A NOTE ON MEAN CURVATURE, MASLOV CLASS AND SYMPLECTIC AREA OF LAGRANGIAN IMMERSIONS

Kai Cieliebak and Edward Goldstein

In this note we prove a simple relation between the mean curvature form, symplectic area, and the Maslov class of a Lagrangian immersion in a Kähler-Einstein manifold. An immediate consequence is that in Kähler-Einstein manifolds with positive scalar curvature, minimal Lagrangian immersions are monotone.

1. Introduction

Let (M,ω) be a Kähler-Einstein manifold whose Ricci curvature is a multiple of the metric by a real number λ . In particular, the Kähler form ω and the first Chern class $c_1(M)$ are related by $c_1(M) = \frac{\lambda[\omega]}{2\pi}$ (see Section 3). Let L be an immersed Lagrangian submanifold of M. Let H be the trace of the second fundamental form of L (the mean curvature vector field of L). Thus H is a section of the normal bundle to L in M and we have a corresponding 1-form $\sigma_L := i_H \omega$ on L, called the mean curvature form of L. Consider a smooth map $F: \Sigma \to M$ from a compact oriented surface Σ to M whose (possibly empty) boundary $\partial F := F(\partial \Sigma)$ is contained in L. Let $\mu(F)$ be the Maslov class of F (see Section 2) and $\omega(F) := \int_{\Sigma} F^* \omega$ its symplectic area. The goal of this note is to prove the following simple relation between these quantities:

(1)
$$\lambda \omega(F) - \pi \mu(F) = \sigma_L(\partial F).$$

This relation was given in [Mor] for \mathbb{C}^n and in [Ars] for Calabi-Yau manifolds. Dazord [Daz] showed that the differential of the mean curvature form is the Ricci form restricted to L, so in the Kähler-Einstein case σ_L is closed (see Section 3). Y.-G. Oh [Oh2] investigated the symplectic area in the case that the mean curvature form is exact.

Lagrangian submanifolds for which $\mu(F) = a \omega(F)$ on all disks F, for some a > 0, are called *monotone* in the symplectic geometry literature, cf. [Oh1].

An immediate consequence of (1) is that in Kähler-Einstein manifolds with positive scalar curvature (i.e. $\lambda > 0$), minimal (i.e. $\sigma_L \equiv 0$) Lagrangian immersions are monotone.

In view of the exact sequence in cohomology (with real coefficients)

$$H^1(M) \longrightarrow H^1(L) \stackrel{\delta}{\longrightarrow} H^2(M,L) \longrightarrow H^2(M),$$

formula (1) can be rephrased as

$$\lambda[\omega] - \pi\mu = \delta\sigma_L \in H^2(M, L).$$

Note that the class $\lambda[\omega] - \pi \mu$ is equivariant under symplectomorphisms of M. It follows that if the map $H^1(M) \to H^1(L)$ is trivial, then the cohomology class of the mean curvature form σ_L is equivariant under symplectomorphisms of M. This generalizes Oh's observation [**Oh2**] that the cohomology class is invariant under Hamiltonian deformations.

Acknowledgement. We thank the anonymous referee for pointing out the generalization (3) of formula (1).

2. Maslov class

We first recall a definition of the Maslov index that is suitable for our purposes. Let V be a Hermitian vector space of complex dimension n. Let $\Lambda^{(n,0)}V$ be the (one-dimensional) space of holomorphic (n,0)-forms on V and set

$$K^2(V) := \Lambda^{(n,0)}V \otimes \Lambda^{(n,0)}V.$$

Let L be a Lagrangian subspace of V. We can associate to L an element $\kappa(L)$ in $\Lambda^{(n,0)}V$ of unit length which restricts to a real volume form on L. This element is unique up to sign and therefore defines a unique element of unit length

$$\kappa^2(L) := \kappa(L) \otimes \kappa(L) \in K^2(V).$$

Thus we get a map κ^2 from the Grassmanian $Gr_{\text{Lag}}(V)$ of Lagrangian planes to the unit circle in $K^2(V)$. This map induces a homomorphism κ^2_* of fundamental groups

$$\kappa_*^2 : \pi_1(Gr_{\operatorname{Lag}}(V)) \to \mathbb{Z}.$$

To understand the map κ_*^2 , let L be a Lagrangian subspace and let v_1, \ldots, v_n be an orthonormal basis for L. For $0 \le t \le 1$ consider the subspace

$$L_t = \operatorname{span}\{v_1, \dots, v_{n-1}, e^{\pi i t} v_n\}.$$

This loop $\{L_t\}$ is the standard generator of $\pi_1(Gr_{\text{Lag}}(V))$. The induced elements in $\Lambda^{(n,0)}V$ are related by $\kappa(L_t) = \pm e^{-\pi i t}\kappa(L)$, so $\kappa^2(L_t) = e^{-2\pi i t}\kappa^2(L)$ and $\kappa^2_*(\{L_t\}) = -1$. Thus we see that the homomorphism κ^2_* is related to the Maslov index μ (as defined, e.g., in [AuLa]) by

$$\kappa_*^2 = -\mu : \pi_1(Gr_{\operatorname{Lag}}(V)) \to \mathbb{Z}.$$

Now let (M, ω) be a symplectic manifold of dimension 2n. Pick an almost complex structure J on M such that $\omega(\cdot, J\cdot)$ defines a Riemannian metric and let $K(M) := \Lambda^{(n,0)}T^*M$ be the canonical bundle of M, i.e., the bundle of (n,0)-forms on M. Note that $c_1(K(M)) = -c_1(M)$. Let $K^2(M) := K(M) \otimes K(M)$ be the square of the canonical bundle.

Let L be an immersed Lagrangian submanifold of M. For any point $l \in L$ there is an element of unit length $\kappa(l)$ of K(M) over l, unique up to sign, which restricts to a real volume form on the tangent space T_lL . The squares of these elements give rise to a section of unit length

$$\kappa_L^2: L \to K^2(M).$$

Note that if L is oriented, then κ_L^2 is the square of the unit length section $\kappa_L: L \to K(M)$ defined by picking the volume forms $\kappa(l)|_L$ positive with respect to the orientation.

Now let $F: \Sigma \to M$ be a smooth map from a compact oriented surface to M with boundary $\partial F = F(\partial \Sigma)$ on L. To define the Maslov class $\mu(F)$, assume first that Σ is connected and $\partial \Sigma$ is nonempty. Then $H^2(\Sigma; \mathbb{Z}) = 0$, hence the pullback $F^*K(M)$ to Σ is a trivial bundle and we can pick a unit length section κ_F of K(M) over Σ . Now on the boundary ∂F we also have the section κ_L^2 defined above. We can uniquely write

$$\kappa_L^2 = e^{i\theta} \kappa_F^2$$

for a function $e^{i\theta}: \partial \Sigma \to S^1$ to the unit circle. We define the Maslov class $\mu(F)$ as minus its winding number,

$$\mu(F) := \frac{-1}{2\pi} \int_{\partial F} d\theta.$$

If Σ is closed replace some point of Σ by a new boundary circle $\partial \Sigma$ which gets mapped under F to a point $x \in M$. Pick a unit length element κ_x of K(M) at x and a unit length section κ_F of K(M) over Σ (which is possible since Σ now has nonempty boundary). Now write $\kappa_x^2 = e^{i\theta}\kappa_F^2$ over $\partial \Sigma$ and define $\mu(F) := \frac{-1}{2\pi} \int_{\partial F} d\theta$ as above. For disconnected Σ define $\mu(F)$ as the sum over all connected components.

This definition is independent of the choice of κ_F and defines a map

$$\mu: H_2(M, L; \mathbb{Z}) \to \mathbb{Z}.$$

To see this, first note that any other unit length section κ_F' of K(M) over F is related to κ_F by a multiple $e^{i\phi}:\Sigma\to S^1$. So on $F(\partial\Sigma)$ we have $\kappa_L^2=e^{i\theta'}(\kappa_F')^2$ with $e^{i\theta'}=e^{-2i\phi}e^{i\theta}:\partial\Sigma\to S^1$. By Stokes' theorem, this implies $\int_{\partial F}d\theta'=\int_{\partial F}d\theta$. Next suppose that F and F' have the same boundary $\partial F=\partial F'=:\gamma$ and $[F\cup_{\gamma}-F']=0\in H_2(M;\mathbb{Z})$. Then the pullback of K(M) to $[F\cup_{\gamma}-F']$ is a trivial bundle and there is a unit length section κ of K(M) over $[F\cup_{\gamma}-F']$. If we take the restriction of κ to F as κ_F and the restriction of κ to F' as κ_F' we get $e^{i\theta}=e^{i\theta'}$, and hence $\mu(F)=\mu(F')$.

In particular, if $[F] = 0 \in H_2(M, L; \mathbb{Z})$ we find an $F' : \Sigma' \to L$ with $\partial F = \partial F' = \gamma$ and $[F \cup_{\gamma} - F'] = 0 \in H_2(M; \mathbb{Z})$, and thus $\mu(F) = \mu(F') = 0$. This shows that $\mu(F)$ depends only on $[F] \in H_2(M, L; \mathbb{Z})$.

In view of the discussion above, our definition of μ agrees with the usual definition of the Maslov class, cf. [AuLa].

3. Proof

Now assume that (M,ω) is Kähler with complex structure J and Kähler metric $\langle \cdot, \cdot \rangle = \omega(\cdot, J \cdot)$. We denote by ∇ the Levi-Civita connection, as well as the induced connections on K(M) and $K^2(M)$. Let us briefly review the geometry of K(M), following the notations in [**Bes**], pp. 81-82. Any local non-vanishing section κ of K(M) over an open subset U of M defines a (complex valued) connection one form η on U by $\nabla \kappa = \eta \otimes \kappa$. The curvature of K(M) is defined to be $R_K := -d\eta$; it is a global closed imaginary valued (1,1)-form on M. By [**Bes**], Prop. 2.45, the Ricci tensor Ric of M is a symmetric bilinear form of type (1,1); the associated 2-form $\rho(\cdot,\cdot) := Ric(J\cdot,\cdot)$ is called the Ricci form of M. By [**Bes**], Prop. 2.96, the Ricci form satisfies

$$\rho = iR_K$$
.

If follows (cf. [Bes], Prop. 2.75) that the first Chern class $c_1(M)$ is represented by $\frac{\rho}{2\pi}$. Note that in the Kähler-Einstein case, $\rho = \lambda \omega$.

Now let L be an immersed Lagrangian submanifold of M and let κ_L^2 be the canonical section of $K^2(M)$ over L as above. The section κ_L^2 defines a connection 1-form η_L for $K^2(M)$ over L by the condition $\nabla \kappa_L^2 = \eta_L \otimes \kappa_L^2$. Since κ_L^2 has constant length 1, η_L is an imaginary valued 1-form on L. Let $\sigma_L = i_H \omega$ be the mean curvature form of L as in Section 1. The following fact goes back to $[\mathbf{Oh2}]$, Prop. 2.2:

$$\eta_L = 2i\sigma_L.$$

Here the factor 2 is due to the fact that η_L is a connection 1-form for $K^2(M)$ rather than K(M). In particular, since $d\eta_L = -2R_K = 2i\rho$, this formula implies $d\sigma_L = \rho|_L$, so in the Kähler-Einstein case σ_L is closed.

For the convenience of the reader, we recall the proof of formula (2) from [Gol] (where, however, the formula is stated with the wrong sign). Pick a point $l \in L$ and let e_1, \ldots, e_n be a local orthonormal frame tangent to L. Orient L locally by this frame. Then $\kappa_L(e_1, \ldots, e_n) \equiv 1$, and hence for every local vector field v tangent to L,

$$0 = v(\kappa_L(e_1, \dots, e_n)) = (\nabla_v \kappa_L)(e_1, \dots, e_n) + \sum_{j=1}^n \kappa_L(e_1, \dots, \nabla_v e_j, \dots, e_n).$$

Since the complex structure J is parallel (see [KoNo], Ch. IX Thm. 4.3), the j-th term in the last sum equals

$$i\langle \nabla_v e_j, J e_j \rangle = i\langle \nabla_{e_j} v, J e_j \rangle = -i\langle v, J \nabla_{e_j} e_j \rangle = i\omega(v, \nabla_{e_j} e_j).$$

Summing over j and inserting $H = \sum_{j=1}^{n} \nabla_{e_j} e_j$, we find

$$\nabla_{v}\kappa_{L}(e_{1},\ldots,e_{n}) = i\sum_{j=1}^{n}\omega(\nabla_{e_{j}}e_{j},v) = i\omega(H,v) = i\sigma_{L}(v).$$

Now formula (2) follows from $\nabla \kappa_L^2 = \eta_L \otimes \kappa_L^2$ via

$$\eta_L = 2\nabla \kappa_L(e_1, \dots, e_n) = 2i\sigma_L.$$

Now let $F: \Sigma \to M$ be a smooth map from a compact oriented surface with boundary on L. We will prove the following identity in any Kähler manifold:

(3)
$$\rho(F) - \pi \mu(F) = \sigma_L(\partial F).$$

Note that in general the form σ_L need not be closed on L. It is closed in the Kähler-Einstein case, in which $\rho = \lambda \omega$ and (3) implies formula (1) in the introduction.

To prove identity (3), assume that every connected component of Σ has nonempty boundary (closed components are treated similary, see Section 2). Define the section κ_F of K(M) over F as in Section 2. Let η_F be the connection 1-form along F defined by $\nabla \kappa_F^2 = \eta_F \otimes \kappa_F^2$. By the discussion in the beginning of this section, $d\eta_F = 2iF^*\rho$. Stokes' theorem implies

$$2\rho(F) = \int_{\partial F} -i\eta_F.$$

Recall from Section 2 that along ∂F we have $\kappa_L^2 = e^{i\theta} \kappa_F^2$ for a function $e^{i\theta}: \partial \Sigma \to S^1$, and the Maslov class is given by

$$\mu(F) = \frac{-1}{2\pi} \int_{\partial F} d\theta.$$

The connection 1-forms η_F and η_L are related by

$$\eta_L = \eta_F + i \, d\theta$$

on ∂F . Combining the equations above and formula (2), we find

$$\sigma_L(\partial F) = \int_{\partial F} \frac{-i\eta_L}{2} = \int_{\partial F} \frac{-i\eta_F}{2} + \int_{\partial F} \frac{d\theta}{2} = \rho(F) - \pi\mu(F).$$

References

- [Ars] A. Arsie, Maslov class and minimality in Calabi-Yau manifolds, J. Geom. Phys. 35, no. 2-3, 145-156 (2000).
- [AuLa] M. Audin and J. Lafontaine (editors), Holomorphic Curves in Symplectic Geometry, Progress in Math. 117, Birkhäuser, Basel (1994).
- [Bes] A. Besse, *Einstein manifolds*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge Band 10.
- [Daz] P. Dazord, Sur la géometrie des sous-fibrés et des feuilletages lagrangiens, Ann. Sci. Ec. Norm. Super. IV, Sr. 13, 465-480 (1981).
- [Gol] E. Goldstein, A construction of new families of minimal Lagrangian submanifolds via torus actions, J. Diff. Geom. 58, 233-261 (2001).
- [KoNo] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume II, John Wiley (1969).
- [Mor] J.-M. Morvan, Classe de Maslov d'une immersion lagrangienne et minimalité, C.R. Acad. Sci. 292, 633-636 (1981).
- [Oh1] Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks I, Comm. Pure Appl. Math. 46, no. 7, 949-993 (1993).
- [Oh2] Y.-G. Oh, Mean curvature vector and symplectic topology of Lagrangian submanifolds in Einstein-Kähler manifolds, Math. Z. 216, 471-482 (1994).

Mathematisches Institut Zimmer 313, Ludwig-Maximilians-Universitaet, Theresienstr. 39, 80333 Muenchen, Germany

E-mail address: kai@mathematik.uni-muenchen.de

Department of Mathematics, Stanford University, 450 Sierra Mall, Bldg. 380, Stanford, CA 94305-2125

E-mail address: egold@math.stanford.edu