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HIGHER TYPE ADJUNCTION INEQUALITIES IN
SEIBERG-WITTEN THEORY

PETER OZSVÁTH & ZOLTÁN SZABÓ

Abstract
In this paper, we derive new adjunction inequalities for embedded surfaces
with non-negative self-intersection number in four-manifolds. These formu-
las are proved by using relations between Seiberg-Witten invariants which
are induced from embedded surfaces. To prove these relations, we develop
the relevant parts of a Floer theory for four-manifolds which bound circle-
bundles over Riemann surfaces.

1. Introduction

In this paper, we prove certain adjunction inequalities, which give re-
lations between the Seiberg-Witten invariants of a four-manifold X and
the genus of embedded surfaces in X. These results are generalizations
of results from [12], [21], [24], see also [13].

The investigations center on a construction of an appropriate Seiberg-
Witten-Floer functor for manifolds which bound circle bundles Y over
Riemann surfaces (with sufficiently large Euler number), which relies on
the calculations of [22]. Special cases of this theory were studied in [24],
where the authors used similar techniques to prove the symplectic Thom
conjecture. That problem requires an analysis of those SpinC structures
over Y for which the Seiberg-Witten moduli space contains only re-
ducible solutions, which simplifies the corresponding Floer homology.
In this paper, we work out the theory in the other, more complicated
cases. We will give more applications of these techniques in [23].
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Before stating the results, we set up some notation. Let X be a
closed, connected, smooth four-manifold equipped with an orientation
for which b+

2 (X) > 0 (where b+
2 (X) is the dimension of a maximal

positive-definite linear subspace H+(X; R) of the intersection pairing
on H2(X; R)) and an orientation for H1(X; R)⊕H+(X; R). Given such
a four-manifold, together with a SpinC structure s, the Seiberg-Witten
invariants (see [31], [19], [26]) form an integer-valued function

SWX,s : A(X) −→ Z,

where A(X) denotes the graded algebra obtained by tensoring the ex-
terior algebra on H1(X) (graded so that H1(X) has grading one) with
the polynomial algebra Z[U ] on a single two-dimensional generator. The
invariants are constructed via intersection theory on the moduli space
MX(s) of solutions (A, Φ) modulo gauge to the Seiberg-Witten equa-
tions in s:

ρ(TrF+
A ) = i{Φ, Φ}0 − ρ(iη)(1)

�DAΦ = 0,(2)

where Φ is a section of W+, A is a spin-connection in the spinor bundle
W+ of s, �DA denotes the associated Dirac operator, ρ denotes Clifford
multiplication, η is some fixed self-dual two-form, and {Φ, Φ}0 is the
usual quadratic map (see [31]). Note that the invariants are zero on
homogeneous elements whose degree is not d(s), where

d(s) =
c1(s)2 − (2χ(X) + 3σ(X))

4

denotes the formal dimension of the moduli space MX(s). When
b+
2 (X) > 1, SWX,s is a diffeomorphism invariant of the four-manifold;

when b+
2 (X) = 1, the invariants depend on a chamber structure (see [19],

[24]). There are two distinguished chambers corresponding to the two
components of K(X) = {ω ∈ H2(X; R) − 0 | ω2 ≥ 0}. Given a com-
ponent K0 of K(X), the corresponding invariant (still denoted SWX,s)
is calculated using the moduli space of solutions to the Seiberg-Witten
equations perturbed by any generic self-dual two-form η, provided that
the sign of −2πc1(s)·ωg +

∫
X η∧ωg agrees with the sign of γ ·ωg, where γ

is any class in K0, and ωg �= 0 is a harmonic (with respect to the metric
g), self-dual two-form over X. Note that SWX,s is a diffeomorphism
invariant of X (and the component K0).
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Those SpinC structures s for which the invariant SWX,s is non-trivial
are called basic classes.

Our results are easiest to state when b1(X) = 0, where we have the
following.

Theorem 1.1. Let X be a smooth, closed, connected, oriented
four-manifold with b+

2 (X) > 0 and b1(X) = 0, and let Σ ⊂ X be a
smoothly-embedded surface with genus g(Σ) > 0 representing a non-
torsion homology class with self-intersection number [Σ] · [Σ] ≥ 0. If
b+
2 (X) > 1, then we have the following adjunction inequality

|〈c1(s), [Σ]〉| + [Σ] · [Σ] + 2d(s) ≤ 2g(Σ) − 2,

for each basic class s ∈ SpinC(X). Furthermore, when b+
2 (X) = 1, for

each basic class s of X for the component of K(X) which contains PD[Σ]
with

−〈c1(s), [Σ]〉 + [Σ] · [Σ] ≥ 0,

we have an inequality

−〈c1(s), [Σ]〉 + [Σ] · [Σ] + 2d(s) ≤ 2g(Σ) − 2.

Remark 1.2. The above theorem should be seen as a refinement of
the adjunction inequality proved by Kronheimer-Mrowka and Morgan-
Szabó-Taubes (see [12], [21], [3]). Analogous results for immersed spheres
were obtained by Fintushel and Stern, see [7].

In fact, Theorem 1.1 follows from a more general version. To state
this, note first that an inclusion i : Σ −→ X induces a map

i∗ : A(Σ) −→ A(X).

Theorem 1.3. Let X be a smooth, closed, connected, oriented
four-manifold with b+

2 (X) > 0. Let Σ ⊂ X be a surface with genus
g(Σ) > 0 representing a non-torsion homology class with self-intersection
number [Σ]·[Σ] ≥ 0. Let � be an integer so that there is a symplectic basis
{Aj , Bj}g

j=1 for H1(Σ) so that i∗(Aj) = 0 in H1(X; R) for i = 1, . . . , �.
Fix any element a ∈ A(X), and let and b ∈ A(Σ) be an element whose
degree satisfies d(b) ≤ �. If b+

2 (X) > 1 then for each SpinC structure s

so that SWX,s(a · i∗(b)) is non-zero, we have

|〈c1(s), [Σ]〉| + [Σ] · [Σ] + 2d(b) ≤ 2g(Σ) − 2.
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Furthermore, when b+
2 (X) = 1 then for each SpinC structure s of X

with
−〈c1(s), [Σ]〉 + [Σ] · [Σ] ≥ 0,

for which SWX,s(a ·i∗(b)) is non-zero, when calculated in the component
of K(X) containing PD[Σ], we have an inequality

−〈c1(s), [Σ]〉 + [Σ] · [Σ] + 2d(b) ≤ 2g(Σ) − 2.(3)

The Adjunction Inequality (3) does not hold without homological
restrictions on X, as we can see by looking at the ruled surface X =
S2 × Σ. In general, one can obtain only a weaker inequality (losing the
factor of 2 on the dimension d(b)), as follows.

Theorem 1.4. Let X be a smooth, closed, connected, oriented
four-manifold with b+

2 (X) > 1. Let Σ ⊂ X be a surface with genus
g(Σ) > 0 representing a non-torsion homology class with self-intersection
number [Σ] · [Σ] ≥ 0. Let a ∈ A(X) and b ∈ A(Σ). If b+

2 (X) > 1 and if
SWX,s(a · i∗(b)) is non-zero for some b ∈ A(Σ) of degree d(b), then we
have

|〈c1(s), [Σ]〉| + [Σ] · [Σ] + d(b) ≤ 2g(Σ) − 2.

If b+
2 (X) = 1 and s is a SpinC structure with

−〈c1(s), [Σ]〉 + [Σ] · [Σ] ≥ 0,

for which SWX,s(a ·i∗(b)) is non-zero, when calculated in the component
of K(X) containing PD[Σ], then we have

−〈c1(s), [Σ]〉 + [Σ] · [Σ] + d(b) ≤ 2g(Σ) − 2.(4)

Remark 1.5. Adjunction inequalities for surfaces of positive square
in Donaldson’s theory were first obtained in the influential paper of Kro-
nheimer and Mrowka (see [13]). These inequalities were strengthened
under similar, but more restrictive, hypotheses in their preprint [14];
see also [6]. The conjectured relationship between the Donaldson and
Seiberg-Witten invariants gives a correspondence between the adjunc-
tion inequalities arising in these two theories. For more on this corre-
spondence, see [27], [31], [18], [5], [25], and [8].

We illustrate Theorem 1.4 with the following application:

Corollary 1.6. Let T ⊂ S1 × S3 be an embedded torus for which
the restriction of the one-dimensional cohomology from H1(S1 × S3) is
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non-trivial. Let (X, ω) be a symplectic four-manifold and Σ ⊂ X be
a symplectic submanifold with non-negative self-intersection. Then, in
the connected sum X#(S1 × S3), the internal connected sum Σ#T ⊂
X#(S1 × S3) minimizes genus among all embedded surfaces
Σ′ ⊂ X#(S1 × S3) which are homologous to Σ#T and for which the
one-dimensional cohomology from S1 × S3 restricts non-trivially to Σ′.

Theorem 1.3 follows from a relation which holds for embedded sur-
faces with arbitrary self-intersection number. This relation can be
viewed as a generalization of the relation appearing in [24]. Once again,
we begin by stating the case when b1(X) = 0, in the interest of exposi-
tion.

Theorem 1.7. Let X be a smooth, closed, connected, oriented
four-manifold with b1(X) = 0, and let Σ ⊂ X be a smoothly embedded
surface with genus g(Σ) > 0. Then, for each SpinC structure s with

−〈c1(s), [Σ]〉 + [Σ] · [Σ] ≥ 0

and
−〈c1(s), [Σ]〉 + [Σ] · [Σ] + 2d(s) > 2g(Σ) − 2,

we have
SWX,s(Ud) = SWX,s−PD[Σ](U

d′),

where d and d′ denote the dimensions of s and s − PD[Σ] respectively.
In the case where b+

2 (X) = 1, both invariants are to be calculated in the
same component of K(X).

More generally, we have the following.

Theorem 1.8. Let X be a smooth, closed, connected, oriented
four-manifold with b+

2 (X) > 0. Let Σ ⊂ X be a surface with genus
g(Σ) > 0. Let � be an integer so that there is a symplectic basis
{Aj , Bj}g

j=1 for H1(Σ) so that i∗(Aj) = 0 in H1(X; R) for i = 1, . . . , �.
For each SpinC structure s with

−〈c1(s), [Σ]〉 + [Σ] · [Σ] ≥ 0

and each b ∈ A(Σ) of degree d(b) ≤ � with

−〈c1(s), [Σ]〉 + [Σ] · [Σ] + 2d(b) > 2g(Σ) − 2,(5)

there is an element b′ ∈ A(Σ) with d(b′) ≥ d(b) so that for any a ∈ A(X),
we have

SWX,s(a · i∗(b)) = SWX,s−PD[Σ](a · i∗(b′)).(6)
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Furthermore, if b = Ud/2, then b′ − Ud′/2 lies in the ideal generated
by H1(Σ) in A(Σ). Once again, in the case where b+

2 (X) = 1, both
invariants are to be calculated in the same component of K(X).

Theorem 1.3 is a simple consequence of Theorem 1.8, as the following
proof shows.

Theorem 1.8 ⇒ Theorem 1.3. Suppose Theorem 1.3 were false; i.e.,
suppose there were X, Σ, s, a, and b which satisfy the hypotheses of the
theorem, but which violate Adjunction Inequality (3). We can assume
without loss of generality that

−〈c1(s), [Σ]〉 + [Σ] · [Σ] ≥ 0,

by reversing the orientation of Σ if necessary (when b+
2 (X) > 1). Thus,

Theorem 1.8 applies. Let b′ be the element which satisfies Relation (6),
so we have that SWX,s−PD[Σ](a · i∗(b′)) �= 0. Since b and b′ are homo-
geneous elements with the same degree modulo two, and d(b′) ≥ d(b),
it follows that we can find elements a′ ∈ A(X) and b′′ ∈ A(Σ) with
d(b′′) = d(b), and SWX,s−PD[Σ](a′ · i∗(b′′)) �= 0. Now, since [Σ] · [Σ] ≥ 0
and d(b′′) = d(b), we see that Σ also violates the adjunction inequality
for s − PD[Σ], a′ ∈ A(X), and b′′ ∈ A(Σ). Proceeding in this way,
we see that s − nPD[Σ] is a Seiberg-Witten basic class for all n ≥ 0. If
b+
2 (X) > 1, then there are only finitely many basic classes of X, so since

Σ is not a torsion class, we get a contradiction, proving Theorem 1.3 in
this case.

The above argument works also when b+
2 (X) = 1, since there are still

only finitely many basic classes of the form s−nPD[Σ] with n ≥ 0 in the
chamber corresponding to PD[Σ]. We see this as follows. Fix a metric
g on X and a generic self-dual two-form η. Clearly, if s is fixed and n is
sufficiently large, the sign of PD[Σ]·ωg agrees with the sign of −2πc1(s−
nPD[Σ])·ωg+

∫
η∧ωg; i.e., for all large n, the η-perturbed moduli spaces

for s − nPD[Σ] can be used calculate the invariant in the component
which contains PD[Σ]. But the usual compactness argument shows that
all but finitely many of these moduli spaces are empty. Again, we have
the contradiction completing the proof of Theorem 1.3. q.e.d.

By blowing up, Theorem 1.8 is reduced to the case where the self-
intersection number of Σ is sufficiently negative. The theorem is then
proved by expressing the Seiberg-Witten invariants of a four-manifold
with such an embedded surface Σ in terms of relative invariants, which
take values in a Seiberg-Witten-Floer homology associated to non-trivial
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circle bundles over Σ. In the presence of the topological hypotheses on
the inclusion of H1(Σ) in H1(X), the above relation then follows from
properties of this Floer homology.

The outline of this paper is as follows. In Section 2, we give examples
of the adjunction formulae. Our examples include four-manifolds with
b+
2 (X) = 1, and also examples where both b+

2 (X) > 1 and b1(X) > 0,
and a proof of Corollary 1.6. In Section 3, we show how Theorem 1.8
can be deduced from properties of a product formula, which relates the
Seiberg-Witten invariants of a four-manifold containing an embedded
surface with sufficiently negative self-intersection number with certain
relative invariants associated to X −Σ. For completeness, we also show
how a modified version of Theorem 1.8 implies Theorem 1.4. In Sec-
tion 4 we review the gauge theory for circle bundles over Riemann sur-
faces as developed in [22]. There is one SpinC structure in which the
moduli space of reducibles has singularities (to which we return in a
later section). In Section 5, we prove the product formula introduced in
Section 3, assuming technical facts about the moduli spaces over N , the
tubular neighborhood of Σ. In Section 6, we define an invariant with
irreducible boundary values and use properties of this relative invariant
to analyze the terms appearing in the product formula, completing the
proof of Theorem 1.8. In Section 7, we prove the technical facts about
the moduli spaces over N which were used in earlier sections. In Sec-
tion 8, we show how to extend the results of Sections 4 and 7 to deal
with the remaining SpinC structure. Finally, in Section 9, which should
be viewed as an appendix, we discuss representatives for the cohomology
classes used throughout the paper.

Acknowledgements. The authors wish to thank Vicente Muñoz
for his very helpful comments on an early version of this paper. They
also wish to thank the referee for providing useful suggestions.

2. Examples

We give examples of embedded surfaces Σ ⊂ X with b+
2 (X) > 1 and

b1(X) > 0, where the inequality in Theorem 1.3 is in fact an equality. (It
is an open problem whether manifolds with b+

2 (X) > 1 and b1(X) = 0
can admit basic classes of non-zero dimension.) But first, we need to find
such four-manifolds X which admit basic classes of non-zero dimension.

To construct these examples, we use the following construction.

Definition 2.1. Let X be smooth four-manifold and let S ⊂ X
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be an embedded two-sphere with zero self-intersection number. Let X ′

denote the manifold obtained as surgery on S; i.e.,

X ′ = (X − nd(S)) ∪φ S1 × D3,

where nd(S) is an open tubular neighborhood of S and

φ : ∂(X − nd(S)) −→ S1 × S2

is a orientation-reversing diffeomorphism. Let C ⊂ X ′ denote the closed
curve which is the core of the added S1 × D3. Note that there is a
diffeomorphism X − S ∼= X ′ − C.

Of course, X ′ = X#(S1 × S3) is an example of this construction.

Proposition 2.2. Let X be a closed, smooth, oriented four-
manifold with b+

2 (X) > 0, and let S ⊂ X be a homologically trivial
embedded two-sphere. For each SpinC structure s on X, there is a unique
induced SpinC structure s′ on X ′ with the property that

s|X−S = s′|X′−C .

Then, d(s′) = d(s) + 1; and for all a ∈ A(X)

SWX′,s′(a · µ(C)) = SWX,s(a),

for some homology orientation on X ′. (When b+
2 (X) = 1, both invari-

ants are to be calculated in the same chamber.)

Proof. The dimension statement is straightforward.
To prove the relation, we pull X apart along S1×S2 = ∂ nd(S), and

study the corresponding moduli spaces (see Section 5 for more discus-
sion on such matters). Let X0 denote the complement X − S, given a
cylindrical-end metric modeled on the product metric [0,∞)×S1 ×S2,
where S2 is given its standard, round metric. Note that this metric
can be extended over both S1 × D3 and D2 × S2 to give metrics with
non-negative scalar curvature. Consequently, the moduli spaces of so-
lutions over S1 × S2, S1 × D3, and D2 × S2 consist entirely of smooth
reducibles (i.e., the moduli spaces are identified with S1, S1, and a point
respectively).

Let MX0(s0) denote the moduli space of finite energy solutions to
the Seiberg-Witten equations over X0 in the SpinC structure s0 = s|X0 .
Thus, we can think of the boundary map as a map

ρ : MX0(s0) −→ S1.
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Gluing theory gives a diffeomorphism for all sufficiently large T > 0:

MX(T )(s) ∼= ρ−1(x0),

where X(T ) denotes the metric on X with neck-length T and x0 ∈ S1

corresponds to the unique reducible on S1×S2 which extends to D2×S2.
Consequently,

SWX,s(a) = 〈MX0(s0), µ(a) ∪ µ(C)〉,(7)

since µ(C) is represented by the holonomy class around C (see Propo-
sition 9.1).

Similarly, gluing gives a diffeomorphism of

MX0(s0) ∼= MX′(T )(s
′),

and consequently

SWX′,s′(a · C) = 〈MX0(s0), µ(a · C)〉.(8)

Together, Equations (7) and (8) prove the proposition. q.e.d.

With this proposition in hand, we can provide a proof of Corol-
lary 1.6:

Proof of Corollary 1.6. According to Taubes’ non-vanishing theorem
(see [29]), the canonical SpinC structure s0 of the symplectic manifold
has SW(X,s0) = ±1; thus, according to Proposition 2.2, if s′ is any SpinC

structure over X ′ = X#(S1×S3) whose restriction to the X side agrees
with s0, and b ∈ H1(X ′; Z) is a non-zero homology class coming from
the S1 × S3 factor, then SW(X′,s′)(b) �= 0. Thus, in view of the usual
adjunction formula for the symplectic submanifold

−〈c1(s0), [Σ]〉 + Σ · Σ = 2g(Σ) − 2,

Inequality (4) gives that g(Σ′) > g(Σ), as required.
Note that in the case where b+

2 (X) = 1, the additional hypothesis
−〈c1(s′), [Σ′]〉 + [Σ′] · [Σ′] > 0 follows immediately from the adjunction
formula except, of course, when g(Σ) = 0, in which case the result is
vacuously true. q.e.d.
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2.1 Examples of Theorem 1.3 with b+
2 (X) > 1

We can use Proposition 2.2 to construct examples where Theorem 1.3
is sharp, as well.

Fix natural numbers n, k, and m with 2k ≥ n > 1, and let X be
the four-manifold E(n)#m(S3 ×S1), where E(n) is a simply-connected
elliptic surface with no multiple fibers and with geometric genus n −
1. Let Σ0 ⊂ E(n) denote a symplectic submanifold representing the
homology class S + kF , where S and F denote the homology classes of
a section and a fiber respectively of the elliptic fibration. Let Ti ⊂ X
denote a fiber in the elliptic fibration of the ith summand S3 × S1. Let
Σ ⊂ X denote the internal connected sum of Σ0#F1# . . .#Fm. Note
that g(Σ) = k +m and Σ ·Σ = 2k−n ≥ 0. Let s be the SpinC structure
over X induced from the canonical SpinC structure on E(n), and let
b = A(Σ) be the product B1 · . . . · Bm where Bi ∈ H1(X) generates H1

of the ith copy of S1 × S3. Note that d(b) = m and Σ has a symplectic
basis {Ai, Bi}k+m

i=1 for which A1, . . . , Am are homologically trivial in X.
By Proposition 2.2,

SWX,s(B1 · . . . · Bm) = 1,

so the data X, b, Σ, s satisfy the hypotheses of Theorem 1.3. In fact,
we see that

Σ · Σ + 〈c1(s), [Σ]〉 + 2d(b) = 2g(Σ) − 2,

which shows that the inequality of the theorem is sharp, for all choices
of g(Σ) > 0, Σ · Σ ≥ 0, and d(b).

2.2 Ruled surfaces: the homological hypotheses
on H1(Σ)

By looking at ruled surfaces, we give examples where Inequality (4) is
sharp, and hence that some homological hypotheses are necessary for
the stronger inequality (which appears in Theorem 1.3) to hold.

As mentioned before, one cannot hope for the adjunction inequality
of Theorem 1.3 to be valid without additional topological hypotheses on
the inclusion of Σ in X. Indeed, fix n ≥ 0 and g > 0, and let X be the
two-sphere bundle over a surface Σ of genus g, associated to the circle
bundle with Euler number n. In particular, X contains an embedded
copy of Σ with Σ ·Σ = n. In the chamber corresponding to PD[Σ], there
is a zero-dimensional basic class s0 with c1(s0) = −KX , where KX is
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the canonical class of X viewed as Kähler manifold. Moreover, letting
F be the class of the two-sphere fiber in X, we see that the moduli
space associated to s0 + dPD[F ] is identified with Symd(Σ), and U is
the symmetric product of the volume form of Σ (see Proposition 6.10
for a related discussion). Thus, if s = s0 + dPD[F ], then SWs(Ud) �= 0,
and

〈c1(s), [Σ]〉 = 2d.

Clearly, Adjunction Inequality (4) is sharp for all values of k, d, n, and
g provided that −n ≤ k, where k = 〈c1(s), [Σ]〉, 2d = d(b), n = Σ · Σ,
and g = g(Σ). (This construction, strictly speaking, only gives us even
values of d(b). For odd values, one can attach an S1×S3.) In particular,
we see that some homological criterion on the embedding of Σ ⊂ X is
necessary for the stronger Inequality (3) to hold.

3. From product formulas to relations

The aim of this section is to outline the proof of Theorem 1.8. By
employing the blowup formula in a manner analogous to [24], we reduce
to the case where the self-intersection number of Σ is very negative
(Proposition 3.1). The invariants in this latter case are studied via a
product formula, which we state (and prove in Section 5), whose terms
are then related with other Seiberg-Witten invariants of X. In the end
of the section, we discuss the modifications which are needed to prove
Theorem 1.4.

We reduce Theorem 1.8 to the following special case.

Proposition 3.1. Theorem 1.8 holds, under the additional hy-
pothesis that

0 ≤ −〈c1(s), [Σ]〉 + [Σ] · [Σ] ≤ 2g(Σ) − 2 and −[Σ] · [Σ] > 2g − 2.

The reduction involves the following basic result of Fintushel and
Stern.

Theorem 3.2. (Blowup Formula: [7] and [26]). Let X be a smooth,
closed four-manifold, and let X̂ = X#CP

2 denote its blow-up, with
exceptional class E ∈ H2(X̂; Z). If b+

2 (X) > 1, then for each SpinC

structure ŝ on X̂ with d(ŝ) ≥ 0, and each a ∈ A(X) ∼= A(X̂), we have

SW
X̂,̂s

(a) = SWX,s(Uma),
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where s is the SpinC structure induced on X obtained by restricting ŝ,
and 2m = d(s) − d(ŝ). If b+

2 (X) = 1, there is a one-to-one correspon-
dence between components of Ω+(X) and Ω+(X̂), and the above relation
holds provided both invariants are calculated in chambers associated to
corresponding components.

Before showing how to reduce Theorem 1.8 to the special case, we
point out that another special case of Theorem 1.8 was already proved
in Theorem 1.3 [24]. More specifically, the following was shown:

Theorem 3.3. [24] Let X be a smooth, closed, connected, oriented
four-manifold with b+

2 (X) > 0. Let Σ ⊂ X be a surface with genus
g(Σ) > 0 and negative self-intersection. For each SpinC structure s

with
−〈c1(s), [Σ]〉 + [Σ] · [Σ] > 2g(Σ) − 2,

there is an element b′ ∈ A(Σ) so that that for any a ∈ A(X), we have

SWX,s(a) = SWX,s−PD[Σ](a · i∗(b′)).
Furthermore, b′ − Ud′/2 lies in the ideal generated by H1(Σ) in A(Σ).

Remark 3.4. In the language of Theorem 1.8, this case corresponds
to � = 0 and b = 1.

Proposition 3.1 ⇒ Theorem 1.8. Let g = g(Σ), fix an integer m
with

m > [Σ] · [Σ] + 2g − 2,

let X̂ = X#mCP
2, and let Σ̂ be the “proper transform” of Σ, the

embedded surface obtained by internal connected sum of Σ with the m

exceptional spheres in the CP
2 summands; i.e.,

PD[Σ̂] = PD[Σ] − E1 − · · · − Em.

Finally, let ŝ denote the SpinC structure on X̂ which agrees with s in
the complement of the exceptional spheres, whose Chern class satisfies

c1(ŝ) = c1(s) − E1 − · · · − Em.

It is easy to check that:

−[Σ̂] · [Σ̂] = m − [Σ] · [Σ] > 2g − 2,

−〈c1(ŝ), [Σ̂]〉 + [Σ̂] · [Σ̂] = −〈c1(s), [Σ]〉 + [Σ] · [Σ];
d(s) = d(ŝ).
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Now, if
−〈c1(s), [Σ]〉 + [Σ] · [Σ] ≥ 2g,

the hypotheses of Theorem 3.3 are satisfied; and otherwise, the hypothe-
ses of Proposition 3.1 are. In either case, for each b ∈ A(Σ) of degree
d(b) ≤ �, we can find b′ ∈ A(Σ) with

SW
X̂,̂s

(a · i∗(b)) = SW
X̂,̂s−PD[Σ̂]

(a · i∗(b′)).(9)

According to the blow-up formula,

SW
X̂,̂s

(a · i∗(b)) = SWX,s(a · i∗(b));(10)

and, since ŝ − PD[Σ̂] agrees with s − PD[Σ] away from the exceptional
spheres and

c1(ŝ − PD[Σ̂]) = c1(s − PD[Σ]) − E1 − · · · − Em,

we see from another application of the blowup formula that

SW
X̂,̂s−PD[Σ̂]

(a · i∗(b′)) = SWX,s−PD[Σ](a · i∗(b′)).(11)

Theorem 1.8 then follows by combining Equations (9), (10) and (11).
q.e.d.

We now turn to the special case considered in Proposition 3.1. We
will study the Seiberg-Witten invariant of X by decomposing it into two
pieces

X = N ∪Y (X − N),

where Y a circle bundle over Σ (as in the proposition), and N is the as-
sociated disk bundle. Following [22], the moduli space of Seiberg-Witten
monopoles over Y decomposes into an irreducible and a reducible com-
ponent. (Actually, there is one SpinC structure over Y , where it is
necessary to perturb the equations for this decomposition to occur; this
perturbation is studied Section 8.) Correspondingly, we construct rela-
tive invariants of X − Σ, denoted SW irr

s and SW red
s , arising from the

L2 moduli spaces on X − Σ with irreducible and reducible boundary
values. In Section 5 (see Lemma 5.6, and the discussion following it),
we prove the following:

Proposition 3.5. Suppose

0 ≤ −〈c1(s), [Σ]〉 + [Σ] · [Σ] ≤ 2g(Σ) − 2 and −[Σ] · [Σ] > 2g − 2.

Then,
SWX,s = SW irr

s + SW red
s .
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We can interpret the latter invariant in terms of the closed manifold
as follows.

Definition 3.6. Let Σ be a surface of genus g, and let {Ai, Bi}g
i=1

be a standard symplectic basis for H1(Σ; Z). For j = 0, . . . , g, let
ξj(Σ) ∈ A(Σ) be the degree 2j component of

g∏
i=1

(
1 + U + Ai · Bi

)
∈ A(Σ);

i.e., ξ0 = 1, ξ1(Σ) = gU +
∑

Ai · Bi, . . . , ξg(Σ) =
∏g

i=1

(
U + Ai · Bi

)
.

Proposition 3.7. Suppose

0 ≤ −〈c1(s), [Σ]〉 + [Σ] · [Σ] ≤ 2g(Σ) − 2 and −[Σ] · [Σ] > 2g − 2.

Then, letting

e = g − 1 +
〈c1(s), [Σ]〉 − [Σ] · [Σ]

2
,

we have that

SW red
s (a) = SWX,s−PD[Σ](a · ξg−1−e(Σ))

for all a ∈ A(X).

Furthermore, under the homological condition of Theorem 1.8, we
will express SW irr

s in terms of SWX,s−PD[Σ], as follows.

Proposition 3.8. Suppose

0 ≤ −〈c1(s), [Σ]〉 + [Σ] · [Σ] ≤ 2g(Σ) − 2 and −[Σ] · [Σ] > 2g − 2,

and let � be an integer so that there is a symplectic basis {Ai, Bi}g
i=1 for

H1(Σ) so that i∗(Ai) = 0 in H1(X; R) for i = 1, . . . , �. Then, for each
b ∈ A(Σ) of degree e < d(b) ≤ �, there is an element b′′ ∈ A(Σ) so that

SW irr
s (a · i∗(b)) = SWs−PD[Σ](a · i∗(b′′)).

Furthermore, b2 lies in the ideal generated by H1(Σ) in A(Σ).

The proof of Proposition 3.8 is given in the end of Section 6.
Proposition 3.1 follows immediately from Propositions 3.5–3.8. In

the proof of these latter propositions, we will construct a natural Seiberg-
Witten-Floer functor for four-manifolds which bound Y .



higher type adjunction inequalities 399

Before proceeding, we pause to tie up one more loose end: Theo-
rem 1.4. That result can be reduced to a relation which replaces The-
orem 1.8, using the same argument given in the proof of Theorem 1.3.
The relevant relation in this case is:

Theorem 3.9. Let X be a smooth, closed, connected, oriented
four-manifold with b+

2 (X) > 0. Let Σ ⊂ X be a surface with genus
g(Σ) > 0. For each SpinC structure s with

−〈c1(s), [Σ]〉 + [Σ] · [Σ] ≥ 0

and each b ∈ A(Σ) of degree d(b) with

−〈c1(s), [Σ]〉 + [Σ] · [Σ] + d(b) > 2g(Σ) − 2,(12)

there is an element b′ ∈ A(Σ) with d(b′) ≥ d(b) so that for any a ∈ A(X),
we have

SWX,s(a · i∗(b)) = SWX,s−PD[Σ](a · i∗(b′)).(13)

Furthermore, if b = Ud, then b′−Ud′ lies in the ideal generated by H1(Σ)
in A(Σ).

Once again, via the blowup formula, this relation can be reduced to
the case where the self-intersection number Σ is very negative; i.e.,

0 ≤ −〈c1(s), [Σ]〉 + [Σ] · [Σ] ≤ 2g(Σ) − 2 and −[Σ] · [Σ] > 2g − 2.

(compare Proposition 3.1). Like Proposition 3.1, this special case also
follows from the product formula in Proposition 3.5, the relation in
Proposition 3.7, together with the following analogue of Proposition 3.8
(whose proof is also given in the end of Section 6):

Proposition 3.10. Suppose

0 ≤ −〈c1(s), [Σ]〉 + [Σ] · [Σ] ≤ 2g(Σ) − 2 and −[Σ] · [Σ] > 2g − 2.

Then, for each b ∈ A(Σ) of degree 2e < d(b), there is an b′′ ∈ A(Σ) so
that

SW irr
s (a · i∗(b)) = SWs−PD[Σ](a · i∗(b′′)).

Furthermore, b′′ lies in the ideal generated by H1(Σ).
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4. Gauge theory on R × Y

The Seiberg-Witten moduli spaces over Y and R × Y were studied
for Seifert fibered three-manifolds Y in [22]. We summarize these results
here, for Y a circle-bundle over a Riemann surface Σ with g(Σ) > 0 and
Euler number −n, where n > 2g − 2.

Y admits a canonical SpinC structure whose bundle of spinors is
C⊕π∗(KΣ

−1), which we use to identify the SpinC structures on Y with
H2(Y ; Z) ∼= Z

2g ⊕ Z/nZ.
Let NY (t) denote the moduli space of solutions to the Seiberg-Witten

equations over Y in the SpinC structure t. Here, we use the metric gY

and SO(3)-connection over TY of [22]. Given a pair of components
C1, C2 in NY (t), let M(C1, C2) denote the moduli space of solutions
[A, Φ] to the Seiberg-Witten equations on R × Y for which

lim
t�→−∞[A, Φ]|{t}×Y ∈ C1, and lim

t�→∞[A, Φ]|{t}×Y ∈ C2.

This moduli space admits a translation action by R. Let M̂(C1, C2)
denote the quotient of M(C1, C2) by the translation action.

In general, these spaces admit a Morse-theoretic interpretation. If
c1(t) is a torsion class, there is a real-valued functional

CSD: B(Y, t) −→ R

defined over the configuration space B(Y, t) of pairs (B,Ψ) of spin-
connections B in t and spinors Ψ modulo gauge (cf. Equation (28)
below; when e = g − 1, we will use the perturbation given in Equa-
tion (32)). The critical manifolds are the moduli spaces N (Y ; t). When
c1(t) is not torsion, the functional is circle-valued. The Seiberg-Witten
equations on R×Y are the upward gradient-flow equations for this func-
tional. In keeping with this interpretation, we call M̂(C1, C2) the space
of unparameterized flows from C1 to C2.

Theorem 4.1. [22] Let Y be a circle-bundle over a Riemann
surface with genus g > 0 and Euler number −n < 2 − 2g. The moduli
space NY (t) is empty unless t corresponds to a torsion class in H2(Y ; Z).
So, suppose t corresponds to e ∈ Z/nZ ⊂ H2(Y ; Z).

(1) If 0 ≤ e < g − 1 then NY (t) contains two components, a re-
ducible one J , identified with the Jacobian torus H1(Σ; R/Z),
and a smooth irreducible component C diffeomorphic to Syme(Σ).
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Both of these components are non-degenerate in the sense of Morse-
Bott. There is an inequality CSD(J ) > CSD(C), so the space
M̂(J , C) is empty. The space M̂(C,J ) is smooth of expected
dimension 2e; indeed it is diffeomorphic to Syme(Σ).

(2) If g − 1 < e ≤ 2g − 2, the Seiberg-Witten moduli spaces over both
Y and R × Y in this SpinC structure are naturally identified with
the corresponding moduli spaces in the SpinC structure 2g− 2− e,
which we just described.

(3) For all other e �= g − 1, NY (t) contains only reducibles. Further-
more, it is smoothly identified with the Jacobian torus.

In the SpinC structure corresponding to g − 1 ∈ Z/nZ, the unper-
turbed Seiberg-Witten equations used in Theorem 4.1 are inconvenient,
since the corresponding reducible manifold is not smooth in the sense
of Morse-Bott. To overcome this difficulty, when working in this SpinC

structure, we use a perturbation of the equations where the theory re-
sembles the case where 0 ≤ e < g − 1 (and, in particular, the reducibles
are smooth). A thorough discussion of the perturbation is given in
Section 8.

5. The product formula

In this section, we define two quantities, SW irr and SW red, and
prove that the Seiberg-Witten invariant decomposes into a sum of these
(Propostion 3.5). Furthermore, we express SW red in terms of another
Seiberg-Witten invariant of X (Proposition 3.7).

Decompose X as
X = N ∪Y X0,

where Y is unit circle bundle over Σ with Euler number −n, with
n > 2g − 2. N is a tubular neighborhood of the surface Σ (which is
diffeomorphic to the disk bundle associated to Y ), and X0 is the com-
plement in X of the interior of N . Fix metrics gX0 , gN , and gY for
which gX0 and gN are isometric to

dt2 + g2
Y

in a collar neighborhood of their boundaries (where t is a normal co-
ordinate to the boundary). Let X(T ) denote the Riemannian manifold
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which is diffeomorphic to X and whose metric gT is obtained from the
description

X(T ) = N ∪∂N={−T}×Y [−T, T ] × Y ∪{T}×Y =−∂X0
X0;

i.e., gT |N = gN , gT |[−T,T ]×Y = dt2+g2
Y , and gT |X0 = gX0 . Our goal here

is to provide, for all sufficiently large T , a description of the moduli space
MX(T )(s) on X(T ) in terms of the moduli spaces for Y , NY (s|Y ), and
the finite-energy, cylindrical-end moduli spaces associated to X0 and
N , denoted MX0(s|X0), and MN (s|N ) respectively. In this context,
finite energy means that the total variation of the Chern-Simons-Dirac
functional over the infinite cylinder is bounded. Henceforth, X0 and N
will denote the cylindrical-end manifolds obtained by attaching [0,∞)×
Y (with appropriate orientations) to the corresponding subsets of X.

In the case where b+
2 (X) = 1, we choose the perturbing form η to

be compactly supported in X0 in such a way that

−2πc1(s) · ω∞ +
∫

X0

η ∧ ω∞

has the same sign as γ · ω∞, where γ is a compactly supported repre-
sentative for a class in the chosen component K0 ⊂ K(X), and ω∞ is
a self-dual harmonic two-form over X0 with

∫
X0

ω∞ ∧ ω∞ = 1. Note
that such a γ and ω∞ can be found since Σ ·Σ < 0, forcing b+

2 (X0) = 1
(see [1]). Now, the moduli spaces of the η-perturbed Seiberg-Witten
equations over X(T ) calculate the invariant in the chosen chamber for
all sufficiently large T .

We collect useful facts about the moduli spaces MN (s|N ), most of
which we defer to Section 7 (see also [24]), but first we introduce some
notation. The map

SpinC(N) → Z

given by
s �→ 〈c1(s), [Σ]〉

induces a one-to-one correspondence between SpinC structures and inte-
gers which are congruent to n modulo 2. Note that the SpinC structure
over Y s|Y corresponds to the mod n reduction of

e = g − 1 +
〈c1(s), [Σ]〉 + n

2

appearing in Theorem 4.1.
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By taking limits at the end of the tube, one can define maps

ρ : MN (s) −→ NY (s|Y ) and ρ : MX0(s) −→ NY (s|Y )

(see [20]). If C is a connected manifold of NY (s|Y ), then MN (s, C)
and MX0(s, C) denotes the pre-image of C under ρ. Throughout the
following discussion, we will use the perturbation discussed in Section 8
over X0, N , and Y , when s|Y corresponds to e = g − 1 (in the notation
of Section 4); i.e., in this case, NY (s|Y ), MN (s) and MX0(s|X0) will
denote the perturbed versions of these moduli spaces, with perturbation
parameter u in the range 0 < u < 2, in the notation of Section 8. (We
will show in Section 8 that this is an allowable perturbation to use when
b+
2 (X) = 1; i.e., we are computing the Seiberg-Witten invariants in the

correct chamber.) When they are clear from the context, we leave the
SpinC structures out of the notation. Note that on the cylinders, the
analogous boundary value maps factor through the unparameterized
spaces, defining

ρJ : M̂(C,J ) −→ J and ρC : M̂(C,J ) −→ C,

where J and C are the critical manifolds of Theorem 4.1.

Proposition 5.1. Suppose that −n − 2g + 2 ≤ 〈c1(s), [Σ]〉 ≤ −n,
and let

e = g − 1 +
〈c1(s), [Σ]〉 + n

2
,

Then according to Theorem 4.1, and Theorem 8.1 when e = g − 1,
NY (s|Y ) has two components, J and C, where C is diffeomorphic to
Syme(Σ). Furthermore, the expected dimensions of the moduli spaces
over N and X0 are given by:

e-dimMN (J ) = 2e + 1(14)
e-dimMN (C) = 2e(15)

e-dimMX0(J ) = 2d + 2g − 2e − 2(16)
e-dimMX0(C) = 2d,(17)

where d = d(s) and g = g(Σ). Moreover, M∗
N (J ), MN (C), MX0(J ),

and MX0(C) are transversally cut out by the Seiberg-Witten equations
(in particular, they are manifolds of the expected dimension).

Proof. This is a combination of Proposition 7.9 and 7.10 when
〈c1(s), [Σ]〉 �= n, and Proposition 8.3 in the remaining case. q.e.d.
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When studying the deformation theory of reducibles inside MN (J ),
the L2 kernel and the cokernel of the Dirac operator (on the cylindrical-
end version of N) play a central role. These spaces can be concretely
understood, thanks to the holomorphic interpretation of the Dirac op-
erator (see also [24]).

Proposition 5.2. Suppose that −n − 2g + 2 ≤ 〈c1(s), [Σ]〉 ≤ −n,
then there is a natural correspondence between reducibles [(A, 0)] ∈
MN (J ) with holomorphic line bundles E of degree e over Σ which iden-
tifies

Ker�DA = H0(Σ, E) and Coker �DA = H1(Σ, E).

Proof. This follows from Theorem 7.4 and Proposition 7.5 (see also
the proof of Theorem 8.1 in the perturbed case). q.e.d.

The above proposition allows us to understand an important class
of reducibles.

Definition 5.3. The jumping locus Θ ⊂ MN (J ) is the locus of
reducible solutions [(A, 0)] ∈ MN (J ) for which Ker�DA is non-trivial.

Corollary 5.4. Suppose that −n − 2g + 2 ≤ 〈c1(s), [Σ]〉 ≤ −n,
then the jumping locus Θ ⊂ J = Mred

N (J ) is the image of a smooth
map Syme(Σ) −→ J .

Proof. According to Proposition 5.2, the space Θ ⊂ J is identified
with the space of degree e line bundles over Σ with non-trivial H0. The
forgetful map Syme(Σ) −→ J which takes a degree e divisor, thought
of as a complex line bundle with section, to the underlying complex line
bundle gives the surjection to this locus. q.e.d.

We will also need to understand those SpinC structures s ∈ SpinC(N)
for which −n < 〈c1(s), [Σ]〉 ≤ n.

Proposition 5.5. If

−n < 〈c1(s), [Σ]〉 ≤ n,

then the moduli space MN (J ) contains only reducibles. Moreover, the
space of reducibles is smoothly identified with the Jacobian torus J (i.e.,
the kernel and the cokernel of the Dirac operator coupled to any reducible
vanishes). Furthermore, MN (C) is empty.
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Proof. When |〈c1(s), [Σ]〉| < n, this is proved in Section 7, where it
appears as Proposition 7.6. The remaining case is covered by Proposi-
tion 8.2. q.e.d.

With these preliminaries in place, we turn to the Seiberg-Witten
invariants of X, by investigating the moduli spaces over X(T ). Specif-
ically, choose some a ∈ A(X) of degree d(s), and indeed choose repre-
sentatives for the corresponding homology classes which are compactly
supported in X0. Let V (a) denote the corresponding representatives for
µ(a) in the configuration spaces for X0 and X(T ) as appropriate (see
Section 9 for a discussion of such representatives). Recall that SWX,s(a)
is the number of points in MX(T )(s) ∩ V (a), counted with appropriate
sign.

Lemma 5.6. Suppose that −n − 2g + 2 ≤ 〈c1(s), [Σ]〉 ≤ −n, then
for each ε > 0, there is a T0 > 0 so that for all T ≥ 2T0 the restriction
of [(A, Φ)] ∈ MX(T )(s) ∩ V (a) to any slice {t} × Y with t ∈ [−T0, T0]
lies within ε (in the C∞ topology) from either J or C. Accordingly, if ε
is sufficiently small, then [(A, Φ)] satisfies exactly one of the following
two conditions:

(H-1) [(A, Φ)]|N is C∞ close to smooth reducible and [(A, Φ)]|X0 is
C∞ close to (the restriction to X0) of a configuration in
MX0(J ) ∩ V (a).

(H-2) [(A, Φ)]|N is C∞ close to a configuration in MN (C), and
[(A, Φ)]|X0 is C∞ close to a configuration in the cut-down moduli
space MX0(C) ∩ V (a).

Proof. This is a dimension-counting argument. Suppose we have a
sequence [Ai, Φi] ∈ MX(Ti)(s) ∩ V (a), for some increasing, unbounded
sequence {Ti}∞i=1 of real numbers. By local compactness, there is a sub-
sequence which converges in C∞

loc to a pair of configurations (AN , ΦN )
and (AX0 , ΦX0) over N and X0 respectively. By the usual compactness
arguments (see [12]), the total variation of the Chern-Simons-Dirac func-
tional of (Ai, Φi) over the cylinder [−Ti, Ti]×Y remains globally bounded
(independent of i), so (AN , ΦN ) and (AX0 , ΦX0) both have finite energy.

First, we prove that either Hypothesis (H-1) or (H-2) is satisfied.
There are a priori four cases, according to which critical manifolds
ρ[AX0 , ΦX0 ] and ρ[AN , ΦN ] lie in.

(P-1) The case where ρ[AN , ΦN ] ∈ J while ρ(AX0 , ΦX0) ∈ C is excluded
because CSD(C) > CSD(J ).
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(P-2) The case where ρ[AN , ΦN ] ∈ C while ρ(AX0 , ΦX0) ∈ J is ex-
cluded by a dimension count, as follows. In this case, we see that
ρ[AX0 , ΦX0 ] ∈ ρJ (M(C,J )) ∩ ρ(MX0(J ) ∩ V (a)). But

ρJ (M(C,J )) = ρJ (M̂(C,J )),

so

e-dim(ρJ (M(C,J )) ∩ ρ(MX0(J ) ∩ V (a)) = −2.

It follows from Theorems 4.1 and 8.1 that M(C,J ) is smooth of
the expected dimension, so from the usual transversality results,
the above intersection is generically empty.

(P-3) Suppose that ρ(AN , ΦN ) ∈ J and ρ(AX0 , ΦX0) ∈ J . Then we see
that

ρ[AN , ΦN ] = ρ[AX0 , ΦX0 ] ∈ ρ(MN (J )) ∩ ρ(MX0(J ) ∩ V (a));

but, according to Proposition 5.1

e-dimρ(M∗
N (J )) ∩ ρ(MX0(J ) ∩ V (a))

= e-dimMN (J ) + MX0(J ) − 2d − 2g

= −1,

which is generically empty. Thus, it follows that [AN , ΦN ] must
be reducible. Moreover, according to Corollary 5.4,

e-dimρ(Θ) ∩ ρ(MX0(J ) ∩ V (a)) = 2e + e-dimMX0(J ) − 2d − 2g

= −2,

which is also generically empty. Hence, [AN , ΦN ] and [AX0 , ΦX0 ]
satisfy Hypotheses (H-1).

(P-4) If ρ[AN , ΦN ] and ρ[AX0 , ΦX0 ] both lie in C, then the Hypothe-
ses (H-2) are satisfied.

The assertion at the beginning of the proposition follows easily.
q.e.d.

The above proposition says that we can partition the points in the
cut-down moduli space (which is an oriented, zero-dimensional mani-
fold) for sufficiently large T into two disjoint sets, the subsets of con-
figurations which satisfy (H-1) and (H-2) respectively. Thus, if we let
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SW red
s (a) and SW irr

s (a) be the signed number of points satisfying (H-1)
and (H-2) respectively, then

SWX,s(a) = SW red
s (a) + SW irr

s (a).(18)

As we shall see, gluing theory allows us to compute both of these quan-
tities in terms of cylindrical-end moduli spaces. So, in the next step, we
study these cylindrical-end moduli spaces.

Lemma 5.7. For all SpinC structures s on X the corresponding
moduli spaces MN (C), MX0(J ), and MX0(C) ∩ V (a) are all compact
manifolds.

Proof. The compactness of MX0(J ) and MN (C) follows from the
usual compactness arguments, together with the facts that the Chern-
Simons-Dirac functional is real-valued, CSD(J ) > CSD(C), and there
are no other critical manifolds. Compactness of MX0(C)∩V (a) follows
from this, together with a straightforward dimension count (see the
discussion above in the proof of Lemma 5.6, part (P-2)). q.e.d.

Compactness of MX0(J ) allows us to define a relative invariant with
reducible boundary values. We pause to discuss some relevant properties
of this invariant.

Definition 5.8. Let s0 be a SpinC structure on X0 which extends
over X. Since the moduli space MX0,s0(J ) is compact, there is a relative
Seiberg-Witten invariant

SW(X0,s0,J ) : A(X0) −→ Z,

defined by the pairing SW(X0,s0,J )(a) = 〈[MX0,s0(J )], µ(a)〉.
This relative invariant is related to an absolute invariant, according

to the following.

Proposition 5.9. If s satisfies −n < 〈c1(s), [Σ]〉 ≤ n, then for all
a ∈ A(X),

SWX,s(a) = SW(X0,s0,J )(a),

where s0 = s|X0.

Proof. Recall that M(s|N ) consists entirely of reducibles all of which
are smooth, according to Proposition 5.5; thus, gluing theory identifies
the moduli spaces MX(T )(s) for large T with MX0,s0(J ). (See also [24],
where this result appears as Proposition 2.7.) q.e.d.
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We now return to the discussion of SW red and SW irr. Although
the definitions of both terms implicitly use T , we show now that if
T is sufficiently large, then the terms can be computed from absolute
invariants (and hence are independent of the parameter).

Proposition 5.10. Suppose that s satisfies

−n − 2g + 2 ≤ 〈c1(s), [Σ]〉 ≤ −n,

where Σ has self-intersection number −n, and let

e = g − 1 +
〈c1(s), [Σ]〉 + n

2
.

Then, for all sufficiently large T ,

SW red
s (a) = SWX,s−PD[Σ](a · ξg−1−e(Σ)),

where ξg−1−e(Σ) ∈ A(Σ) is the element defined in Definition 3.6.

Proof. The moduli space Mred
N (J )−Θ comes equipped with an ob-

struction bundle Ξ −→ Mred
N (J ) − Θ, defined by Ξ[(A,0)] = Coker�DA.

(whose K-theory class canonically extends over all of Mred
N (J )). The di-

mension count in Lemma 5.6 guarantees that each solution in MX0(J )∩
V (a) extends uniquely to a smooth reducible over N . Thus, gluing the-
ory gives that

SW red
s (a) = 〈[MX0(J ) ∩ V (a)], e(L ⊗ ρ∗(Ξ))〉

= 〈[MX0(J ) ∩ V (a)], cg−1−e(L ⊗ ρ∗(Ξ))〉
= 〈[MX0(J )], µ(a) ∪ cg−1−e(L ⊗ ρ∗(Ξ))〉,

where e(L⊗ρ∗(Ξ)) denotes the Euler class of the bundle over Mred
N (J )−

Θ. According to the Riemann-Roch formula, dim(Ξ) = 2g − 2 − 2e so
the Euler class agrees with the top Chern class cg−1−e, which in turn
extends over all of J . Using the index theorem for families, together
with the holomorphic interpretation of the obstruction bundle Ξ given
in Proposition 5.2, it is a straightforward computation that the total
Chern class of Ξ is

g∏
i=1

(1 + µ(Ai)µ(Bi))

(see also [24] Proposition 2.6); thus,

cg−1−e(L ⊗ ρ∗(Ξ)) = ξg−1−e(Σ).
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Putting all this together, we have that

SW red
s (a) = SW(X0,s0,J )(a · ξg−1−e(Σ)),(19)

where s0 = s|X0 . Since n − 2g + 2 ≤ 〈c1(s − PD[Σ]), [Σ]〉 ≤ n and
s − PD[Σ]|X0 = s0, the proposition then follows from Proposition 5.9.

q.e.d.

Proposition 5.11. For sufficiently large T ,

SW irr
s (a) = #MX0(C) ∩ V (a).

Proof. Gluing shows that

SW irr
s (a) =

(
#MX0(C) ∩ V (a)

)(
deg(ρ : MN (C) → C)

)
.

According to Propositions 7.9 and 8.3, ρ : MN (C) → C either has de-
gree +1, or MN (C) is empty. The latter case would force SW irr

s (a) ≡ 0
(for the given genus and self-intersection number).

To rule out this latter case, we need only look at an example where
the irreducible term is non-zero. Let X be a ruled surface X over
Σ associated to the line bundle with Euler number −n. Let Σ ⊂ X
denote the section with self-intersection number −n, and fix any 0 ≤
e ≤ g − 1. Let s denote the SpinC structure over X given by s =
s0 + ePD[F ], where s0 is the canonical SpinC structure on X associated
to the Kähler structure, and F denotes a fiber in the ruling. It is easy
to see that SWX,s−PD[Σ] ≡ 0, as the corresponding space of divisors
is empty (see Proposition 7.5). Moreover, we know that SWX,s �≡ 0
(compare the example in Section 2.2). Thus, in light of Equation (18)
and Proposition 5.10, we have examples where SW irr �≡ 0, forcing the
degree to be non-zero. q.e.d.

We will give the seemingly ad hoc quantity #MX0(C)∩V (a) a more
intrinsic formulation in Section 6. With the help of this formulation, we
can then prove a vanishing result for this term under suitable algebro-
topological hypotheses on the embedding of Σ ⊂ X (Proposition 3.8).

6. Relative invariants

Let X0 be a smooth, oriented manifold-with-boundary with
b+
2 (X0) > 0, whose boundary is identified with ∂X0 = −Y , a circle
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bundle over a Riemann surface Σ of genus g > 0 with Euler number
−n, where n > 2g − 2.

In Section 5, we studied the moduli space MX0(C), and used it to
define a relative invariant

SW irr
s : A(X0) −→ Z,

by cutting down the moduli space MX0(C) by submanifolds represent-
ing µ(a) which are induced from compactly supported representatives
for homology in X0 (see Proposition 5.11). When a ∈ A(Y ), there are
alternate representatives which are supported “at infinity.” The advan-
tage of these representatives is that the corresponding relative invariant
inherits relations arising from the cohomology ring of C. In view of
the non-compactness of MX0(C), the two types of representatives do
not necessarily give rise to the same invariant. However, the difference
can be explicitly computed in terms of other Seiberg-Witten invariants.
In this section, we recast this discussion in a more algebraic setting,
defining an invariant

SW(X0,C) : A(X0) ⊗ H∗(C) −→ Z.

which simultaneously captures both types of representatives; in partic-
ular,

SW irr
s (a) = SW(X0,C)(a ⊗ 1).

Proposition 3.8 then follows from properties of this invariant.
A subtlety arises in the definition of SW(X0,C), since the moduli

space MX0(C) is not compact. However, we have the following weak
compactness theorem.

Definition 6.1. A sequence of configurations {[Ai, Φi]}∞i=1 is said
to converge weakly to a configuration

[B,Ψ] × [A, Φ] ∈ M̂(C,J ) ×J MX0(J )

if [Ai, Φi] converges to [A, Φ] in C∞
loc, and there is an increasing, un-

bounded sequence of real numbers {Ti}∞i=1 with Ti > i, so that the
translates of {[Ai, Φi]|[0,2Ti]×Y }∞i=1, viewed as a sequence of configura-
tions on [−Ti, Ti]×Y , converge in C∞

loc to a configuration which is equiv-
alent (under translations) to [B,Ψ].

Proposition 6.2. Weak convergence gives the space

MX0(C) = MX0(C)
∐

M̂(C,J ) ×J MX0(J )

the structure of a compact Hausdorff space.
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Proof. This a standard argument from Morse-Floer theory. A gen-
eral discussion of compactness results for the anti-self-duality equation
can be found in [20] (see especially Theorem 6.3.3 of [20]); so we sketch
the argument here only briefly.

A sequence [Ai, Φi] ∈ MX0(C) converges in C∞
loc, after passing to a

subsequence, to some solution [A, Φ] to the Seiberg-Witten equations on
X0. Since each of the [Ai, Φi] have finite energy, so does [A, Φ]; thus, it
has a boundary value. If ρ[A, Φ] ∈ C, then the length-energy estimates
of L. Simon [28] can be used to show that the convergence is C∞ as in
[20].

If, on the other hand, ρ[A, Φ] �∈ C, it must be the case that ρ[A, Φ] ∈
J . Now, let Ti ∈ R be the number so that

CSD[Ai, Φi]{Ti}×Y =
CSD(J ) + CSD(C)

2
.

Clearly, Ti �→ ∞. After passing to a subsequence, we can find a con-
figuration [B,Ψ] so that the sequence [Ai, Φi]|[0,2Ti]×Y , viewed as a se-
quence of configurations over [−Ti, Ti], converges in C∞

loc to [B,Ψ]. In
fact, [B,Ψ] must solve the Seiberg-Witten equations and it must have
finite energy, so [B,Ψ] ∈ M(C,J ). The usual length-energy estimates
then guarantee that the boundary values match up. q.e.d.

The topological space MX0(C) defined in Proposition 6.2 is called
the compactified moduli space. The following result follows immediately
from its definition.

Proposition 6.3. The inclusion maps

i : MX0(C) −→ B∗(X0 − (0,∞) × Y )

and

i ◦ Π2 : M̂(C,J ) ×J MX0(J ) −→ B∗(X0 − (0,∞) × Y )

fit together to give a continuous map

i : MX0(C) −→ B∗(X0 − (0,∞) × Y ),

where B∗ denotes the irreducible configurations.

Similarly, we can extend the restriction map over the compactified
moduli space, as follows.
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Proposition 6.4. The restriction maps

ρC : MX0(C) −→ C

and
ρC ◦ Π1 : M̂(C,J ) ×J MX0(J ) −→ C

fit together to give a continuous map

ρC : MX0(C) −→ C.

Proof. If a sequence [An, Φn] ∈ MX0(C) converges to an ideal point

[B,Ψ] × [A, Φ] ∈ M̂(C,J ) ×J MX0(J ),

then there is a divergent sequence {Tn}∞n=1 of real numbers so that

lim
n�→∞ τ∗

n[An, Φn]|[Tn,∞)×Y = [B,Ψ]|[0,∞)×Y ,

where
τn : [0,∞) × Y −→ [Tn,∞) × Y

is the map induced by translation by Tn on the first coordinate. Since
each path has finite energy, continuity of the restriction maps (see [20])
guarantees that

lim
n�→∞ ρ[An, Φn]|{t}×Y = lim

n�→∞ ρτ∗
n[An, Φn] = ρ[B,Ψ].

q.e.d.

Gluing gives this space more structure.

Proposition 6.5. Gluing endows MX0(C) with the structure of a
manifold. The space of ideal solutions

M̂(C,J ) ×J MX0(J )

has the structure of a smooth submanifold of codimension two. In par-
ticular, a fundamental class for MX0(C) gives rise to a unique funda-
mental class for MX0(C).

Proof. Gluing describes the end of M(X, C) as a fibered product(
M̂0(C,J ) ×J M0

X0
(J ) × (0,∞)

)
/S1,
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where the superscript denotes based versions of the moduli spaces.
This gives the space of ideal solutions a disk-bundle neighborhood in
MX0(C). q.e.d.

In light of the above result, we can define the relative Seiberg-Witten
invariant SW(X0,C), as follows.

Definition 6.6. The relative Seiberg-Witten invariant

SW(X0,C) : A(X0) ⊗ H∗(C) −→ Z

is defined by

SW(X0,C)(a ⊗ ω) = 〈[MX0(C)], i∗(µ(a)) ∪ ρ∗C(ω)〉.
We now spell out the strategy for proving Proposition 3.8. First, it

is shown that for b ∈ A(Y ), SW(X0,C)(a·b⊗ω) can be expressed in terms
of SW(X0,C)(a⊗ b · ω) and SW(X0,J ) (Lemma 6.7 and Proposition 6.9).
Here, b · ω denotes the action of A(Y ) on H∗(C) induced from the
inclusion of C in B∗(Y ). (Note the cohomology classes over MX0(C)
induced from A(Y ) through the action on H∗(C), and pulled back via ρ,
correspond to divisor representatives over X0 which are supported “at
infinity.”) Then, it is shown that SW(X0,C)(a ⊗ b · ω) vanishes, when b
has sufficiently high degree. This follows from algebraic considerations,
according to which b · ω = b′ · ω, where b′ ∈ A(Y ) lies in the ideal
generated by the cycles in Y which bound in X0 (Proposition 6.12). It
is then easy to see that SW (a ⊗ b′ · ω) vanishes (Corollary 6.13).

Now, we express the “commutator” SW (a ⊗ b · ω) − SW (a · b ⊗ ω).
First note that if b is induced from H1(Y ), the commutator vanishes, as
follows.

Lemma 6.7. Let [γ] ∈ H1(Y ), then for all a ∈ A(X) and ω ∈
H∗(C),

SW(X0,C)(a ⊗ µ[γ] · ω) = SW(X0,C)(a · µ[γ] ⊗ ω).

Proof. We must show that ρ∗C(µ[γ]) is homologous to i
∗(µ[γ]). It

suffices to verify this over the subset M(X0, C) ⊂ MX0(C), since the
complement has codimension two, and the classes in question are one-
dimensional. Over the subset, now, the claim is easy to verify. On
MX0(C), ρ∗(µ[γ]) is represented by (Holγ ◦ ρC)∗(dθ), the holonomy
around a representative of γ “at infinity” (see Proposition 9.1); while
i∗(µ[γ]) is represented by Hol∗γ0

(dθ), where γ0 = 0 × γ ⊂ 0 × Y ⊂
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[0,∞) × Y ⊂ X. Now, the cylinder [0,∞) × γ provides a homotopy
between Holγ ◦ ρC and Holγ0 . q.e.d.

It remains to see how the point class commutes. For this class, we
can express the commutator in terms of SW(X,J ) and another Seiberg-
Witten invariant, defined below.

Definition 6.8. There is a Seiberg-Witten invariant of the tube

ŜW (C,J ) : H∗(C) −→ H∗(J ) ⊂ A(X0)

which raises degree by dimension 2g − dimM̂(C,J ) = 2g − dim C,
defined by

ŜW (C,J )(ω) = (P2)∗
(
(ρJ × Id)∗PD[∆] ∪ (ρC ◦ P1)∗ω

)
,

where P1 and P2 are the projection maps

P1 : M̂(C,J ) × J −→ M̂(C,J ) and P2 : M̂(C,J ) × J −→ J ,

and PD[∆] denotes the Poincaré dual of the diagonal ∆ ⊂ J ×J . Thus,
ŜW (C,J ) satisfies:

〈M̂(C,J )×J MX0(J ), i∗(µ(a))∪ ρ∗C(ω)〉 = SW(X0,J )(a · ŜW (C,J )(ω)).

We can now calculate the commutator, which involves comparing
the cohomology classes ρ∗Cµ(y) and i

∗
µ(x) over MX0(C), where y is a

point in Y and x is a point in X0.

Proposition 6.9. Choose points x ∈ X0 and y ∈ Y . In MX0(C),
we have

ρ∗C(µ(y)) − i
∗(µ(x)) = PD[M̂(C,J ) ×J MX0(J )].

Consequently, there is a relation between Seiberg-Witten invariants:

SW(X0,C)(a ⊗ µ(y) · ω) − SW(X0,C)(a · µ(x) ⊗ ω)

= SW(X0,J )(a · ŜW (C,J )(ω)).

Proof. Clearly, the difference ρ∗C(µ(y)) − i
∗(µ(x)) is the first Chern

class of the circle bundle HomS1(Lx,Ly). Here, Lz denotes the moduli
space based at z; see Section 9. To prove the proposition, we must verify
that this bundle admits a section σ in the complement of

M̂(C,J ) ×J MX0(J ) ⊂ MX0(C)
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(i.e., over MX0(C) ⊂ MX0(C)) and that, with respect to a trivializa-
tion of the circle bundle over a disk transverse to the submanifold, the
restriction of the section to the boundary induces a map from the circle
to the circle which has degree one.

The section σ is induced by parallel transport, as follows. Let γ be a
half-infinite arc formed by joining [0,∞)× y to any arc which connects
x to 0 × y. Over the point [A, Φ] ∈ MX0(C), parallel transport via A
along γ induces a homomorphism in HomS1(Lx,Ly).

We now verify that the trivialization induces a degree one map
around circles transverse to the submanifold. For any point in the sub-
manifold

[A1, Φ1] × [A2, Φ2] ∈ M̂(C,J ) ×J MX0(J ),

fix fibers

[A1, Φ1, λ1] ∈ Lx|[A1,Φ1] and [A2, Φ2, λ2] ∈ Ly|[A2,Φ2].

These choices induce a trivialization of HomS1(Lx,Ly) over a disk in
MX0(C) transverse to [A1, Φ1]×[A2, Φ2] (obtained by varying the gluing
and translation parameters). Calculating the desired degree amounts
to seeing how the holonomy along γ varies as the gluing parameter is
rotated. But holonomy along any path which crosses the gluing region
once varies as a degree one function of the gluing parameter. q.e.d.

We can understand the action of A(Y ) on H∗(C) explicitly, under
the identification C ∼= Symk(Σ).

Before describing this, we begin with a few preliminaries about the
homology of symmetric products of Σ (for an extensive discussion of this
topic, see [17]). Recall that Symk(Σ) can be viewed as the quotient of
the k-fold Cartesian product Σ×k by the action of the symmetric group
on k letters. We denote the quotient map by

q : Σ×k −→ Symk(Σ).

According to elementary properties of the transfer homomorphism,

q∗ : H∗(Σ×k) −→ H∗(Symk(Σ))

is surjective. Dually, we have a map

q∗ : H∗(Symk(Σ)) −→ H∗(Σ×k)
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which identifies H∗(Symk(Σ)) with the elements of H∗(Σ×k) ∼= H∗(Σ)⊗k

which are invariant under the symmetric group action. In particular,
by summing over the action, we obtain a map

Symk : H∗(Σ) −→ H∗(Symk(Σ)).

Thus, if we fix any collection of points {p2, . . . , pk} ⊂ Σ, given ω ∈
H∗(Σ), Symk(Σ) is the class characterized by the property that

〈Symk(ω), q∗(Z × p2 × · · · × pk)〉 = 〈ω, Z〉,
for any cycle Z ⊂ Σ. Equivalently, given a cycle Z ∈ H∗(Σ),
Symk(PD[Z]) is Poincaré dual to the cycle q(Z × Σ × · · · × Σ). The
above discussion works over rational coefficients (which suffices for our
purposes), but in fact it works over Z as well, since H∗(Symk(Σ)) has
no torsion (see [17]).

Proposition 6.10. Under the identification C ∼= Symk(Σ), the
canonical map

A(Y ) −→ H∗(Symk(Σ)),

induced from the inclusion of Symk(Σ) = C −→ B∗(Y ), takes µ(y) for
y ∈ H∗(Y ) to the cohomology class Symk(PD[π∗(y)]) ∈ H2−∗(Symk(Σ)),
where π : Y → Σ is the projection map.

Proof. We can reduce to a corresponding statement for configu-
rations over Σ, as follows. Let E be a line bundle over Σ, so that
W ∼= π∗(E ⊗ (C ⊕ KΣ)). Then, pull-back induces a map

π∗ : B(Σ, E) = A(E) × Γ(E)/Map(Σ, S1) −→ B(Y, W ),

to the configurations where the fiber-wise holonomy of the connection is
constant, and the section is covariantly constant around each fiber. The
identification between the critical manifolds and the symmetric powers
C ∼= Symk(Σ) described in [22] is obtained by proving that C lies in
the image of this pull-back map, and indeed that it lies in the pull-back
of the vortex moduli space, which, according to [11] (see also [2]), is
in turn identified with the space of divisors, by looking at the zero-
set of the section. The key points we need presently are that C lies in
π∗(B(Σ, E)), and that configurations are the pull-backs of configurations
[A, Φ] ∈ B(Σ, E), where Φ is ∂A-holomorphic section.

Over B(Σ, E), there is a universal line bundle L(Σ), defined in the
usual manner. Note that

L(Y )|π∗(B(Σ))×Y
∼= π∗(L(Σ)),
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so µ(y)|π∗(B(Σ)) for y ∈ H∗(Y ) agrees with µ([π∗(y)]), where the former
µ-map is induced from L(Y ), and the latter from L(Σ). We have thus
reduced the proof of the proposition to a statement purely over Σ; so for
the duration of the proof, L will refer to L(Σ), B will refer to B(Σ, E),
and all µ-maps will be calculated over Σ.

To facilitate the proof over Σ, we pause for a discussion about the
canonical section σ of the universal line bundle L, which takes the con-
figuration [A, Φ] × {x} ∈ B × Σ to the based configuration [A, Φ, Φ(x)].
This section has the property that, under the canonical identification
of L|[A,Φ]×Σ

∼= E (where E is the bundle over Σ with Chern number
k), the restriction σ|[A,Φ]×Σ is identified with the section Φ of E. In
particular, if Φ �≡ 0 is a holomorphic section, then σ|[A,Φ]×Σ has at most
k zeros; moreover, if it has k zeros, then each is transverse.

Now, if y ∈ Σ is a point (i.e., a generator of H0(Σ; Z)), then by defini-
tion, µ(y) is the element of H2(C) whose pairing against any homology
class [S] ∈ H2(C) is given by

〈µ(y), [S]〉 = 〈c1(Ly), [S]〉.
where, as usual, Ly denotes the restriction of L to B(Σ, E) × {y}.
Choose points {p2, . . . , pk} ⊂ Σ which are distinct from y. Recall that
H2(Symk(Σ)) is generated by the surface q(Σ × p2 × · · · × pk) (where
p2, . . . , pk are points on Σ), and the tori of the form q(C1 × C2 × p3 ×
· · ·×pk), where C1, C2 ⊂ Σ are closed curves in Σ, which we can choose
to miss y. The canonical section σ restricted to a torus of the form
q(C1 × C2 × p3 × · · · × pk) × {y} clearly vanishes nowhere (as all k of
the zeros have been constrained to lie in the set C1 ∪ C2 ∪ {p3, . . . , pk}
which does not include the point y); thus,

〈c1(Ly), [q(C1 × C2 × · · · × pk)]〉 = 0.

Over q(Σ × p2, · · · × pk) the canonical section vanishes at the single
point q(y×p2×· · ·×pk). We verify transversality of this zero, as follows.
View σ as a section over Σ×Σ = q(Σ×p2×· · ·×pk)×Σ; we know that
σ(y, y) ≡ 0, and that Dσ(y,y) induces an isomorphism from 0 ⊕ TyΣ to
Ey (i.e., that the zero of σ|{y}×Σ at y is transverse). Differentiating the
equation that σ(y, y) ≡ 0, we see that

Dσ(y,y)(0, v) = −Dσ(y,y)(v, 0).

Thus, the section σ|Σ×{y} of Ly|[Σ] has a single, transverse zero, which
shows that

〈c1(L), [q(Σ × p2 × · · · × pk)]〉 = ±1.
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Moreover, the sign is positive since the section is holomorphic.
Hence, we have proved the result when y ∈ H0(Σ). Proving the

result for classes coming from H1(Σ) amounts to proving that, if C1

and C2 closed curves in Σ which meet transversally, then

〈c1(L), q(C1 × p2 × · · · × pn) × C2〉 = −#C1 ∩ C2 = #C2 ∩ C1.

Note first that the zeros of the canonical section σ, restricted to
q(C1×p2×· · ·×pk)×C2 are the points C1∩C2 (a zero of σ corresponds
to a point where the section Φ vanishes at some point of C2, but the
zeros of Φ lie in C1 ∪ {p2, . . . , pk}, and {p2, . . . , pk} ∩ C2 is empty).
We must now consider the local contribution of each zero (and check
transversality).

Consider the map C1 × C2 : S1 × S1 −→ Symk(Σ) × Σ defined by
C1 ×C2(s, t) = q(C1(s)× p2 × · · · × pk)×C2(t). Suppose for notational
simplicity that C1(0) = C2(0) = y. We can view σ as a section of L
pulled back to this torus. Now, evaluated on a typical tangent vector
to the torus a ∂

∂s + b ∂
∂t , the derivative of σ at the intersection point is

given by

D(y,y)σ ◦ (C1 × C2)(a
∂

∂s
+ b

∂

∂t
) = aD(y,y)σ(

dC1

ds
(0), 0)

+ bD(y,y)σ(0,
dC2

dt
(0))

= − aD(y,y)σ(0,
dC1

ds
(0))

+ bD(y,y)σ(0,
dC2

dt
(0)).

(20)

(We have used the chain rule and the derivative of the relation that
σ(C1(s), C1(s)) ≡ 0.) Transversality of the intersection of C1 and C2 at
0 ensures that the image of this differential is

D(y,y)σ(0 ⊕ TΣy);

so transversality of the section corresponding to q(y × p2 × · · · × pk) at
its zero y ensures that the image of the differential surjective onto the
fiber of E over y; i.e., the canonical section is transverse. The sign is
correct, as one can see by inspecting Equation (20). q.e.d.

Remark 6.11. With the help of the above results, we can describe
explicitly the invariant of the tube:

ŜW (C,J ) : H∗(C) −→ H∗(J ) ⊂ A(X0),
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which we do now for completeness. Let Λ = Λ∗H1(Σ) ⊂ A(Y ). Ac-
cording to the proof of Lemma 6.7, ŜW (C,J ) is a homomorphism of
Λ-modules; so, since A(Y ) = Λ[U ] surjects onto H∗(C), the invariant
is determined by ŜW (C,J )(U i), as i ranges over the non-negative inte-
gers. Since the Poincaré dual of Symk(Σ) ⊂ T 2g (which is the image of
M̂(C,J ) under ρJ , according to Theorem 4.1), is

(
∑g

i=1 µ(Ai)µ(Bi))k

k!
,

it follows that

ŜW (C,J )(U
�) =

(
∑g

i=1 Ai · Bi)k+�

(k + �)!
.

We will not use this formula, however. The results we prove in this
paper require only the general properties of ŜW (C,J ) which follow from
its definition, together with Proposition 6.9.

According to Lemma 6.7, if γ ⊂ Y is a curve which is null-homolo-
gous in X0, then it annihilates the relative invariants, in the sense that

SW(X0,C)(a ⊗ µ(γ) · ω) = 0.

If sufficiently many curves in Y become null-homologous in X0, then
any class of sufficiently high degree in A(Y ) annihilates the invariant,
as follows.

Proposition 6.12. Fix natural numbers k, � with � ≥ k. Let I
denote the ideal generated by µ(A1), µ(A2), . . . , µ(A�) in H∗(Symk(Σ)).
Then every element of H∗(Symk(Σ)) of degree greater than k lies in I.

Proof. The vector space H∗(Symk(Σ)) is generated by homogeneous
elements of the form

Ua ·
b∏

q=1

(Aiq · Biq) ·
c∏

r=1

Aib+r
·

d∏
s=1

Bib+c+s
,

where {i1, . . . , ib+c+d} is a subset of {1, . . . , g}, and a, b, c, d are integers
with a + b + c + d ≤ k.

Clearly, it suffices to prove the proposition for homogeneous gener-
ators of degree k + 1. Modulo I, such an element is equivalent to the
element

a∏
p=1

(U − Ap · Bp) ·
b∏

q=1

(Aiq · Biq − Aa+q · Ba+q) ·
c∏

r=1

Aib+r
·

d∏
s=1

Bib+c+s
.
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Indeed, in light of the fact that a + b ≤ k − d ≤ � − d, we can arrange
(after possibly simultaneously permuting the indices of the {Ai}g

i=1 and
{Bi}g

i=1) that for each s = 1, . . . d, a+b < ib+c+s. Moreover, the original
homogeneous element would automatically lie in I unless we had that
a + b < k ≤ � < ib+r for all r = 1, . . . , c. Put together, must consider
elements of the above form which satisfy the constraint that a + b < ij
for all j > b. If the degree of such an element is k + 1, it must vanish in
H∗(Symk(Σ)).

This vanishing can be seen geometrically: U is Poincaré dual to
the subset (identified with Symk−1(Σ)) of Symk(Σ) where one point is
constrained to lie in a specified point on Σ: Ai (resp. Bi) is Poincaré
dual to the cycle where one point is constrained to lie on Ai (resp. Bi).
Thus, (if one chooses the point representing U to be Ai ∩ Bi), then
U − Ai · Bi is Poincaré dual to the locus where two distinct points are
constrained; one is to lie on Ai, the other on Bi. Similarly, the manifold
Poincaré dual to Ai ·Bi−Aj ·Bj gives a constraint on two distinct points
in the symmetric power. Finally, the remaining Aib+r

and Bib+c+s
give

additional, disjoint constraints (these are disjoint, if one chooses that
representing curves to be disjoint from the Ai and Bi for i = 1, . . . , a+b,
which can be arranged since a + b < ib+r for all r ≥ 1). Thus, since the
total degree of the expression considered is k+1, we have put constraints
on k + 1 distinct points, forcing the intersection to be empty. q.e.d.

Corollary 6.13. Suppose that C = Symk(Σ), and let � ≥ k be an
integer so that there is a symplectic basis {Ai, Bi}g

i=1 for H1(Σ) so that
i∗(Ai) = 0 in H1(X0; R) for i = 1, . . . , �. Then, for each b ∈ A(Σ) of
degree d(b) > k, and each a ∈ A(X0), ω ∈ H∗(C), we have

SW(X0,C)(a ⊗ b · ω) ≡ 0.

Proof. By Proposition 6.12, b lies in the ideal generated by
µ(A1), . . . , µ(A�). Now the proposition follows from Lemma 6.7. q.e.d.

We now have the promised proof of Proposition 3.8.

Proof of Proposition 3.8. Recall that we have constructed SW(X0,C)

so that
SW irr

s (a · i∗(b)) = SW(X0,C)(a · i∗(b) ⊗ 1).

By Lemma 6.7 and Proposition 6.9, we can write

SW(X0,C)(a · i∗(b) ⊗ 1) = SW(X0,C)(a ⊗ b) + SW(X0,J )(a · c).
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for some c ∈ A(Σ). Note that c lies in the ideal generated by H1(Σ), as
it can be expressed in terms of Seiberg-Witten invariants of the tube,
which take values in H∗(J ) ∼= Λ∗(H1(Σ)) ⊂ H1(Σ) · A(Σ). By Corol-
lary 6.13, the first term vanishes (using the homological hypothesis of
the inclusion of Σ in X). The remaining term is identified with an
absolute invariant, according to Proposition 5.9. q.e.d.

The proof of Proposition 3.10, follows from the same argument as
Proposition 3.8; only in that case, one must use the following (much
simpler) analogue of Corollary 6.13.

Lemma 6.14. Suppose that C = Symk(Σ). Then, for each b ∈
A(Σ) of degree d(b) > 2k, and each a ∈ A(X0), ω ∈ H∗(C), we have

SW(X0,C)(a ⊗ b · ω) ≡ 0.

Proof. This follows immediately from the fact that dimC = 2k.
q.e.d.

7. The moduli spaces over N

The purpose of this section is to give the results about the neigh-
borhood of Σ which were used in Section 5. Most of these results are
applications of [22] and [24]. We assume for the duration of this section
that the SpinC structure over N satisfies 〈c1(s), [Σ]〉 �≡ n (mod 2n). We
return to the excluded cases in Section 8.

Over N , endowed with a cylindrical-end metric and a certain tor-
sion connection on TN , the Seiberg-Witten equations admit a complex
interpretation analogous to the complex interpretation of the equations
over a Kähler manifold (see Section 5 of [24] for an explicit description of
this connection, and especially Proposition 5.6 where the complex inter-
pretation is proved). The Seiberg-Witten equations over N can be writ-
ten as equations for a connection A over E, α⊕β ∈ (Ω0,0⊕Ω0,1)(N, E):

2ΛFA − ΛFKN
=

i

2
(|α|2 − |β|2)(21)

TrF 0,2
A = α ⊗ β(22)

∂Aα + ∂
∗
Aβ = 0,(23)

where Λ denotes projection onto the (1, 1) form of the metric. As noted
in [24], for finite energy solutions, decay estimates justify the usual



422 peter ozsváth & zoltán szabó

integration-by-parts which shows that one of α or β must vanish iden-
tically; i.e., the solutions over N correspond to vortices over N .

When β ≡ 0, then A induces an integrable ∂-operator on E, ∂A,
with respect to which α is holomorphic. Moreover, by the usual expo-
nential decay results, together with the understanding of the solutions
over Y (Theorem 4.1), (A, α) exponentially approaches the pull-back of
a vortex solution over Σ. According to [22], the underlying holomor-
phic data extends to the ruled surface R obtained by attaching a copy
of Σ (denoted Σ+) to N “at infinity.” We state the results here for
convenience.

Definition 7.1. Let Φ ∈ Γ(N, W+), Ψ ∈ Γ(Y, W ) be a pair of
spinors, and δ > 0 be some real number. Then, Ψ is said to δ-decay to
Ψ if for each k ≥ 0,

lim
t�→∞ sup

{t}×Y
eδt|∇(k)Ψ −∇(k)π∗(Ψ)| = 0,

where ∇(k) denotes the k-fold covariant derivative. More generally, Φ
is said to decay to Ψ if there is some δ > 0 so that Ψ δ-decays to Ψ.
A similar notion can be defined for objects other than spinors, such as
connections, differential forms, etc.

Definition 7.2. Given a line bundle E over Z, a holomorphic pair
(A, α) in E is a pair consisting of a ∂-operator ∂A over E, and a section
α of E, so that F 0,2

A = 0, and ∂Aα = 0.

Theorem 7.3. Let (A, α) be a holomorphic pair on N which decays
to a the pull-back of a holomorphic pair (A0, α0) over Σ. Then, there is
a naturally associated line bundle Ê over R and holomorphic pair (Â, α̂)
in Ê, so that (∂

Â
, α̂)|R−Σ+

∼= (∂A, α̂) and (∂
Â
, α̂)|Σ+

∼= (∂A0 , α0).

The above theorem is essentially a restatement of Theorem 7.7 of [22],
where it is stated for the cylinder, thought of as R minus two copies of
Σ, rather than the neighborhood of Σ, thought of as R minus one copy
of Σ (though the proof is no different). Analogous results for the anti-
self-dual equations were obtained by Guo [9].

In a similar vein we have the following result, which allows us to
deal with solutions with reducible boundary values. We state the re-
sult slightly differently from the above, since we will apply it in other
contexts later.

Theorem 7.4. Let A be a connection on a line bundle E over N ,
with F 0,2

A = 0 and E|(0,∞)×Y
∼= π∗(E0), so curvature form FA decays to
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the pull-back of a closed two-form F0 over Σ with( i

2π

∫
Σ

F0

)
− 〈c1(E0), [Σ]〉 �∈ nZ.

Then, there is an associated line bundle Ê over R and complex structure
∂

Â
with

(Ê, ∂
Â
)|R−Σ+

∼= (E, ∂A),

and 〈c1(Ê), [Σ+]〉 is the greatest integer congruent to 〈c1(E), [Σ]〉 moduli
n smaller than i

2π

∫
F0. Furthermore, there is a natural identification

Ker�DA ∩ L2 ∼= H0(R, Ê) ⊕ H2(R, Ê),

and
Coker �DA ∩ L2 ∼= H1(R, Ê).

The above is proved in Proposition 9.2 (see Corollary 9.11 and The-
orem 10.6) of [22].

These results allow us to rule out the existence of certain solutions.
Recall first the following standard fact about the cohomology of R (see
for example [10]):

Proposition 7.5. Let R denote the ruled surface over Σ, which is
given as the projectivization of C ⊕ L, P(C ⊕ L) (here, L is some line
bundle over Σ). Let Ê be a line bundle over the ruled surface R and
let E0 denote the restriction of of Ê to P(C ⊕ 0) ∼= Σ and let � be the
evaluation of c1(Ê) on a fiber in the ruling. Then, if � ≥ 0,

H0(R, Ê) ∼=
�∑

j=0

H0(Σ, E0 ⊗ L⊗j); H1(R, Ê) ∼=
�∑

j=0

H1(Σ, E0 ⊗ L⊗j);

H2(R, Ê) = 0;

and if � < 0,

H0(R, Ê) = 0; H1(R, Ê) ∼=
−�−1∑
j=1

H0(Σ, E0 ⊗ L⊗−j);

H2(R, Ê) ∼=
−�−1∑
j=1

H1(Σ, E0 ⊗ L⊗−j).

In particular, if � = −1, then H∗(R, Ê) = 0.
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We can apply these results to the case where N is a neighborhood
of a surface of self-intersection number with −Σ · Σ > 2g − 2. Recall
that according to Theorem 4.1, for each SpinC structure s on N , there
are at most two components to the moduli space of the boundary, the
reducible component J and the irreducible component C.

Proposition 7.6. If ∣∣∣〈c1(s), [Σ]〉
∣∣∣ < n,

the moduli space MN (J ) contains only reducibles. Moreover, the space
of reducibles is smoothly identified with the Jacobian torus J (i.e., the
kernel and the cokernel of the Dirac operator coupled to any reducible
vanishes). Furthermore, MN (C) is empty.

Proof. We prove that both moduli spaces M∗
N (J ) and MN (C) are

empty. Suppose there were some finite energy solution to the Seiberg-
Witten equations in a SpinC structure with |〈c1(s), [Σ]〉| < n. We know
that the spinor lies entirely in one of the two summands in the splitting
of the spinor bundle W+ ∼= E⊕(KN

−1⊗E) (i.e., it is an α- or a β-spinor,
in the notation of Equations (21)-(23)). By conjugating if necessary
(which switches the two summands and sends the SpinC structure s to
another one Js with c1(Js) = −c1(s)), we can assume without loss of
generality that the solution is an α-solution.

According to Theorem 7.3 (and Theorem 7.4, when the boundary
value is reducible), we can extend the data (E, ∂A, α) over the associated
ruled surface R, obtained by attaching the curve Σ+ at infinity. The
fact that Ê is an extension of E says that

〈c1(Ê), [Σ−]〉 = 〈c1(E), [Σ]〉
=

1
2
〈c1(s) + c1(KN ), [Σ]〉

= g − 1 +
n + 〈c1(s), [Σ]〉

2

where Σ− is the curve in Ê with self-intersection number −n (which is
identified with Σ ⊂ N). By our hypothesis, then,

g − 1 < 〈c1(Ê), [Σ−]〉 < n + g − 1.

On the other hand, Equation (21) says that i
2πFA converges to the pull-

back of a form over Σ whose integral is g−1, so Theorem 7.4 guarantees
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that the Chern number of restriction to the other section of the ruling
satisfies the bound

−n + g − 1 < 〈c1(Ê), [Σ+]〉 < g − 1.

Now, since the Poincaré dual of a fiber is (PD[Σ+]−PD[Σ−])/n, we see
that the evaluation of c1(Ê) on a fiber is given by

� =
〈c1(Ê), [Σ+]〉 − 〈c1(Ê), [Σ−]〉

n
= −1.

According to Proposition 7.5, it follows that α̂ (and hence also α) must
vanish identically, contradicting the irreducibility hypothesis on (A, α).

The fact that the reducibles are smoothly cut out in this range fol-
lows in an analogous manner, using Theorem 7.4 and Proposition 7.5.

q.e.d.

Remark 7.7. Most of this result can be found in Proposition 2.5
of [24].

The above vanishing result is special to the particular SpinC struc-
tures considered, as it used the fact that the Dolbeault cohomology of
certain line bundles over the ruled surface vanish. In general, the moduli
spaces over N typically do contain irreducibles. To study the deforma-
tion theory around these irreducibles, we use an infinitesimal version of
Theorem 7.3; but first, we pause for a brief discussion of deformation
theory for the Seiberg-Witten equations in general.

In general, on a four-manifold X0 with a cylindrical end, the de-
formation complex around a solution (A, Φ) whose boundary value is
smooth and irreducible, is given by

Ω0(X0, iR) −→ Ω1(X0, iR)⊕ Γ(X0, W
+) −→ Ω+(X0, iR)⊕ Γ(X0, W

−).

Here, terms in Ω0(X0, iR) are required to lie in L2
δ,k, the δ-decaying

Sobolev space with k derivatives (here we can choose any k ≥ 3); i.e.,
functions for which

(‖f‖δ,k)2 =
∫

X0

(|f |2 + |∇f |2 + · · · + |∇(k)f |2)eδτ < ∞,

where τ is a smooth function on X0 which agrees with the t coordinate
over the cylindrical end. Terms in Ω1(X0, iR)⊕Γ(X0, W

+) are required
to lie in L2

δ,k−1 extended by the tangent space to the moduli space
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at infinity at ρ[A, Φ]. Finally, terms in Ω+(X0, iR) ⊕ Γ(X0, W
−) are

required to lie in L2
k−2. The first map in the deformation complex is the

linearization of the gauge group action on [A, Φ] around the identity,
while the second is the linearization of the Seiberg Witten equations
around [A, Φ]. When the boundary value of [A, Φ] is a smooth reducible,
then the above specifies the deformation theory for the moduli space
based at infinity. In either case, the moduli space of solutions about
[A, Φ] is transversally cut out by the Seiberg-Witten equations on X0 if
the H2 of the above complex vanishes. (This discussion is modeled on
the theory developed in [20].)

The space of divisors in a compact, complex surface X admits a
deformation theory, defined as follows. Consider the pair (∂

Â
, α̂) where

∂
Â

is an integrable ∂-operator, and α̂ is ∂
Â
-holomorphic; i.e.,

F 0,2

Â
= 0

∂
Â
α = 0.

This has a deformation complex

Ω0,0 −−−→ Ω0,1 ⊕ Ω0,0(E) −−−→ Ω0,2 ⊕ Ω0,1(E) −−−→ Ω0,2,

whose cohomology groups are identified with the cohomology groups
of the quotient sheaf E/α̂, obtained from the short exact sequence of
sheaves:

0 −−−→ OX
α̂−−−→ E −−−→ E/α̂ −−−→ 0.

Theorem 7.8. Let (A, α) correspond to a solution to the Seiberg-
Witten equations over N , with irreducible boundary values. Then, the
cohomology groups of the deformation complex of the Seiberg-Witten
deformation complex are naturally isomorphic to the cohomology groups
deformation complex of the divisor [∂

Â
, α̂] in the line bundle Ê over

R, provided by Theorem 7.3. When (A, α) has a reducible boundary
value, then H2 of the Seiberg-Witten deformation complex is identified
with H1(R, E/α̂), while the tangent space of the based moduli space is
identified with C ⊕ H0(R, E/α̂).

Proof. This follows exactly as in Theorem 9.14 (for irreducible
boundary values) and Theorem 10.12 (for reducible boundary values)
of [22]. The key observation at this point is to note that

Λ∂∂ + |α|2 : L2
δ,k −→ L2

δ,k−2
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is an isomorphism, which allows one to “unroll” parts of the Seiberg-
Witten deformation complex to identify it with the deformation theory
of divisors in N . As in [22] (see also [13]), we can identify Λ∂∂ with the
operator over the cylindrical end with

−e−2λt ∂

∂t
e2λt ∂

∂t
+ ∆Y ,

where λ = πn
Vol(Σ) . According to the theory of [16], the operator

Λ∂∂ : L2
k,δ −→ L2

k−2,δ

is Fredholm for all weights 0 < δ < 4λ. In particular, it has the same
index for all small 0 < δ as it has on the weight δ = 2λ, where it
can be connected via Fredholm operators to the manifestly self-adjoint
operator

d∗λd : L2
k,λ −→ L2

k−2,λ,

where d∗λ denotes the formal λ-weighted adjoint of d. It follows from
the homotopy invariance of the index that Λ∂∂ + |α|2 has index zero
on L2

k,δ. From the maximum principle, it has no kernel, so it induces
an isomorphism as claimed, identifying the deformation theory of the
Seiberg-Witten equations with the deformation theory of divisors in N .
Passing to the ruled surface then follows from Corollary 9.4 of [22].

q.e.d.

Proposition 7.9. Let N be a disk bundle over a surface Σ with

Σ · Σ = −n < 2 − 2g,

endowed with a SpinC structure s with

n < |〈c1(s), [Σ]〉| ≤ n + 2g − 2.

Let

e =
n + 2g − 2 − |〈c1(s), [Σ]〉|

2
.

Then, the expected dimensions of the moduli spaces over N and X0 are
given by:

e-dimMN (J ) = 2e + 1(24)
e-dimMN (C) = 2e.(25)
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Moreover, M∗
N (J ), MN (C), are transversally cut out by the Seiberg-

Witten equations (in particular, they are manifolds of the expected di-
mension). Furthermore, the boundary map

ρ : MN (C) −→ C

is an orientation-preserving diffeomorphism onto its image.

Proof. The deformation theory around a solution [A, α] ∈ MN (C)
is identified the deformation theory around a corresponding divisor in
the line bundle Ê with 〈c1(Ê), [Σ±]〉 = e; i.e., with divisors in a line
bundle which (topologically) pulls back from Σ. According to Proposi-
tion 7.5, all such divisors actually pull back from the base Σ; and indeed,
the deformation theory corresponds to deformation theory of degree e
divisors in the base Σ, which is unobstructed. Thus, MN (C) is a man-
ifold of real dimension 2e, transversally cut out by the Seiberg-Witten
equations.

The above transversality applies to MN (J ) as well, except that the
expected dimension is greater by one, as we saw in Theorem 7.8.

This identification of deformation theories of MN (C) proves that
ρ is an orientation-preserving local diffeomorphism onto its image in
Syme(Σ) ∼= C. In fact, it is injective, as follows. As we saw, any
two solutions with the same boundary values actually vanish over the
same disks (with the same multiplicities). By the usual analysis of the
vortex equations, any two such solutions must differ by a complex gauge
transformation; i.e., a function u which satisfies

Λ∂∂u + |α|2(e2u − 1) = 0,

where u is a function which decays on the cylinder. By the maximum
principle, such a function must vanish identically. q.e.d.

Having analyzed the moduli spaces over neighborhoods of Σ, we close
with a some general results concerning the rest of the moduli spaces of
the complement of Σ.

Proposition 7.10. Let X0 be as in Proposition 5.1. Then, letting
e-dimM(X) = d, we have

e-dimMX0(J ) = d + 2g − 2e − 2(26)
e-dimMX0(C) = d.(27)

Moreover, MX0(J ), and MX0(C) are transversally cut out by the
Seiberg-Witten equations (in particular, they are manifolds of the ex-
pected dimension).



higher type adjunction inequalities 429

Proof. By a standard excision argument, we have

e-dimMX0(J ) + e-dimMN (J ) − 2g + 1 = e-dimMX(s) = d,

which calculates e-dimMX0(J ), given Proposition 7.9. Similarly, we
have

e-dimMX0(C) + e-dimMN (C) − 2e = d,

which gives us e-dimMX0(C).
Smoothness of MX0(J ) and MX0(C) follows from adapting meth-

ods of [20]. q.e.d.

8. Perturbations when e = g − 1

In our earlier discussion, we had to exclude one SpinC structure
over Y . In this section, we introduce a perturbation of the equations
which allows us to handle this case. We begin by adapting results of
Section 4 to this perturbed equation, and then, we give a discussion
which is parallel to that of Section 7. The perturbations used here are
analogues of Taubes’ perturbations in the symplectic category [29], [30];
see also [15] for a related discussion.

Recall that the Seiberg-Witten equations over Y are obtained as the
critical points of the Chern-Simons-Dirac functional CSD defined over
the configuration space

B(Y, W ) = A(W ) ⊕ Γ(Y, W )/Map(Y, S1),

where A(Y, W ) denotes the space of connection in the spinor bundle
W which are compatible with some fixed connection ∇ on TY . The
functional is defined by

CSD(B,Ψ) =
∫

Y
(B − B0) ∧ Tr(FB + FB0) −

∫
Y
〈Ψ, �DBΨ〉,(28)

where B0 ∈ A(Y, W ) is some reference connection, B − B0 ∈ Ω1(Y ; iR)
denotes the difference 1-form, and Tr denotes the trace of the corre-
sponding connection on W . Its Euler-Lagrange equations (the three-
dimensional Seiberg-Witten equations) are

∗Tr(FB) − iτ(Ψ) = 0(29)
�DBΨ = 0,(30)
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where
τ : Γ(Y, W ) → Ω1(Y ; R)

is adjoint to Clifford multiplication, in the sense that for all
γ ∈ Ω1(Y ; R), Ψ ∈ Γ(Y, W ), we have

1
2
〈iγ · Ψ, Ψ〉W = −〈γ, τ(Ψ)〉Λ1 .(31)

Moreover, its upward gradient flow equations are the usual Seiberg-
Witten equations on the four-manifold R × Y .

When Y is a circle-bundle over a Riemann surface with Euler number
−n satisfying

n > 2g − 2,

recall that these equations are inconvenient in the SpinC structure when
e = g−1 (in the notation of Section 4). We will find it useful to consider
a perturbed functional

CSDu : B(Y, t) −→ R,

where u ∈ R, given by

CSDu(B,Ψ) = CSD(B,Ψ) + u

∫
Y

iη ∧ (TrFB − TrFB0),(32)

where η is the connection form for Y over Σ, and the reference con-
nection B0 satisfies Tr(FB0) ≡ 0 (i.e., B0 ∈ J ). These give rise to
perturbed Seiberg-Witten equations of the form

∗Tr(FB) − iτ(Ψ) + iu(∗dη) = 0(33)
�DBΨ = 0,(34)

whose moduli space of solutions is denoted Nu(Y ). The gradient flow
equations of the perturbed functional are solutions to the Seiberg-Witten
equations on R × Y , perturbed by the self-dual component of iu(dη),
which can be collected into moduli spaces, denoted Mu(C1, C2), or their
unparameterized versions

M̂u(C1, C2) = Mu(C1, C2)/R.

We have the following analogue of Theorem 4.1.
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Theorem 8.1. Let Y be a circle-bundle over a Riemann sur-
face with genus g > 0 and Euler number −n < 2 − 2g. Let t be the
SpinC structure corresponding to g − 1 ∈ Z/nZ ⊂ H2(Y ; Z). For all u
with 0 < u < 2, the moduli space contains two components, a reducible
one J , identified with the Jacobian torus H1(Σ; R/Z), and a smooth
irreducible component C diffeomorphic to Symg−1(Σ). Both of these
components are non-degenerate in the sense of Morse-Bott. There is
an inequality CSDu(J ) > CSDu(C), so the space Mu(J , C) is empty.
The space M̂u(C,J ) is smooth of expected dimension 2g − 2; indeed it
is diffeomorphic to Symg−1(Σ).

Proof. Most of this is a straightforward adaptation of [22].
We begin with the identification of the moduli spaces over Y . As

in [22], the equations over Y reduce to vortex equations over Σ. More
specifically, the components of the moduli spaces NY (t) correspond to
line bundles E0 over Σ with the property that

π∗(E0 ⊕ K−1 ⊗ E0) ∼= W,

the spinor bundle of t (here K denotes the canonical line bundle over
Σ). The vortex equations are are equations for B ∈ A(E0), α ⊕ β ∈
Γ(Σ, E0 ⊕ K−1 ⊗ E0), which, in the case at hand, take the form

2FB − FK + iu(dη) = i(|α|2 − |β|2)(∗1)(35)
∂Bα + ∂

∗
Bβ = 0(36)

α ⊗ β = 0.(37)

Thus, one of α or β must vanish. In fact, in our case,

deg E0 ≡ g − 1 (mod n).

In fact, if
deg E0 �= g − 1,

then the solution space to these equations (0 < u < 2) is empty. More
specifically, letting deg E0 = g − 1 + n�, we see that when β �≡ 0, then
by integrating Equation (35) over Σ against i/2π, we get

2(g − 1 + n�) − (2g − 2) + u deg Y = 2n� − un ≥ 0,

which forces � ≥ 1 (since u > 0). Since in this case deg(E0) > g − 1,
H1(Σ, E0) = 0, so β must vanish. If, on the other other hand, it is
α �≡ 0, then we obtain in the same manner that

2n� − un ≤ 0,
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which forces � ≤ 0 (since u < 2). Since α represents a class in H0(Σ, E0),
it follows that � = 0.

So, all irreducibles correspond to α-vortices in the line bundle E0

with deg E0 = g − 1. The identification of this space of vortices with
the symmetric product follows from [2] (see also [11]).

Non-degeneracy of the irreducible manifold C follows exactly as
in [22]. To see non-degeneracy of J , we appeal to results of Section
5.8 of [22]. Consider the Dirac operator on the SpinC structure with
spinors W = E⊗ (C⊕K−1) with connection induced from a connection
B ∈ A(E) whose curvature pulls up from Σ. It is shown in Proposi-
tion 5.8.4 of [22] that this Dirac operator admits no harmonic spinors
unless the holonomy around a fiber circle in Y is trivial. In fact this
holonomy is trivial when the following integral is congruent to g − 1
modulo nZ:

i

4π2

∫
Y

FB ∧ η = g − 1 − u deg(Y )
2

,

(we have used here Equation (33)). Since 0 < u < 2, this holonomy
is non-trivial, so the reducibles admit no harmonic spinors, i.e., J is
smoothly cut out by the equations.

We now perform the Chern-Simons calculations (see the proof of
Proposition 5.23 of [22]). Suppose [(B1, Ψ1)] ∈ C, and [(B0, 0)] ∈ J .
Then, we have

2 deg B0 − deg K + u deg(Y ) = 0;
2 deg B1 − deg K = 0,

where by deg B, we mean the integral i
4π2

∫
Y FB ∧ η, which when B is

induced from a line bundle over Σ, agrees with the degree of that line
bundle. So,

CSDu(B1) =
∫

Y
(B1 − B0) ∧ (2FB1 + 2FB0 − 2FK)

+u

∫
iη ∧ (2FB1 − 2FB0)

=
8π2

deg Y
(deg B1 − deg B0)(deg B1 + deg B0 − deg K)

+u

∫
iη ∧ (2FB1 − 2FB0)

= 2π2u2 deg Y,

which is negative; while CSDu(B0) = 0.
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The smoothness of the space of flows, and its identification with
the symmetric product, follows exactly as in the unperturbed case (see
Section 4). q.e.d.

We now turn to the neighborhood of Σ. We use a perturbation over
N which is compatible with the above perturbation over Y . Specifically,
let

f : N −→ R

be a smooth function which is identically zero on the complement of
the cylinder [0,∞) × Y ⊂ N , and identically one on the subcylinder
[1,∞) × Y . We consider the Seiberg-Witten equations perturbed by
the self-dual part of iuf(dη). Note that this perturbing two-form is
iuλf times the (1, 1) form of the standard cylindrical-end metric on N
(see [24]), where

λ = −2π deg Y

Vol(Σ)

(here, Vol(Σ) denotes the volume of Σ). Similarly, we can extend the
perturbation over Y to a self-dual two-form perturbation of the equa-
tions over X0 (and, consequently, X(T ) to all T > 2). Denote the corre-
sponding moduli spaces by MN,u(J ), MN,u(C), MX0,u(J ), MX0,u(C),
and MX(T ),u. Strictly speaking, we still have to show that these per-
turbed moduli spaces MX(T ),u(s) can be used to calculate the Seiberg-
Witten invariant in either chamber. This is clear because we can always
choose a compactly-supported perturbing two-form η0 whose integral
against ωg dominates the integral of ωg against iuf(dη)+. The key
point is that the latter integral is finite, since ωg decays exponentially
(see [1]).

We now have the following analogue of Proposition 5.5:

Proposition 8.2. Suppose 〈c1(s), [Σ]〉 = n, and let u be a real
number with 0 < u < 2. Then the perturbed moduli space MN,u(J )
contains only reducibles. Moreover, the space of reducibles is smoothly
identified with the Jacobian torus J (i.e., the kernel and the cokernel
of the Dirac operator coupled to any reducible vanishes). Furthermore,
MN,u(C) is empty.

Proof. We begin by proving MN,u(C) is empty. Note that C consists
entirely of α-solutions, hence so must any section in MN,u(C). Thus, a
solution (A, α) ∈ MN,u(C) induces a non-zero element in H0(Ê) with

〈c1(Ê), [Σ−]〉 = n + g − 1 and 〈c1(Ê), [Σ+]〉 = g − 1.
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But H∗(R, Ê) ≡ 0, according to Proposition 7.5. The same argument,
now appealing to Theorem 7.4, shows that M∗

N,u(J ) is empty, and that
J is smooth. q.e.d.

Proposition 8.3. Suppose that

〈c1(s), [Σ]〉 = −n,

and let u be any real number with 0 < u < 2. Then according to
Theorem 8.1, Nu(s|Y ) has two components, J and C, where C is dif-
feomorphic to Symg−1(Σ). Furthermore, the expected dimensions of the
moduli spaces over N and X0 are given by:

e-dimMN,u(J ) = 2g − 1(38)
e-dimMN,u(C) = 2g − 2(39)

e-dimMX0,u(J ) = 2d(40)
e-dimMX0,u(C) = 2d.(41)

Moreover, M∗
N,u(J ), MN,u(C), MX0,u(J ), and MX0,u(C) are trans-

versally cut out by the Seiberg-Witten equations (in particular, they are
manifolds of the expected dimension). Furthermore, the boundary map

ρ : MN,u(C) −→ C

is an orientation-preserving diffeomorphism onto its image.

Proof. The proofs of Propositions 7.9 and 7.10 apply directly in this
perturbed context. q.e.d.

9. Cohomology

The Seiberg-Witten invariant is obtained from pairings of certain
canonical cohomology classes on the Seiberg-Witten moduli space.
These cohomology classes are inherited from the configuration spaces
in which the moduli spaces live. In this section, we recall the definitions
of these classes and discuss natural geometric representatives for them.
(See Chapter 5 of [4] for the corresponding discussion of cohomology
relevant to Donaldson invariants.)

Let X be a Riemannian four-manifold with a SpinC structure s spec-
ified by the pair of Hermitian C

2 bundles W+ and W−, and the Clifford
action

ρ : TX ⊗ W+ −→ W−.



higher type adjunction inequalities 435

The Seiberg-Witten pre-configuration space is the space

C(W+) = A(W+) × Γ(X; W+) ∼= Ω1(W ; R) × Γ(X; W+),

where A(W+) denotes the space of connections compatible with some
fixed connection ∇ on TX, and the isomorphism above is induced by
comparing any connection A against some fixed connection A0. The
irreducible pre-configuration space C∗(W+) is the subset of C(W+) con-
sisting of pairs (A, Φ), where Φ �≡ 0. Now, C∗(W+) is weakly con-
tractible, and the space Map(X; S1) acts freely on it, so the irreducible
configuration space, which is

B∗(W+) = C∗(W+)/Map(X; S1)

is weakly homotopy equivalent to the classifying space of Map(X; S1).
Now,

Map(X; S1) ∼ Map(X; S1)e × π0(Map(X; S1)) ∼ S1 × H1(X; Z);

so

B∗(W+) ∼ CP
∞ × H1(X; R)

H1(X; Z)
,

and
H∗(B∗(W+); Z) ∼= Z[U ] ⊗ Λ∗H1(X; Z),

where U is a generator with grading two. More invariantly, we define

A(X) = Z[H0(X; Z)] ⊗ Λ∗H1(X; Z),

graded by declaring H0(X; Z) to have grading two and H1(X; Z) to have
grading one. Then, we have seen that

H∗(B∗(W+); Z) ∼= A(X).

We describe two functorial mechanisms for constructing generators
in H∗(B∗(W+); Z). Over the space X × B∗(W+), there is a universal
line bundle L = X × S1 × C∗(W+)/Map(X, S1), where the action is
defined by

u(x, ζ, A,Φ) = (x, u(x)ζ, A + u−1du, uΦ).

Using this class we can define a “µ-map”

µ : (H0 ⊕ H1)(X; Z) −→ H∗(B∗(W+)),
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which sends a homology class of degree i to a cohomology class of degree
2 − i, by

µ(x) = c1(L)/x;

i.e., µ(x) is the cohomology class on B∗(W+) with the property that for
any homology class c ∈ H∗(B∗(W+)),

〈µ(x), c〉 = 〈c1(L), x × c〉.
We describe another convenient mechanism for constructing one-

dimensional cohomology in C(W+) as follows. A closed curve x : S1 −→
X induces a map

Holx : B∗(W+) −→ S1

which is defined to be the holonomy of the connection A around the
curve x. The pull-back of the volume form dθ of S1 by this map gives
rise to a one-dimensional cohomology class Hol∗x(dθ) associated to x,
which we call the holonomy class around x.

Proposition 9.1. The cohomology groups of the configuration
space B∗(W+) are generated by the image of the µ-map. Moreover, given
x ∈ H1(X; Z), µ(x) is the holonomy class around x, Hol∗x(dθ)|B∗

(W+)
.

Remark 9.2. Note that Hol∗x(dθ) is naturally defined over the en-
tire configuration space

B(W+) = C(W+)/Map(X, S1) ∼ H1(X; R)
H1(X; Z)

.

Proof. We begin by proving the second claim. Note that L comes
with a tautological connection along the X factor, with the property
that for any path β : S1 −→ X and connection A ∈ C(W+),

Holβ×A(L) = Holβ(A).(42)

C(W+) Now, fix a path in X,

β : S1 −→ X.

We need to show that for all paths in the configuration space

α : S1 −→ B(W+)(s),

we have that

〈c1(L), α × β〉 = deg(Holβ ◦ α : S1 −→ S1).
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This follows from the fact that for a line bundle L over the the torus
S1 × S1, the first Chern number is the degree of the map from S1 × S1

defined by
x �→ Holx×S1L

(a map which makes sense only after one puts a connection on L, but
the degree is independent of this connection, so we left it out of the
notation), together with the universal property of Equation (42). Thus,
we have identified µ on any one-dimensional homology class.

The rest of the proposition is established, once we see that for a
point x ∈ X, µ[x] generates H2 of the configuration space. But this
follows easily from the fact that Map(X, S1)e acts freely on the space
of irreducible configurations. q.e.d.

With this concrete understanding of the µ-classes, we turn to a dis-
cussion of submanifold representatives for them.

Given a point x ∈ X, let Lx denote the line bundle associated to
the base fibration of X; i.e., it is the restriction of the universal line
bundle L to the slice B∗(W+) ∼= {x} × B∗(W+) ⊂ X ×B∗(W+). Given
a point in the fiber Ψ(x) ∈ W+

x , we can construct a canonical section
over B(X, W+) by

[A, Φ] �→ [A, Φ, 〈Φ(x), Ψ(x)〉].

The zero set of this section in B(X, W+) is a codimension-two subman-
ifold representing µ[x]. The restriction of this section to a moduli space
MX(s) ⊂ B(X, s) is not, in general, transverse. However, by mollifying
the construction appropriately, we can find a section which is generic
over the moduli space, and hence obtain a divisor V (x) representing
µ[x], as follows.

Definition 9.3. Fix a ball B ⊂ X around x and a non-vanishing
section Ψ of W+|B. Given a self-dual two-form λ which is compactly
supported over B, the λ-mollified section is the section of Lx defined by

[A, Φ] �→ [A, Φ,

∫
B
〈λ · Φ, Ψ〉].

Lemma 9.4. There are L2 sections λ compactly supported in B so
that the λ-mollified section of Lx, restricted to the moduli space MX ,
vanishes transversally.
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Proof. Fix a compactly-supported cut-off function β in B, and con-
sider the section

[A, Φ] × λ �→ [A, Φ,

∫
B
〈λ · Φ, Ψ〉β]

of π∗
2(Lx), thought of as a line bundle over Ω+(B) × M(X, s), giving

Ω+(B) the L2 topology. This transversality follows from the fact that,
for any [A, Φ] ∈ MX , as we vary λ, the integral

∫
B〈λ·Φ, Ψ〉β can take on

any complex value. This, in turn, follows from the unique continuation
theorem for elliptic differential operators, which guarantees that the
section Φ cannot vanish identically over B. q.e.d.

Remark 9.5. In effect, the above lemma tells us how to construct
a divisor representative V (x) for µ[x] when [x] ∈ H0(X); this divisor
is represented by the zero-set of the λ-mollified section of Lx. Find-
ing codimension-one representatives for µ[γ], where γ ∈ H1(X) is even
easier: one need only find a regular value θ for the map

Holγ : MX(s) → S1.

Then, Hol−1
γ (θ) is the submanifold V (γ) representing µ[γ] over MX(s).
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[21] J. W. Morgan, Z. Szabó & C. H. Taubes, A product formula for Seiberg-Witten
invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996)
706–788.
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