

)= M1−ι

(
−
∫ ∞

0
∇2Pthdt

)
≤
∫ ∞

0
M1−ι

(∇2Pth
)
dt.

When t ≤ 1, a seminorm interpolation lemma (Lemma 19 in the Supplementary
Material [35], which is based on results on seminorm interpolation, see e.g. [63]),
a semigroup third derivative estimate (Lemma 20 in the Supplementary Material
[35]) with t0 = min(t,1) and the semigroup second derivative estimate of Lemma
15 with t0 = min(t,1) imply

M1−ι

(∇2Pth
)≤ M1(h)2ιM0

(∇2Pth
)ι
M1
(∇2Pth

)1−ι ≤ M1(h)t ι/2−1/K1

for some constant K1 > 0 depending only on M1:3(b),M1:3(σ ),M0(σ
−1), and r .

Thus
∫ 1

0 M1−ι(∇2Pth) dt ≤ 2M1(h)
K1ι

. For t > 1, Lemmas 19, 20 and 15 and the
integrability of r yield∫ ∞

1
M1−ι

(∇2Pth
)
dt ≤ M1(h)

2

K2

∫ ∞
1

r(t − 1) dt = M1(h)
2

K2
sr

for a constant K2 > 0 again depending only on M1:3(b),M1:3(σ ),M0(σ
−1), and r .

Combining these bounds and choosing K = min(K1,K2)/2 completes the proof.
An explicit constant K can be obtained by tracing constants through the proof of
Lemma 20.

APPENDIX C: PROOF OF LEMMA 15

Fix any x ∈ R
d and f : Rd → R in C2 with bounded first and second deriva-

tives, and let (Zt,x)t≥0 be an Itô diffusion solving the stochastic differential equa-
tion (5) with starting point Z0,x = x, underlying Wiener process (Wt)t≥0, and
transition semigroup (Pt )t≥0. Our proof is divided into five pieces establishing,
for each t > 0, the Lipschitz continuity of Ptf , the Lipschitz continuity of ∇Ptf ,
the continuity of ∇2Ptf , an initial bound on ∇2Ptf , and the infimal bound (22)
on ∇2Ptf .

Lipschitz continuity of Ptf . The semigroup gradient bound (21) follows
from the Lipschitz continuity of f and the definitions of the Wasserstein decay
rate and the Wasserstein distance, as, for any y ∈ R

d and t ≥ 0,

(Ptf )(x) − (Ptf )(y) = E
[
f (Zt,x) − f (Zt,y)

]
≤ M1(f )dW‖·‖2

(δxPt ,δyPt )

≤ M1(f )r(t)dW‖·‖2
(δx, δy)

= M1(f )r(t)‖x − y‖2.
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Lipschitz continuity of ∇Ptf . Fix any v, v′ ∈ R
d . Under our smoothness

assumptions on b and σ , [77], Theorem V.40, implies that (Zt,x)t≥0 is twice con-
tinuously differentiable in x. The first directional derivative flow (Vt,v)t≥0 solves
the first variation equation,

dVt,v = ∇b(Zt,x)Vt,v dt + ∇σ(Zt,x)Vt,v dWt with V0,v = v,(23)

obtained by formally differentiating the equation (5) defining (Zt,x)t≥0 with re-
spect to x in the direction v. The second directional derivative flow (Ut,v,v′)t≥0

solves the second variation equation,

dUt,v,v′ = (∇b(Zt,x)Ut,v,v′ + ∇2b(Zt,x)[Vt,v′ ]Vt,v

)
dt

+ (∇σ(Zt,x)Ut,v,v′(24)

+ ∇2σ(Zt,x)[Vt,v′ ]Vt,v

)
dWt with U0,v,v′ = 0,

obtained by differentiating (23) with respect to x in the direction v′.
Since f has bounded first and second derivatives, the dominated convergence

theorem implies that, for each t ≥ 0, Ptf is twice differentiable with〈∇(Ptf )(x), v
〉= E

[〈∇f (Zt,x),Vt,v

〉]
and

v′�∇2(Ptf )(x)v = E
[
V �

t,v′∇2f (Zt,x)Vt,v + 〈∇f (Zt,x),Ut,v,v′
〉](25)

obtained by differentiating under the integral sign. Lemma 16, proved in Sec-
tion C.1, justifies the exchanges of derivative and expectation by ensuring that
the derivative flows have moments bounded uniformly in x.

LEMMA 16 (Derivative flow bounds). Suppose that (Zt,x)t≥0 is an Itô diffu-
sion with starting point Z0,x = x ∈ R

d , driving Wiener process (Wt)t≥0, and Lip-
schitz drift and diffusion coefficients b and σ with Lipschitz gradients and locally
Lipschitz second derivatives. If (Vt,v)t≥0 and (Ut,v,v′)t≥0, respectively, solve the
stochastic differential equations (23) and (24) for v, v′ ∈ R

d , then, for any ρ ≥ 2,

E
[‖Vt,v‖ρ

2

]≤ ‖v‖ρ
2etγρ and(26)

E
[‖Ut,v,v′‖2

2
]≤ α‖v‖2

2
∥∥v′∥∥2

2te
tγ4(27)

for γρ � ρM1(b)+ ρ2−2ρ
2 M1(σ )2 + ρ

2 F1(σ )2 and α � M2(b)2

2M1(b)+4M1(σ )2 + 2F2(σ )2.

Since ∇f and ∇2f are bounded, and (Vt,v)t≥0, (Vt,v′)t≥0, and (Ut,v,v′)t≥0 have
second moments bounded uniformly in x by Lemma 16, the Hessian formula (25)
implies that ∇2Ptf is bounded, and hence that ∇Ptf is Lipschitz continuous for
each t ≥ 0.
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Continuity of ∇2Ptf . Hereafter, we assume that M0(σ
−1) < ∞, as the semi-

group Hessian bound (22) is otherwise vacuous.
The Lipschitz continuity of f and the Itô diffusion moment bound of [53], The-

orem 3.4, part 4, together imply that

E
[
f (Zt,x)

2]≤ E
[(∣∣f (x)

∣∣+ ‖Zt,x − x‖2M1(f )
)2]

< ∞
for all t ≥ 0. Since σ−1 is bounded, and ∇b and ∇σ are bounded and Lipschitz,
[27], Proposition 3.2, gives the following Bismut–Elworthy–Li-type formula for
the directional derivative of Ptf for each t > 0:〈∇(Ptf )(x), v

〉= 1

t
E

[
f (Zt,x)

∫ t

0

〈
σ−1(Zs,x)Vs,v, dWs

〉]
.

By interchanging derivative and integral, the dominated convergence theorem now
delivers the Hessian expression

v′�∇2(Ptf )(x)v = E[J1,x + J2,x + J3,x] for

J1,x � 1

t

〈∇f (Zt,x),Vt,v′
〉 ∫ t

0

〈
σ−1(Zs,x)Vs,v, dWs

〉
,

J2,x � 1

t
f (Zt,x)

∫ t

0

〈∇σ−1(Zs,x)[Vs,v′ ]Vs,v, dWs

〉
, and

J3,x � 1

t
f (Zt,x)

∫ t

0

〈
σ−1(Zs,x)Us,v,v′, dWs

〉
,

(28)

for each t > 0, provided that J1,x, J2,x , and J3,x are continuous in x. The requisite
continuity follows from the Lipschitz continuity of ∇f and f , the boundedness
of σ−1, ∇σ , and ∇2σ , and the controlled moment growth and Hölder continuity
of (Zt,x)t≥0, (Vt,v)t≥0, (Vt,v′)t≥0 and (Ut,v,v′)t≥0 as functions of x [77], Theorem
V.40. The dominated convergence theorem further implies that ∇2Ptf is continu-
ous for each t > 0.

Initial bound on ∇2Ptf . Now, we fix any t > 0 and turn to bounding ∇2Ptf

in terms of M1(f ), by bounding the expectations of J1,x, J2,x and J3,x of (28) in
turn.

To control E[J1,x], we apply Cauchy–Schwarz, the Itô isometry [28], equations
(7.1) and (7.2), the derivative flow bound (26) and the fact esγ2 ≤ etγ2 for all s ≤ t

to obtain

E[J1,x] ≤ 1

t

√
E
[〈∇f (Zt,x),Vt,v′

〉2]
E

[(∫ t

0

〈
σ−1(Zs,x)Vs,v, dWs

〉)2]

≤ 1

t
M1(f )

√
E
[‖Vt,v′‖2

2

] ∫ t

0
E
[∥∥σ−1(Zs,x)Vs,v

∥∥2
2

]
ds
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≤ 1

t
M1(f )M0

(
σ−1)√

E
[‖Vt,v′‖2

2

] ∫ t

0
E
[‖Vs,v‖2

2

]
ds

≤ 1

t
M1(f )M0

(
σ−1)∥∥v′∥∥

2‖v‖2

√
etγ2

∫ t

0
esγ2 ds

≤
√

1

t
etγ2M1(f )M0

(
σ−1)∥∥v′∥∥

2‖v‖2,

where we have adopted the definition of γρ given in Lemma 16.
To control E[J2,x], we will first rewrite the unbounded quantity f (Zt,x) in terms

of more manageable semigroup gradients. To this end, we note that, since Pt−sf ∈
C2 for all s ∈ [0, t], we may apply Itô ’s formula [28], Theorem 7.1, to (s, x) �→
Pt−sf (x) to obtain the identity

f (Zt,x) = (Ptf )(x) +
∫ t

0

〈∇(Pt−sf )(Zs,x), σ (Zs,x) dWs

〉
.(29)

Now we may rewrite E[J2,x] as

E[J2,x] = 1

t
E

[
(Ptf )(x)

∫ t

0

〈∇σ−1(Zs,x)[Vs,v′ ]Vs,v, dWs

〉
+
∫ t

0

〈∇(Pt−sf )(Zs,x), σ (Zs,x) dWs

〉
×
∫ t

0

〈∇σ−1(Zs,x)[Vs,v′ ]Vs,v, dWs

〉]
= 1

t
E

[∫ t

0

〈∇(Pt−sf )(Zs,x), σ (Zs,x)∇σ−1(Zs,x)[Vs,v′ ]Vs,v

〉
ds

]
= −1

t
E

[∫ t

0

〈∇(Pt−sf )(Zs,x),∇σ(Zs,x)[Vs,v′ ]σ−1(Zs,x)Vs,v

〉
ds

]
,

where we have used Dynkin’s formula [28], equation (7.11), the Itô isometry and
the chain rule,

(30) ∇σ−1(x)[v] = −σ−1(x)∇σ(x)[v]σ−1(x).

Finally, we bound E[J2,x] using Cauchy–Schwarz, the semigroup gradient bound
(21), the derivative flow bound (26) and the fact that s �→ r(t −s)esγ2 is increasing:

E[J2,x] ≤ 1

t
M1(σ )M0

(
σ−1) ∫ t

0
M1(Pt−sf )E

[‖Vs,v′‖2‖Vs,v‖2
]
ds

≤ 1

t
M1(σ )M0

(
σ−1) ∫ t

0
M1(Pt−sf )

√
E
[‖Vs,v′‖2

2

]
E
[‖Vs,v‖2

2

]
ds
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≤ 1

t
M1(σ )M0

(
σ−1)M1(f )

∥∥v′∥∥
2‖v‖2

∫ t

0
r(t − s)esγ2 ds

≤ r(0)etγ2M1(σ )M0
(
σ−1)M1(f )

∥∥v′∥∥
2‖v‖2.

To control E[J3,x], we again appeal to Dynkin’s formula and the Itô isometry to
obtain

E[J3,x] = 1

t
E

[
(Ptf )(x)

∫ t

0

〈
σ−1(Zs,x)Us,v,v′, dWs

〉
+
∫ t

0

〈∇(Pt−sf )(Zs,x), σ (Zs,x) dWs

〉 ∫ t

0

〈
σ−1(Zs,x)Us,v,v′, dWs

〉]
= E

[∫ t

0

〈∇(Pt−sf )(Zs,x),Us,v,v′
〉
ds

]
,

and we bound this expression using Cauchy–Schwarz, Jensen’s inequality, the
semigroup gradient bound (21), the second derivative flow bound (27) and the
fact that s �→ r(t − s)esγ4 is increasing:

E[J3,x] ≤ 1

t

∫ t

0
M1(Pt−sf )E

[‖Us,v,v′‖2
]
ds

≤ 1

t

∫ t

0
M1(Pt−sf )

√
E
[‖Us,v,v′‖2

2

]
ds

≤ 1

t
M1(f )

√
α
∥∥v′∥∥

2‖v‖2

∫ t

0
r(t − s)

√
sesγ4 ds

≤ 2

3

√
tr(0)etγ4M1(f )

√
α
∥∥v′∥∥

2‖v‖2,

where α is defined in Lemma 16. The advertised result (22) for t0 = t follows by
summing the bounds developed for E[J1,x],E[J2,x] and E[J3,x].

Infimal bound on ∇2Ptf . To obtain the infimum over t0 ∈ (0, t] in (22), we
adapt an argument of [8], Proposition 1.5.1. Specifically, fix any t0 ∈ (0, t]. Our
work thus far shows that v′�∇2(Pt0 f̃ )(x)v ≤ M1(f̃ )ζ(t0) for a real-valued func-
tion ζ and f̃ ∈ C2 with bounded first and second derivatives. Since we now know
that Pt−t0f ∈ C2 with bounded first and second derivatives, the Markov property
of the diffusion and the first derivative bound (21) yield

v′�∇2(Ptf )(x)v = v′�∇2(Pt0Pt−t0f )(x)v

≤ M1(Pt−t0f )ζ(t0)

≤ M1(f )r(t − t0)ζ(t0).
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C.1. Proof of Lemma 16: Derivative flow bounds. Fix any ρ ≥ 2 and
v ∈ R

d . Since Dynkin’s formula and Cauchy–Schwarz give

E
[‖Vt,v‖ρ

2

]= ‖v‖ρ
2 +E

[∫ t

0
ρ
〈
Vs,v‖Vs,v‖ρ−2

2 ,∇b(Zs,x)Vs,v

〉
+ ρ

2
‖Vs,v‖ρ−4

2

(
(ρ − 2)

∥∥V �
s,v∇σ(Zs,x)[Vs,v]

∥∥2
2

+ ‖Vs,v‖2
2
∥∥∇σ(Zs,x)[Vs,v]

∥∥2
F

)
ds

]

≤ ‖v‖ρ
2 +

∫ t

0

(
ρM1(b) + ρ2 − 2ρ

2
M1(σ )2

+ ρ

2
F1(σ )2

)
E
[‖Vs,v‖ρ

2

]
ds,

the advertised result (26) follows from Grönwall ’s inequality.
Now fix any v, v′ ∈ R

d , and define Ut � Ut,v,v′ . Dynkin’s formula and multiple
applications of Cauchy–Schwarz and Young’s inequality give

E
[‖Ut‖2

2
]= E

[∫ t

0
2
〈
Us,∇b(Zs,x)Us + ∇2b(Zs,x)[Vs,v′ ]Vs,v

〉
+ ∥∥∇σ(Zs,x)[Us] + ∇2σ(Zs,x)[Vs,v′ ]Vs,v

∥∥2
F ds

]
≤ E

[∫ t

0
2‖Us‖2

2M1(b) + 2‖Us‖2‖Vs,v‖2‖Vs,v′‖2M2(b)

+ 2
∥∥∇σ(Zs,x)[Us]

∥∥2
F + 2

∥∥∇2σ(Zs,x)[Vs,v′ ]Vs,v

∥∥2
F ds

]
≤
∫ t

0

(
2M1(b) + 2F1(σ )2 + ε

)
E
[‖Us‖2

2
]

+ (
M2(b)2/ε + 2F2(σ )2)

E
[‖Vs,v‖2

2‖Vs,v′‖2
2
]
ds

for any ε > 0. Letting γρ = ρM1(b) + ρ2−2ρ
2 M1(σ )2 + ρ

2 F1(σ )2, we see that, by
Cauchy–Schwarz and our derivative flow bound (26),∫ t

0
E
[‖Vs,v‖2

2‖Vs,v′‖2
2
]
ds ≤

∫ t

0

√
E
[‖Vs,v‖4

2

]
E
[‖Vs,v′‖4

2

]
ds

≤
∫ t

0
‖v‖2

2
∥∥v′∥∥2

2e
sγ4 ds

= ‖v‖2
2
∥∥v′∥∥2

2
etγ4 − 1

γ4
.
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Hence, if we choose ε = γ4 − (2M1(b) + 2F1(σ )2) and define α = M2(b)2/ε +
2F2(σ )2 we may write

E
[‖Ut‖2

2
]≤ α‖v‖2

2
∥∥v′∥∥2

2
etγ4 − 1

γ4
+
∫ t

0
γ4E

[‖Us‖2
2
]
ds.

Gronwall’s inequality now yields the result (27) via

E
[‖Ut‖2

2
] ≤ α‖v‖2

2
∥∥v′∥∥2

2

(
etγ4 − 1

γ4
+
∫ t

0

esγ4 − 1

γ4
γ4e

(t−s)γ4 ds

)
= α‖v‖2

2
∥∥v′∥∥2

2te
tγ4 .

APPENDIX D: PROOF OF THEOREM 6

We first derive the result for ‖·‖ = ‖·‖2. Without loss of generality, assume
h ∈ W‖·‖2 with EP [h(Z)] = 0. Our high-level strategy is to relate the Wasserstein
distance to the Stein discrepancy via the Stein equation (3) with diffusion Stein
operator T (8). Since the infinitesimal generator A (4) has the form (7) by Theo-
rem 2, Theorem 5 implies that there exists a continuously differentiable solution
gh to the the Stein equation h(x) = (T gh)(x) satisfying M0(gh) ≤ srM1(h) ≤ sr .
Since boundedness alone is insufficient to declare that gh falls into a scaled copy
of the classical Stein set G‖·‖ , we will develop a smoothed version of the Stein
solution with greater regularity.

Since a and c are constant, b(x) = 1
2(a + c)∇ logp(x). Fix any s > 0 and con-

sider the convolution gh,s(x) � E[gh(x + sG)]. If the smoothing level s is small,
the Lipschitz continuity of h implies that that (T gh,s)(x) provides a close approx-
imation to h(x) for each x ∈ R

d :

h(x) ≤ E
[
h(x + sG)

]+ M1(h)sE
[‖G‖2

]
≤ E

[
1

p(x + sG)

〈∇,p(x + sG)(a + c)gh(x + sG)
〉]

+ sE
[‖G‖2

]
≤ 2E

[〈
b(x + sG), gh(x + sG)

〉]
+E

[〈
a + c,∇gh(x + sG)

〉]+ sE
[‖G‖2

]
≤ (T gh,s)(x) + sE

[‖G‖2
](

1 + 2M1(b)M0(gh)
)
.

(31)

Moreover, by our next lemma, proved in Section D.1, the smoothed Stein solution
admits a bounded Lipschitz gradient ∇gh,s(x) = E[∇gh(x + sG)].

LEMMA 17 (Smoothing by Gaussian convolution). Let G ∈ R
d be a standard

normal random vector, and fix s > 0. If f : Rd → R is bounded and measurable
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and fs(x) � E[f (x + sG)], then

M0(fs) ≤ M0(f ), M1(fs) ≤
√

2

π

M0(f )

s
, and M2(fs) ≤ √

2
M0(f )

s2 .

If, additionally, f ∈ C1, then ∇fs(x) = E[∇f (x + sG)].

Indeed, for each nonzero w ∈ R
d , we may apply Lemma 17 to the function

fw(x) � 〈w,gh(x)〉/‖w‖2 with convolution fw,s(x) = 〈w,gh,s(x)〉/‖w‖2 to ob-
tain the bounds

M0(gh,s) = sup
w �=0

M0(fw,s) ≤ sup
w �=0

M0(fw) = M0(gh) ≤ sr ,

M1(gh,s) = sup
w �=0

M1(fw,s) ≤ sup
w �=0

√
2

π

M1(fw)

s
=
√

2

π

M1(fw)

s
≤
√

2

π

sr

s
,

and

M2(gh,s) = sup
w �=0

M2(fw,s) ≤ sup
w �=0

√
2M2(fw)

s2 =
√

2M2(fw)

s2 ≤
√

2sr

s2 .

Hence, since our choice of h was arbitrary, and

κs � max
(

1,
1

s

√
2

π
,

√
2

s2

)

= max
(

1,

√
2

s2

)
≥ max(M0(gh,s),M1(gh,s),M2(gh,s))

sr
,

we may take expectation under Qn and supremum over h in (31) to reach

dW‖·‖2
(μ, ν) ≤ inf

s>0
S(Qn,T ,G‖·‖2)srκs + sE

[‖G‖2
](

1 + 2M1(b)sr
)

≤ max
(
S(Qn,T ,G‖·‖2)sr , η

)+ 2η

≤ 3 max
(
S(Qn,T ,G‖·‖2)sr , η

)
,

where we define η = 3
√
S(Qn,T ,G‖·‖2)

√
2srE[‖G‖2]2(1 + 2M1(b)sr )2 and select

s = 3
√
S(Qn,T ,G‖·‖2)2

√
2sr/(E[‖G‖2](1 + 2M1(b)sr )) to produce the second in-

equality. The generic norm result now follows from the assumed norm domination
property ‖·‖ ≥ ‖·‖2, which implies G‖·‖2 ⊆ G‖·‖ .

D.1. Proof of Lemma 17: Smoothing by Gaussian convolution. The con-
clusion M0(fs) ≤ M0(f ) follows from Hölder ’s inequality. Now, fix any x and
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nonzero v1, v2 ∈ R
d . Since fs = f � φs , where φs ∈ C∞ is the density of sG and

� is the convolution operator, Leibniz’s rule implies that〈
v1,∇fs(x)

〉= 〈
v1, (f � ∇φs)(x)

〉
= 1

s2

∫
f (x − y)〈v1, y〉φs(y) dy

≤ M0(f )

s2

∫ ∣∣〈v1, y〉∣∣φs(y) dy =
√

2

π

M0(f )

s
‖v1‖2,

as 〈v1,G〉/‖v1‖2 has a standard normal distribution. Leibniz’s rule also gives

∇2fs(x)[v1, v2] = (
f � ∇2φs

)
(x)[v1, v2]

≤ M0(f )

s2

∫
Rd

∣∣〈v1, zz
�v2

〉
/s2 − 〈v1, v2〉

∣∣φs(z) dz

≤ M0(f )

s2

√∫
Rd

∣∣〈v1, zz�v2
〉
/s2 − 〈v1, v2〉

∣∣2φs(z) dz

= M0(f )

s2

√
〈v1, v2〉2 + ‖v1‖2

2‖v2‖2
2

≤
√

2M0(f )

s2 ‖v1‖2‖v2‖2,

where the last equality follows by Isserlis’ theorem. Finally, when f ∈ C1, Leib-
niz’s rule gives ∇fs = ∇f � φs .

APPENDIX E: PROOF OF THEOREM 7

We will derive each inequality for ‖·‖ = ‖·‖2; the generic norm results will then
follow from the property ‖·‖ ≥ ‖·‖2, which implies G‖·‖2 ⊆ G‖·‖ .

Fix any h ∈ H = {h : Rd → R | h ∈ C3,M1(h) ≤ 1,M2(h) < ∞,M3(h) < ∞}
with EP [h(Z)] = 0. We assume that M1(b), M2(b), M1(σ ), F2(σ ), M∗

1 (m) and
M0(σ

−1) are all finite, or else the results are vacuous. Our high-level strategy is
to relate the Wasserstein distance to the Stein discrepancy via the Stein equation
(3) with diffusion Stein operator T (8). By Theorem 5, we know that there exists a
Lipschitz solution gh to the Stein equation h(x) = (T gh)(x) satisfying M0(gh) ≤
srM1(h) ≤ sr and M1(gh) ≤ βM1(h) ≤ β , for β � β1 + β2, where β1 and β2 are
defined in Theorem 5. Since a Lipschitz gradient is also needed to declare that gh

falls into a scaled copy of the classical Stein set G‖·‖ , we will develop a smoothed
version of the Stein solution with greater regularity.

For this purpose, fix any s > 0 and consider the convolution gh,s(x) �
E[gh(x + sG)]. If the smoothing level s is small, the Lipschitz continuity of m
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and h implies that (T gh,s)(x) closely approximates h(x) for each x ∈ R
d :

h(x) ≤ E
[
h(x + sG)

]+ M1(h)sE
[‖G‖2

]
≤ 2E

[〈
b(x + sG), gh(x + sG)

〉+ 〈m(x + sG),∇gh(x + sG)
〉]

+ sE
[‖G‖2

]
≤ (T gh,s)(x) + sζ.

(32)

E.1. Proof of the first inequality. Moreover, by an argument mirroring that
of Theorem 6, Lemma 17 shows that gh,s admits a Lipschitz gradient ∇gh,s(x) =
E[∇gh(x + sG)] and satisfies the derivative bounds

M0(gh,s) ≤ M0(gh) ≤ sr ,

M1(gh,s) = M0(∇gh,s) ≤ M0(∇gh) ≤ β, and(33)

M2(gh,s) = M1(∇gh,s) ≤
√

2

π

M0(∇gh)

s
≤
√

2

π

β

s
.

Let η � s∗ζ for s∗ =
√
S(Qn,T ,G‖·‖2)

√
2/πβ/ζ . Since H is dense in W‖·‖2 , we

may take expectation under Qn and supremum over h in (32) to reach

dW‖·‖2
(μ, ν) ≤ inf

s>0
S(Qn,T ,G‖·‖2)max

(
sr , β,

√
2

π

β

s

)
+ sζ

≤ max
(
S(Qn,T ,G‖·‖2)max(sr , β), η

)+ η

≤ 2 max
(
S(Qn,T ,G‖·‖2)max(sr , β), η

)
.

E.2. Proof of the second inequality. Assume now that ∇3b and ∇3σ are
bounded and locally Lipschitz. Fix any ι ∈ (0,1). Lemma 17 and an auxiliary
smoothing lemma (Lemma 18 in the Supplementary Material [35]) imply that
M2(gh,s) = M1(∇gh,s) ≤ √

d
M1−ι(∇gh)

sι . This improved dependence on s will al-
low us to establish a near-linear relationship between the Stein discrepancy and
the Wasserstein distance. By Theorem 5, M1−ι(∇gh) ≤ 1

K
(1

ι
+ sr) for K de-

pending only on M1:3(σ ),M1:3(b), M0(σ
−1) and r . Hence, M2(gh,s) ≤ Cι/s

ι

for Cι �
√

d
K

(1
ι

+ sr). Following the derivation in Section E.1 and choosing

s∗ = (
ιCιS(Qn,T ,G‖·‖2 )

ζ
)

1
ι+1 and η � ζ

ι
s∗, we obtain

dW‖·‖2
(P,Qn) ≤ inf

s>0
S(Qn,T ,G‖·‖2)max

(
sr , β,Cιs

−ι)+ sζ

≤ max
(
S(Qn,T ,G‖·‖2)max(sr , β), η

)+ ηι

≤ 2 max
(
S(Qn,T ,G‖·‖2)max(sr , β), η

)
.

(34)
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Now consider the case in which S(Qn,T ,G‖·‖) < e−1 and the choice ι =
1/ log(1/S(Qn,T ,G‖·‖ )) ∈ (0,1). Since x1/(logx−1) ≤ e for all x ∈ (0, e−1),

1

ι
S(Qn,T ,G‖·‖)

1
1+ι = log

(
1/S(Qn,T ,G‖·‖ )

)
S(Qn,T ,G‖·‖)1+1/(logS(Qn,T ,G‖·‖ )−1)

≤ e log
(
1/S(Qn,T ,G‖·‖ )

)
S(Qn,T ,G‖·‖).

Introduce the shorthand c0 =
√

d
Kζ

. Since 1/1+ι ∈ (1/2,1), we have c
1

1+ι

0 ≤
max(

√
c0, c0). Similarly, 1 + sr ι > 1, so (1 + ιsr )

1
1+ι ≤ 1 + ιsr . Therefore,

ζ

ι
S(Qn,T ,G‖·‖)

1
1+ι

(
1 + ιsr

Kζ/
√

d

) 1
1+ι

≤ eζS(Qn,T ,G‖·‖) log
(
1/S(Qn,T ,G‖·‖ )

)
× max

(
d1/4
√

Kζ
,

√
d

Kζ

)(
1 + sr

log(1/S(Qn,T ,G‖·‖ ))

)

= eS(Qn,T ,G‖·‖)max
(

d1/4√ζ√
K

,

√
d

K

)(
sr + log

(
1/S(Qn,T ,G‖·‖ )

))
.

Next, fix any ι ∈ (0,1) and consider the case in which S(Qn,T ,G‖·‖) ≥ e−1

so that S(Qn,T ,G‖·‖)
1

1+ι ≤ S(Qn,T ,G‖·‖)e
ι

ι+1 . Because 1
ι
e

ι
ι+1 ≤ 1

2e1/2 < e and
(1 + ιsr )

1/1+ι ≤ 1 + sr , we conclude that

ζ

ι
S(Qn,T ,G‖·‖)

1
1+ι

(
1 + ιsr

Kζ/
√

d

) 1
1+ι

≤ eS(Qn,T ,G‖·‖)max
(

d1/4√ζ√
K

,

√
d

K

)
(sr + 1).

The result follows from estimates of these two cases and the bound (34).

APPENDIX F: PROOF OF PROPOSITION 8

Fix any g ∈ G‖·‖ . Since EP [(T g)(Z)] = 0 by Proposition 3, we may write∣∣EQn

[
(T g)(X)

]∣∣
= ∣∣EQn

[
(T g)(X)

]−EP

[
(T g)(Z)

]∣∣
= ∣∣2E[〈b(X) − b(Z), g(X)

〉+ 〈b(Z), g(X) − g(Z)
〉]

+E
[〈
m(X) − m(Z),∇g(X)

〉+ 〈
m(Z),∇g(X) − ∇g(Z)

〉]∣∣
(35)

for any coupling of X and Z. We obtain the first advertised inequality by repeatedly
applying the Fenchel–Young inequality for dual norms, invoking the boundedness
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and Lipschitz constraints on g and ∇g, and taking a supremum over g ∈ G‖·‖ . The
second inequality follows from the first by invoking Jensen’s inequality, the fact
min(x, y) ≤ xty1−t for all x, y ≥ 0, Hölder ’s inequality, and finally the definition
of Ws,‖·‖.

We prove the final claim by bounding the first advertised inequality in a
second manner. Let (X,Z) be coupled so that c � min(W1,‖·‖(Qn,P ),2) =
min(E[‖X − Z‖],2), A = 2‖b(Z)‖ + ‖m(Z)‖, and B = min(‖X − Z‖,2). The
Fenchel–Young inequality (xy ≤ ex − y + y logy for y ≥ 0, x ∈ R), the concavity
of x �→ min(x,2) and Jensen’s inequality now yield the result as

E[AB] = E
[(

A − log(μ0/c)
)
B
]+E[B] log(μ0/c)

≤ E
[
eA−log(μ0/c) − B + B log(B)

]+E[B] log(μ0/c)

= c −E
[
B log(e/B)

]+E[B] log(μ0/c)

≤ c + c log(μ0/c) = c log(eμ0/c).

APPENDIX G: PROOF OF THEOREM 10

Fix any x, y ∈ R
d , and define two Itô diffusions solving dZt,x = b(Zt,x) dt +

σ(Zt,x) dWt with Z0,x = x and dZt,y = b(Zt,y) dt + σ(Zt,y) dWt with Z0,y = y,
for (Wt)t≥0 a shared Wiener process. Applying Dynkin’s formula to the function
f (t, x) = ekt‖x‖2

G for the difference process Zt,x − Zt,y yields

E
[
f (t,Zt,x − Zt,y)

]= ‖x − y‖2
G +E

[∫ t

0
keks‖Zs,x − Zs,y‖2

G ds

]
+E

[∫ t

0
eks(∥∥σ(Zs,x) − σ(Zs,y)

∥∥2
G

+ 2
〈
b(Zs,x) − b(Zs,y),G(Zs,x − Zs,y)

〉)
ds

]
.

By the uniform dissipativity assumption, the right-hand side is at most ‖x − y‖2
G =

dW‖·‖G (δx, δy)
2. For the transition semigroup (Pt )t≥0,

E
[
f (t,Zt,x − Zt,y)

]= ekt
E
[‖Zt,x − Zt,y‖2

G

]≥ ektdW‖·‖G (δxPt , δyPt )
2,

by Cauchy–Schwarz. The result now follows from the fact that λmin(G1) ≤
‖z‖2

G/‖z‖2
2 ≤ λmax(G1) for all z �= 0.

APPENDIX H: PROOF OF THEOREM 11

As in the proof of [94], Theorem 2.6, we fix two arbitrary starting points x, y ∈
R

d and define a pair of coupled Itô diffusions (Zt,x)t≥0 and (Zt,y)t≥0, each with
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associated marginal semigroup (Pt )t≥0. Specifically, we set Z0,x = x and Z0,y = y

and let (Zt,x)t≥0 and (Zt,y)t≥0 solve the equations

dZt,x = b(Zt,x) dt + σ0(Zt,x) dW ′
t + λ0 dW ′′

t

dZt,y = b(Zt,y) dt + σ0(Zt,y) dW ′
t

+ λ0

(
I − 2

Zt,x − Zt,y

‖Zt,x − Zt,y‖2

Zt,x − Z�
t,y

‖Zt,x − Zt,y‖2

)
dW ′′

t ,

where (W ′
t )t≥0 is an m-dimensional Wiener process and (W ′′

t )t≥0 is an indepen-
dent d-dimensional Wiener process.

Following the argument of Eberle [22], Section 4, we define the difference
process Yt = Zt,x − Zt,y , its norm rt = ‖Yt‖2, and the one-dimensional Wiener
process Wt = ∫ t

0 〈Ys/rs, dW ′′
s 〉, and apply the generalized Itô formula [51], Theo-

rem 22.5, to obtain the stochastic differential equations

d‖Yt‖2
2 =(2〈Yt , b(Zt,x) − b(Zt,y)

〉+ ∥∥σ0(Zt,x) − σ0(Zt,y)
∥∥2
F + 4λ2

0
)
dt

+ 2
〈
Yt ,
(
σ0(Zt,x) − σ0(Zt,y)

)
dW ′

t

〉+ 4λ0‖Yt‖2 dWt and

df (rt ) = f ′(rt )/(rt )
〈
Yt ,
(
σ0(Zt,x) − σ0(Zt,y)

)
dW ′

t

〉+ 2λ0f
′(rt ) dWt

+
(
f ′′(rt )

(
2λ2

0 + 1

2

∥∥(σ0(Zt,x) − σ0(Zt,y)
)�

Yt

∥∥2
2/r2

t

)
− 1

2α
f ′(rt )κ(rt )rt

)
dt

for any concave increasing f : [0,∞) �→ [0,∞) with absolutely continuous
derivative, f (0) = 0 and f ′(0) = 1. Since the drift term in the latter equation is
bounded above by βt � (2/α)(f ′′(rt ) − (1/4)f ′(rt )κ(rt )rt ), the argument of [22],
p. 15, shows that the results of [22], Theorem 1 and Corollary 2, hold for our choice
of α and κ .
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