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The Teichmiiller space of once-punctured tori can be realized as
the upper half-plane H, or via the Maskit embedding as a proper
subset of [H. We construct and approximate the explicit biholo-
morphic map from Maskit’s embedding to [H. This map involves
the integration of an abelian differential constructed using an
infinite sum over the elements of a Kleinian group. We approxi-
mate this sum and thereby find the locations of the square torus
and the hexagonal torus in Maskit’s embedding, and we show
that the biholomorphism does not send vertical pleating rays in
Maskit’s embedding to vertical lines in H.

1. INTRODUCTION

Masgkit initiated an investigation of the Teichmiiller
space of Riemann surfaces using explicit “scissors-
and-glue” constructions of Riemann surfaces of a
given type by means of his powerful generalizations
of Klein’s combination theorem. This work has been
continued by Kra in recent papers, where he visu-
alizes the process as “plumbing” Riemann surfaces
together. These coordinates are interesting even
in the one-dimensional cases of a once-punctured
torus or a four-times punctured sphere. Both of
these surfaces have Teichmiiller spaces which are bi-
holomorphically equivalent to the upper half-plane
H, which is the Teichmiiller space of the ordinary
compact torus. The mapping from the Teichmiller
space T'(1,1) of once-punctured tori to H is espe-
cially simple, as it amounts to “filling in” the punc-
ture in a standard way to obtain a compact torus.
Nonetheless, the precise embedding of Teichmiiller
space according to Maskit’s recipe has turned out
to be a domain in H with a very unusual fractal-like
boundary. A numerical plot (see Figure 1) of this
boundary was first shown in [Wright n.d.]; it and
other similar “cuspy curves” have appeared since
in several places, including [Keen and Series 1993;
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FIGURE 2. Pleating rays in My ;.

group element W,,, € G, which becomes parabolic
at the cusp such that the trace of W, equals 2
at the cusp, and the trace is real and greater than
2 on a ray contained in M;;. Keen and Series
showed that there is a unique branch of the locus
{u € C : Trace(W,,,) > 2} which is asymptotic to
the line Rep = 2p/q as p — oco. This branch is the
p/qg-pleating ray.

It might be reasonable to guess that the rational
pleating rays in M ; are sent to vertical lines under
the biholomorphism 1, but our numerical approxi-
mations for ¢ show that this is not the case.

2. THE MASKIT-KRA EMBEDDINGS OF TEICHMULLER
SPACE

Let T'(g,n) denote the Teichmiiller space of marked
Riemann surfaces of genus g with n punctures. (A
Riemann surface is marked by specifying a particu-
lar set of generators for its fundamental group.) The
embedding of T'(g,n) with which we are concerned
first appeared in [Maskit 1974], and is sometimes
called the Maskit embedding:

Theorem 2.1. Let S be a marked Riemann surface of
type (g,n), 3¢9 —3 +n > 0. Then S can be real-
ized as A(G)/G, where G is a terminal b-group with
invariant component A(G) and G is generated by
transformations which represent the elements of the
fundamental group of S specified by the marking.

The group G depends upon 3g — 3 + n complex pa-
rameters in the upper half-plane H. Thus, T(g,n)
is embedded in H**",

Kra [1988; 1990] showed that for 3g — 3 +n > 1,
the group G can be algebraically constructed from

simpler groups via amalgamated free products and
HNN extensions using Maskit’s First and Second
Combination Theorems. For a detailed description
of Maskit’s theorems, see [Maskit 1987].

In the following construction of 7'(1,1), we use
the notation of [Wright n.d.], where a more detailed
description of T'(1,1) is presented.

Let I'y denote the Kleinian group generated by the
parabolic transformations S; and Sy, where S;(z) =
z+2 and S>(z) = z/(22+1) (see Figure 3). Let H,,
denote the lower half-plane. Then the ordinary set
Q(Ty) is HUH,, and the quotient space (I'y)/T
is the union of two triply-punctured spheres. To
construct a surface of type (1,1) (that is, a once-
punctured torus), cut off two punctures from H/T',
along simple closed curves and glue the simple closed
curves together. To achieve this algebraically we
want to find a transformation T which conjugates S,
to S;. The assumption T'S,T~! = S; implies that
T(z) = T,(2) = p+ 1/z for some complex param-
eter u. In order for the surface Hy /Ty to remain
unchanged, it is necessary to consider only those
values of p for which Impu > 0. Now let G, de-
note the HNN extension of I'y by T, (see Figure 3
again). The group G, is generated by S; and T,.
The Teichmiiller space T'(1,1) is embedded in H as
the set of all p € H for which G, is a terminal
b-group and A(G,)/G, is a once-punctured torus;
the marking on A(G,)/G, is the distinguished set
of generators of m(A(G,)/G,) represented by the
set of group elements {S;,T,,}. Let M; ; denote the
embedding of T'(1,1) in H. Wright [n.d.] has shown
that {z : Imz > 2} C M;; C {z : Imz > 1}; and
€ M, if and only if p+2 € M, 1; and p € M, ;
if and only if —fi € M ;.
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FIGURE 3. Left: The action in the group I'y = (S1,S2). Right: The action in the group G, the HNN extension

of Ty by T, (where Im i > 2).

For pn € M, every parabolic element in G, is
conjugate to a power of Sy, Sy, or SlTqullel =
S,S5;'. The puncture on A(G,)/G,, is the projec-
tion of the fixed point (2 = 1) of $;5, '; those punc-
tures corresponding to S; and S, were cut off by the
transformation 7),.

We collect in a lemma certain facts about the in-
variant component A(G,) that will be useful later.

Lemma 2.2. Let n € M, ;.

(1) A(G,.) is contained in the horizontal strip {z €
H:Imz <Imu}.

(2) A(G,) is symmetric about the point /2.

(3) If Imp > 2, the horizontal line Imz = Im /2
and the line segment from i to u—i are contained

in A(G).

Proof. Part (1) follows from the fact that T, takes
the lower half-plane onto {z € H : Im z > Im pu}.

To prove part (2), define R,(z) = g — z. Then
R,SR;* = S7! and R, T,R;' = T, ", so we have
R,G,R," = G, and R,(A(G,)) = A(G,).

Maskit’s Second Combination Theorem [1987] can
be used to show that if Im y > 2 then the shaded
region in Figure 3 is a fundamental domain for G/,.
Part (3) of the lemma follows easily. O

3. DIFFERENTIALS, POINCARE SERIES, AND THE
BIHOLOMORPHISM

Let I be a Kleinian group with an invariant compo-
nent A(T") such that A(T')/T" is a Riemann surface
of type (g,n). Our immediate goals are to define

an automorphic form for I' and to describe how
to “fill in” a puncture of A(T)/T'; we will follow
the arguments in [Lehner 1964|. Suppose F(z) is a
function which is meromorphic in A(T"), and sup-
pose there is some fixed nonnegative integer ¢ such
that F(v(2))7'(2)? = F(z) for all y € I'. If n > 0,
there is a parabolic element of I" with a fixed point p
that projects to a puncture of A(I')/I". Such a fixed
point is called a parabolic vertexr. The subgroup of
parabolic elements of I' which fix p is generated by
a single element P € I since p projects to a punc-
ture. If p # oo, then since P is parabolic, there is a
constant ¢ such that
1 1

Piz)—p e

z—p
for all z. Thus, (ﬁ)l = (Zip>l,so

P'(z) = (M)Q

Z2—=p

Therefore,

(P(z) = p)F(P(2)) = (P(2) ~ p)* zf(())

= (2 —p)*F (),

and so the function (z — p)??F(2) is invariant under
the group (P).

There is a circular disc D contained in A(I") which
is precisely invariant under P so that D/(P) is natu-
rally embedded in A(T")/T" (see [Matsuzaki and Tani-
guchi 1998, p. 48], for example); D is called a cusped
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region for the parabolic vertex p of P. The map

271
Z=t=exp——
c(z=p)
is a conformal map from D onto a punctured disc
around the origin A — {0}. Furthermore,

27 271
T exp
c(z —p) c(w —p)

if and only if z = P"(w) for some integer n. Hence
this map induces a conformal homeomorphism ¢ :
D/(P) - A — {0}. If we define {(P,) = 0, then
the surface A(T")/T" with the puncture P, “filled in”
is the Riemann surface A(T")/T" along with another
point P, and a coordinate chart (D/(P)UP,,&). We
let A(T")/T" denote the compact surface obtained by
filling in all the punctures.

Since (2 — p)**F(z) is invariant under (P) and
meromorphic in A(T"), there is a function g(t), mero-
morphic in A — {0}, so that g(t) = (z — p)**F(2).
Then F' is meromorphic (holomorphic) at p if g is
meromorphic (holomorphic) at the origin.

If F(z) is meromorphic on A(T') and on the set
of parabolic vertices of ', and F(y(z))v'(2)? = F(z)
for every v € T', then F' is an automorphic form of
weight —2q for I', or an automorphic g-form for T.
Likewise, F' is a holomorphic automorphic q-form
for I if it is holomorphic on A(I') and on the set of
parabolic vertices of I', and F(v(z))7'(2)? = F(z)
forall v € T.

A holomorphic automorphic ¢-form F for I' is a
cusp form of weight —2q for I' if whenever p is a
parabolic vertex for the parabolic element P € T,
and {z,} is a sequence of points in a cusped region
for p with z, — p, then F(z,) — 0. This is equiv-
alent (see [Kra 1972], for example) to the condition
that

exp

[ i@l dedy < o,

w

where w is any fundamental domain for the action
of I" on A(T) and where A(z) is the Poincaré metric
on A(T).

Given a Riemann surface S, a (holomorphic) g¢-
differential ¢ on S is an assignment of a (holomor-
phic) function f to each local coordinate z on S such
that f(2)(dz)? is invariant under change of local co-
ordinates. A 1-differential is called an abelian differ-
ential; a 2-differential is called a quadratic differen-

tial. A (holomorphic) automorphic form of weight
—2q for T will project to a (holomorphic) g-differ-
ential on A(T)/T.

The following lemmas are well-known.
example, [Lehner 1964; Kra 1972].

See, for

Lemma 3.1. If F(z) is a cusp form of weight —2q for

T, then the corresponding q-differential on A(T')/T
has a pole of order < q — 1 at each puncture.

Lemma 3.2. The sum of the residues of an abelian
differential over all points on a compact Riemann
surface is zero.

Proposition 3.3. If F'(z) # 0 is a cusp form of weight
—4 for G, then F(z) # 0 for any z € A(G,,).

Proof. The cusp form F projects to a quadratic differ-
ential f on A(G,)/G,, holomorphic on A(G,)/G,.
Furthermore, by Lemma 3.1, f has at most a simple
pole at the puncture P,. Let g # 0 denote a holo-
morphic abelian differential on A(G,,)/G,. By using
the fact that the complex dimension of the space of
holomorphic abelian differentials on a torus is 1 (see
[Farkas and Kra 1991, Proposition I11.5.2], for exam-
ple), we can see that g does not take the value 0 on
A(G,)/G,. Thus, f/gis a meromorphic abelian dif-
ferential on A(G,)/G,, holomorphic on A(G,)/G,
and having at most a simple pole at Fy. By Lemma
3.2, f/g must be a holomorphic abelian differential.
Therefore, f/g is nonzero on A(G,)/G,, and so F
is nonzero on A(G),). O

The following lemma can be found in [Kra 1972 and
in many analysis textbooks.

Lemma 3.4. Suppose ) is an open set in C, and
{fu(2)}22, is a sequence of holomorphic functions

on . Ifffﬂ oo N fn(2) da dy is finite, >0 | fu(2)

converges absolutely uniformly on all compact sub-
sets of 2.

Let (S1)\G,, denote any set consisting of exactly one
element from each right coset of (S;) in G,,. Two
cosets (S1)g1 and (S;)g. are the same if and only
if go = S7g, for some integer n. Since (S19)'(z) =
g'(z) for all g € G, ¢i(2) = gs(z) for any two el-
ements g;, ¢g» in the same right coset. Hence the
relative Poincaré series

Fy(p,2) = Fy(2) =
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is a well-defined series for any integer q.

Proposition 3.5. The series Py(u,z) converges abso-
lutely uniformly on compact subsets of A(G,) to a
cusp form of weight -4 for G ,.

Proof. Let V' be the vertical strip {z : 0 < Rez < 2},
and let w be any fundamental domain for the action
of G, on A(G,). For each g; € (S1)\G,, partition
w into sets w; ;, such that for each k, there is a coset
representative g;, which represents the same right
coset as g; and which maps w;; into V. Then the
sets g;x(wj ) are mutually disjoint, and

.20

dx dy

g; € 51)\G

s// > g dedy
T 9i€(S1\G

= Z /gg 2| da dy
€(S1\G,

- ¥ z//mjk | do dy

g;€(S1\G. Kk

= Z Z//dmdy

E(SINGL K 95,k (wj,k)

= // dz dy < oo.

A(G,)

By Lemma 3.4, the series P,(u, z) converges abso-
lutely uniformly on compact subsets of w. Since w
was an arbitrary fundamental domain, this series
converges absolutely uniformly (to a holomorphic
function) on compact subsets of A(G,,).

To show that P,(z) is an automorphic 2-form for
G, note that if v € G,,, then

Py (2= Y. ((g07)(2)*

9E(S1\Gu

= Py(z2).

Since [[_|P:(z)|dzdy < oo for any fundamental
domain for the action of G, on A(G,), P:(z) is a
cusp form of weight —4 for G,. O

Though Proposition 3.5 guarantees the convergence
of the series P(u, z), it does not guarantee that the
series converges to a function which is not identically
zero on A(G,). The fact that P»(u, z) is nontrivial
can be proven using [Kra 1984a, Proposition 5.15],
where Kra uses Eichler cohomology; but to proceed

in that direction now would take us too far from
our path. In Section 4 we develop a method for ap-
proximating P,(u, z). Our theoretical error bounds
together with our computer calculations can be used
to show that for given values of u and z, Ps(u, 2) is
bounded away from 0. Proposition 3.3 would then
imply that P,(u, 2) is not identically zero on A(G),).

Since P> (u, z) never takes the value 0 on A(G,), it
has an analytic square root \/Ps(u, z) there, which
is a cusp form of weight —2 for G,.

Let ¢ denote the abelian differential on A(G,)/G,
which is the projection of \/Ps(p, z) dz. Then {(}
is a basis for the space of holomorphic abelian dif-
ferentials on A(G,)/G,. (This space has complex
dimension 1 by the Riemann-Roch Theorem; see
[Farkas and Kra 1991, Proposition II1.5.2].) Choose
a base point Qo on A(G,)/G,, and let

{a(p), b(p)}

be the canonical basis for 71 (A(G,)/G,, Qo), so that
the loops a(p) and b(u) have exactly one point in
common and the angle from the positive direction
on the a() loop to the positive direction on the b(u)
loop at the point of intersection is positive and less
than 7 radians. (Then if @ is any point in A(G,),
then any curve in A(G,) from @ to S1(Q) projects to
a loop on A(G,)/G,, in the homotopy class of a(u),
and any curve in A(G,) from @ to T,,(Q) projects to
aloop on A(G,)/G,, in the homotopy class of b(1).)
Now define ¢ : M; ; — H by

fb(u) ¢
fa(u) ¢

It follows from the so-called “bilinear relations of
Riemann” that the imaginary part of ¥ (u) is posi-
tive. See, for example, [Swinnerton-Dyer 1974, p. 11;
Farkas and Kra 1991; Kra 1972; Springer 1957].

It is well-known (see [Farkas and Kra 1991] or
[Swinnerton-Dyer 1974], for example) that the map
from a compact torus to its Jacobian variety is a
conformal homeomorphism. This map «; sends the
compact torus A(G,)/G, to the torus C/L,, where
L, denotes the lattice over Z generated by 1 and 7,
and where 7 = fb(u) C/fa(u) ¢. Given a choice of base
point Qy € A(G,)/G,, the map o, sends a point P
on A(G,)/G, to the point 7, (f;o {/fa(u) ¢), where
7, : C — C/L, is the natural projection.

Y(p)=1=
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Let 7; denote the image of the “filled in” punc-
ture Py of A(G,)/G, under the map a4, and let L.
denote the lattice {w + 7 : w € L.}. Then the
map « : A(G,)/G, = (C — L.+)/L,, which is the
restriction of «; to the punctured surface, is also a
conformal homeomorphism. Furthermore, it clearly
preserves the marking.

Now choose a base point Q € A(G,) and define
¢: A(G,) = C— L. by

Jo¢
¢(z) = Q12 .-
Jo ¢
Let 7, : A(G,) — A(G,)/G, be the natural pro-
jection. Then oo m, = 7, o, so ¢ must map

any fundamental domain for the action of G, on
A(G,) onto a fundamental domain in C — L,.. It
follows from the equations ¢(S1(z)) = ¢(z) + 1 and
©(T,(2)) = ¢(z) + 7 that ¢ is surjective, and it is
easy to see that ¢ is a covering map.

We will now gather specific facts concerning the
images of certain subsets of M; ; under the map 1 :
M, ; — H. These facts depend on the symmetries
of the Poincaré series Pp(u,z). For example, the
transformation R,(2) = p — 2 conjugates S; to S;'
and T}, to T,,*, and so for u € A(G),),

P(2)= Y (RogoR, ()
9€(SING,
= > Ju—2*=P-2).
ge(S1\G

Another symmetry is this:
Lemma 3.6. Py(u, z) = Py(—f, —Z).

Proof. Define J(z) = —z. Then J ! = J, and
JT,J = T_;, and JS;J = S;'. Hence, as g varies
over all the right coset representatives of (S;) in G,
JgJ varies over all the right coset representatives of
(S1) in G_j.

It follows from a simple calculation that for any
Mébius transformation g, (JgJ)' (z) = —(Jg'J)(2);
and thus,

SN2 ; 2 o2
(9'(2)" = (JgI(=2))" = ((JgJ)(-2))".
Applying this equality to our series Py(u,z) yields
the result. O

Consider u = it, with ¢ > 2. Let L; denote the
horizontal line segment = +it/2, where —1 <z < 1;

and let L, denote the vertical line segment iy, where
1 <y <t—1 Then by Lemma 2.2, L; and L,
are contained in A(G,). By Lemma 3.6 and our
note that Py(z) = Po(p — 2), Py(z) = Py(—2) =
Py(it + Z). Hence, Py(x 4 it/2) = Py(x + it/2) and
Py(z) is real on L;. Similarly, if 1 < y < ¢t—1
then P,(iy) = P»(iy) and P(z) is real on Ly. The
line segments L; and L, project to the loops a(u)
and b(yu), respectively, on the surface A(G,)/G,; it
follows that 1 : M, ; — H takes the imaginary ray in
M, ; to the imaginary ray in H. We state this below
as Corollary 3.8, and it is an immediate consequence
of the a more general result:

Proposition 3.7. (—[i) = —(u).
Proof. Let J(z) = —z. Then JG,J * = G_;, and
A(G_z) = J(A(G,)). Choose a base point @ in
A(G_p). Then J(Q) = —Q is a point in A(G,,) and
Jo ™D /Py, 2) dz

Q+2 VP (—h,z)dz

@ \/ﬁd

P(—p) =

Now using the fact that —7_,(Q) = TM(—Q) and
applying Lemma 3.6, we see that

"CD Py, 2) d(z
Y(—f1) = == 2 ()2—1/)(#)- O
0= [P d2)

Corollary 3.8. The map v : M, ; — H takes the imag-
inary ray in M, to the imaginary ray in H.

Proposition 3.9. The map ¢ : M, — H satisfies the
equation Y (pu + 2n) = () + n, for any integer n.

Proof. Since T}, 15, = STT,,, we have G, 12, = G, and

1w
Py(p, z) = Po(p+2n, z) for any p € M; ;. Choose a

base point Q € A(G,). Then

fg?T“(Q) VP +2n,2)dz
JoH D /Py 20, 2) dz

Write ¢ = \/Py(p, z) dz, and separate the integral
in the numerator into parts:
n o rSITL(Q)
Dm0t
517 T (Q)

[

Y(p+2n) =
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The equality ¥ (p + 2n) = ¢(u) + n follows immedi-
ately. O

Corollary 3.10. ¢ takes the ray Rep =1 in M, to

the vertical ray ReT = % in H.

Proof. Propositions 3.9 and 3.7 imply that

PYlit+1) = (it —1) = (it —1+2) 1
= —(it+1)+1.

Thus, Re¢(it+1) = 1. O

4. THE ERROR IN APPROXIMATING THE SERIES

Since the biholomorphism ¢ : M;; — H involves
the integral of the abelian differential \/ Py(p, 2) dz
on the once-punctured torus, we would like to nu-
merically approximate the relative Poincaré series

Z g/(z)2

9E(S1\Gy

PZ(Mvz) =

for points z € A(G,). In order to do this we con-
sider the tree structure of the group G,,, which is a
free group on two generators S and T. Any group
element in G, is a word in the letters S, S, T and
T~!, and appears as a vertex in the infinite graph
shown in Figure 4. There is an edge between two
vertices if and only if the word corresponding to one
vertex can be obtained by adding one letter to the
end of the word corresponding to the other vertex.

Since the group is free, there are no cycles and
the graph is a tree. Each vertex has degree 4 since
there are 4 letters from which to choose.

The tree structure of GG, helps us visualize an or-
der on the elements of GG, we can use when evaluat-
ing the Poincaré series. We let the identity element
I be the first (smallest) element. The edges in the
tree ending in the vertex I lead to 4 branches of the
tree; the vertices in different branches correspond to
words that begin with different letters (7, S, T 1,
or S~ 1). Circling the vertex I in a counter-clockwise
direction, we define

T<S<T1'<sSt

We continue the inequalities in a counter-clockwise
direction in every branch of the tree. For two words
g1 = lily---1, and g, = 1y -+ - v, in the letters S,

S~ T and T' (where [;l;1; and v;v;,, are non-
trivial for all 7), we say that g, is a prefiz of g, and
write

91 £ 9o,

ifm>nandl; =y, for 1 <i<n. We write

g1 < g2

if g1 C go and g; # g, or if there is a positive integer
p such that [; = v; for 1 < ¢ <p, l,41 # Vps1, and:

(Mifl, = v, =T then )11 < V41, using the order
S1<T<S;or

2)if l, = v, = S then [,;; < V41, using the order
T<S<T % or

3)ifl, = v, = T~ then l,;; < V1, using the order
S<T1!'<S*tor

4)ifl, =v, =S ! thenl,,; < v,.1, using the order
T-'<S'<T.

The smallest 6 group elements, in order, will be I,
T, TS™', TS™'T~', TS™'T-'S, and TS~'T'ST.
The word T3S—'T~* is smaller than T3S—>T*S~!
because the two words agree in the first four letters
and any word beginning with 73S~ !T~! is smaller
than any word beginning with 72572

Our choice of ordering is similar to that obtained
through the preorder traversal of a binary tree. We
could have chosen to order words based upon length
(number of letters), but the length of a word g is not
a good predictor for the size of |¢'(2)?].

Since we need to find ¢’(2)? only for g € (S;)\G,,
we simply cut off the branches containing words be-
ginning with S and S~! from the tree.

Now that we have an order in which to evaluate
the sum 3° ¢ v ¢, g'(2)?, we need to figure out how
far to traverse a branch before we stop and pro-
ceed with the next branch. We start by considering
the inverse image of the point at infinity under a
word g. Recall that the isometric circle of a Mobius
transformation g (which does not fix the point at
infinity) is the circle I(g) = {z : |¢'(2)|] = 1}. The
center of I(g) is the point g !(c0). The transforma-
tion g takes the interior of I(g) onto the exterior of
I(g'). The isometric circle of T, is the unit circle,
and I(T,*) is the circle {2 : |z — p| = 1}.

Proposition 4.1. Let g = g1g2--- g € (S1)\Gp, 91 =
Tuﬂa gigiv1 = 1 for 1 < i < n—1, and g; €
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FIGURE 4. The tree structure of G,.

{81,8, 1, T, T, '} for 2 < i < n. Suppose 0 <
Rep <2 and Imp > 2.

(i) If g, = T,,, then g~ (c0) is inside I(T},).
(ii) If g = T, ', then g~'(00) is inside I(T,").

(iii) If g, = S1, then g=*(00) is to the left of Rez =
Rep/2.

(iv) If g, = S;', then g~'(oc0) is to the right of
Rez = Rep/2.

Proof. We use induction on the length of the word
n. If n =1, then g = Tfl and the proof is clear.
Assume the proposition is true for all words of length
< n; we want to show its truth for words g of length
n+ 1. Write g = g192 - - Gnt1-

First suppose g, 11 = S;. Thenif g, = S, g7*(00)
is to the left of Rez = Re /2 — 2 by the induction
hypothesis. If g, = T),, then g,'--gy*(c0) is in
I(T,), and so g~'(o0) is to the left of Rez = —1.
If g, = T;', then g;'--- gy *(oc0) is in I(T "), so
g !(o0) is to the left of Rez = Reu — 1. Since
Rep <2, Rep—1 < Repu/2.

Next suppose g,4+1 = T),. Then if g, = T, also,
then gt - g7 '(0o) is inside I(7},) by hypothesis.

Since the isometric circles of T}, and T, ! do not
intersect (because Im p1 > 2), g~ !(00) is inside I(7},).

If g, = S1, we must consider the previous letter
also. If g,_1g, = S1 51, then g ' -+ g7 " (00) is to the
left of Rez = Re /2 — 2, which is outside I(T,, "),
and so ¢g~'(oc0) is inside I(T},). If g,_19, = T,51,
then g, ', --- gy '(0c0) is inside I(7},), and

Gn' g1 (00)

is to the left of Rez = —1, and so g !(o0) is inside
I(T,). If gu_1g, = T, 'S, then g, ! --- g7 " (c0) is
inside I(T, "), and g, --- g ' (00) is outside I(T}, ),
so g~*(o0) is inside I(T},).

If g, = S;! we must again consider the previous
letter. If g, 19, = S; 'S, then g7'--- g, (00) is
to the right of Rez = Reu/2 + 2. Since Rep < 2,
we have Rep/2 +2 > Repu + 1, so g7t gy ' (c0)
is outside I(T,"). Hence, g~'(c0) is inside I(T}).
If g 19, = T,S;", then g, ' - - g '(00) is inside
I(T,), and g;' - - g; '(c0) is below the line Im z = 1;
since Im pu > 2, ;' -+ g; ' (00) is outside I(T);") and
thus g~ (co) is inside I(T,). If g, 19, = T;' S,
then g, !, -~ gy ' (c0) isinside I(T), 1), g, * - - g1 ' (c0)
is outside I(T}, "), and g~'(o0) is inside I(T}).
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The cases where g, 1 = S; L and Jni1 = T;; I can
be proven using the symmetry of the transformation
R,(z) = p — 2, which fixes co and conjugates S;*
to Sy and T, ' to T),. First note that
Rug *(00) = Ryugniy - g1 Ru(00) = gatr -+ 91(00).
By the preceding arguments, if g,,; = S;*, then
R,g7"(o0) is to the left of Rez = Rep/2. Thus
g '(o0) is to the right of Rez = Repu/2. If g,1 =
T, ', then R,g"(c0) is inside I(T,), so g~'(o0) is
inside I(T,, ). O

Corollary 4.2. Under the hypotheses of Proposition
4.1, if g = T, Si, or Sy, then g=1(c0) is outside

I(T,); if gn = T, ", S1, or S;*, then g~*(oo) is
outside I1(T,).

Proof. Suppose g, = T,,. By Proposition 4.1, g~*(c0)
is inside I(T}), which is disjoint from I(7,'). By
similar reasoning, if g, = T,,", then g~'(oc0) is out-
side I(T},).

If g, = S;, we consider the previous letter. If
Gn-19n = 5151, then by Proposition 4.1, g*(o0) is
to the left of Rez = Rep/2 — 2. Since Rep < 2, we
have Rep/2 — 2 < —1, so g *(o0) is outside I(T},)
and I(T,*). If g, 19, = T,,S1, then by Proposition
4.1, g *(00) is to the left of Rez = —1; 50 g '(00) is
outside I(T},) and I(T,"). If gn_1g, = T, 'S, then
g '(o0) is above the horizontal line Im = — 1 and to
the left of the line Rez = Repu — 1; so g~ '(00) is
outside both isometric circles.

For the final case g, = S; * we apply the transfor-
mation R,(z) = u — z which conjugates S; ' to S
and Tu_l to T, and which fixes co. Now R,g~'(00) =

gn -+ - g1(00), and by the preceding argument, this is
outside I(T),) and I(T,"). Hence, g~'(00) is outside
I(T,) and I(T,, ") also O

Now consider the problem of finding a bound on
‘Z(SQ\GH g'(20)?|, where zo € A(G,). Let D(z,r)
denote a disk contained in some fundamental do-
main for G, in A(G,) with center z, and radius
r > 0. Then for any g € (S;)\G,., ¢'(2)? is holomor-
phic in A(G,) and by the mean value property for
holomorphic functions,

o= [[ o6

Zo,’r‘

2dx dy.

Thus,

‘ 20) ‘<7rr2 // |g ‘dxdy

D(z0,)
The last integral equals the area of g(D(zg,7)) di-
vided by 7r2.

Lemma 2.2 assures us that the invariant compo-
nent A(G),) is contained in the horizontal strip {z €
H : Imz < Impu}; so each of the disks g(D(zo,7))
is also contained in this strip. Since D(zq,r) is con-
tained in a fundamental domain for G, none of the
disks g(D(zo,7)) intersect. Hence, the sum of the
areas of all the disks g(D(zo,7)) for g € (S1)\G,, is
less than the area of the rectangle {z € H : Imz <
Imu, 0 < Rez < 2}, which is 2Imu. We have
proven the following result.

Proposition 4.3. Suppose that D(zy,r) is contained in
some fundamental domain for G,. Then

2Im p
2
Z 19'(20)7] < T2

gE(SIN\G,
Recall that the map ¢ : M; ; — H is given by
I €
77/}(”) = f . C,
a(p)

where {a(u),b(u)} is the canonical basis for the fun-
damental group of A(G,)/G,, with given base point.
If Im g > 2, then the line segments from p/2 — 1 to
Si1(p/2—1) = pu/2+1 and from i to T, (i) = p—i are
in A(G,,) (by Lemma 2.2) and project to loops which
comprise such a basis {a(u),b(n)}. To make com-
putations easier, however, we need only use half of
each of these line segments: using the symmetry of
Py (p, z) about the point z = 1/2 given by Pa(u, z) =
Py(pu, p—z), we can integrate /Ps(u, z) dz over the
line segments from /2 —1 to p/2 and from i to u/2.
We can also use the equality ¥(u + 2) = ¥(u) + 1
(Proposition 3.9) to restrict our attention to the case
0<Reu<2

If Imp < 2, the line segments from p/2 — 1 to
p/2 and from i to pu/2 might not be contained in
A(G),), so more care must be taken to construct
curves in A(G,) projecting to the loops a(y) and
b(p). Furthermore, Corollary 4.2 does not hold for
all such p. Since this corollary will play a crucial
role in our approximations of P(u,z), we restrict
our attention to the case where Im y > 2.
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Now let zy be any point on the line segment from
1/2—1to /2 or on the line segment from i to u/2.
Choose a radius r so that the disk D(zq, ) satisfies:

(@ D(zp,r) is inside the vertical strip
{z: =2 +Rep/2 <Rez < i+Rep/2};
(b) D(zp,7) is below the horizontal line given by
Imz=Im(p) — 1,

(©) T,,(D(29,r)) is above the line Im z = 1;
(d) T,,(D(29,r)) is inside the vertical strip

{z: =14+ Repu <Rez<1+Reu};

(e) S1(D(zp,7)) and S;'(D(z0,7)) are outside the
isometric circle I(7},); and

(f) D(zo,r) is contained in some fundamental do-
main for G, in A(G,).

It is easy to construct a radius r which satisfies all
of these conditions if z5 # i. For z; = 4, the only
condition which is nontrivial is (f). As the shaded
region R in Figure 3 is a fundamental domain for
G, this shaded region and its image under T, ' are
subsets of A(G,). By computing the region T}, *(R)
it is not difficult to find an r satisfying (f).

Proposition 4.4. Let

g=9192" " Gn,

where g; € {Sl,Sfl,Tu,Tu_l} for all i, and where
9gigiv1 1 for 1 <i<mn—1. Suppose 0 < Repu < 2
and Im p > 2, and that D(zo,7) satisfies conditions
(a) through (f) above. Then

(i) if T, " C g, then g(D(z0,7)) is contained in I(T),);
and

(i) if T, © g and n > 2, then g(D(z,r)) is con-
tained in I(T,").

Proof. We use induction on n. In the basis steps,
either g = TH’1 orn = 2and g¢ = T,. First let
g = T, '. The disk D(z,r) is outside I(T,") by
condition (b), so g takes D(zo,r) inside I(T},).

Next let n = 2 and g; = T),. Condition (c) implies
that 7,(D(zo,)) is outside I(7},), and condition (e)
states that S(D(z,7)) and Sy '(D(z,7)) are out-
side I(T),). Thus T, takes each of these disks inside
I(T;M).

Now assume the statement is true for all words of

length <n, and let g = g1g2 - gn41. Let gy =T, "

Then g = T,'S?, g = T, 'S, ™, or there is some
integer m with —n < m < n such that T, ' SP"T, ' C
g or T;'SPT, T g (with m # 0). If g = T, 5™,
then (i) follows from condition (b). If T ' S*T, ' C
g then write g = T, *S{*T,*h (where possibly h is
the identity). Then by the induction hypothesis,
T, '"h(D(zp,7)) C I(T,). Hence S{"T, *h(D(z,r))
is below the line Im z = 1, which is in the exterior
of I(T, "), and so g(D(z,7)) is in the interior of
I(T,). In the case where g = T, 'S7"T,, condition
(d) implies that S7"T),(D(zo, 7)) lies outside I(T},"),
so that g(D(zp,7)) C I(T,). ¥ T, 'SP"T, E g, m #
0, and T, 'S"T,, # g, then write g = T, ' S"T),h.
By the induction hypothesis, T,,h(D(zo,7)) is inside
I(T,1); so S'T,h(D(z0,7)) is outside I(T, '), and
g(D(zo, 7)) is inside I(T},).

Finally consider the case gy = 7),. Then g =
T,Sf™, or there is some integer m with —n < m <
n such that 7,871, € g or T,S7"T, " C g (with
m # 0). If g = T,,S;™, then (ii) follows from con-
dition (e). If g = T1,S7"T,, condition (c) implies
ST, (D(z,7)) is outside I(T),), so g(D(zo,7)) is
inside I(T;"). If T,57"T, € g and T,S7"T, # g,
then (ii) follows from the induction hypothesis. If
T,587"T,* C g then again (ii) follows from the in-
duction hypothesis. O

Once we have found a value of r satisfying condi-
tions (a) through (f), we can bound Y, |9'(20)?],
for certain types of subsets H of (S;)\G,, as fol-
lows.

First consider H = {g € (S)\G, : 1T, ' C g},
where ¢, is fixed. For g € H, write g = ngu’lh.
By Proposition 4.4, T, 'h(D(z,7)) lies inside I(7},).
By Corollary 4.2, g;'(cc) lies outside I(7T},); so g1
takes the inside of I(T),) to the inside of g;(I(7},)).
Thus, for all g € H, g(D(z,r)) is inside g;(I(T},)).
It follows from the mean value property for holo-
morphic functions that )", |¢'(20)?| is less than the
area inside g, (I(7},)) divided by 7r?.

Next suppose

H={g e (S))\G.:a:1T, E g and 9: T, # g}

where ¢, is fixed. For g € H, write g = ¢:T,h.
By Proposition 4.4, T,,h(D(zo, 7)) lies inside I(T, ).
By Corollary 4.2, g;*(c0) lies outside I(T}'); so g;
takes the inside of (T}, ') to the inside of g, (I(T},')).
Thus, for all g € H, g(D(zo,7)) is inside g; (I(T;1)).

m
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It follows from the mean value property for holo-
morphic functions that )", |¢’(20)?| is less than the
area inside g, (I(7, ")) divided by mr?.

Now let H = {g € (S1)\G,. : ng*IS* C g}. For
g=q:S;'S;'h € H, the set S;'S; h(D(zy,7)) is
to the left of the line Re z = Re 1 — 3 by Proposition
4.4 and conditions (a) and (d). By Proposition 4.1,
g1 ' (00) is inside I(T,), inside I(T, "), or to the right
of Rez = Re 11/2; so g; takes the set

D, ={z:Rez < Reu—3}

to the inside of g,(D;). Thus Y, 19'(20)?* is less
than the area inside the disk g;(D;) divided by 7r?.
As a final case, consider H = {g € (51)\G,
91515151 C g}. For g = ¢,5,5:51h € H, the disk
h(D(zq,r)) is to the right of the vertical line Re z =
—2 by Proposition 4.4 and conditions (a) and (d).
Hence, the set S15151h(D(z,7)) is inside the half
space
Dy ={z:Rez> §}.

By Proposition 4.1, g;'(00) is not inside Ds; so g
takes Dy to the inside of the disk g;(D;). Hence
> 119’ (20)?| is less than the area inside the disk
g1(D) divided by 7r?.

We summarize these results in the following the-
orem. Let A(D) denote the area inside the disk D.

Theorem 4.5. Suppose 0 < Rep < 2 and Impy > 2,
and let zy be any point on the line segment from
1/2 —1 to u/2 or on the line segment from i to
/2. Suppose the disk D(zo,r) satisfies conditions
(a) through (f) above.

() If H={g € (S)\G,.: ¢: T, ' C g} for some fized
g1, then

> 19/ (2o

geEH

(i) If H = {g € (S)\G,
for some fized g,, then

> 19 ()% < —A(gl( (T,7)))-

geH

(i) If H = {g € (S1)\G, : ¢:S7'ST" C g} for some
fized g, then

> 19’ (20

geH

S —A(gl( (T.)))-

: 91T, T g and T, # g}

)l < —A(91(D1))

(iv) If H = {g € (S1)\G,, : 91515151 C g} for some

fized g1, then

> 19 (20

geEH

| < —A(gl(DZ))

This theorem gives us a method to approximate
the infinite series Py(u,2p) and compute an error
bound on this approximation. We first find a value
of r so that the disk D(z,r) satisfies conditions (a)
through (f). Then pick a small positive value e. Now
start adding the terms g'(z0)? of the series using the
order established at the beginning of this section
(I <T, <T,S;" <T,5{'T,;* < ---). Whenever
we arrive at a vertex of the form ¢,7, 1 we check
the size of the disk g¢;(I(7,)). If the area of this
disk is at least £, then we continue with the next
vertex in order. If the area is less than ¢, we trun-
cate the infinite branch {g € (S1)\G, : g: T, "' C g}
and start again with the first vertex following this
infinite branch. Likewise, whenever we arrive at a
vertex of the form g¢,7),, 918718t or g15,5,5:, we
compare the size of the disk g, (I(T,; ")), g1(D1), or
91(Dy), respectively, with e. Whenever the area of
the disk is less than e, we truncate the appropri-
ate infinite branch from the tree and proceed with
the next vertex following the branch. The resulting
approximation to P(u, 2) is the sum

PQ(:u'a 2036) = Z gl(ZO)Qa
geH.
where H. is the subset of (S;)\G,, consisting of those
g for which:

() if ¢:T, " € g then the area inside g, (1(7},)) is at
least ¢;

)it ¢:7, T g and ¢:1,, # g then the area inside
g1 (I(T; ")) is at least ¢;

(3)if 157" S ! C g then the area inside g, (D) is at
least ¢; and

(4)if g:515151 C g then the area inside g,(D>) is at
least €.

Note that we have not actually proved that the se-
ries Py(p, 29, €) is a finite sum, but in our computer
experiment the series was always finite. The family
of the subsets H listed in parts (i) through (iv) of
Theorem 4.5 is sufficient in the sense that for any
€ (S1)\G,, the infinite branch {g € (S1)\G,

go C g} is contained in the union of a finite number
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of subsets from this family, where each g, satisfies
go C g1 and gy # g1. Hence, even though we have
no proof that the series Py(u, 20,€) is a finite sum,
one does not need to abandon hope of computing
Py(p, 29, €) after finitely many steps at any stage of
the procedure.

The error bound on the approximation is the sum
of the bounds for ", |9'(20)?| over all the infinite
branches H of the forms given in Theorem 4.5 (i),
(ii), (iii) and (iv) that are truncated when comput-
ing the sum Ps(u, 2o, €).

To illustrate exactly how this procedure works,
we will find the sum P(u,zp,¢e) for p = 1+ 3i,
zo = p/2 = 0.5+ 1.5, and the relatively large value
e = 1. It is easy to see that the disk D(zo,r) satis-
fies conditions (a) through (f) for the radius r = 0.5.
The error bound is initialized to 0, the sum is ini-
tialized to 1+ T (2)?, and g is initialized to TS, *.
Then ¢'(z0)? is added to the sum, and g becomes
THSl_llel. Theorem 4.5 (i) is applied, since g ends
in the letter 7, . The area of the disk 7,,S; ' (I(T}))
is computed and compared to €. Since this area is
less than €, we do not traverse through any vertices
in the infinite branch

{h e (S\G,:T,S;'T,* C h},

but we add the bound
1

2
on Y, 19'(%0)?| given by Theorem 4.5 (i) to the er-
ror bound. Next g becomes the vertex 7,57 Sy
Theorem 4.5 (iii) is applied, and we truncate the
infinite branch {h € (S;)\G, : T,S7'S;' C h} and
add the bound A(T},(D,))/(7r?) to the error bound.
Then g becomes 7,,S; T, and g¢'(z0)? is added to
the sum. Theorem 4.5 (ii) is applied and we trun-
cate the branch

AT, S, (I(T,)))

{h € (S)\G,, : T,S;7'T, C h and T,S;'T, # h}.

Then g becomes 1,T),, and we continue. In the end,
16 vertices will contribute to the sum. These ver-
tices are shown in Figure 5.

To five decimal places the sum turns out to be
0.98490 + 0.29108:, and the error bound is less than
3.02162. Hence,

Py(1+3i,0.541.51, 1) = 0.98490-+0.29108i

(to five decimal places) and P,(1437,0.54+1.5¢) is
approximately this same value, with

| P, (1434, 0.5+1.5¢) —(0.98490+0.291087)| < 3.02162.

Choosing smaller values for ¢ yields the approxi-
mations shown in Table 1.

€ Py(143i,0.5+1.54,¢) err. bnd.  #terms
10° 0.98490 + 0.29108: 3.02162 16
107! 0.98104 4+ 0.28708: 1.75334 46
10—2 0.98197 4 0.284144 0.70464 174
10—3 0.98284 + 0.283271 0.31006 662
107*  0.98294 + 0.283813 0.10732 3100
10—° 0.98297 + 0.28388: 0.04104 12934
106 0.98297 4 0.28391: 0.01590 52131
1077 0.98298 + 0.28392: 0.00603 211 966
10~8 0.98298 + 0.28392: 0.00231 842031
10~° 0.98298 + 0.28392: 0.00089 3325210

TABLE 1. Approximations of P5(1+3¢,.5+1.57). The
last two columns give the error bound and the num-
ber of terms in the sum.

We do not have a good method of estimating the
error bound on the approximation of Py(u,z2y) by
Py(, 29,€) in terms of . It is only after we com-
pute the sum P,(u,29,€) when we are able to say
how good the approximation is. Our computer ex-
periments have consistently indicated that as € gets
smaller, so does the error bound.

T'8S — T-188T 7SS —— TSST
13 14 8 9
TS T-18T TS TST
11 12 6 7
71 1 T Tr
10 1 2 5

T-1§-1 — 1-18-IT TS —— TS™'T
15 16 3 4

FIGURE 5. The 16 vertices used in the computation
of Py(1+34, .5+1.5¢, 1). The integers below the ver-
tices represent the order in which the vertices were
traversed.
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5. THE ERROR IN APPROXIMATING THE INTEGRAL OF
THE SQUARE ROOT OF THE SERIES

We decided to use the trapezoid rule to approxi-
mate the integrals of the square root of the relative
Poincaré series. The error bound for the trapezoid
rule depends on the second derivative, so we start
by finding a bound on the second derivative of the
square root of the series.

Proposition 5.1. Suppose that z € A(G,) and that
k < d(g '(c0),2) for all g € (S;)\G,. Let r be
any positive number such that there is a fundamental

domain for G, containing the disk of radius r about
z. Then

n
ge('Sl)\Gp

16 (Im p)?
2k2pd ‘ 291(2)2‘3/2

20Im p
mh2rz| Y g (22
Proof. After computing the second derivative using
g(z) = (az+b)/(cz+d), and letting the symbol 3’

denote the sum over all (az+b)/(cz+d) for which
¢ # 0, it is easy to see that

(V)

< (Z ‘4c(cz+d)’5‘)2 3 ‘2062 (cz—i—d)_ﬁ‘
W IOH 2| Y g'(2)2["
(X|4(z+d/c) M (cz+d)*])
4‘291('2)2‘3/2
N Z"20(z + d/c)_Q(cz—i-d)_‘l‘
1/2
2|3 g'(2)?]
o4 (Zeztd ) 10 ¥ fextd]

B SION NPT HE

- 4 (2Imp)? 10-2Imp
MRS g2 kS

16 (Im p1)? 20Im p

- 3/2 1/27

m2k2rs |29'(z)2‘ ﬂk2r2‘291(2)2‘

where we have used Proposition 4.3 to get the in-

equality
! 1 2Im p
< . 0
Z |cz+d|* r?

To approximate the integral f: f(z) dz, take a par-
tition of [a,b] using points a = z; < Ty < -+ <
z, = b, where z; = a + (j—1)(b—a)/(n—1). Let
T, (f) denote the approximation of fab f(z) dz using
the trapezoid rule with these points; that is,

1.(6) = oot (100 + WO ).

Since we will use the trapezoid rule on an approx-
imation to the square root of an infinite series, we
will need the following proposition.

Proposition 5.2. Suppose |f(z;) — g(x;)| < e, where
z; =a+ (j—1)(b—a)/(n—1) for 1 < j <n. Then

[1@) dw—mg)\ < sup | /()] -L=

— 0+ b—a)e.
[a,b] 12(%—1)2 ( )

Proof. Using the standard error bound for the trape-
zoid rule (see [King 1984], for example),

/ ) 4o~ (0)

<[/ f(:c)da:Tn(f)‘-l-\Tn(f)Tn(g)‘
" (b_a)3 b—a - 2(n—1)e
Sigg\f (x)|12(n—1)2 TR

Let v1(t) = p/2—14t where 0 < ¢t < 1; this is a line
segment from /2 — 1 to p/2. Let 2(t) denote the
line segment from 7 to p/2, with equation v,(t) =
i+t(p/2 —1i) for 0 <t <1. Then
() = (n/2 —1) x
Jo Re v/Po(p, 12(8)) dt + i [, Tm /o, 7 (1)) dt
Jo Re /Polu, m(®)) dt -+ f, Tm /ol (D)) dt

(5-1)

We will approximate these four real integrals using
Proposition 5.2 with the approximation P,(u, z,¢)
for Py(p,z). Pick a small positive € and compute
Py(p,71(t;),€) and Pa(p,v2(t;),€) for n equidistant
values of ¢; between ¢; = 0 and ¢, = 1. Let €’ denote
the largest error bound for any of these approxima-
tions:

| Po (Y (85)) — Paps ym (1), ) < €
for every t; and m =1, 2. Now for 6 > 0

‘\/E— Vz4 e | < dsup ‘(\/E)"

J
B 2inf\/E’
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where the supremum and the infimum are over the
line segment from z to z + Je®. Hence,

|\/§— Vz+ det?

Izl
Then, for each j,
‘\/P2M72 \/P2M72( i) )‘
6/
<
2/1Pa (1, 72(25))] — €
o
< — )
2infpo1) v/|Pa (1, 72(1))] — €
and so

|Re /Py (1, 72(t5)) — Re /Pa(, 1 (t;), €) |
EI

< - '
2inf(o,1 v/ Pa (e, 72(t))] — &'

The following bound on the derivative of Py(u, 2)
will help us to find a bound on infjg 1) | P2 (x, 72(2))]-

Proposition 5.3. Suppose k < d(g *(c0),z) for all
g € (S1)\G,. Suppose D(z,r) is contained in some
fundamental domain for G,. Then

!
/ 2
‘( Z g'(2) ) < Im p.
gE(S1)\G
Proof. Using Proposition 4.3,
!
—4c
! 2
> 96r)| <3|
‘ ( 9€(50\G, (c=+d)
! 1 1
=4
Z z+d/c| |cz+d|*
4 ro 1
~k Z |cz+d|*
4 2Imp
u
k  mr?
Corollary 5.4. Suppose k < d(g~'(c0), z) for all g €

(S1)\G,. Suppose the minimum possible value of
‘Zg ‘ among n > 2 equidistant values along a
line segment of length [ is 1. Finally suppose that
for any z on this line segment, D(z,r) is contained
in some fundamental domain for G,. Then, on this
line segment,

Let 7, denote the smallest value of | Py (1, v2(¢;), €)|—
¢’ over the n points ¢;. Pick a value of r such that
for any point z on either line segment from p/2 — 1
to p/2 or from i to pu/2, the disk D(z, ) is contained
in some fundamental domain for G,. Assume k <
d(g'(00), z) for all g € (S1)\G,, and for every point
z on these line segments. (Since oo is a limit point of
G, setting k = r satisfies this requirement.) Then
by Corollary 5.4,

Alu/2 il Tms
> g, 0/ e
[lgllf]|P2(M 72( ))| Z M2 7rk7“2(n—1)

Hence, if we set

Alp/2 —i|Imp
nkr2(n —1) ’
Proposition 5.1 implies that

dt2 vV Pa(p,72(1) ‘

N2:772—

= ‘Re @ Pz(ﬂv’h(t))‘

16 (Im p)?
7r2k27'4N23/2

20Im p
7rk27"2N21/2
By Proposition 5.2, the absolute value of

/ORe Py, 72(t))dt — T, (Re v/ Pa(p, 712(t), €))

is bounded above by

16 (Tm 1) 20Imp \ |p/2 — il g’
n2k2riNy? pk2r2N,? ) 12(n=1)? 2/ Ny—¢”
(5-2)

/2 — il

Likewise, the absolute value of

/Im\/PQ yya(t (Im Py (1,72(1), ))

is bounded above by (5-2). Thus, we can approxi-
mate the numerator of the second line of (5-1) by

T (Re v/ P, 72(1),€)) + T (I v/ Pa(p, 72(1), €))
(5-3)
with a maximum modulus of error less than /2
times the expression in (5-2).
Similarly, if we let 7; be the smallest value of
|P2(,u,’yl (tj),e)‘ — ¢’ over the n points ¢; and set

4Tm p

Ny = — —2F
1= nkr2(n —1)’
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the denominator in (5-1) can be approximated by

T, (Re /Po(p, 11 (t), €)) + i T, (Im v/ Pa(p, 11 (), €)),

(5-4)
with a maximum modulus of error less than /2
times

< 16 (Im 1)°

772k2r4Nf/2

20Im p 1 e’
T 7.‘.14;27,2]\[11/2) 12(n—1)2 + 2/ Ni—¢"
(5-5)
To determine an error bound for our approxima-

tion to the ratio in (5-1), we use a proposition:

Proposition 5.5. Suppose K,, Ky, M,, My, c,, and &,
are complex numbers such that K, = M, + ¢, and
K, =M, +¢, and |g,| < C, and || < Cy. Suppose
also that C, < |M,|. Then

K, M| _ G CMy
K, M, = |M,)—-C, |M,|>*—C,|M,|
Proof.

K, M, _ KM, — K, M,

K, M,| K,M,
- (Mb + sb)Ma - (Ma + €a)Mb
N (Ma +€a)Ma

EbMa gaMb

< +
| M2+ ¢,M, M2 +¢e,M,
< C, C, | M| 0
T M| = Co [ M|* — Co| M|

To apply Proposition 5.5 in our situation, we set
K,= LN/Q\/PQ(,LL, 2)dz and K, = f://2271 VP, 2)dz.
Then ¢(u) = K,/K, is approximated by M,/M,,
where M, is (/2 — 1) times the expression in (5-3)
and M, equals the expression in (5—4). The error
bound C is v/2 |/2 — 1| times the value (5-2), and
C, is /2 times the value (5-5).

We mention two more points where we need to
be careful when we use a computer program to do
the approximations. First, there will be an imple-
mentation error that includes truncation error in the
calculations. We have not made a significant effort
to account for this kind of error. Second, when we
integrate the square root of the series, we must be
sure to use a consistent branch of the square root.
The FORTRAN package used for our computations
uses the negative real axis for the branch cut of the
square root function. Thus, if Py(u,z) stays away
from the negative real axis on the line segments ~, ()

and 72 (t), the branch of square root is consistent. To
prove that P»(u, z) does indeed stay away from the
negative real axis, we call on the following corollary
to Proposition 5.3.

Corollary 5.6. Suppose k < d(g '(c0), z) for all g €
(S1)\G,. Let o denote the smallest distance from the
negative real axis to Py(p,z) among n > 2 equidis-
tant values of z along a line segment L of length .
Suppose also that for any z on L, the disk D(z,r)
is contained in some fundamental domain for G,.
Then for every z on L, the distance from the nega-
tive real azxis to Py(u, z) is at least

l

o 2(n —1) mkr?

Im p.

To use this corollary in the calculations, we compute
Py(p, vm(tj),€) letting m = 1, 2 and t; = (j—1)/
(n—1) for 1 < j < n. Then let §; denote the smallest
of the distances from the negative real axis to these
points, and let § = §; — &', where

| P (i, Y (t5)5€) — Pa(pt, Y (t5))] < €

for every t; and m = 1, 2. Then apply the formula
in Corollary 5.6. As long as the formula yields a pos-
itive value, we are guaranteed of using a consistent
branch of the square root.

6. COMPUTER RESULTS AND EXAMPLES

It is of some interest which point in M ; is mapped
to i, which is the point in H representing the square
torus. We know by Corollary 3.8 that ¢ (i) = ti
for some ¢t > 2. It turns out that ¢ is between 3.76
and 3.77. To prove this we chose the value ¢ = 10~?
at which to truncate the infinite branches of the tree
representing (S1)\G,,, and we computed our approx-
imations at n = 1000 points along the curves a(u)
and b(p) for p = 3.76i and p = 3.77i. The maximum
error bound (¢’) for the series approximations was
less than 5.31x10~*. Each finite series Py (p, 2,107?)
consisted of over 2.5 million terms. Some of the
words used in the finite series were made up of over
31,000 letters. Here are the final approximations to
¥ (u) and the error bounds:

W € n approximation error bound
3.76; 107 1000 0.99730654 4.45 x 1074
3.77: 107 1000 1.0023112;¢ 4.47 x 1074
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The error bound is probably rather conservative,
as the next table shows; here we truncated the infi-
nite branches at a level of € = 1075,

1 € n approximation error bound
3.76i 1075 1000 0.9973087: 7.51 x 1073
3.77¢ 1075 1000 1.0023134: 7.53 x 1073

The approximations in the two tables are the same
to 5 decimal places, yet the error bounds are 0.00753
and 0.000447 for ¢ = 107% and ¢ = 1079, respec-
tively. The finite series with the truncation level of
e = 107° consisted of only about 44,000 terms, using
words made up of at most 1002 letters. Our large er-
ror bounds prevented us from computing the exact
value for the square torus to more than 2 decimal
places, but our computations indicate the value to
be approximately p = 3.76538s.

Similarly, we approximated which point in M,
corresponds to the hexagonal torus 7 = (1 + v/34)
in H. The value is approximately u = 1 4 3.49645q.

It is also of interest what happens to vertical rays
Rer = p/q in H (for rational numbers p/q) un-
der the map ¢! : H — M; ;. It has been ques-
tioned whether the inverse image of the vertical ray
p/q is the same as the p/g-pleating ray in M, ;.
The boundary OM; ; consists of groups G, which
are either totally degenerate (meaning A(G),) com-
pletely collapses and the domain of discontinuity of
G, consists of the images of the lower half-plane
H; under the elements of G,) or cusps (meaning
there is a group element g, € G, which is hyper-
bolic or loxodromic for p € M, ; but which becomes
parabolic on OM; ;). Wright [n.d.] developed a
method of enumerating the cusps on dM;; using
rational numbers p/q. The trace of the group ele-
ment W, which becomes parabolic at a cusp equals
2 at that cusp, and is real and greater than 2 on a
ray contained in M; ;. Keen and Series [1993] have
shown that there is a unique branch of the locus
{n € C : Trace(W,,,) > 2} which is asymptotic to
the line Rep = 2p/q as p — oo. It is this unique
ray which they refer to as the p/q-pleating ray.

The group elements W)/, are defined recursively
as follows. Let Q denote the set of pairs of rela-
tively prime integers (p,q) (hereafter written p/q)
such that ¢ > 0 unless ¢ = 0 and p = +1, and
p # 0 unless ¢ = 1. Extend the ordering of the
rationals to @, with the additional stipulation that

—1/0 < p/q < 1/0 whenever ¢ # 0. If p/q and
n/m are in Q and gn — pm = =+1, then p/q and
n/m are called Farey neighbors. The Farey addi-
tion @ is defined on Farey neighbors (p/q,n/m) by
p/a®n/m = (p+n)/(qg+m). Every p/qg € Q
can be written as a finite sum @ of —1/0, 0/1 and
1/0. Note that if p/q and n/m are Farey neighbors,
then p/q and p/q @& n/m are Farey neighbors, as are
p/q ® n/m and n/m. Note also that if p/qg < n/m
then p/q < p/q®n/m < n/m.

Now define Wy,y = T,;', Wy = Sy, and W_y o =
S;'. Then for any two Farey neighbors p/q and
n/m in @ with p/q < n/m, define W, 40n/m =
Wy/qWh/m. This defines W,,, for every p/q € Q.
For example, Wy,, = Wy, Wi = Tu_lsl, Wi =
Wo Wi = T,L_ITﬂ_lsly and W3 = Wy Wy =
T'T,'T,"S,.

Our computations prove that the inverse image of
the ray ReT = p/q is in general different from the
p/g-pleating ray. Of course the inverse images of the
vertical rays Re7 = 0/1, 1/2, and 1/1 are the same
as the pleating rays 0/1, 1/2, and 1/1 (this follows
from Corollary 3.8, Corollary 3.10, and Proposition
3.9, respectively), but the inverse images of some
other vertical rays were found to be different from
the corresponding pleating rays. Figure 6 shows
David Wright’s computer image of M, ; along with
the pleating rays 0/1, 1/8, 1/4, 1/3, 4/9, 1/2, and
1/1. We have added the corresponding inverse im-
ages of vertical rays from the upper half-plane. We
were able to prove that the rays that appear different
in Figure 6 really are different. To prove that the p/q
rays are different, we computed an approximation of
() with an error bound E for certain points p to
the right of the p/g-pleating ray, and noted that the
real part of our approximation was less than p/q—E,
so ¥ (p) was on the left side of ReT = p/q. For ex-
ample, the point p = 0.64978+ 3.5¢ is to the right of
the 1/3-pleating ray but the real part of ¥ (u) was
computed to be less than 0.3252 with an error bound
less than 0.0005; so Rev(u) < 0.3257, which is to
the left of the vertical ray ReT = 1/3 in H. Figure
6 shows the inverse images of the vertical lines even
for Im p < 2, but we cannot be certain how accurate
the picture is for Im p < 2 because our error bounds
do not apply in this case. The inverse images of the
vertical lines are drawn down to the points where it
was difficult to construct curves in A(G,) projecting
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= —4
B square torus |
s
— =+=hexagonal torus |
— inverse image of 1/3 vertical line —3
1/3 pleating ray

| | \ | |
0 1 2
FIGURE 6. Pleating rays and images of vertical lines under ¢=! in M 1. The cuspy curve is the boundary of Mj ;.
The pleating rays 0/1, 1/2 and 1/1 are the same as the inverse images of those vertical lines. The pleating rays
1/8, 1/4 and 1/3 appear to the left of the corresponding images of vertical lines. The 4/9-pleating ray appears
to cross the image of the 4/9 vertical line at a height of about 2.2i.
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to the loops a(p) and b(p) or where the estimates
for the Poincaré series P (u, z) seemed unreliable.
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