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We study the Artin L-function L(s,�) associated to the unique

character � of degree 2 in quaternion fields of degree 8. We first

explain how to find examples of quaternion octic fields with not

too large a discriminant. We then develop a method yielding

a quick computation of the order n� of the zero of L(s,�) at

the point s = 1
2
. In all our calculations, we find that n� only

depends on the sign of the root number W(�); indeed n� = 0

when W(�) = +1 and n� = 1 when W(�) = �1. Finally we give

some estimates on n� and low zeros of L(s,�) on the critical line

in terms of the Artin conductor f� of the character �.

1. INTRODUCTIONThe well known conjecture that the zeros of the Rie-mann zeta function are simple can be also stated fora more general class of Dirichlet L-series and ArtinL-functions associated to one-dimensional charac-ters of number �elds. Conjecturally when the base�eld is Q , these functions never vanish at the centralcritical point [Murty and Murty 1997]. More partic-ularly, a question of J.-P. Serre is to know whetherthe order n� of a zero of L(s; �) at the point s = 12 isthe smallest possible with respect to the constraintsimposed by the properties of the character �, in par-ticular those imposed by the sign of the root numberW (�) when � is real-valued.A precise form of this conjecture is stated in [Goss1996, p. 324]. In this paper, we study the case oftwo-dimensional characters � arising from quater-nion �elds N=Q of degree 8. Recall that the ex-plicit computation of values of Artin L-functionsdone in [Tollis 1997] based on a formula due toA. F. Lavrik and E. Friedman (see [Cohen 2000,Section 10.3]) becomes very lengthy from degree 7onwards. The expected running time is roughlyO(pf�). However, for the method we develop here,the required time is O(ln f�), which allows us todeal with degree-eight �elds. We also give faster
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algorithms that depend on the Generalized RiemannHypothesis.
2. DEFINITIONS AND NOTATIONLet N=K be a Galois extension of a number �eldwith Galois group G = Gal(N=K), let (�, V ) be arepresentation of G and � its character. Then theArtin L-function attached to � is de�ned:L(N=K;�; s) = Yp �nite 1det(1� �('P)jV IPN(p)�s) ;where the product is over all �nite primes p of K.Here 'P is the Frobenius automorphism of one Pabove an unrami�ed p. For rami�ed p, see [Martinet1977]. The Artin L-series converges uniformly inhalf-planes Re s > 1+ � (with � > 0) and de�nes ananalytic function on the half-plane Re s > 1: Usingbasic properties of representations, one can provethat �N(s) = �K(s)Y� 6=1L(N=K;�; s)�(1);where � varies over the nontrivial irreducible char-acters of G. The positive integer �(1) arises fromthe decomposition of the the regular representationregG of G into regG =P� �(1)�; see [Serre 1978].In order to obtain an L-function with a functionalequation, it is necessary to introduce Euler factorsfor the in�nite primes of K. For every in�nite placep of K, de�neLp(N=K;�; s) = �LC (s)�(1); p complex,LR (s)n+LR (s+1)n� ; p real,whereLC (s) = 2(2�)�s�(s); LR (s) = �� s2�(s=2)andn+ = �(1) + �('P)2 ; n� = �(1)� �('P)2 :De�ne the enlarged Artin function �(N=K;�; s) by�(N=K;�; s)= c(N=K;�)s=2L1(N=K;�; s)L(N=K;�; s);where c(N=K;�) = jdK j�(1)NK=Q (f(N=K;�))

and L1 =Ypj1Lp(N=K;�; s);this function has a meromorphic continuation tothe whole complex plane and satis�es the functionalequation�(N=K;�; 1� s) =W (�)�(N=K; ��; s);where the root number W (�) is a constant of abso-lute value 1 [Martinet 1977].Artin's conjecture says that for every irreduciblecharacter � 6= 1, the Artin L-function L(N=K;�; s)is everywhere holomorphic. In particular, the quo-tient �N=�K should be entire, as a consequence of theAramata{Brauer Theorem [Murty and Murty 1997].Now if we restrict our attention to the order of thezero n�(s0) at some s0 2 C of the Artin L-functions,a few results were proved in this direction; see [Stark1974] for example. By analogy with the conjectureon the simplicity of the zeros of the Riemann zetafunction, the main question is to know whether forRe s0 > 0 we have n�(s0) � 1 if � is absolutelyirreducible and K = Q .
3. QUATERNION EXTENSIONSIn this section we describe how to compute quater-nion �elds and give some properties of their associ-ated Artin L-functions.
Definition 3.1. A quaternion extension of Q is a nor-mal extension N of Q with Galois group G isomor-phic to the quaternion group H8 of order 8.The quaternion groupH8 can be writtenH8 = h�; �iwith relations �4 = 1, � 2 = �2 and ����1 = ��1. Itpossesses a unique irreducible character � of degree2; one has �(1) = 2, �(�2) = �2 and �(s) = 0 fors 6= 1, �2:The �eld N contains three quadratic sub�elds k1,k2, k3 with discriminants d1, d2, d3 and a biquadraticsub�eld K with discriminant d1d2d3. The theorembelow allows us to know under what condition aquadratic �eld k = Q (pm) can be embedded in aquaternion �eld N . For a general formulation, see[Witt 1936].
Theorem 3.2. Let m be a squarefree integer . In or-der that k = Q (pm) should be a quadratic sub-�eld of some quaternion �eld N , it is necessary and
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su�cient that m be positive and not congruent to�1 mod 8.By a theorem of Gauss (see [Serre 1970] for a proof),the preceding condition on m holds if and only ifm = p2 + r2 + s2 where p; r; s are integers. LetK 0 = Q (pm; i) with i2 = �1 and let N 0 be a quar-tic cyclic extension of K 0 such that N 0=Q is Galois.Put < s >= Gal(K 0=k), < � >= Gal(K 0=Q (i)),and lift them to elements �s, �� in Gal(N 0=Q ). Bycohomological considerations, we have the followingproposition related to the construction of quaternion�elds N [Damey and Payan 1970]:
Proposition 3.3citedam. N � N 0 if and only if N 0=Q (i) is a quater-nion extension and �s�� = �� �s.Now one can write N 0 = K 0( 4p�) where � 2 K 0 nk2,thus one can compute explicitly N 0 by the followingtheorem:
Theorem 3.4. The extension N 0=Q (i) satis�es theconditions of Proposition 3.3 if and only if � canbe written � = m(r + is)2 p+pmp�pm���;with � 2 Q (p�m); (r2 + s2)��� 62 K 0�2 :From this, we deduce easily N by computing the�xed sub�elds of N 0 by any lifting of s, �s 2 G0 =Gal(N 0=Q ) of order 2. Since G0 = Z =2Z �H8, thereare 3 automorphisms in G0 of order 2, but only twoof them can be a lifting of s and the third one hasa square root in G0. Therefore one can computeeasily the two quaternion sub�elds of N 0. In thelast section we shall give a table of many totallyreal and imaginary quaternion extensions with theirquadratic sub�elds.Now we restrict our attention to the Artin L-function L(s; �) associated to the unique character� of degree 2 of H8. If we write L(s; �) in terms ofDedekind zeta functions, we have:
Proposition 3.5. Let K be the quartic sub�eld of N ,we have:�N(s) = �K(s)L(s; �)2 = �K(s)L(N=K;�0; s);where �0 is the nontrivial character associated to thequadratic extension N=K.

From the preceding identity, we deduce that L(s; �)2is an entire function. Since L(s; �) is meromorphicthen L(s; �) is entire too.In Theorems 3.6 and 3.7, we give an explicit com-putation of W (�) for tamely rami�ed extensions(those such that 2 is not rami�ed in N=Q ). Westart by de�ning an invariant UN of the quaternionextension N , by setting it to +1 if the ring of in-tegers ON of N is a free Z [G]-module, and to �1otherwise. The Fr�ohlich theorem gives the generalequality:
Theorem 3.6 [Fr�ohlich 1972]. W (�) = UN .Set " = �+1 if N is real,�1 if N is imaginary.In [Martinet 1971], one can �nd an explicit criterionto know whether ON is a free Z [G]-module or not:
Theorem 3.7. ON is a free Z [G]-module if and only if"YpjdN p � 1 + d1 + d2 + d34 mod 4:
A look at the functional equation of L(s; �) shows:
Theorem 3.8. If W (�) = +1 then n� is even,If W (�) = �1 then n� is odd .and the conjecture on n� can be expressed in thefollowing way:
Conjecture 3.9. If W (�) = +1 then n� = 0,If W (�) = �1 then n� = 1.
4. COMPUTATION OF n�In this section we give an explicit method to com-pute n� and verify numerically Conjecture 3.9 inmany cases (see Section 6). For that purpose, weuseWeil's explicit formula [1972], as reformulated byK. Barner [1981] for ease of computation. One canadapt this formula to L(N=K;�0; s) and then eval-uate the sum on the zeros of the Artin L-functionL(s; �) in the explicit formula.
Theorem 4.1. Let F satisfy F (0) = 1 and the follow-ing conditions :(A) F is even, continuous and continuously di�er-entiable everywhere except at a �nite number of
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points ai, where F (x) and F 0(x) have only a dis-continuity of the �rst kind , such that F (ai) =12�F (ai+0) + F (ai�0)�.(B) There exists a number b > 0 such that F (x) andF 0(x) are O(e�( 12+b)jxj) as j x j! 1.Then the Mellin transform of F ,
�(s) = Z +1�1 F (x)e(s� 12 )xdx;is holomorphic in every vertical strip �a � � �1 + a where 0 < a < b; a < 1, and the sum P�(�)running over the non trivial zeros � = � + i ofL(s; �) with j  j< T tends to a limit as T tends toin�nity . This limit is given bylimT!+1 Xjj<T �(�)= ln f� �Xp;m lnNK=Q (p)NK=Q (p)m=2�0(p)mF (m lnNK=Q (p))� 2(ln 2� +  + 2 ln 2)� 2"J(F ) + 2I(F );where J(F ) = Z +10 F (x)2 cosh(x=2) dx;I(F ) = Z +10 1� F (x)2 sinh(x=2) dx; = 0:57721566 : : : is the Euler constant and " isde�ned by Theorem 3.6.

4A. The Conditional CaseNow we assume the Generalized Riemann Hypoth-esis (GRH) for L(s; �) which asserts that all thenontrivial zeros of L(s; �) lie on the critical lineRe s = 12 . Now we write Theorem 4.1 for Serre'schoice Fy(x) = e�yx2 (y > 0). The Mellin transform�(s) of Fy is �y(s) =q�y e(s� 12 )2=(4y);and the Fourier transform F̂y of Fy isF̂y(t) =q�y e�t2=(4y):If we assume the GRH for L(s; �), we can write�y(�) = F̂y(t) where � = 12 + it. For every k � 1,we denote by tk the positive imaginary part of the

k-th zero of the Artin L-function L(s; �), and nk itsmultiplicity. We have the identityS(y)=n� + 2 +1Xk�2 nke� t2k4y
=�qy� Xp;m lnNK=Q (p)NK=Q (p)m=2�0(p)me�y(m lnNK=Q(p))2

+q y� �ln f� � 2(ln 2� +  + 2 ln 2)� 2"J(Fy) + 2I(Fy)�:To compute n�, one needs:
Proposition 4.2. Assuming the GRH , we haven� � S(y) and limy!0S(y) = n�for all y > 0.The advantage of Serre's choice in Weil's explicitformula is that the series S(y) converges rapidly ton� when y ! 0. In practice we prove for manyquaternion �elds that when W (�) = +1, we haven� � S(y) < 2 for some y > 0 and so n� = 0. Sim-ilarly for W (�) = �1, we can prove the inequalityn� � S(y) < 3 for some y > 0 and so n� = 1.Actually, using Theorem 3.8, Conjecture 3.9 can bestated thus:
Proposition 4.3. Under GRH , Conjecture 3.9 holds ifand only if there exists y > 0 such that S(y) < 2.
4B. The Unconditional CaseThe unconditional bounds of n� are less good thanthe GRH ones in Proposition 4.2 because of the re-quirement that Re�(s) � 0 on the whole criticalstrip. By using an argument of Odlyzko [Poitou1977], this last condition holds when we take inTheorem 4.1 the function Gy(x) = Fy(x)=cosh(x=2)with Fy(x) = e�yx2 (y > 0). Thus we obtain thefollowing bound of n�.
Theorem 4.4. For all y > 0, we have n� � T (y),whereT (y) = �2Z +10 e�yx2cosh(x=2) dx��1 ��ln f� � 2Xp;m lnNK=Q (p)1+NK=Q (p)m�0(p)me�y(m lnNK=Q(p))2

� 2(ln 2� +  + 2 ln 2)� 2"J(Gy) + 2I(Gy)�:
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In practice we check Conjecture 3.9 using this crite-rion:
Proposition 4.5. Conjecture 3.9 holds if there existsy > 0 such that T (y) < 2.To compute S(y) and T (y), we begin by computingthe integrals I(Fy), J(Fy), I(Gy) and J(Gy) to ahigh enough precision, we then compute the seriesover the prime ideals in the Weil explicit formula bycomputing �0(p) and NK=Q (p) for each prime num-ber p less than some large enough p0. Actually thenumber �eld N is de�ned by a polynomial P (x);for every prime number p prime to the index of N ,the decomposition of the ideal (p) into a product ofprime ideals of N is given by the decomposition ofP (x) modulo p; see [Cohen 1993]. Since N=Q is aGalois extension, then one needs to compute onlythe degree f of the �rst irreducible polynomial ap-pearing in the decomposition of P (x) modulo p. Thecomputations of �0(p) and NK=Q (p) are given in theproposition below:
Proposition 4.6. Let k1 = Q (pd1), k2 = Q (pd2),k3 = Q (pd3) be the quadratic sub�elds of N .� If f = 1 then NK=Q (p) = p and �0(p) = +1.� If f = 4 then NK=Q (p) = p2 and �0(p) = �1.� If f = 2 we have two cases :

– If (dip ) = �1 for exactly one i 2 f1; 2; 3g, thenNK=Q (p) = p2 and �0(p) = +1.
– If (dip ) = +1 for exactly one i 2 f1; 2; 3g, thenNK=Q (p) = p and �0(p) = �1.

Example 4.7. Let N = Q (pM), whereM = 5 +p52 21 +p212 :The quaternion �eldN could be de�ned by the poly-nomial P (x) in example 1 of section 6. One cancompute the di�erent terms in T (y) for y = 0:04 andshow that the sum over the prime ideals is equal to�0:33763, J(Gy) = 0:89478 and I(Gy) = 0:83304.Thus T (y) = 0:39377.When the conductor f� is large, the computation ofS(y) and T (y) is slower and this is essentially dueto the possible existence of low zeros of the ArtinL-function L(s; �). Actually when the �rst zeros ofL(s; �) distinct from 12 are close to the real axis, oneneeds to compute S(y) and T (y) for smaller positive

values of y in order to be able to bound S(y) andT (y) above by 2 (see Propositions 4.3 and 4.5). Anapproach to the problem of low zeros of L(s; �) interms of the conductor f� is given in the next section.
5. AN UPPER BOUND FOR n� AND LOW ZEROS OF

L(s,�)We now give estimates on the upper bounds of n�and the �rst zero �� = 12 + i �� of L(s; �) distinctfrom 12 . For this purpose, we apply Theorem 4.1to suitable functions with compact supports. If weassume the GRH, then one can prove more preciseestimates on n� and ��. Such improvements havebeen considered in [Mestre 1986] for L-series of mod-ular forms.
Theorem 5.1. Under GRH ,n� � ln f�ln ln f� and j��j � 1ln ln f� :
Proof. We �rst need an estimate for the sum overthe prime ideals of K in Theorem 4.1. Let F bea function with compact support satisfying the hy-potheses of Theorem 4.1 and let FT (x) = F ( xT ). Byusing the prime number theorem, one can prove thefollowing estimate:
Lemma 5.2. The sum over the prime ideals in Theo-rem 4.1 is bounded by the inequality����Xp;m lnNK=Q (p)NK=Q (p)m=2�0(p)mFT (m lnNK=Q (p))����� C0eT=2;
with C0 > 0.We also need an easy lemma:
Lemma 5.3. De�ne F byF (x) = � 1� jxj if jxj � 1,0 otherwise.Then F satis�es the hypotheses of Theorem 4.1 and

F̂ (u) = �2 sin(u=2)u �2:
Now if we put FT (x) = F ( xT ) then F̂T (u) = T F̂ (Tu).Applying Weil's explicit formula to FT and usingLemma 5.2, we obtain the estimate:n�T � ln f� + C0eT=2 + 2(I(FT ) + J(FT ));
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since I(FT ) and J(FT ) are bounded as T tends to+1, replacing T by 2 ln ln f�, we see thatn� � ln f�ln ln f� ;proving the �rst inequality in the statement of The-orem 5.1. To prove the theorem's second inequality,we use another even function G with compact sup-port, de�ned as follows.
Lemma 5.4. LetG(x) = � (1�x) cos(�x) + 3� sin(�x) if 0 � x � 1,0 otherwise.Then G satis�es the hypotheses of Theorem 4.1 andĜ(u) = �2� u2�2�� 2��2�u2 cos u2�2:We now apply once more Weil's explicit formula toGT (x) = G(x=T ) and replace T by p2�=j��j: Weobtain the estimate8�2n�T � ln f��2(ln 2�++2 ln 2)�2"J(GT )+2I(GT )�Xp;m lnNK=Q (p)NK=Q (p)m=2�0(p)mGT (m lnNK=Q (p)):Using Lemma 5.2, the above estimate (1) on n� andthe fact that the integrals I(GT ) and J(GT ) arebounded as T tends to +1, we deduce, for somepositive constants A and B:ln f�ln ln f�AT +BeT=2 � ln f�;so that T � min� 12A; 1� ln(2B)ln ln f� � ln ln f�:Thus for su�ciently large f� we have T � ln ln f�,and so j��j � 1ln ln f� ;concluding the proof of the theorem. �
Corollary 5.5. If we assume the GRH ,limf�!+1 �� = 12 :Without assuming the GRH, we have the followingestimate for n�, which is less good than the one inTheorem 5.1; see [Mestre 1983] for a similar resultin the case of elliptic curves.

Theorem 5.6. n� < ln f� unconditionally .
Proof. De�ne the function HT with compact supportby HT (x) = FT (x)=cosh(x=2), where FT is de�nedafter Lemma 5.3. By using an argument of Odlyzko[Poitou 1977], one can show that the Mellin trans-form �T of HT satis�es Re�T (s) � 0 in the criticalstrip. Thus, when we apply Theorem 4.1 to HT , weobtainn��T �12�� ln f� � 2(ln 2� +  + 2 ln 2)� 2"J(HT ) + 2I(HT )�Xp;m lnNK=Q (p)NK=Q (p)m=2�0(p)mHT (m lnNK=Q (p)):Since HT is a decreasing function on [0;+1], onecan show:
Lemma 5.7.����Xp;m lnNK=Q (p)NK=Q (p)m=2�0(p)mHT (m lnNK=Q (p))����

� 4 Xpm�eT ln ppm=2HT (m ln p):
Thus, by using the inequality before the lemma, weobtainn��T �12� � ln f� � 2(ln 4�+) + 2J(HT ) + 2I(HT )+ 4 Xpm�eT ln ppm=2HT (m ln p):
Now if we put T = ln 3, we obtain1:072n� � ln f� � 6:216 + 0:523 + 4:648 + 0:683� ln f� � 0:362:And so we �nd that n� < ln f�. �
6. COMPUTATIONS OF n� FOR QUATERNION FIELDSTable 1 gives our computed data. Each box refers toone quaternion �eld N=Q , giving on the top line areduced polynomial P (x) (\reduced" meaning thatwe have written N = Q [�], choosing for � a minimalprimitive vector of the lattice of integers of N for the\twisted" trace form trN=Q (x�y)), and on the bottomline other related information. The computationswere done using PARI-GP version 2.0.19.According to [Kwon 1996], the minimum discrim-inant both in the real and in the imaginary case is
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P (x) and DN R/I quad. sub�elds W (�) y0 S(y0) y T (y) n�x8�x7�34x6+29x5+361x4�305x3�1090x2+1345x�3951 1340095640625 R Q (p5); Q (p21) +1 0.04 0.00806 0.04 0.393771 0x8+315x6+34020x4+1488375x2+223256252 1340095640625 I Q (p5); Q (p21) �1 0.07 1.04505 0.11 1.58039 1x8�205x6+13940x4�378225x2+34040253 74220378765625 R Q (p5); Q (p41) �1 0.05 1.00067 0.1 1.30413 1x8�3x7+142x6�115x5+6641x4+3055x3+157938x2+152941x+20313614 6011850680015625 I Q (p5); Q (p41) �1 0.05 1.26425 0.05 2.09134 1x8�x7�178x6�550x5+7225x4+44407x3+55928x2�45392x+40965 31172897213027361 R Q (p17); Q (p33) +1 0.04 0.00222 0.04 0.31774 0x8�3x7+106x6+381x5+414x4�8475x3+44497x2+151740x+2531686 31172897213027361 I Q (p17); Q (p33) �1 0.04 1.19064 0.04 2.05980 1x8�3x7�475x6�2386x5+56669x4+732202x3+3280440x2+5788174x+23969417 12187467896636600569 R Q (p37); Q (p41) �1 0.03 1.03133 0.03 1.75340 1x8�3x7�847x6�4250x5+194805x4+2321042x3+4218300x2�28827252x�480316238 388282220975269366201 R Q (p37); Q (p73) �1 0.03 1.00010 0.03 1.35751 1x8�3x7+1854x6+14657x5+1134753x4+15385779x3+370857442x2+2861780247x+284700717279 31450859898996818662281 I Q (p37); Q (p73) �1 0.03 1.84217 0.01 2.83822 1x8�3x7+1042x6+8233x5+284219x4+4899401x3+42209694x2+179998937x+40405909910 987184899627564646089 I Q (p37); Q (p41) �1 0.03 1.58551 0.03 2.81849 1x8�x7�866x6�2686x5+197617x4+1072207x3�8786448x2�32864208x+15916019211 420386522758923179809 R Q (p17); Q (p161) +1 0.03 0.19296 0.03 1.13789 0x8�3x7�1591x6�7978x5+718061x4+8174530x3�29006964x2�433628432x+23586247312 16964214194699233633081 R Q (p37); Q (p137) �1 0.03 1.00204 0.03 1.64797 1x8�3x7+3478x6+27505x5+4489397x4+53881703x3+2972520282x2+26220344507x+65106142920713 1374101349770637924279561 I Q (p37); Q (p137) �1 0.05 2.24737 0.01 2.88613 1x8�12x6+36x4�36x2+914 12230590464 R Q (p2); Q (p3) +1 0.05 0.00002 0.08 0.11665 0x8+12x6+36x4+36x2+915 12230590464 I Q (p2); Q (p3) 0.05 1.000005 0.05 1.05777 �1x8�44x6+308x4�484x2+12116 29721861554176 R Q (p2); Q (p11) +1 0.05 0.01167 0.05 0.36928 0x8�76x6+1748x4�12996x2+2924117 789298907447296 R Q (p2); Q (p19) +1 0.04 0.04449 0.04 0.66149 0
TABLE 1 (start). For each quaternion �eld N=Q , we show a reduced polynomial P (x) (see beginning of Section 6),the discriminant dN , whether N is real or imaginary, two quadratic sub�elds Q (pd1) and Q (pd2) of N|thethird being Q (pd1d2)|and the values of W (�), y0, S(y0) (Proposition 4.3), y, T (y) (Proposition 4.5) and n�.
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P (x) and DN R/I quad. sub�elds W (�) y0 S(y0) y T (y) n�x8�60x6+810x4�1800x2+90018 47775744000000 R Q (p5); Q (p6) 0.07 1.00101 0.07 1.13852 �1x8�60x6+1170x4�9000x2+2250019 47775744000000 R Q (p5); Q (p6) +1 0.07 0.09399 0.07 0.61520 0x8+60x6+810x4+1800x2+90020 47775744000000 I Q (p5); Q (p6) 0.07 1.07405 0.07 1.55366 �1x8+60x6+1170x4+9000x2+2250021 47775744000000 I Q (p5); Q (p6) 0.08 1.09340 0.07 1.63606 �1x8+105x6+3780x4+55125x2+27562522 343064484000000 I Q (p5); Q (p21) +1 0.05 0.54966 0.05 1.53349 0x8+205x6+13940x4+378225x2+340402523 19000416964000000 I Q (p5); Q (p41) 0.05 1.13981 0.03 1.80213 �1
TABLE 1 (continued)22436, attained exactly in the �elds 14 and 15; sim-ilarly the smallest coincidences between two real orimaginary �elds occur for the discriminant 2225636,attained exacltly on the four �elds 18 to 21. Fields1 to 13 are tame, the others are not.
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