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RANDOM CONSTRUCTION OF RIEMANN SURFACES

Robert Brooks & Eran Makover

Abstract

We develop a new approach for the study of “typical” Riemann
surfaces with high genus. The method that we use is the construc-
tion of random Riemann surfaces from oriented cubic graphs. This
construction enables us to get a control over the global geometry
properties of compact Riemann surfaces. We use the theory of
random regular graphs to show that almost all such surfaces have
large first eigenvalues and large Cheeger constants. Moreover a
closer analysis of the probability space of oriented cubic graphs
shows that on a typical surface there is a large embedded hyper-
bolic ball.

1. Introduction

In this paper, we address the following question: What does a typical
compact Riemann surface of large genus look like geometrically?

By a Riemann surface, we mean an oriented surface with a complete,
finite-area metric of constant curvature-1.

In the standard geometric picture of Riemann surfaces via Fenchel–
Nielsen coordinates, it is difficult to keep track of global geometric quan-
tities such as the first eigenvalue of the Laplacian, the injectivity radius,
and the diameter. Here, we present a model for looking at Riemann sur-
faces based on 3-regular graphs, with which it is easier to control the
global geometry.

The idea of using 3-regular graphs to study the first eigenvalue of
Riemann surfaces originated in Buser [11], [12], who associated cubic
graphs to Riemann surfaces as a tool for comparing the spectral geom-
etry of surfaces with the spectral geometry of graphs. We introduce a
somewhat different method, which associates to each 3-regular graph Γ

The first author was partially supported by the Israel Science Foundation, the
Fund for the Support of Research and the Fund for the Support of Sponsored Research
at the Technion, and the M. and M.L. Bank Research Fund. The second author was
partially supported by the NSF Grant DMS-0072534.

Received 10/11/2003.

121



122 R. BROOKS & E. MAKOVER

with an orientation O, to be defined below, a finite area Riemann surface
SO(Γ,O), and we let SC(Γ,O) denote its conformal compactification.

Our main technical result, Theorem 2.1, shows that the geometry of
SC(Γ,O) in its hyperbolic metric is controlled, with asymptotic proba-
bility 1 as the number of vertices in Γ tend to infinity, by the geometry
of SO(Γ,O) in its hyperbolic metric, which in turn is controlled by the
geometry of (Γ,O). This is then combined with results due to Bollobás
[4] to give, in Theorem 2.2, a fairly complete picture of the spectral
geometry (first eigenvalue, Cheeger constant, shortest geodesic, and di-
ameter) of a typical surface constructed this way.

We then pursue in Sections 8–11 a closer study of the structure of
orientations and how they affect the geometry of SC(Γ,O). Our main
result here is an estimate for the expected value of the volume of the
largest embedded ball of a surface SC(Γ,O). We find that the expected
volume of this ball is proportional to the volume of the surface, with a
constant of proportionality independent of the size of the graph. Thus,
the geometry of SC(Γ,O) is in general dominated by one very large ball
of injectivity radius.

2. Statement of results

If Γ is a finite 3-regular graph, an orientation O on Γ is a function
which assigns to each vertex v of Γ a cyclic ordering of the edges ema-
nating from v. In Section 4 , we will show how, given a pair (Γ,O), we
may associate to (Γ,O) two Riemann surfaces SO(Γ,O) and SC(Γ,O).
SO(Γ,O) is constructed by associating an ideal hyperbolic triangle to
each vertex of Γ, and gluing sides together according to the edges of the
graph Γ and the orientation O. It is a finite-area Riemann surface with
cusps.

The surface SC(Γ, O) is then the conformal compactification of
SO(Γ,O).

It follows from a theorem of Belyi [3] (see [18] for a discussion of
Belyi’s Theorem), that the surfaces SC(Γ,O) are dense in the space
of all Riemann surfaces. Thus, the process of randomly selecting a
Riemann surface can be modeled on the process of picking a finite 3-
regular graph with orientation at random.

Since the pair (Γ,O) gives a description of SO(Γ,O) as an orbifold
covering of H

2/PSL(2, Z), one can give a qualitative description of the
global geometry of SO(Γ, Z) by a corresponding description of the pair
(Γ,O). Thus, for example, the first eigenvalue of SO(Γ,O) will be large
if and only if the first eigenvalue of Γ is large [6] and [7].
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It is our observation here, building on the work of [9], that the same
will be true of SC(Γ,O), provided that SO(Γ,O) satisfies a “large cusps”
condition, to be described in Section 3. This has a purely combinatorial
interpretation in terms of the pair (Γ,O), and so can be analyzed with
relative ease.

For n a positive integer, let F∗
n denote the finite set of pairs (Γ,O),

where Γ is a 3-regular graph on 2n vertices. We will endow F∗
n with a

probability measure introduced and studied by Bollobás [4], [5], which
we review in Section 5.

If Q is a property of 3-regular graphs with orientation, denote by
Probn[Q] the probability that a pair (Γ,O) picked from F∗

n has property
Q.

Our main technical result, shown in Section 6.

Theorem 2.1. As n → ∞,

Probn[SO(Γ,O) satisfies the large cusps condition ] → 1.

We will use Theorem 2.1 in order to study geometric properties of the
surfaces SC(Γ,O). To that end, we define the Cheeger constant h(S) of
a Riemann surface S by the formula

h(S) = inf
C

length (C)
min[area (A), area (B)]

,

where C runs over (possibly disconnected) closed curves on S which
divide S into two parts A and B. It will then follow from Theorem 2.1
that

Theorem 2.2. There exist constants C1, C2, C3,and C4 such that,
as n → ∞:

(a) The first eigenvalue λ1(SC(Γ,O)) satisfies

Probn[λ1(SC(Γ,O)) ≥ C1] → 1.

(b) The Cheeger constant h(SC(Γ,O)) satisfies

Probn[h(SC(Γ,O)) ≥ C2] → 1.

(c) The shortest geodesic syst(SC(Γ,O)) satisfies

Probn[syst(SC(Γ,O)) ≥ C3] → 1.

(d) The diameter diam (SC(Γ,O)) satisfies

Probn[diam (SC(Γ,O)) ≤ C4 log(genus (SC(Γ,O)))] → 1.

Of these properties, (a) follows from (b) by Cheeger’s inequality [13],
while (d) also follows from (b) and (c) and the following well-known
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argument: if M is a manifold and B(r0) is the infimum over all points
of M of the volume of a ball of radius r0, then

diam (M) ≤ 2
[
r0 +

1
h(M)

log
(

vol (M)
2B(r0)

)]
.

Property (b) for the surfaces SO(Γ,O) will follow from the correspond-
ing result on graphs [4] together with [6] and [7], while the passage
from the surfaces SO(Γ,O) to the surfaces SC(Γ,O) will follow from
Theorem 2.1. For properties (c) and (d), the translation from graphs to
surfaces is not as simple, but the idea is similar.

The forms of (a), (b), and (d) are sharp, up to the constants. Regard-
ing (a), it follows from Cheng’s Theorem [14] that a Riemann surface
S must have λ1(S) ≤ 1/4 + ε for some ε → 0 as genus(S) → ∞. The
upper bound h(S) ≤ 1 + ε, is well-known, and follows from a similar
argument. The estimate diam (S) ≥ (const ) log(genus(S)) follows from
area considerations and Gauss–Bonnet.

The estimate in (c) is certainly not optimal, as there are Riemann
surfaces whose injectivity radius grows like (const )[log(genus(S))]. In-
deed, this occurs for the Platonic surfaces [9], and also for congruence
coverings of compact arithmetically defined surfaces. It follows from our
analysis that, for a given constant C5, there is a positive constant C6

such that

Probn[syst(SC(Γ,O)) ≥ C5] → C6.

Thus, the probability of selecting a surface having injectivity radius at
least a given large number is asymptotically positive, but certainly not
asymptotically 1.

In the language of [8], Theorem 2.2 shows that, with probability → 1,
a typical Riemann surface is short, with a large first eigenvalue, but not
necessarily fat.

In Section 8, we begin a study of the distribution of the closed left-
hand-turn paths (LHT paths for short), defined in Definition 4.1, of
(Γ,O). We investigate two aspects of this distribution – the number of
closed LHT paths and the length of the longest LHT path.

The first of these determines the genus of the surface SC(Γ,O). We
will show the following theorem.

Theorem 2.3. There exist constants C1 and C2 such that the ex-
pected value of the genus genus (SC(Γ,O)), where (Γ,O) is randomly
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selected among oriented 3-regular graphs on 2n vertices, satisfies

1 + n/2 −
[
C1 +

3 log(n)
4

]
≤ E(genus (SC(Γ,O)))

≤ 1 + n/2 −
[
C2 +

log(n)
2

]
.

In Section 10, we show that the length of the longest left-hand-turn
path in (Γ,O) gives a lower bound for the volume of the largest embed-
ded ball in SC(Γ,O). Denoting this volume by Emb(SC(Γ,O)), we will
show the following theorem.

Theorem 2.4. There exists a constant C such that the expected value

E(Emb(SC(Γ,O)))

satisfies
E(Emb(Γ,O)) ≥ (C − ε(n))area (SC(Γ,O)),

where ε(n) is a function which tends to 0 as n → ∞.

Our proof gives a value of C of 1/π. We do not believe that this
result is sharp. More generally, we believe that a closer analysis of the
probability theory of the distribution of LHT paths will show that this
distribution will look very much like a Poisson–Dirichlet distribution,
see [2], [24], and [22] for a discussion, but our methods do not establish
this. Theorem 2.4 responds to a question which was posed to us by
David Kazhdan.

The results that we use from [9] are qualitative rather than quanti-
tative. However, they have been put in quantitative form in [20], [21].
In particular, it follows from [20], [21] that whenever in the following,
the condition of “cusps of length ≥ L” is used, we may take L = 7.

The results of Theorem 2.2 were announced in [10], under the weaker
conclusion that properties (a)–(d) occur with positive probability, rather
than probability → 1 as n → ∞.

A weaker version of Theorem 2.3 was proved by Gamburd and Mako-
ver in [16].

3. Compactification of Riemann surfaces

In this section, we review the connection between a finite-area Rie-
mann surface and its conformal compactification.

Let S0 be a Riemann surface with a complete finite area metric of cur-
vature −1. Then, S0 has finitely many cusps neighborhoods C1, . . . , Ck,
such that, for each Ci there is an isometry

fi : Ci → Cyi
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for some yi, where Cyi is the space

Cyi =
{

z ∈ C : �(z) ≥ 1
yi

}/
(z ∼ z + 1),

endowed with the hyperbolic metric

ds2 =
1
y2

[
dx2 + dy2

]
.

The curve hi = f−1
i (z : �(z) = 1

yi
) on SO is a closed horocycle on Ci

whose length is yi. The length of the largest simple closed horocycle on
the cusp Ci is a measure of how large the cusp is.

x=0 x=1

y =
1

y
i

Figure 1. The length of a horocycle.

Definition 3.1. SO has cusps of length ≥ L if we may choose all the
Ci’s disjoint, with yi ≥ L for all i = 1, . . . , k.

Given a finite-area Riemann surface SO, there is a unique compact
Riemann surface SC and finitely many points p1, . . . , pk of SC such
that SO is conformally equivalent to SC − {p1, . . . , pk}. SC may be
constructed from SO by observing that each cusp neighborhood Ci is
conformally equivalent to a punctured disk. One may fill in this punc-
ture conformally and then reglue the disk to obtain the conformal struc-
ture on the closed surface SC . By the Uniformization Theorem, there
is a unique constant curvature metric which agrees with this conformal
structure.

It is natural to raise the question of the relationship between the
constant curvature metric on SO and the constant curvature metric on
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SC . In general, the relationship need not be close. For instance, the
surface SC need not carry a hyperbolic metric even when SO carries one.
However, it is shown in Theorem 2.1 of [9] that, if SO has cusps of length
≥ L for a suitably large L, then SC will carry a hyperbolic metric, and
indeed this metric will be very closely related to the hyperbolic metric
on SO.

More precisely, we have the following theorem.

Theorem 3.2 ([9]). For every ε, there exists numbers L, r, and y
such that, if the cusps of SO have length ≥ L, then, outside the union
of cusp neighborhoods U = ∪k

i=1f
−1
i (Cy) ⊂ SO of the cusps Ci, and

V = ∪k
i=1Br(pi) ⊂ SC , the metrics ds2

C and ds2
O satisfy

1
(1 + ε)

ds2
O ≤ ds2

C ≤ (1 + ε)ds2
O.

The proof of this theorem is based on the Ahlfors–Schwarz Lemma [1].
The idea of the proof is to build on the compact surface an intermediate
metric ds2

int with curvature close to the curvature of the metric on the
open surface, and to use the Ahlfors–Schwarz Lemma to compare this
metric to the constant curvature metric. The large cusps condition
enters precisely here, by giving the metric ds2

int sufficient time to evolve
from the hyperbolic metric on the ball to the hyperbolic metric on the
cusp, while keeping curvature close to constant.

For some explicit estimates of L, r, and y in terms of ε, (see[21]).
It was shown in [9] that this result may be employed to show that,

under the assumption of large cusps, the surfaces SO and SC share a
number of global geometric properties.

Theorem 3.3 ([9]). For every ε, there exists an L such that, if SO

has cusps of length ≥ L, then
(a) the Cheeger constants h(SO) and h(SC) satisfy

1
(1 + ε)

h(SO) ≤ h(SC) ≤ (1 + ε)h(SO),

(b) the shortest closed geodesics syst(SO) and syst(SC) satisfy

1
(1 + ε)

syst(SO) ≤ syst(SC).

We do not obtain an inequality of the form

syst(SC) ≤ (const )syst(SO),

in (b), because it may happen that the shortest closed geodesic on SO

becomes homotopically trivial on SC .
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4. Surfaces and 3-regular graphs

Let Γ be a finite 3-regular graph. We will allow Γ to contain loops
and multiple edges.

An orientation O on the graph is the assignment, for each vertex v
of Γ, of a cyclic ordering of the three edges emanating from v. If Γ has
2n vertices, then clearly there are 22n orientations on Γ.

We may think of an orientation on a 3-regular graph in the following
way: Suppose one were to walk along the graph, then, when one ap-
proaches a vertex, the orientation allows one to distinguish between a
left-hand-turn and a right-hand-turn at the vertex. Thus, any path on
Γ beginning at a vertex v0 may be described by picking an initial direc-
tion and a series of L’s (signalling a left-hand-turn) and R’s (signalling
a right-hand-turn).

To a pair (Γ,O), we will associate two Riemann surfaces SO(Γ,O)
and SC(Γ,O) as follows: We begin by considering the ideal hyperbolic
triangle T with vertices 0, 1, and ∞ shown in Figure 2. The solid lines
in Figure 2 are geodesics joining the points i, i + 1, and (i + 1)/2 with
the point (1 + i

√
3)/2, while the dotted lines are horocycles of length 1

joining pairs of points from the set {i, i + 1, (i + 1)/2}. We may think
of these points as “midpoints” of the corresponding sides, even though
they are of infinite length. We may also think of the three solid lines
as segments of a graph surrounding a vertex. We then give them the
cyclic ordering (i, i + 1, (i + 1)/2).

We may now construct the surface SO(Γ,O) from (Γ,O) by placing
on each vertex v of Γ a copy of T , so that the cyclic ordering of the
segments in T agrees with the orientation at the vertex v in Γ. If two
vertices of Γ are joined by an edge, we glue the two copies of T along
the corresponding sides subject to the following two conditions:

(a) the midpoints of the two sides are glued together,
and

(b) the gluing preserves the orientation of the two copies of T .
The conditions (a) and (b) determine the gluing uniquely. It is easily

seen that the surface SO(Γ,O) is a complete Riemann surface with finite
area equal to 2πn, where 2n is the number of vertices of Γ.

The surface SC(Γ, O) is then the conformal compactification of
SO(Γ,O).

In the remainder of this section, we will describe how to read off
many geometric properties of the surfaces SO(Γ,O) and SC(Γ,O) from
the combinatorics of the pair (Γ,O).

We begin with the observation that the topology of SO is easy to
reconstruct from (Γ,O). We will need the following definition:
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i i+1

i+1
2

Figure 2. The marked ideal triangle T .

Definition 4.1. A left-hand-turn path (for short, LHT path) on
(Γ,O) is a closed path on Γ such that, at each vertex, the path turns
left in the orientation O.

Traveling on a path on Γ which always turns left describes a path
on SO(Γ,O) which travels around a cusp. Indeed, if we set LHT =
LHT (Γ,O) to be the number of disjoint left-hand-turn paths, then the
topology of SO(Γ,O) is easily describable in terms of LHT and n, where
again 2n is the number of vertices in Γ. Indeed, the graph Γ divides
SO(Γ,O) into LHT regions, each bordered by a left-hand-turn path and
containing one cusp in its interior. From this, we can immediately read
off the signature of SO(Γ,O) by the Euler characteristic. The genus of
SO(Γ,O) is given by

genus = 1 +
n − LHT

2
and the number of cusps is LHT .

Note that the usual orientation on the 3-regular graph which is the
1-skeleton of the cube contains six left-hand-turn paths, giving that the
associated surface is a sphere with six punctures, while a choice of a
different orientation on this graph can have either two, four, or six left-
hand-turn paths, so that the associated surface can have genus 0, 1, or
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2. Thus, the topology of SO(Γ,O) is heavily dependent on the choice
of O.

The geometry of the cusps can also be read off from (Γ,O). To
that end, we observe that the horocycles on the various copies of T fit
together to form a system of disjoint closed horocycles about the cusps
of SO(Γ,O). We call this system of horocycles the canonical horocycles
of SO(Γ,O). The length of each closed horocycle in this set is precisely
the length of the corresponding left-hand-turn path, since the length of
the horocycle joining i to i + 1 has length 1. Thus, SO(Γ,O) has cusps
of length ≥ L if the length of any left-hand-turn path on (Γ,O) is at
least L.

The converse to this is not true, as it is possible to choose a system of
horocycles other than the canonical horocycles such that the length of
the shortest horocycle for the new system is larger than the length of the
shortest canonical horocycle. We will return to this idea in Section 6.

The Cheeger constant h(SO(Γ,O)) can be estimated in terms of the
graph (Γ,O) as well. Recall that, by analogy with the Cheeger constant
of a manifold, the Cheeger constant h(Γ) of a graph Γ is given by

h(Γ) = inf
E

#(E)
min(#(A),#(B))

,

where E is a collection of edges such that Γ − E disconnects into two
components A and B, and #(A) (resp. #(B)) is the number of vertices
in A (resp. B).

Then, we have the following theorem.

Theorem 4.2 ([6], [7]). There are positive constants C1 and C2 such
that

C1h(Γ) ≤ h(SO(Γ,O)) ≤ C2h(Γ)

for all finite 3-regular graphs Γ.

In effect, the pair (Γ,O) describes SO(Γ,O) as an orbifold covering
space of the orbifold H

2/PSL(2, Z). The behavior of the Cheeger con-
stant of a finite covering of a compact manifold in terms of the graph
of a covering is described in [6]. In the present case, the base manifold
is not compact, but rather a finite-area Riemann surface (with singu-
larities). The additional complication which this difficulty presents is
solved in [7].

This gives Theorem 4.2.
Note, in particular, that the quantity h(Γ) of Theorem 4.2 depends

only on Γ and not on O.
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The geodesics of SO(Γ,O) are also describable in terms of (Γ,O). To
explain this, let L and R denote the matrices

L =
(

1 1
0 1

)
, R =

(
1 0
1 1

)
.

A closed path P of length k on the graph may be described by starting
at a midpoint of an edge, and then giving a sequence (w1, . . . , wk), where
each wi is either l or r, signifying a left or right turn at the upcoming
vertex. We then consider the matrix

MP = W1 . . . Wk,

where Wj = L if wj = l and Wj = R if wj = r. The closed path P on Γ
is then homotopic to a closed geodesic γ(P) on SO(Γ,O) whose length
length (γ(P)) is given by

2 cosh
(

length (γ(P))
2

)
= tr (MP ).

Note that length (γ(P)) depends very strongly on O. Indeed, if the path
P contains only left-hand-turns, then length (γ(P)) = 0, and if γ(P) is
a path of length r containing precisely one right-hand-turn, then

length (γ(P)) = 2 log

(
(1 + r) +

√
(1 + r)2 − 4
2

)
∼ 2 log(1 + r)

and hence grows linearly in log(r). On the other hand, if the path P of
length r consists of alternating left- and right-hand-turns, then

length (γ(P)) = r log

(
3 +

√
5

2

)
,

which is linear in r.
We now consider the description of SC(Γ,O) in terms of (Γ,O). We

will carry out this description under the assumption that the cusps of
SO(Γ,O) are large, i.e., they satisfy the condition in Theorem 3.3.

Theorem 4.3. Assume that the cusps of SO(Γ,O) have length ≥
L = L(ε). Then, there exist constants C1, C2, C3, C4, and C5 depending
only on L such that:

(a) The Cheeger constant h(SC(Γ,O)) satisfies

C1h(Γ) ≤ h(SC(Γ,O)) ≤ C2h(Γ).

(b) The shortest closed geodesic syst(SC(Γ,O)) satisfies

syst(SC(Γ,O)) ≥ C3 log(1 + syst(Γ)) ≥ C4,

where syst(Γ) is the girth of the graph Γ.
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(c) The genus of SC(Γ,O) satisfies

genus (SC(Γ,O)) ≥ C5#(Γ).

Proof.
(a) follows from Theorem 3.3 (a) and Theorem 4.2.
(b) follows from Theorem 3.3 (b) and the calculation of lengths of

geodesics on SO(Γ,O).
(c) follows from the formula for the genus of SO(Γ,O), which is also

the genus of SC(Γ,O), together with the simple observation that if each
cusp in SO(Γ,O) is bounded by a horocycle of length at least L, then
the number of such cusps is bounded by 1

L [area (SO(Γ,O))], since L is
the area inside a horocycle of length L.

We will sharpen (c) considerably in Section 8.

5. The Bollobás model

In this section, we discuss a model, due to Bollobás, for studying the
process of randomly selecting a 3-regular graph.

The problem of putting a probability measure on the set of 3-regular
graphs on 2n vertices would not appear at first sight to be difficult, since
this is a finite set. It has, however, proven problematic to find a model
which is amenable to meaningful calculation, and a number of different
models have been proposed and studied, each with its own benefits and
drawbacks. See Janson [17] for a discussion and comparison of the
different models.

We will use a model introduced by Bollobás ([4], [5]). Bollobás con-
sidered the problem for k-regular graphs, k arbitrary, but we will need
only the case k = 3. This model has the advantage that calculations of
an asymptotic character (as n → ∞) can be carried out with relative
ease.

For each n, let Fn denote the finite set of 3-regular graphs on 2n
vertices. We put a probability measure on Fn in the following way:
We consider a hat with 6n balls, labeled by the integers 1, 2, . . . , (2n),
with three copies of each number occurring. We begin with a graph
consisting only of vertices labeled with the integers 1, . . . , (2n).

We then add edges to the graph at random by selecting pairs of balls
from the hat, without replacement. If at step i the integers li and mi

are selected, we add to the graph an edge joining li and mi.
We modify this picture to handle orientations in the following man-

ner: We distinguish between the three balls with the same number
by adding one of the letters a, b, and c. Thus, the balls are labeled
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1a, 1b, 1c, . . . , (2n)a, (2n)b, (2n)c. We denote the set of draws from this
collection by F∗

n.
In this way, the three edges from vertex i are labeled by one of the

letters {a, b, c}. We may then put a cyclic ordering on these edges by
the cyclic ordering (a, b, c). Thus, the probability measure on F∗

n gives
us a probability measure on the set of oriented 3-regular graphs (Γ,O)
on 2n vertices.

We will need two results of Bollobás concerning the model Fn. In the
statement of these results, it does not matter whether or not we include
loops and multiple edges, as can be seen from Theorem 5.3.

The first result concerns the Cheeger constant of a graph.

Theorem 5.1 ([4]). There is a constant C > 0 such that the prob-
ability of a graph Γ chosen randomly from Fn having Cheeger constant
h(Γ) greater than C satisfies

Probn[h(Γ) > C] → 1 as n → ∞.

Bollobás gives numerical estimates showing that C > 2/11.
To state the second result, we recall the notion of an asymptotic

Poisson distribution.

Definition 5.2.
(a) A random variable X which takes values in the natural numbers

Z
+ is a Poisson distribution with mean µ if

Prob(X = k) = e−µ µk

k!
.

The mean µ is the expected value of X.
(b) Let {Xn} be a family of random variables on the probability spaces

{Pn}. The {Xn} are asymptotic Poisson distributions as n → ∞
if there exists µ such that

lim
n→∞Prob(Xn = k) = e−µ µk

k!
for all k.

(c) The families {Xn
i } are asymptotically independent Poisson distri-

butions if, for each i, the random variables Xn
i tend to a Poisson

distribution Xi as n → ∞, and if the variables Xi are independent.

A well-known example of an asymptotic Poisson distribution is given
by the hatcheck lady who returns hats in a random fashion to the n
guests at a party. The random variable Xn which is the number of
guests who receive the correct hat is asymptotically Poisson with mean
1 as n → ∞. Bollobás proves:
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Theorem 5.3 ([5]). Let Xi denote the number of closed paths in Γ
of length i. Then, the random variables Xi on Fn are asymptotically
independent Poisson distributions with means

λi =
2i

2i
.

In our case, we have an additional structure on the graph- “the orien-
tation”. We are distinguishing between short paths that agree with the
orientation and those that do not. To do so, we look at all the possible
orientations on a given closed path of length i. There are 2i possible
orientations, but only two yield a left-hand path. Therefore, we get the
following corollary.

Corollary 5.4. Let Yi be the random variable on F∗
n which associates

to (Γ,O) the number of left-hand-turn paths of length i. Then, the Yi

are asymptotically independent Poisson distributions with means

µi =
1
i
.

Theorem 5.3 and Corollary 5.4 imply that short geodesics and small
cusps will occur with positive probability in the surfaces SO(Γ,O),
asymptotically as n → ∞. One would expect on the grounds of as-
ymptotic independence that as n → ∞, these phenomena appear far
apart. The following elementary lemma makes this expectation precise
(compare [5], Theorem 32).

Lemma 5.5. For fixed numbers l1, l2, and d, let Qn(l1, l2, d) denote
the probability that a graph picked from Fn (resp. F∗

n) has closed paths
γ1 and γ2 of length l1 and l2 respectively, which are a distance d apart.

Then
Qn(l1, l2, d) → 0 as n → ∞.

Proof. We first observe that, since the statement is independent of
the orientation O, we may restrict our attention to picking from Fn.
We will show that, for every ε, for n sufficiently large, we have that

Qn(l1, l2, d) < ε.

Since the number of closed paths of length l1 are asymptotically Pois-
son distributed by Theorem 5.3, given ε1, we may find N(ε1) such that
with probability > 1− ε1, the number of closed paths of length l1 is less
than N(ε1).

Now, let γ be a closed path in Γ of length l1. We consider the l1 ·
2d+[l2/2]−1 vertices which are at distance at most d+[l2/2] from γ. When
n is large compared to l1 · 2d+[l2/2], with probability → 1 as n → ∞, no
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vertex in this set will have been selected twice. This implies that there
will be no closed path of length l2 at distance d from γ.

Applying this estimate to each of the < N(ε1) closed paths of length
l1, then gives the lemma.

6. Large cusps

In this section, we complete the proof of Theorem 2.1. We will refor-
mulate it in the following way.

Theorem 2.1A. Given L, as n → ∞, we have

Probn[SO(Γ,O) has cusps of length ≥ L] → 1.

Proof. We begin the proof by calculating the probability that the
canonical horocycles of SO(Γ,O) all have length ≥ L. This is precisely
the probability that all the random variables Yi of Corollary 5.4 have
the value 0, for 0 < i < L. By Corollary 5.4, this is asymptotically

e−
�L−1

i=0
1
i ∼ e−γ(L − 1)−1,

where γ is Euler’s constant.
Hence, the theorem is proved if we replace the conclusion “probability

→ 1” with the weaker conclusion “probability ≥ (const ) > 0 as n →
∞.” This is a sufficiently strong version of the theorem to obtain the
results announced in [10].

We now show how to obtain the stronger results of Theorem 2.1A.
To that end, suppose that the cusp C0 of the surface SO(Γ,O) has a
canonical horocycle of length < L. We would like to choose a larger
horocycle about this cusp.

There are two obstructions to choosing such a larger horocycle. The
first obstruction is that as we increase the length of the horocycle about
C0, it may cease to be injective. This will happen if there is a short
closed geodesic in the neighborhood of C0.

The second obstruction is that, as we increase the length of the canon-
ical horocycle about C0, we must decrease the lengths of the horocycles
of nearby cusps in order to keep the interiors of the horocycles disjoint.
When we decrease the length of a nearby horocycle, it may then cease
to have length ≥ L.

Both of these considerations are handled by Lemma 5.5. Indeed,
both of these obstructions arise from the possibility that in the graph
Γ, there may be a short closed path close to the left-hand-turn path
corresponding to C0. According to Lemma 5.5, the probability of this
occurring is asymptotically 0.
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This argument is illustrated in Figure 3. The cusp in question lies
between the vertical lines x = 0 and x = 2, and the canonical horocycle,
the line y = 1, has length 2. We increase its length to 8 by lowering
the horocycle to the line y = 1/4. This will be possible if none of the
points x + iy with 0 < x < 2, y > 1/4 are identified in the surface
(the first obstruction), and if all the horocycles which meet the line
y = 1/4 have images in the surface which are sufficiently long (the
second obstruction).

This concludes the proof of the theorem.

Figure 3. Increasing the size of horocycle.

7. Proof of Theorem 2.2

We now derive Theorem 2.2 from Theorem 2.1.
For a given ε, we set L = L(ε) as in Theorem 3.2. Using Theorem

2.1, we have that, as n → ∞,

Probn(SO(Γ,O) has cusps of length ≥ L) → 1.

Theorem 2.2 (b) and (c) now follow immediately from this and Theorem
4.3.

Theorem 2.2 (a) follows from Theorem 2.2 (b) and Cheeger’s inequal-
ity [13].

It remains to establish (d).
We remark that a standard argument (see [19]) gives an upper bound

for diameter in terms of volume and lower bounds for the Cheeger con-
stant and injectivity radius. Thus, (d) is a formal consequence of (b)
and (c).
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We will give a different argument which better reflects the geometry
of SC(Γ,O), and which also has the advantage that it gives better con-
stants when the injectivity radius is small. We will show the following
Lemma.

Lemma 7.1. Suppose that SO(Γ,O) has cusps of length ≥ L. Let
D0 denote the diameter of Γ, and L0 the length of the largest canonical
horocycle of SO(Γ,O).

Then, there exist constants C1 and C2, depending only on L, such
that

diam (SC(Γ,O)) ≤ 2[C1 log(L0) + C2] + C3D0.

Proof. Recall from [9] that the metric ds2
int on SC(Γ,O) is obtained

by multiplying the hyperbolic metric ds2
O by a conformal factor in each

cusp, so that in each cusp the metric is changed to a metric which is
close to that of the hyperbolic ball whose perimeter is the length of the
corresponding horocycle.

By Theorem 3.2, the metrics ds2
C and ds2

int satisfy

1
(1 + ε)

ds2
C ≤ ds2

int ≤ (1 + ε)ds2
C ,

so that, up to a constant factor uniform in L, we may carry out calcu-
lations in the metric ds2

int.
We remark that the construction of large horocycles of Theorem 2.1

involves enlarging the small canonical horocycles by at most a fixed
amount while shrinking the large horocycles by at most a fixed amount.
It follows that if X is any point of SC(Γ,O), its distance to a point Y
which is a copy of the point (1 + i

√
3/2) is at most C1 log(L0) + C2.

A path between two copies Y1 and Y2 of the point (1 + i
√

3/2) is
then given by a path along the graph, from which we conclude that the
distance from Y1 to Y2 is bounded by C3D0.

The lemma now follows.
To conclude the proof of Theorem 2.2 (c), we observe that the argu-

ment of [19] gives the upper bound

D0 ≤ (const ) log(#(Γ)) = (const ) log(2n),

while trivially L0 ≤ 4n.
Using the upper bound

genus (SC(Γ,O)) ≥ (const )2n

from Theorem 4.3 completes the proof.
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8. The expected genus

In this section, we will estimate the expected value

En(genus (SC(Γ,O)))

of the surface SC(Γ,O)), where (Γ,O) is randomly picked from the set
F∗

n.
We will introduce the following notation: In what follows, we will

describe a random process A by a sequence of choices. At each step of
the process, the choice (A)i will be conditioned on the choices made up
to step (i− 1). If Yi = Y (Ai) denotes a random variable of the i-th step
of the process, we will denote by E(Yi) and Var (Yi) the expectation
and variance of Yi, and by En(Y ) and Var n(Y ) the expected value and
variance of the variable Y =

∑
i(Yi) over the entire process. Thus, we

have in particular that

En(Y ) =
∑

i

E(Yi).

We will show the following theorem.

Theorem 2.3. There exist constants C1 and C2 such that

1 + n/2 −
[
C1 +

3 log(n)
4

]
≤ En(genus )

≤ 1 + n/2 + −
[
C2 +

log(n)
2

]
.

Recalling that LHT ((Γ,O)) denotes the number of closed left-hand-
turn paths on (Γ,O), we have from the formula

genus = 1 +
n − LHT

2
,

this formula is equivalent to the existence of constants C ′
1 and C ′

2 such
that

C ′
1 + log(n) ≤ En(LHT ) ≤ C ′

2 + (3/2) log(n).
We begin our calculation by presenting the Bollobás model in a some-
what different way. We begin by considering 2n vertices in the plane,
each with three edges of length 1/2, as shown in Figure 4. The free
endpoints of the edges will be called ends.

We add to this picture the 2n curves of length 1 corresponding to the
left-hand and right-hand paths leading from each end (see Figure 5).
We can view these lines as the dotted horolines in the ideal hyperbolic
triangle Figure 2.
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1b1a

1c

2b2a

2c

3b3a

3c

Figure 4. The Bollobás model revisited.

1bR

1aR

1cL

1aL

1bL

1cR

2bR

2aR

2cL

2aL

2bL

2cR

3bR

3aR

3cL

3aL

3bL

3cR

Figure 5. Left-hand and right-hand-turn path segments.

We now describe a process W, which models the drawing process for
F∗

n.
At each step i, we pick at random two ends not previously chosen,

and glue them together as shown in Figure 6, so that the left-hand path
segment from one end is glued to the right-hand path segment from the
other.

1bR

1aR

1cL

1aL

1bL

1cR

2bR

2aR

2cL

2aL

2bL

2cR

Figure 6. End 1a glued to end 2b.

Let us calculate the expected number of closed left-hand-turn paths
formed at the i-th step.
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Suppose that the first end selected has the property that the LHT
path leading from this end does not coincide with the right-hand-turn
path leading from this end. Then, there are two possible choices of ends
which will lead to a closed LHT path, namely the other ends of the
left-hand path and right-hand path leading from the same end. These
two ends may coincide, in which case, two closed LHT paths will be
formed by this gluing.

Thus, we have that, in this case, the expected number of LHT paths
created at the i-th step is 2/(6n − 2i + 1).

We will say that an end is a bottleneck if the left-hand-turn path
leading from the end coincides with the right-hand-turn path leading
from it, in other words following the LHT path from the starting end
will lead us back to the same end.

If the first-chosen end is a bottleneck, then a closed LHT path will
be formed from the gluing if and only if the second chosen end is also a
bottleneck.

It would thus appear that the expected number (LHT )i of closed LHT
paths formed at step i would then depend on how many bottlenecks are
present after step i-1. To get around this difficulty, let Xi be the random
variable which is the number of closed LHT paths formed at step i which
are not formed by gluing two bottlenecks together, and let Bi be the ran-
dom variable which counts the number of bottlenecks formed at step i.

To calculate Bi, let us label the first chosen end e1. Following the
left-hand-turn path from e1, we arrive at an end e2, and following the
LHT path from e2, we arrive at an end e3. Similarly, we may follow the
right-hand-turn path from e1 to arrive at an end e′2, and following the
right-hand-turn path from e′2, we arrive at e′3.

If we now glue e1 to e3, we produce a bottleneck at e2, and if we glue
e1 to e′3, we produce a bottleneck at e′2.

This process is illustrated in Figure 7, where we see that gluing end
1a to end 3a will create a bottleneck at end 2b, while gluing end 1a to
end 3b will create a bottleneck at end 1c.

It may happen that both e2 and e′2 agree with e1, in which case, e1

is a bottleneck. In this case, gluing end e1 to any end will not produce
a bottleneck.

It may happen that e3 = e′3. In this case, gluing e1 to e3 will produce
two bottlenecks, at e2 and e′2, respectively.

Finally, it may happen that e2 = e′2, in which case e3 = e′3 = e1, and
gluing e1 to any end will not create a new bottleneck. If e1 is glued
to a bottleneck, then this gluing extends the bottleneck, but we do not
consider this as producing a new bottleneck.
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1aR

1cL
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1bL
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3aL

3bL
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Figure 7. Creating a bottleneck.

Thus, in various situations, Bi may take the values 0 for all choices
of ends, 1 for two choices of ends, or 2 for one choice of end.

We now consider the situation where the first-chosen end is a bot-
tleneck. Then, Xi will necessarily be 0, since the only possibility for
forming a closed LHT path will arise from joining two bottlenecks to-
gether. It is also easily checked that Bi will also be 0.

Summarizing, we have:

(i) If the first-chosen end is not a bottleneck, then

E(Xi) =
2

6n − 2i + 1
≥ E(Bi).

(ii) If the first-chosen end is a bottleneck, then

E(Xi) = E(Bi) = 0.

(iii) In either event, we have the estimates

E(Xi) ≤ 2
6n − 2i + 1

,

E(Bi) ≤ 2
6n − 2i + 1

.

Clearly,

LHT ≤
∑

i

Xi + (1/2)
∑

i

Bi,

where the inequality arises because a bottleneck created at one step may
be destroyed at a later step.
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We thus have that

En(LHT ) ≤
3n∑
i=1

2
6n − 2i + 1

+ (1/2)

(
3n∑
i=1

2
6n − 2i + 1

)

= (3/2)

(∑
i

1
(1/2 + (3n − i))

)
.

Using the upper estimate
1

1/2 + x
≤ log(x + 1) − log(x), x ≥ 1,

we see that
En(LHT ) ≤ (3/2)[2 + log(3n)].

To obtain the lower bound for En(LHT ), we will define another
process W ′ as follows: We first begin by lexicographically ordering the
balls 1a < 1b < 1c < 2a < · · · < (2n)c. At step i, we choose as the first
end the end which has not yet been glued, which is not a bottleneck,
and whose label is the lowest in the ordering with these two properties.
If all the remaining ends are bottlenecks, we choose the free end which
is lowest in the ordering. We then choose the remaining end randomly
from among the remaining free ends, and glue them together.

We remark that the distribution of (Γ,O) constructed by process W ′
is exactly the same as in the process W . This can be seen as follows:
Given a draw from F∗

n, we regard this draw as an unordered matching
of the balls (i.e., we disregard the order in which the pairs are drawn).
Then, this unordered matching occurs precisely one way among the
draws satisfying the conditions of W ′.

If we denote by (LHT )′i, the number of closed LHT paths created at
the i-th step, and (LHT )′ =

∑
i(LHT )′i, it follows that

E(LHT )′ = E(LHT (W )),

since the number of LHT paths in the graph (Γ,O) does not depend
on the order in which the ends are glued. It will be the case that the
expected number of bottleneck will differ, as this does depend on the
order of gluing.

We now estimate E(LHT )′ and E(LHT )′i from below. We see that

E((LHT )′i) =
2

6n − 2i + 1
if there exist non-bottlenecks at the i-th step, and

E((LHT )′i) = 1

otherwise.
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Note that if, at the last step, there are no bottlenecks, then (LHT )′3n

is 2, while if at the last step there are two bottlenecks, then (LHT )′3n =
1. We thus have in any event the lower estimate

E((LHT )i)′ ≥ 2
6n − 2i + 1

i �= 3n

≥ 1, i = 3n.

Thus,

En((LHT )′) =
∑

i

E((LHT )′i)

≥ 1 +
3n−1∑
i=1

1
1/2 + (3n − i)

≥ 1 − γ′ + log(3n),

where γ′ is the “modified Euler’s constant”

γ′ = lim
n→∞

[
log(3n) −

3n−1∑
i=1

1
(1/2 + i)

]
.

Note that it is standard that the limit exists, and the bracketed term is
monotonically increasing in n.

Theorem 2.3 now follows from this and En(LHT (W )) = En((LHT )′).
We now give an alternate argument for the lower bound which does

not involve the process W ′. It does, however, produce slightly weaker
constants.

Assume that at the i-th step in process W , there are Bi bottle-
necks. Then, the probability of choosing a bottleneck for the first end is
Bi/(6n − 2i + 2), and for then choosing a bottleneck for the second end
is (Bi − 1)/(6n − 2i + 1). Thus, the probability of producing a closed
LHT path at step i is

(LHT )i =
6n − 2i + 2 − Bi

6n − 2i + 2
2

6n − 2i + 1
+

Bi

6n − 2i + 2
Bi − 1

6n − 2i + 1
.

When Bi = 0 or is > 2, this is

≥ 2
6n − 2i + 1

.

When Bi = 1 or 2, this is
6n − 2i + 1
6n − 2i + 2

2
6n − 2i + 1

.

Now, choose C less than 1. Then, we will have

(LHT )i ≥ C
2

6n − 2i + 1
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for all i such that
(6n − 2i) >

2C − 1
1 − C

.

This will involve only finitely many terms, independent of n, so we will
have

LHT ≥ C log(3n) + C ′

for some C ′ independent of n, by the same calculation as before. We
note that as C → 1, we have C ′ → ∞.

9. Some combinatorial considerations

It is clear from the preceeding section that the probability theory
of random 3-regular oriented graphs is complicated by the appearance
of special types of LHT paths such as bottlenecks. In this section, we
study the ways in which such configurations occur. The results of this
section will then be used in section 10.

To facilitate the discussion, we need to introduce some terminology.

Definition 9.1. Let γ be an LHT segment. Then the circuit passing
through γ is the sequence of LHT segments such that the first segment
is γ, and every two adjacent segments share a common end.

A circuit is called a k-circuit if it contains precisely k ends.

Intuitively, we can describe a circuit as follows: We walk along a LHT
path, until we reach an open end. At the open end, we will leap to the
next LHT segment on the other side of the edge. And we continue this
walk until we return to our starting point. A circuit is the combinatorial
configuration of such LHT paths segments. The number k represents
the number of open ends in the configuration.

Thus, a 0-circuit is a closed LHT path, and a 1-circuit is a bottleneck.
We will call a 2-circuit a pipe. A good example of a 3-circuit is one of
the pieces of Figure 5.

It is easy to see that when we glue two ends from two different cir-
cuits of length k and l respectively, we create one new circuit of length
k + l− 2. When we glue together two ends of the same circuit of length
k, we create two new circuits of length l1 and l2, where l1 + l2 = k − 2.

In particular, there are only two ways to create a pipe – either a bot-
tleneck is joined to a 3-circuit, or a k-circuit is joined to itself, for k ≥ 4,
to create a pipe and a (k − 4)-circuit. We have seen above that there
is only one way to create a bottleneck, namely by joining a k-circuit to
itself, for k ≥ 3 to create a bottleneck and a k − 3-circuit.

We remark that, in contrast to the notion of a closed LHT path, the
notion of a bottleneck or pipe is not intrinsic to the graph (Γ,O) itself,
but rather depends on the order in which (Γ,O) is put together.
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We now return to the process W defined in the previous section,
and recall that Bi is the random variable which counts the number of
bottlenecks at step i of W .

We may similarly define Pi to be the number of pipe ends (that is,
twice the number of pipes) created at step i of the process. As was the
case with Bi, when a pipe is joined to another pipe, we do not count
this as forming a new pipe, but rather as extending a previous pipe. Let
B =

∑
i Bi and P =

∑
i Pi.

We will show the following Lemma.

Lemma 9.2. There exists constants C1 and C2 such that with as-
ymptotic probability tending to 1 as n → ∞,

(i) B ≤ C1 log(n)
and

(ii) P ≤ C2 log(n).

Proof. We will use the following standard consequence of
Chebycheff’s inequality: If X is a random variable, then

Prob (|X − E(X)| > αE(X)) ≤ Var (X)[α2E(X)2]−1.

In order to apply this inequality, we will introduce the following de-
vice, which will produce constants larger than necessary, but which has
the advantage of being simple. Recall from the discussion of Theorem
2.3 that if the first-chosen end does not lie on a bottleneck, pipe, or
4-circuit, then there are two choices of ends which will give Bi a value
of 1, and for the remaining choices will give a value of 0. If the first-
chosen end lies on a bottleneck or pipe end, then Bi = 0, while if the
first-chosen end lies on a 4-circuit, there will be one choice of end for
which Bi will have the value 2.

We introduce the random variable B̃i as follows: If the first-chosen
end is not on a 1-,2-, or 4-circuit, we set

B̃i = 2Bi.

If the first-chosen end lies on a 4-circuit, we choose one end xi differ-
ent from the end which will create a bottleneck, and set

B̃i = 2 if the second-chosen end is xi

= 2Bi otherwise .

If the first-chosen end is a pipe or bottleneck, we arbitrarily choose two
ends xi, yi, and set

B̃i = 2 if the second end is xi or yi

= 0 otherwise.
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Thus, in all cases, there are two choices of ends which will gives B̃i the
value 2, and for the remaining choices we have B̃i = 0.

Clearly, Bi ≤ B̃i, and hence B ≤ B̃, since B̃i overcounts some bot-
tlenecks and also counts choices which do not produce bottlenecks. We
have

E(B̃i) =
4

6n − 2i + 1
,

and so
E(B̃) =

∑
i

E(B̃i) ∼ C log(n).

But Var (B̃i) can also be calculated easily. We will use

Var (B̃i) = E(B̃2
i ) − (E(B̃i))2

≤ E(B̃2
i )

≤ 2E(Bi),

since the maximum value of B̃i is 2.
But the B̃i’s are now independent, so that

Var (B̃) =
∑

i

Var (B̃i) ≤ 2
∑

i

E(B̃i) ∼ 2C log(n).

From Chebycheff’s inequality, we see that, for some C ′,

Prob (B̃ > C ′ log(n)) <
const
log(n)

→ 0 as n → ∞.

Since B ≤ B̃, this establishes (i).
We may proceed similarly to establish (ii). Let PA denote the num-

ber of pipe ends created by joining a bottleneck with a 3-circuit, and
PB the number of pipe ends created by joining a k-circuit to itself, as
described above.

Since a bottleneck is involved in the first method, we have the upper
estimate PA ≤ B. To estimate PB, we may use the same device as
before: If the first-chosen end lies on a k-circuit, k > 6, then there are
two choices of ends which will produce a pipe, while for k ≤ 6, we may
arbitrarily choose ends to define a variable P̃i so that

PB
i ≤ P̃i

and

P̃i = 4 for two choices of ends
= 0 otherwise.
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From this, we conclude as before that

E(P̃ ) ∼ C(2) log(n)

Var (P̃ ) ∼ C(3) log(n)

PB ≤ P̃

and hence

Prob (PB > C(4) log(n)) <
C(5)

log(n)
by Chebycheff’s inequality.

This establishes (ii).

10. The largest embedded ball

If S is a compact Riemann surface, denote by Emb(S) the area of
the largest embedded ball in S. This is the maximum over p ∈ S of the
area of the ball at p whose radius is the injectivity radius at p.

In this section and the next, we will show the following theorem.

Theorem 2.4. There exists a constant C > 0 such that the expected
value E(Emb (SC(Γ,O))) satisfies

E(Emb (SC(Γ,O))) ≥ (C − ε(n))area (SC(Γ,O)),

where ε(n) is a function which goes to 0 as n → ∞.

We will present two calculations of C. The first one will yield a value
of C of 3/4π. The second one, which is somewhat more technical, will
give a value of C of 1/π. Neither estimate is sharp, and we believe that
the correct value for C is substantially larger.

In this section, we will first present the geometric considerations
which reduce Theorem 2.4 to a statement about the probability the-
ory of random oriented 3-regular graphs. We then present an outline
of how we solve this probabilistic problem, by estimating it by a model
problem. The calculations necessary to solve this model problem are
then carried out in Section 11.

As a first step towards Theorem 2.4, we note the estimate

area (SC(Γ,O)) ≤ 2πn

for (Γ,O) chosen randomly from oriented 3-regular graphs on 2n ver-
tices.

For (Γ,O) an oriented 3-regular graph, let L(Γ.O) be the length of
the longest left-hand-turn path in (Γ,O). Then, this left-hand-turn
path goes over to a closed horocycle of length L(Γ,O) in SO(Γ,O),
which bounds a cusp neighborhood with area L(Γ,O).
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If CL denotes the corresponding cusp, let C∗
L denote the point in

SC(Γ,O) which is the image of CL under the compactification SO(Γ,O)
→ SC(Γ,O).

According to [9], for any ε, there exists a constant Lε such that if the
cusps of SO(Γ,O) are of length at least Lε, then C∗

L will be the center
of an embedded ball of volume at least 1/(1 + ε) times the area of the
horocycle neighborhood. Thus, if SO(Γ,O) has all cusps of length at
least Lε, then

Emb(SC(Γ,O)) ≥ 1
1 + ε

L(Γ,O).

Since by Theorem 2.1, with asymptotic probability 1 SO(Γ,O) will have
all cusps of length at least Lε, Theorem 2.4 will be a consequence of fol-
lowing theorem.

Theorem 10.1. There is a constant C2 such that the length L(Γ,O)
of the longest left-hand-turn path of (Γ,O) drawn from 3-regular graphs
on 2n vertices satisfies

E(L(Γ,O)) ≥ (C2 − ε(n))n,

where ε(n) → 0 as n → ∞.

The constant C of Theorem 2.4 and the constant C2 of Theorem 10.1
are related by

C = C2/(2π).

We will not in fact estimate E(L(Γ,O)) directly. What we will in fact
estimate is the expected length of the left-hand-turn path starting from
a given end. While there is no reason to expect that this LHT path is
the longest, one does expect that a randomly chosen end will lie on a
long LHT path rather than a shorter one, so it is not surprising that
this calculation can yield an answer of the same order of magnitude as
the expected value of the longest LHT path. On the other hand, it is
considerably easier to calculate.

Without loss of generality, we may take as our starting end the end 1a.
Our general strategy is to describe a process of gluing whereby at

each step of this process, we extend the LHT path leading from 1a. We
will estimate the expected number of steps before the LHT path from
1a closes up, stopping the process. Since we add at least length 1 to the
length of the LHT path from 1a, this estimated stopping time will also
be a lower estimate for the length of the closed LHT path leading from
1a. This is in fact a great underestimate, because we expect that, after
a large number of step, the length of the pieces we are adding to this
LHT path will grow.
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At each step of the process, we will describe below, we will call the
free end at the left-hand side of the segment leading from 1a the initial
end, and the free end at the right-hand side of this segment the current
end. At the beginning of the process, the initial end is 1a, but it can
change under rare circumstances, which will be described below. The
current end will change at each step of the process.

The idea is now to glue the current end to a randomly chosen end.
The path will close up if this randomly chosen end is the initial end. As
in Section 8, we expect complications if the current end is a bottleneck,
or in other words, if the current end coincides with the initial end. In
this case, the LHT path will close up on the next step if it is glued to
another bottleneck, and so the probability of the process terminating
grows with the number of bottlenecks. We will, therefore, have to be
careful when the current end is a bottleneck.

This can occur when the current end is glued to the other end of the
right-hand-turn path leading from 1a (which will be 1c at the beginning
of the process).

There is an additional complication which did not arise in Section 8.
If the current end is an end of a pipe, whose other end must then be the
initial end, then gluing this end to a bottleneck will produce a bottle-
neck at the initial end. We illustrate this state of affairs in Figure 8. In
this figure, the current end is 1c, and gluing at either of the bottlenecks
4c or 6c will produce a bottleneck at the initial end 1a.

1c

1a

4c 6c

1 2 3 4 5 6

Figure 8. The additional complication.

To handle these problems, we will construct a process Z, to be de-
fined below, such that these problems will only interfere if the number
of pipes and bottlenecks is large compared to the number of remaining
ends. We will then use Lemma 9.2 to say that, with probability asymp-
totically approaching 1 as n → ∞, this will happen only very late in the
process, when the length of the LHT path from 1a is already very large.
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We will make use of the fact that if one has two processes A and B
such that the stopping probabilities of A are always less than that of
B, then the expected stopping time of A must be larger than that of B.
With this understood, we may model the stopping time of Z on that of
a process Zn,δ whose stopping times can be calculated. This calculation
will then be carried out in Section 11.

We now describe the process Z. At the i-th step, if case (iia) below
did not arise in the previous step, we pick an end at random and glue
it to the current end. There are three possibilities to consider:

(i) The randomly chosen end is the initial end. In this case, perform-
ing this gluing creates a closed LHT path containing the initial
end, and the process stops.

(ii) A bottleneck is created at the initial end. This will occur if the
randomly chosen end is the end which is joined to the initial end
by the right-hand-turn path leading from the initial end. If this
occurs, we draw another end. There are two possibilities:

(iia) This end is neither a bottleneck nor a pipe. In this case, the
process continues at step i + 1 by performing this gluing.

(iib) This end is a bottleneck or a pipe. Then, the process stops.
When one performs this gluing, if the randomly-chosen end is
a bottleneck, then a LHT path is created which contains the
initial end. If the randomly-chosen end is a pipe, then a new
bottleneck is created which includes the initial end.

(iii) Neither case (i) or case (ii) above occurs. Then, we proceed to
step i + 1 of the process.

We now calculate the probability that the process will come to an
end at step i.

If at the end of step i − 1, the process ended in case (iia), then the
probability of the process ending at step i is 0.

If at the end of step i− 1, the current end is not part of a pipe, then
with probability 1/(6n − 2i + 1), case (i) occurs, and with probability
1/(6n − 2i + 1), case (ii) occurs. If we let (B + P )i denote the number
of bottlenecks and pipe ends after the first gluing, then the probability
of case (iib) occurring at the second choice is (B + P )i/(6n − 2i − 1).
Hence, the probability of the process stopping at the i-th step is

1
6n − 2i + 1

+
(

1
6n − 2i + 1

)(
(B + P )i

6n − 2i − 1

)
.

If at the end of step i−1, the current end is part of a pipe, then case (ii)
will occur when the randomly-chosen end is a bottleneck. This will oc-
cur with probability (B + P )i/(6n − 2i + 1). The probability that case
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(iib) occurs is then

(B + P )i[(B + P )i − 1]
(6n − 2i + 1)(6n − 2i − 1)

.

Thus, the probability of the process ending at the i-th step is at most

1
(6n − 2i + 1)

+
(B + P )2i

6n − 2i − 1
.

Hence, in all cases, the probability of the process ending at the i-th
step is at most

(1)
1

(6n − 2i + 1)

[
1 +

(B + P )2i
6n − 2i − 1

]
.

For a given δ, we would like to know when the expression in equation
(1) is at most

(Zn,δ)i =
1 + δ

(6n − 2i + 1)
.

This will happen when

(B + P )2i
δ

< 6n − 2i,

or, alternatively, when

(2) i < 3n − (B + P )2i
2δ

.

We now use the overestimate

(B + P )i ≤ (B + P ).

By Lemma 9.2, the estimate

(B + P ) < (const ) log(n)

will hold asymptotically almost surely, so that in calculating the ex-
pected stopping time of Z, we may use this estimate, after multiplying
by a factor which goes to 1 as n → ∞.

We may then rewrite Equation (2) as

(3) i < (3 − ε)n for ε =
(const )2 log2(n)

2nδ
,

where the last expression clearly goes to 0 as n → ∞ for fixed δ.
In Section 11, we will compute the expected stopping time of the

process Zn,δ as well as the contribution to this expected stopping time
after (3−ε)n steps. This will then give a lower estimate for the stopping
time of the process Z, completing the proof of Theorems 10.1 and 2.4.
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11. Expected stopping times

Let Zn,δ be a process whose probability of stopping at step i, condi-
tioned on arriving at step i − 1, is

(Zn,δ)i =
1 + δ

6n − 2i + 1
, i ≤ 3n.

We would first like to estimate the stopping time of Zn,δ. It is given by

En,δ =
1 + δ

6n − 1
+

(6n − 2 − δ)
6n − 1

(1 + δ)
6n − 3

· 2

+
(6n − 2 − δ)(6n − 4 − δ)

(6n − 1)(6n − 3)
1 + δ

6n − 5
· 3 + · · ·

When δ = 1, the terms in the products collapse, so that

En,1 =
2

6n − 1
+

2
6n − 1

· 2 + · · ·

=
2

6n − 1
[1 + 2 + · · · + 3n]

=
2

6n − 1

[
(3n)(3n + 1)

2

]
∼ 3n

2
for n large.

When δ = 0, the evaluation of En,0 is less simple, but still elementary.
We will need the following lemma.

Lemma 11.1.
1

6n − 1
+

6n − 2
6n − 1

1
6n − 3

+ · · · + (6n − 2)(6n − 4) . . . 1
(6n − 1)(6n − 3) . . . 1

= 1.

Proof. This can be seen either by inductively adding the last two
remaining terms

4
5

1
3

+
4
5

2
3

=
4
5

6
7

1
5

+
6
7

4
5

=
6
7

etc.

or by observing that this is the probability of the process stopping after
3n steps, which is certainty.

We then have that

En,0 = 1 +
6n − 2
6n − 1

+
(6n − 2)(6n − 4)
(6n − 1)(6n − 3)

+ · · · + (6n − 2) . . . 2
(6n − 1) . . . 3

.
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Again, adding the right-hand terms inductively, using

2
3

+ 1 =
5
3
,

4
3

+ 1 =
7
3
, etc.

we see that

En,0 = 1 +
6n − 2

3
=

6n + 1
3

∼ 2n.

It is evident that En,δ increases as δ decreases from 1 to 0. We do
not have a closed formula for En,δ in general, but we will not need it in
what follows.

We now consider what happens when we stop the process after (3−ε)
steps. In terms of the problem at hand, this amounts to estimat-
ing the stopping time of a process Zn,δ,ε for which the estimate
(1 + δ)/(6n − 2i + 1) becomes unreliable after (3 − ε) steps. We would
like to say that the contributions from the last εn steps is essentially
negligible.

Denoting this by En,δ,ε, we have that En,δ,ε is clearly greater than the
contribution to En,δ after the first (3 − ε)n terms.

When δ = 1, we obtain that this is at least

2
6n − 1

[1 + · · · + (3 − ε)n]

=
(

2
6n − 1

)
(3 − ε)n[(3 − ε)n + 1]

2

∼ (3 − 2ε)
2

n.

When δ = 0, we will proceed as follows: We will estimate the contribu-
tion from the last εn terms, and then subtract this from the total. We
will overestimate the contribution from the last εn terms by replacing
the multiplication by i with multiplication by 3n.

We, thus, have an overestimate of the last εn terms by

(3n)
(

6n − 2
6n − 1

)
. . .

(
6n − 2((3 − ε)n) + 2
6n − 2((3 − ε)n + 3)

)
= (3n)

[(
6n − 2
6n − 1

)
. . .

(
2εn + 2
2εn + 3

)]
.
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It will be convenient to set l = 3n − 1. We then have that(
6n − 2
6n − 1

)
. . .

(
2εn + 2
2εn + 3

)
=

(2l)(2l − 2) . . . (2εn + 2)
(2l + 1) . . . (2εn + 3)

(4)

=
[(2l) . . . (2εn + 2)]2

(2l + 1)(2l) . . . (2εn + 2)

=
[

22l(l!)2

(2l + 1)!

] [
22εn((εn)!)2

(2εn + 1)!

]−1

.

We may now estimate this last expression by Stirling’s formula, which
we will use in the following form.

Lemma 11.2 (Stirling’s formula [15], [23]).
√

2πnn+1/2e
−n+ 1

(12n+1) < n! <
√

2πnn+1/2e−n+ 1
12n .

Substituting in our expression, and noting that the terms involving
e1/12n and e1/(12n+1) contribute constants which go to 1 as n → ∞, we
get

22l(l!)2

(2l + 1)!
∼ 1

2l + 1

[
22l2πl2l+1e−2l

√
2π(2l)2l+1/2e−2l

]
=

1
(2l + 1)

√
πl1/2,

and similarly for the terms involving εn, so that the expression (4) is

∼ l1/2

(εn)1/2

(εn + 1)
(2l + 1)

∼ (const )
√

ε.

Hence, the error term is bounded by

(const )
√

εn.

We then have that

En,0,ε > (2 − const
√

ε)n.

We now observe that we may estimate the last εn terms for arbitrary
δ by estimating the last εn terms when δ = 0, so that in general

En,δ,ε > En,δ − (const )
√

εn.

We may now establish Theorem 10.1 with the constant C ′ = 2, by
letting n get large for fixed δ, and then letting δ → 0.

We remark that we may evaluate the limit distribution, as n → ∞,
of the processes En,δ, for 0 ≤ δ ≤ 1. Applying Stirling’s Formula to the
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terms

(1 + δ)
(6n − 2 − δ)(6n − 4 − δ) . . . (6n − 2i − δ + 2)

(6n − 1)(6n − 3) . . . (6n − 2i + 1)

=
1 + δ

6n − 1

[
(3n − 1 − δ/2) . . . (3n − i − δ/2 + 1)

(3n − 1/2 − 1) . . . (3n − i + 1/2)

]
=

1 + δ

6n − 1

[
Γ(3n − δ/2)Γ(3n + 1/2 − i)

Γ(3n − i − δ/2 + 1)Γ(3n − 1/2)

]
,

we see that the limit distribution is given by the function

fδ(x) = (1 + δ)(1 − 2x)(δ/2−1/2), 0 ≤ x ≤ 1/2,

from which we may easily compute the limit expected value and variance
as

E(fδ) =
1

δ + 3
and

Var (fδ) =
δ + 1

(δ + 3)2(δ + 5)
.

Indeed, for δ < 1, the distribution is weighted toward the higher end
of [0, 1/2], so that for δ = 0, the median is 3/8, and with probability
1/3 the value of f0 is at least 4/9.
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École Normale Superiere of Lyon, where much of the writing was carried
out, and also the hospitality of Dartmouth College and MIT, where this
work was completed. We would like to thank Alex Gamburd, Anatoly
Vershik, Balint Virag, and Ofer Zeitouni for very helpful conversations
about the probabilistic aspects of this paper.

After writing this paper the first author Robert Brooks passed away
tragically. I dedicate this paper to him. It was a great privilege to
have him as a mentor and friend. I tremendously miss his advice and
enthusiasm.

References

[1] L.V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc.
43(3) (1938) 359–364, MR 1501949, Zbl 0018.41002.

[2] R. Arratia, A.D. Barbour, & S. Tavaré, EMS Monographs in Mathematics,
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