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A NOTE ON MEAN CURVATURE, MASLOV CLASS AND
SYMPLECTIC AREA OF LAGRANGIAN IMMERSIONS

Kai Cieliebak and Edward Goldstein

In this note we prove a simple relation between the mean
curvature form, symplectic area, and the Maslov class of a
Lagrangian immersion in a Kähler-Einstein manifold. An im-
mediate consequence is that in Kähler-Einstein manifolds with
positive scalar curvature, minimal Lagrangian immersions are
monotone.

1. Introduction

Let (M,ω) be a Kähler-Einstein manifold whose Ricci curvature is a multiple
of the metric by a real number λ. In particular, the Kähler form ω and the
first Chern class c1(M) are related by c1(M) = λ[ω]

2π (see Section 3). Let L
be an immersed Lagrangian submanifold of M . Let H be the trace of the
second fundamental form of L (the mean curvature vector field of L). Thus
H is a section of the normal bundle to L in M and we have a corresponding
1-form σL := iHω on L, called the mean curvature form of L. Consider a
smooth map F : Σ → M from a compact oriented surface Σ to M whose
(possibly empty) boundary ∂F := F (∂Σ) is contained in L. Let µ(F ) be the
Maslov class of F (see Section 2) and ω(F ) :=

∫
Σ F ∗ω its symplectic area.

The goal of this note is to prove the following simple relation between these
quantities:

(1) λω(F ) − πµ(F ) = σL(∂F ).

This relation was given in [Mor] for C
n and in [Ars] for Calabi-Yau mani-

folds. Dazord [Daz] showed that the differential of the mean curvature form
is the Ricci form restricted to L, so in the Kähler-Einstein case σL is closed
(see Section 3). Y.-G. Oh [Oh2] investigated the symplectic area in the case
that the mean curvature form is exact.

Lagrangian submanifolds for which µ(F ) = aω(F ) on all disks F , for some
a > 0, are called monotone in the symplectic geometry literature, cf. [Oh1].
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An immediate consequence of (1) is that in Kähler-Einstein manifolds with
positive scalar curvature (i.e. λ > 0), minimal (i.e. σL ≡ 0) Lagrangian
immersions are monotone.

In view of the exact sequence in cohomology (with real coefficients)

H1(M) −→ H1(L) δ−→ H2(M,L) −→ H2(M),

formula (1) can be rephrased as

λ[ω] − πµ = δσL ∈ H2(M,L).

Note that the class λ[ω]−πµ is equivariant under symplectomorphisms of M .
It follows that if the map H1(M) → H1(L) is trivial, then the cohomology
class of the mean curvature form σL is equivariant under symplectomor-
phisms of M . This generalizes Oh’s observation [Oh2] that the cohomology
class is invariant under Hamiltonian deformations.

Acknowledgement. We thank the anonymous referee for pointing out
the generalization (3) of formula (1).

2. Maslov class

We first recall a definition of the Maslov index that is suitable for our pur-
poses. Let V be a Hermitian vector space of complex dimension n. Let
Λ(n,0)V be the (one-dimensional) space of holomorphic (n, 0)-forms on V
and set

K2(V ) := Λ(n,0)V ⊗ Λ(n,0)V.

Let L be a Lagrangian subspace of V . We can associate to L an element
κ(L) in Λ(n,0)V of unit length which restricts to a real volume form on L.
This element is unique up to sign and therefore defines a unique element of
unit length

κ2(L) := κ(L) ⊗ κ(L) ∈ K2(V ).
Thus we get a map κ2 from the Grassmanian GrLag(V ) of Lagrangian planes
to the unit circle in K2(V ). This map induces a homomorphism κ2∗ of
fundamental groups

κ2
∗ : π1(GrLag(V )) → Z.

To understand the map κ2∗, let L be a Lagrangian subspace and let v1, . . . , vn

be an orthonormal basis for L. For 0 ≤ t ≤ 1 consider the subspace

Lt = span{v1, . . . , vn−1, e
πitvn}.

This loop {Lt} is the standard generator of π1(GrLag(V )). The induced ele-
ments in Λ(n,0)V are related by κ(Lt) = ±e−πitκ(L), so κ2(Lt) = e−2πitκ2(L)
and κ2∗({Lt}) = −1. Thus we see that the homomorphism κ2∗ is related to
the Maslov index µ (as defined, e.g., in [AuLa]) by

κ2
∗ = −µ : π1(GrLag(V )) → Z.
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Now let (M,ω) be a symplectic manifold of dimension 2n. Pick an almost
complex structure J on M such that ω(·, J ·) defines a Riemannian metric
and let K(M) := Λ(n,0)T ∗M be the canonical bundle of M , i.e., the bundle
of (n, 0)-forms on M . Note that c1(K(M)) = −c1(M). Let K2(M) :=
K(M) ⊗ K(M) be the square of the canonical bundle.

Let L be an immersed Lagrangian submanifold of M . For any point l ∈ L
there is an element of unit length κ(l) of K(M) over l, unique up to sign,
which restricts to a real volume form on the tangent space TlL. The squares
of these elements give rise to a section of unit length

κ2
L : L → K2(M).

Note that if L is oriented, then κ2
L is the square of the unit length section

κL : L → K(M) defined by picking the volume forms κ(l)|L positive with
respect to the orientation.

Now let F : Σ → M be a smooth map from a compact oriented surface
to M with boundary ∂F = F (∂Σ) on L. To define the Maslov class µ(F ),
assume first that Σ is connected and ∂Σ is nonempty. Then H2(Σ; Z) = 0,
hence the pullback F ∗K(M) to Σ is a trivial bundle and we can pick a unit
length section κF of K(M) over Σ. Now on the boundary ∂F we also have
the section κ2

L defined above. We can uniquely write

κ2
L = eiθκ2

F

for a function eiθ : ∂Σ → S1 to the unit circle. We define the Maslov class
µ(F ) as minus its winding number,

µ(F ) :=
−1
2π

∫
∂F

dθ.

If Σ is closed replace some point of Σ by a new boundary circle ∂Σ which
gets mapped under F to a point x ∈ M . Pick a unit length element κx of
K(M) at x and a unit length section κF of K(M) over Σ (which is possible
since Σ now has nonempty boundary). Now write κ2

x = eiθκ2
F over ∂Σ and

define µ(F ) := −1
2π

∫
∂F dθ as above. For disconnected Σ define µ(F ) as the

sum over all connected components.
This definition is independent of the choice of κF and defines a map

µ : H2(M,L; Z) → Z.

To see this, first note that any other unit length section κ′
F of K(M) over

F is related to κF by a multiple eiφ : Σ → S1. So on F (∂Σ) we have κ2
L =

eiθ′(κ′
F )2 with eiθ′ = e−2iφeiθ : ∂Σ → S1. By Stokes’ theorem, this implies∫

∂F dθ′ =
∫
∂F dθ. Next suppose that F and F ′ have the same boundary

∂F = ∂F ′ =: γ and [F ∪γ −F ′] = 0 ∈ H2(M ; Z). Then the pullback of
K(M) to [F ∪γ −F ′] is a trivial bundle and there is a unit length section κ
of K(M) over [F ∪γ −F ′]. If we take the restriction of κ to F as κF and
the restriction of κ to F ′ as κ′

F we get eiθ = eiθ′ , and hence µ(F ) = µ(F ′).
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In particular, if [F ] = 0 ∈ H2(M,L; Z) we find an F ′ : Σ′ → L with
∂F = ∂F ′ = γ and [F ∪γ −F ′] = 0 ∈ H2(M ; Z), and thus µ(F ) = µ(F ′) = 0.
This shows that µ(F ) depends only on [F ] ∈ H2(M,L; Z).

In view of the discussion above, our definition of µ agrees with the usual
definition of the Maslov class, cf. [AuLa].

3. Proof

Now assume that (M,ω) is Kähler with complex structure J and Kähler
metric 〈·, ·〉 = ω(·, J ·). We denote by ∇ the Levi-Civita connection, as well
as the induced connections on K(M) and K2(M). Let us briefly review the
geometry of K(M), following the notations in [Bes], pp. 81-82. Any lo-
cal non-vanishing section κ of K(M) over an open subset U of M defines a
(complex valued) connection one form η on U by ∇κ = η⊗κ. The curvature
of K(M) is defined to be RK := −dη; it is a global closed imaginary valued
(1, 1)-form on M . By [Bes], Prop. 2.45, the Ricci tensor Ric of M is a sym-
metric bilinear form of type (1, 1); the associated 2-form ρ(·, ·) := Ric(J ·, ·)
is called the Ricci form of M . By [Bes], Prop. 2.96, the Ricci form satisfies

ρ = iRK .

If follows (cf. [Bes], Prop. 2.75) that the first Chern class c1(M) is repre-
sented by ρ

2π . Note that in the Kähler-Einstein case, ρ = λω.
Now let L be an immersed Lagrangian submanifold of M and let κ2

L be
the canonical section of K2(M) over L as above. The section κ2

L defines a
connection 1-form ηL for K2(M) over L by the condition ∇κ2

L = ηL ⊗ κ2
L.

Since κ2
L has constant length 1, ηL is an imaginary valued 1-form on L. Let

σL = iHω be the mean curvature form of L as in Section 1. The following
fact goes back to [Oh2], Prop. 2.2:

(2) ηL = 2iσL.

Here the factor 2 is due to the fact that ηL is a connection 1-form for K2(M)
rather than K(M). In particular, since dηL = −2RK = 2iρ, this formula
implies dσL = ρ|L, so in the Kähler-Einstein case σL is closed.

For the convenience of the reader, we recall the proof of formula (2)
from [Gol] (where, however, the formula is stated with the wrong sign).
Pick a point l ∈ L and let e1, . . . , en be a local orthonormal frame tangent
to L. Orient L locally by this frame. Then κL(e1, . . . , en) ≡ 1, and hence
for every local vector field v tangent to L,

0 = v
(
κL(e1, . . . , en)

)
= (∇vκL)(e1, . . . , en) +

n∑
j=1

κL(e1, . . . ,∇vej , . . . , en).
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Since the complex structure J is parallel (see [KoNo], Ch. IX Thm. 4.3),
the j-th term in the last sum equals

i〈∇vej , Jej〉 = i〈∇ejv, Jej〉 = −i〈v, J∇ejej〉 = iω(v,∇ejej).

Summing over j and inserting H =
∑n

j=1 ∇ejej , we find

∇vκL(e1, . . . , en) = i
n∑

j=1

ω(∇ejej , v) = iω(H, v) = iσL(v).

Now formula (2) follows from ∇κ2
L = ηL ⊗ κ2

L via

ηL = 2∇κL(e1, . . . , en) = 2iσL.

Now let F : Σ → M be a smooth map from a compact oriented surface
with boundary on L. We will prove the following identity in any Kähler
manifold:

(3) ρ(F ) − πµ(F ) = σL(∂F ).

Note that in general the form σL need not be closed on L. It is closed in
the Kähler-Einstein case, in which ρ = λω and (3) implies formula (1) in
the introduction.

To prove identity (3), assume that every connected component of Σ has
nonempty boundary (closed components are treated similary, see Section 2).
Define the section κF of K(M) over F as in Section 2. Let ηF be the
connection 1-form along F defined by ∇κ2

F = ηF ⊗ κ2
F . By the discussion

in the beginning of this section, dηF = 2iF ∗ρ. Stokes’ theorem implies

2ρ(F ) =
∫

∂F
−iηF .

Recall from Section 2 that along ∂F we have κ2
L = eiθκ2

F for a function
eiθ : ∂Σ → S1, and the Maslov class is given by

µ(F ) =
−1
2π

∫
∂F

dθ.

The connection 1-forms ηF and ηL are related by

ηL = ηF + i dθ

on ∂F . Combining the equations above and formula (2), we find

σL(∂F ) =
∫

∂F

−iηL

2
=

∫
∂F

−iηF

2
+

∫
∂F

dθ

2
= ρ(F ) − πµ(F ).
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