On Artin L-Functions for Octic Quaternion Fields

Sami Omar

CONTENTS

- 1. Introduction
- 2. Definitions and Notation
- 3. Quaternion Extensions
- 4. Computation of n_{χ}
- **5.** An Upper Bound for n_{χ} and Low Zeros of $L(s, \chi)$
- 6. Computations of n_χ for Quaternion Fields
- Acknowledgments

References

We study the Artin L-function L(s, χ) associated to the unique character χ of degree 2 in quaternion fields of degree 8. We first explain how to find examples of quaternion octic fields with not too large a discriminant. We then develop a method yielding a quick computation of the order n_{χ} of the zero of L(s, χ) at the point s = $\frac{1}{2}$. In all our calculations, we find that n_{χ} only depends on the sign of the root number W(χ); indeed $n_{\chi} = 0$ when W(χ) = +1 and $n_{\chi} = 1$ when W(χ) = -1. Finally we give some estimates on n_{χ} and low zeros of L(s, χ) on the critical line in terms of the Artin conductor f_{χ} of the character χ .

1. INTRODUCTION

The well known conjecture that the zeros of the Riemann zeta function are simple can be also stated for a more general class of Dirichlet *L*-series and Artin *L*-functions associated to one-dimensional characters of number fields. Conjecturally when the base field is \mathbb{Q} , these functions never vanish at the central critical point [Murty and Murty 1997]. More particularly, a question of J.-P. Serre is to know whether the order n_{χ} of a zero of $L(s, \chi)$ at the point $s = \frac{1}{2}$ is the smallest possible with respect to the constraints imposed by the properties of the character χ , in particular those imposed by the sign of the root number $W(\chi)$ when χ is real-valued.

A precise form of this conjecture is stated in [Goss 1996, p. 324]. In this paper, we study the case of two-dimensional characters χ arising from quaternion fields N/\mathbb{Q} of degree 8. Recall that the explicit computation of values of Artin *L*-functions done in [Tollis 1997] based on a formula due to A. F. Lavrik and E. Friedman (see [Cohen 2000, Section 10.3]) becomes very lengthy from degree 7 onwards. The expected running time is roughly $O(\sqrt{\mathfrak{f}_{\chi}})$. However, for the method we develop here, the required time is $O(\ln \mathfrak{f}_{\chi})$, which allows us to deal with degree-eight fields. We also give faster

AMS Subject Classification: 11R42 Keywords: Artin *L*-functions, zeros, quaternion fields algorithms that depend on the Generalized Riemann Hypothesis.

2. DEFINITIONS AND NOTATION

Let N/K be a Galois extension of a number field with Galois group G = Gal(N/K), let (ρ, V) be a representation of G and χ its character. Then the Artin *L*-function attached to χ is defined:

$$L(N/K, \chi, s) = \prod_{\mathfrak{p} \text{ finite}} \frac{1}{\det(1 - \rho(\varphi_{\mathfrak{P}})|V^{I_{\mathfrak{P}}}N(\mathfrak{p})^{-s})}$$

where the product is over all finite primes \mathfrak{p} of K. Here $\varphi_{\mathfrak{P}}$ is the Frobenius automorphism of one \mathfrak{P} above an unramified \mathfrak{p} . For ramified \mathfrak{p} , see [Martinet 1977]. The Artin *L*-series converges uniformly in half-planes $\operatorname{Re} s > 1 + \delta$ (with $\delta > 0$) and defines an analytic function on the half-plane $\operatorname{Re} s > 1$. Using basic properties of representations, one can prove that

$$\zeta_N(s) = \zeta_K(s) \prod_{\chi \neq 1} L(N/K, \chi, s)^{\chi(1)}$$

where χ varies over the nontrivial irreducible characters of G. The positive integer $\chi(1)$ arises from the decomposition of the the regular representation reg_{G} of G into $\operatorname{reg}_{G} = \sum_{\chi} \chi(1) \chi$; see [Serre 1978].

In order to obtain an L-function with a functional equation, it is necessary to introduce Euler factors for the infinite primes of K. For every infinite place \mathfrak{p} of K, define

$$L_{\mathfrak{p}}(N/K,\chi,s) = \begin{cases} L_{\mathbb{C}}(s)^{\chi(1)}, & \mathfrak{p} \text{ complex} \\ L_{\mathbb{R}}(s)^{n^{+}}L_{\mathbb{R}}(s+1)^{n^{-}}, & \mathfrak{p} \text{ real}, \end{cases}$$

where

$$L_{\mathbb{C}}(s) = 2(2\pi)^{-s}\Gamma(s), \quad L_{\mathbb{R}}(s) = \pi^{-\frac{s}{2}}\Gamma(s/2)$$

and

$$n^+ = rac{\chi(1) + \chi(\varphi_{\mathfrak{P}})}{2}, \quad n^- = rac{\chi(1) - \chi(\varphi_{\mathfrak{P}})}{2}.$$

Define the enlarged Artin function $\Lambda(N/K, \chi, s)$ by

$$\begin{split} \Lambda(N/K,\chi,s) \\ &= c(N/K,\chi)^{s/2} L_{\infty}(N/K,\chi,s) L(N/K,\chi,s), \end{split}$$

where

$$c(N/K,\chi) = |d_K|^{\chi(1)} N_{K/\mathbb{Q}}(\mathfrak{f}(N/K,\chi))$$

 and

$$L_{\infty} = \prod_{\mathfrak{p}|\infty} L_{\mathfrak{p}}(N/K, \chi, s);$$

this function has a meromorphic continuation to the whole complex plane and satisfies the functional equation

$$\Lambda(N/K, \chi, 1-s) = W(\chi)\Lambda(N/K, \bar{\chi}, s),$$

where the root number $W(\chi)$ is a constant of absolute value 1 [Martinet 1977].

Artin's conjecture says that for every irreducible character $\chi \neq 1$, the Artin *L*-function $L(N/K, \chi, s)$ is everywhere holomorphic. In particular, the quotient ζ_N/ζ_K should be entire, as a consequence of the Aramata–Brauer Theorem [Murty and Murty 1997]. Now if we restrict our attention to the order of the zero $n_{\chi}(s_0)$ at some $s_0 \in \mathbb{C}$ of the Artin *L*-functions, a few results were proved in this direction; see [Stark 1974] for example. By analogy with the conjecture on the simplicity of the zeros of the Riemann zeta function, the main question is to know whether for $\operatorname{Re} s_0 > 0$ we have $n_{\chi}(s_0) \leq 1$ if χ is absolutely irreducible and $K = \mathbb{Q}$.

3. QUATERNION EXTENSIONS

In this section we describe how to compute quaternion fields and give some properties of their associated Artin L-functions.

Definition 3.1. A quaternion extension of \mathbb{Q} is a normal extension N of \mathbb{Q} with Galois group G isomorphic to the quaternion group H_8 of order 8.

The quaternion group H_8 can be written $H_8 = \langle \sigma, \tau \rangle$ with relations $\sigma^4 = 1$, $\tau^2 = \sigma^2$ and $\tau \sigma \tau^{-1} = \sigma^{-1}$. It possesses a unique irreducible character χ of degree 2; one has $\chi(1) = 2$, $\chi(\sigma^2) = -2$ and $\chi(s) = 0$ for $s \neq 1, \sigma^2$.

The field N contains three quadratic subfields k_1 , k_2 , k_3 with discriminants d_1 , d_2 , d_3 and a biquadratic subfield K with discriminant $d_1d_2d_3$. The theorem below allows us to know under what condition a quadratic field $k = \mathbb{Q}(\sqrt{m})$ can be embedded in a quaternion field N. For a general formulation, see [Witt 1936].

Theorem 3.2. Let m be a squarefree integer. In order that $k = \mathbb{Q}(\sqrt{m})$ should be a quadratic subfield of some quaternion field N, it is necessary and sufficient that m be positive and not congruent to $-1 \mod 8$.

By a theorem of Gauss (see [Serre 1970] for a proof), the preceding condition on m holds if and only if $m = p^2 + r^2 + s^2$ where p, r, s are integers. Let $K' = \mathbb{Q}(\sqrt{m}, i)$ with $i^2 = -1$ and let N' be a quartic cyclic extension of K' such that N'/\mathbb{Q} is Galois. Put $\langle s \rangle = \operatorname{Gal}(K'/k), \langle \tau \rangle = \operatorname{Gal}(K'/\mathbb{Q}(i)),$ and lift them to elements $\bar{s}, \bar{\tau}$ in $\operatorname{Gal}(N'/\mathbb{Q})$. By cohomological considerations, we have the following proposition related to the construction of quaternion fields N [Damey and Payan 1970]:

Proposition 3.3

citedam. $N \subset N'$ if and only if $N'/\mathbb{Q}(i)$ is a quaternion extension and $\bar{s}\bar{\tau} = \bar{\tau}\bar{s}$.

Now one can write $N' = K'(\sqrt[4]{\alpha})$ where $\alpha \in K' \setminus k^2$, thus one can compute explicitly N' by the following theorem:

Theorem 3.4. The extension $N'/\mathbb{Q}(i)$ satisfies the conditions of Proposition 3.3 if and only if α can be written

with

$$\lambda \in \mathbb{Q}(\sqrt{-m}), (r^2 + s^2)\lambda \bar{\lambda} \not\in {K'^*}^2.$$

 $\alpha = m(r+is)^2 \frac{p+\sqrt{m}}{p-\sqrt{m}} \frac{\lambda}{\bar{\lambda}},$

From this, we deduce easily N by computing the fixed subfields of N' by any lifting of $s, \bar{s} \in G' = \text{Gal}(N'/\mathbb{Q})$ of order 2. Since $G' = \mathbb{Z}/2\mathbb{Z} \times H_8$, there are 3 automorphisms in G' of order 2, but only two of them can be a lifting of s and the third one has a square root in G'. Therefore one can compute easily the two quaternion subfields of N'. In the last section we shall give a table of many totally real and imaginary quaternion extensions with their quadratic subfields.

Now we restrict our attention to the Artin *L*-function $L(s, \chi)$ associated to the unique character χ of degree 2 of H_8 . If we write $L(s, \chi)$ in terms of Dedekind zeta functions, we have:

Proposition 3.5. Let K be the quartic subfield of N, we have:

$$\zeta_N(s) = \zeta_K(s)L(s,\chi)^2 = \zeta_K(s)L(N/K,\chi',s),$$

where χ' is the nontrivial character associated to the quadratic extension N/K.

From the preceding identity, we deduce that $L(s, \chi)^2$ is an entire function. Since $L(s, \chi)$ is meromorphic then $L(s, \chi)$ is entire too.

In Theorems 3.6 and 3.7, we give an explicit computation of $W(\chi)$ for tamely ramified extensions (those such that 2 is not ramified in N/\mathbb{Q}). We start by defining an invariant U_N of the quaternion extension N, by setting it to +1 if the ring of integers O_N of N is a free $\mathbb{Z}[G]$ -module, and to -1 otherwise. The Fröhlich theorem gives the general equality:

Theorem 3.6 [Fröhlich 1972]. $W(\chi) = U_N$.

Set

ε

$$= \begin{cases} +1 & \text{if } N \text{ is real,} \\ -1 & \text{if } N \text{ is imaginary.} \end{cases}$$

In [Martinet 1971], one can find an explicit criterion to know whether O_N is a free $\mathbb{Z}[G]$ -module or not:

Theorem 3.7. O_N is a free $\mathbb{Z}[G]$ -module if and only if

$$\varepsilon \prod_{p \mid d_N} p \equiv rac{1+d_1+d_2+d_3}{4} \mod 4$$

A look at the functional equation of $L(s, \chi)$ shows:

Theorem 3.8. If $W(\chi) = +1$ then n_{χ} is even, If $W(\chi) = -1$ then n_{χ} is odd.

and the conjecture on n_{χ} can be expressed in the following way:

Conjecture 3.9. If $W(\chi) = +1$ then $n_{\chi} = 0$, If $W(\chi) = -1$ then $n_{\chi} = 1$.

4. COMPUTATION OF n_{χ}

In this section we give an explicit method to compute n_{χ} and verify numerically Conjecture 3.9 in many cases (see Section 6). For that purpose, we use Weil's explicit formula [1972], as reformulated by K. Barner [1981] for ease of computation. One can adapt this formula to $L(N/K, \chi', s)$ and then evaluate the sum on the zeros of the Artin *L*-function $L(s, \chi)$ in the explicit formula.

Theorem 4.1. Let F satisfy F(0) = 1 and the following conditions:

(A) F is even, continuous and continuously differentiable everywhere except at a finite number of points a_i , where F(x) and F'(x) have only a discontinuity of the first kind, such that $F(a_i) = \frac{1}{2}(F(a_i+0) + F(a_i-0)).$

(B) There exists a number b > 0 such that F(x) and F'(x) are $O(e^{-(\frac{1}{2}+b)|x|})$ as $|x| \to \infty$.

Then the Mellin transform of F,

$$\Phi(s) = \int_{-\infty}^{+\infty} F(x) e^{(s-\frac{1}{2})x} dx$$

is holomorphic in every vertical strip $-a \leq \sigma \leq 1 + a$ where 0 < a < b, a < 1, and the sum $\sum \Phi(\rho)$ running over the non trivial zeros $\rho = \beta + i\gamma$ of $L(s, \chi)$ with $|\gamma| < T$ tends to a limit as T tends to infinity. This limit is given by

$$\begin{split} \lim_{T \to +\infty} \sum_{|\gamma| < T} \Phi(\rho) \\ &= \ln \mathfrak{f}_{\chi} - \sum_{\mathfrak{p}, m} \frac{\ln N_{K/\mathbb{Q}}(\mathfrak{p})}{N_{K/\mathbb{Q}}(\mathfrak{p})^{m/2}} \chi'(\mathfrak{p})^m F(m \ln N_{K/\mathbb{Q}}(\mathfrak{p})) \\ &- 2(\ln 2\pi + \gamma + 2\ln 2) - 2\varepsilon J(F) + 2I(F), \end{split}$$

where

$$J(F) = \int_0^{+\infty} \frac{F(x)}{2\cosh(x/2)} \, dx,$$

$$I(F) = \int_0^{+\infty} \frac{1 - F(x)}{2\sinh(x/2)} \, dx,$$

 $\gamma = 0.57721566...$ is the Euler constant and ε is defined by Theorem 3.6.

4A. The Conditional Case

Now we assume the Generalized Riemann Hypothesis (GRH) for $L(s, \chi)$ which asserts that all the nontrivial zeros of $L(s, \chi)$ lie on the critical line Re $s = \frac{1}{2}$. Now we write Theorem 4.1 for Serre's choice $F_y(x) = e^{-yx^2}$ (y > 0). The Mellin transform $\Phi(s)$ of F_y is

$$\Phi_y(s) = \sqrt{\frac{\pi}{y}} e^{(s-\frac{1}{2})^2/(4y)}$$

and the Fourier transform F_y of F_y is

$$\hat{F}_y(t) = \sqrt{\frac{\pi}{y}} e^{-t^2/(4y)}$$

If we assume the GRH for $L(s, \chi)$, we can write $\Phi_y(\rho) = \hat{F}_y(t)$ where $\rho = \frac{1}{2} + it$. For every $k \ge 1$, we denote by t_k the positive imaginary part of the

k-th zero of the Artin L-function $L(s, \chi)$, and n_k its multiplicity. We have the identity

$$\begin{split} S(y) &= n_{\chi} + 2 \sum_{k \ge 2}^{+\infty} n_k e^{-\frac{t_k^2}{4y}} \\ &= -\sqrt{\frac{y}{\pi}} \sum_{\mathfrak{p},m} \frac{\ln N_{K/\mathbb{Q}}(\mathfrak{p})}{N_{K/\mathbb{Q}}(\mathfrak{p})^{m/2}} \chi'(\mathfrak{p})^m e^{-y(m\ln N_{K/\mathbb{Q}}(\mathfrak{p}))^2} \\ &+ \sqrt{\frac{y}{\pi}} \left(\ln \mathfrak{f}_{\chi} - 2(\ln 2\pi + \gamma + 2\ln 2) \right) \\ &- 2\varepsilon J(F_y) + 2I(F_y) \right). \end{split}$$

To compute n_{χ} , one needs:

Proposition 4.2. Assuming the GRH, we have

$$n_\chi \leq S(y) \quad and \quad \lim_{y \to 0} S(y) = n_\chi$$

for all y > 0.

The advantage of Serre's choice in Weil's explicit formula is that the series S(y) converges rapidly to n_{χ} when $y \to 0$. In practice we prove for many quaternion fields that when $W(\chi) = +1$, we have $n_{\chi} \leq S(y) < 2$ for some y > 0 and so $n_{\chi} = 0$. Similarly for $W(\chi) = -1$, we can prove the inequality $n_{\chi} \leq S(y) < 3$ for some y > 0 and so $n_{\chi} = 1$. Actually, using Theorem 3.8, Conjecture 3.9 can be stated thus:

Proposition 4.3. Under GRH, Conjecture 3.9 holds if and only if there exists y > 0 such that S(y) < 2.

4B. The Unconditional Case

The unconditional bounds of n_{χ} are less good than the GRH ones in Proposition 4.2 because of the requirement that $\operatorname{Re} \Phi(s) \geq 0$ on the whole critical strip. By using an argument of Odlyzko [Poitou 1977], this last condition holds when we take in Theorem 4.1 the function $G_y(x) = F_y(x)/\cosh(x/2)$ with $F_y(x) = e^{-yx^2}$ (y > 0). Thus we obtain the following bound of n_{χ} .

Theorem 4.4. For all y > 0, we have $n_{\chi} \leq T(y)$, where

$$T(y) = \left(2\int_{0}^{+\infty} \frac{e^{-yx^{2}}}{\cosh(x/2)} dx\right)^{-1} \times \left(\ln \mathfrak{f}_{\chi} - 2\sum_{\mathfrak{p},m} \frac{\ln N_{K/\mathbb{Q}}(\mathfrak{p})}{1+N_{K/\mathbb{Q}}(\mathfrak{p})^{m}} \chi'(\mathfrak{p})^{m} e^{-y(m\ln N_{K/\mathbb{Q}}(\mathfrak{p}))^{2}} - 2(\ln 2\pi + \gamma + 2\ln 2) - 2\varepsilon J(G_{y}) + 2I(G_{y})\right).$$

In practice we check Conjecture 3.9 using this criterion:

Proposition 4.5. Conjecture 3.9 holds if there exists y > 0 such that T(y) < 2.

To compute S(y) and T(y), we begin by computing the integrals $I(F_y)$, $J(F_y)$, $I(G_y)$ and $J(G_y)$ to a high enough precision, we then compute the series over the prime ideals in the Weil explicit formula by computing $\chi'(\mathfrak{p})$ and $N_{K/\mathbb{O}}(\mathfrak{p})$ for each prime number p less than some large enough p_0 . Actually the number field N is defined by a polynomial P(x); for every prime number p prime to the index of N, the decomposition of the ideal (p) into a product of prime ideals of N is given by the decomposition of P(x) modulo p; see [Cohen 1993]. Since N/\mathbb{Q} is a Galois extension, then one needs to compute only the degree f of the first irreducible polynomial appearing in the decomposition of P(x) modulo p. The computations of $\chi'(\mathfrak{p})$ and $N_{K/\mathbb{Q}}(\mathfrak{p})$ are given in the proposition below:

Proposition 4.6. Let $k_1 = \mathbb{Q}(\sqrt{d_1}), k_2 = \mathbb{Q}(\sqrt{d_2}), k_3 = \mathbb{Q}(\sqrt{d_3})$ be the quadratic subfields of N.

- If f = 1 then $N_{K/\mathbb{Q}}(\mathfrak{p}) = p$ and $\chi'(\mathfrak{p}) = +1$.
- If f = 4 then $N_{K/\mathbb{Q}}(\mathfrak{p}) = p^2$ and $\chi'(\mathfrak{p}) = -1$.
- If f = 2 we have two cases:

Ì

- If $\left(\frac{d_i}{p}\right) = -1$ for exactly one $i \in \{1, 2, 3\}$, then $N_{K/\mathbb{Q}}(\mathfrak{p}) = p^2$ and $\chi'(\mathfrak{p}) = +1$. - If $\left(\frac{d_i}{p}\right) = +1$ for exactly one $i \in \{1, 2, 3\}$, then
 - If $\left(\frac{d_i}{p}\right) = +1$ for exactly one $i \in \{1, 2, 3\}$, then $N_{K/\mathbb{Q}}(\mathfrak{p}) = p$ and $\chi'(\mathfrak{p}) = -1$.

Example 4.7. Let $N = \mathbb{Q}(\sqrt{M})$, where

$$M = \frac{5 + \sqrt{5}}{2} \frac{21 + \sqrt{21}}{2}.$$

The quaternion field N could be defined by the polynomial P(x) in example 1 of section 6. One can compute the different terms in T(y) for y = 0.04 and show that the sum over the prime ideals is equal to -0.33763, $J(G_y) = 0.89478$ and $I(G_y) = 0.83304$. Thus T(y) = 0.39377.

When the conductor \mathfrak{f}_{χ} is large, the computation of S(y) and T(y) is slower and this is essentially due to the possible existence of low zeros of the Artin *L*-function $L(s,\chi)$. Actually when the first zeros of $L(s,\chi)$ distinct from $\frac{1}{2}$ are close to the real axis, one needs to compute S(y) and T(y) for smaller positive

values of y in order to be able to bound S(y) and T(y) above by 2 (see Propositions 4.3 and 4.5). An approach to the problem of low zeros of $L(s, \chi)$ in terms of the conductor \mathfrak{f}_{χ} is given in the next section.

5. AN UPPER BOUND FOR ${\rm n}_{\chi}$ AND LOW ZEROS OF ${\rm L}({\rm s},\chi)$

We now give estimates on the upper bounds of n_{χ} and the first zero $\rho_{\chi} = \frac{1}{2} + i \beta_{\chi}$ of $L(s, \chi)$ distinct from $\frac{1}{2}$. For this purpose, we apply Theorem 4.1 to suitable functions with compact supports. If we assume the GRH, then one can prove more precise estimates on n_{χ} and β_{χ} . Such improvements have been considered in [Mestre 1986] for *L*-series of modular forms.

Theorem 5.1. Under GRH,

$$n_{\chi} \ll \frac{\ln \mathfrak{f}_{\chi}}{\ln \ln \mathfrak{f}_{\chi}} \quad and \quad |\beta_{\chi}| \ll \frac{1}{\ln \ln \mathfrak{f}_{\chi}}$$

Proof. We first need an estimate for the sum over the prime ideals of K in Theorem 4.1. Let F be a function with compact support satisfying the hypotheses of Theorem 4.1 and let $F_T(x) = F(\frac{x}{T})$. By using the prime number theorem, one can prove the following estimate:

Lemma 5.2. The sum over the prime ideals in Theorem 4.1 is bounded by the inequality

$$\left|\sum_{\mathfrak{p},m}\frac{\ln N_{K/\mathbb{Q}}(\mathfrak{p})}{N_{K/\mathbb{Q}}(\mathfrak{p})^{m/2}}\chi'(\mathfrak{p})^m F_T(m\ln N_{K/\mathbb{Q}}(\mathfrak{p}))\right| \le C_0 e^{T/2},$$

with $C_0 > 0$.

We also need an easy lemma:

Lemma 5.3. $Define \ F \ by$

$$F(x) = \begin{cases} 1 - |x| & \text{if } |x| \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then F satisfies the hypotheses of Theorem 4.1 and

$$\hat{F}(u) = \left(\frac{2\sin(u/2)}{u}\right)^2$$

Now if we put $F_T(x) = F(\frac{x}{T})$ then $\hat{F}_T(u) = T\hat{F}(Tu)$. Applying Weil's explicit formula to F_T and using Lemma 5.2, we obtain the estimate:

$$n_{\chi}T \leq \ln \mathfrak{f}_{\chi} + C_0 e^{T/2} + 2(I(F_T) + J(F_T)),$$

since $I(F_T)$ and $J(F_T)$ are bounded as T tends to $+\infty$, replacing T by $2 \ln \ln \mathfrak{f}_{\chi}$, we see that

$$n_{\chi} \ll \frac{\ln \mathfrak{f}_{\chi}}{\ln \ln \mathfrak{f}_{\chi}},$$

proving the first inequality in the statement of Theorem 5.1. To prove the theorem's second inequality, we use another even function G with compact support, defined as follows.

Lemma 5.4. *Let*

$$G(x) = \begin{cases} (1-x)\cos(\pi x) + \frac{3}{\pi}\sin(\pi x) & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then G satisfies the hypotheses of Theorem 4.1 and

$$\hat{G}(u) = \left(2 - \frac{u^2}{\pi^2}\right) \left(\frac{2\pi}{\pi^2 - u^2} \cos\frac{u}{2}\right)^2.$$

We now apply once more Weil's explicit formula to $G_T(x) = G(x/T)$ and replace T by $\sqrt{2\pi}/|\beta_{\chi}|$. We obtain the estimate

$$\begin{split} \frac{8}{\pi^2} n_{\chi} T &\geq \ln \mathfrak{f}_{\chi} - 2(\ln 2\pi + \gamma + 2\ln 2) \\ &- 2\varepsilon J(G_T) + 2I(G_T) \\ &- \sum_{\mathfrak{p}, m} \frac{\ln N_{K/\mathbb{Q}}(\mathfrak{p})}{N_{K/\mathbb{Q}}(\mathfrak{p})^{m/2}} \chi'(\mathfrak{p})^m G_T(m \ln N_{K/\mathbb{Q}}(\mathfrak{p})). \end{split}$$

Using Lemma 5.2, the above estimate (1) on n_{χ} and the fact that the integrals $I(G_T)$ and $J(G_T)$ are bounded as T tends to $+\infty$, we deduce, for some positive constants A and B:

$$\frac{\ln \mathfrak{f}_{\chi}}{\ln \ln \mathfrak{f}_{\chi}} AT + Be^{T/2} \ge \ln \mathfrak{f}_{\chi},$$

so that

$$T \ge \min\left(rac{1}{2A}, \ 1 - rac{\ln(2B)}{\ln\ln\mathfrak{f}_{\chi}}
ight) \ln\ln\mathfrak{f}_{\chi}$$

Thus for sufficiently large \mathfrak{f}_{χ} we have $T \gg \ln \ln \mathfrak{f}_{\chi}$, and so

$$|\beta_{\chi}| \ll \frac{1}{\ln \ln \mathfrak{f}_{\chi}},$$

concluding the proof of the theorem.

Corollary 5.5. If we assume the GRH,

$$\lim_{\mathbf{f}_\chi\to+\infty}\rho_\chi=\tfrac{1}{2}$$

Without assuming the GRH, we have the following estimate for n_{χ} , which is less good than the one in Theorem 5.1; see [Mestre 1983] for a similar result in the case of elliptic curves.

Theorem 5.6. $n_{\chi} < \ln \mathfrak{f}_{\chi}$ unconditionally.

Proof. Define the function H_T with compact support by $H_T(x) = F_T(x)/\cosh(x/2)$, where F_T is defined after Lemma 5.3. By using an argument of Odlyzko [Poitou 1977], one can show that the Mellin transform Φ_T of H_T satisfies $\operatorname{Re} \Phi_T(s) \geq 0$ in the critical strip. Thus, when we apply Theorem 4.1 to H_T , we obtain

$$\begin{split} n_{\chi} \Phi_{T} \left(\frac{1}{2} \right) \\ &\leq \ln \mathfrak{f}_{\chi} - 2(\ln 2\pi + \gamma + 2 \ln 2) \\ &- 2\varepsilon J(H_{T}) + 2I(H_{T}) \\ &- \sum_{\mathfrak{p}, m} \frac{\ln N_{K/\mathbb{Q}}(\mathfrak{p})}{N_{K/\mathbb{Q}}(\mathfrak{p})^{m/2}} \chi'(\mathfrak{p})^{m} H_{T}(m \ln N_{K/\mathbb{Q}}(\mathfrak{p})). \end{split}$$

Since H_T is a decreasing function on $[0, +\infty]$, one can show:

Lemma 5.7.

$$\sum_{\mathfrak{p},m} \frac{\ln N_{K/\mathbb{Q}}(\mathfrak{p})}{N_{K/\mathbb{Q}}(\mathfrak{p})^{m/2}} \chi'(\mathfrak{p})^m H_T(m \ln N_{K/\mathbb{Q}}(\mathfrak{p})) \bigg| \\ \leq 4 \sum_{p^m \leq e^T} \frac{\ln p}{p^{m/2}} H_T(m \ln p).$$

Thus, by using the inequality before the lemma, we obtain

$$n_{\chi} \Phi_{T}\left(\frac{1}{2}\right) \leq \ln \mathfrak{f}_{\chi} - 2(\ln 4\pi + \gamma) + 2J(H_{T}) + 2I(H_{T}) + 4\sum_{p^{m} \leq e^{T}} \frac{\ln p}{p^{m/2}} H_{T}(m \ln p).$$

Now if we put $T = \ln 3$, we obtain

$$\begin{split} 1.072 n_\chi &\leq \ln \mathfrak{f}_\chi - 6.216 + 0.523 + 4.648 + 0.683 \\ &\leq \ln \mathfrak{f}_\chi - 0.362. \end{split}$$

And so we find that $n_{\chi} < \ln \mathfrak{f}_{\chi}$.

6. COMPUTATIONS OF n_{γ} FOR QUATERNION FIELDS

Table 1 gives our computed data. Each box refers to one quaternion field N/\mathbb{Q} , giving on the top line a reduced polynomial P(x) ("reduced" meaning that we have written $N = \mathbb{Q}[\theta]$, choosing for θ a minimal primitive vector of the lattice of integers of N for the "twisted" trace form $\operatorname{tr}_{N/\mathbb{Q}}(x\bar{y})$), and on the bottom line other related information. The computations were done using PARI-GP version 2.0.19.

According to [Kwon 1996], the minimum discriminant both in the real and in the imaginary case is

	$P(x)$ and D_N	R/I	quad. subfields	$W(\chi)$	y_0	$S(y_0)$	y	T(y)	n_{χ}
1	$x^8 - x^7 - 34x^6 + 29x^5 + 361x^4 - 1340095640625$		_ · _ ·	395 + 1	0.04	0.00806	0.04	0.393771	0
2	$x^{8} + 315x^{6} + 34020x^{4} + 1488375$ 1340095640625		22325625			1.04505	0.04	1.58039	1
				-1	0.07	1.04505	0.11	1.36039	1
3	$\frac{x^8 - 205x^6 + 13940x^4 - 378225x}{74220378765625}$	$x^2 + 34$ R		-1	0.05	1.00067	0.1	1.30413	1
4	$\begin{array}{c} x^8\!-\!3x^7\!+\!142x^6\!-\!115x^5\!+\!6641 \\ 6011850680015625 \end{array}$		$\mathbb{Q}(55x^3 + 157938x^2 + 1000)$ $\mathbb{Q}(\sqrt{5}), \ \mathbb{Q}(\sqrt{41})$				0.05	2.09134	1
5	$\begin{array}{c} x^8 - x^7 - 178 x^6 - 550 x^5 + 7225 x^6 \\ 31172897213027361 \end{array}$		$\begin{array}{c} 4407x^3 + 55928x^2 - 45\\ \mathbb{Q}(\sqrt{17}), \ \mathbb{Q}(\sqrt{33}) \end{array}$			0.00222	0.04	0.31774	0
6	$x^8 - 3x^7 + 106x^6 + 381x^5 + 414x^6 + 31172897213027361$	-	$\mathbb{R}^{75x^3+44497x^2+151}$ $\mathbb{Q}(\sqrt{17}), \mathbb{Q}(\sqrt{33})$				0.04	2.05980	1
7	$x^8 - 3x^7 - 475x^6 - 2386x^5 + 566$ 12187467896636600569		$+732202x^3+3280444$ $\mathbb{Q}(\sqrt{37}), \mathbb{Q}(\sqrt{41})$				0.03	1.75340	1
8	$\begin{array}{c} x^8 - 3x^7 - 847x^6 - 4250x^5 + 194\\ 388282220975269366201 \end{array}$.623 0.03	1.35751	1
9	$\frac{x^8 - 3x^7 + 1854x^6 + 14657x^5 + 1}{31450859898996818662281}$								1
10	$x^8 - 3x^7 + 1042x^6 + 8233x^5 + 28$ 987184899627564646089							9 2.81849	1
11	$\begin{array}{c} x^8 - x^7 - 866x^6 - 2686x^5 + 1976 \\ 420386522758923179809 \end{array}$		$+1072207x^3 - 878644$ $\mathbb{Q}(\sqrt{17}), \mathbb{Q}(\sqrt{161})$)192 0.03	1.13789	0
12	$\frac{x^8 - 3x^7 - 1591x^6 - 7978x^5 + 71}{16964214194699233633081}$		$x^4 + 8174530x^3 - 2900$ $\mathbb{Q}(\sqrt{37}), \ \mathbb{Q}(\sqrt{137})$					$\frac{3}{1.64797}$	1
13	$x^8 - 3x^7 + 3478x^6 + 27505x^5 + 4$ 1374101349770637924279561	48939 I	$\mathbb{Q}7x^4 + 53881703x^3 + 2$ $\mathbb{Q}(\sqrt{37}), \ \mathbb{Q}(\sqrt{137})$		$282x^2 - 0.05$	+262203445 2.24737	507x + 6 0.01	510614292 2.88613	07 1
14	$\begin{array}{c} x^8\!-\!12x^6\!+\!36x^4\!-\!36x^2\!+\!9\\ 12230590464 \end{array}$	R	$\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3})$	+1	0.05	0.00002	0.08	0.11665	0
15	$\begin{array}{c} x^8\!+\!12x^6\!+\!36x^4\!+\!36x^2\!+\!9\\ 12230590464 \end{array}$	I	$\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3})$		0.05	1.000005	0.05	1.05777	≤1
16	$\frac{x^8 - 44x^6 + 308x^4 - 484x^2 + 123}{29721861554176}$	R	$\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{11})$	+1	0.05	0.01167	0.05	0.36928	0
17	$\frac{x^8 - 76x^6 + 1748x^4 - 12996x^2 + }{789298907447296}$	-29241 R	$\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{19})$	+1	0.04	0.04449	0.04	0.66149	0

TABLE 1 (start). For each quaternion field N/\mathbb{Q} , we show a reduced polynomial P(x) (see beginning of Section 6), the discriminant d_N , whether N is real or imaginary, two quadratic subfields $\mathbb{Q}(\sqrt{d_1})$ and $\mathbb{Q}(\sqrt{d_2})$ of N—the third being $\mathbb{Q}(\sqrt{d_1d_2})$ —and the values of $W(\chi)$, y_0 , $S(y_0)$ (Proposition 4.3), y, T(y) (Proposition 4.5) and n_{χ} .

	$P(x)$ and D_N	R/I	quad. subfields	$W(\chi)$	y_0	$S(y_0)$	y	T(y)	n_{χ}
18	$\begin{array}{c} x^8\!-\!60x^6\!+\!810x^4\!-\!13\\ 47775744000000 \end{array}$	$800x^2 + R$	900 $\mathbb{Q}(\sqrt{5}), \ \mathbb{Q}(\sqrt{6})$		0.07	1.00101	0.07	1.13852	≤ 1
19	$x^8 - 60x^6 + 1170x^4 - 9$ 47775744000000	9000x ² - R	$+22500$ $\mathbb{Q}(\sqrt{5}), \ \mathbb{Q}(\sqrt{6})$	+1	0.07	0.09399	0.07	0.61520	0
20	$x^8 + 60x^6 + 810x^4 + 1840x^4 + 1$	$800x^2 + I$	900 $\mathbb{Q}(\sqrt{5}),\ \mathbb{Q}(\sqrt{6})$		0.07	1.07405	0.07	1.55366	<u>≤</u> 1
21	$x^8 + 60x^6 + 1170x^4 + 9$ 47775744000000	9000x ² - I	$\begin{array}{c} +22500\\ \mathbb{Q}(\sqrt{5}), \ \mathbb{Q}(\sqrt{6}) \end{array}$		0.08	1.09340	0.07	1.63606	≤ 1
22	$x^8 + 105x^6 + 3780x^4 + 343064484000000$		$\mathbb{Q}^{2}+275625$ $\mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{21})$	+1	0.05	0.54966	0.05	1.53349	0
23	$x^8 + 205x^6 + 13940x^4$ 19000416964000000	+37822 I	$5x^2 + 3404025$ $\mathbb{Q}(\sqrt{5}), \ \mathbb{Q}(\sqrt{41})$		0.05	1.13981	0.03	1.80213	≤ 1

TABLE 1 (continued)

 $2^{24}3^6$, attained exactly in the fields 14 and 15; similarly the smallest coincidences between two real or imaginary fields occur for the discriminant $2^{22}5^63^6$, attained exacltly on the four fields 18 to 21. Fields 1 to 13 are tame, the others are not.

ACKNOWLEDGMENTS

I thank J. Martinet for bringing this problem to my attention and for his helpful comments and suggestions. I also profited from discussions with H. Cohen and B. Erez. I also thank J.-P. Serre for his remarks on an earlier version of this paper.

REFERENCES

- [Barner 1981] K. Barner, "On A. Weil's explicit formula", J. Reine Angew. Math. 323 (1981), 139– 152.
- [Cohen 1993] H. Cohen, A course in computational algebraic number theory, Graduate Texts in Math. 138, Springer, Berlin, 1993.
- [Cohen 2000] H. Cohen, Advanced topics in computational number theory, Graduate Texts in Math. 193, Springer, New York, 2000.
- [Damey and Payan 1970] P. Damey and J.-J. Payan, "Existence et construction des extensions galoisiennes et non-abéliennes de degré 8 d'un corps de caractéristique différente de 2", J. Reine Angew. Math. 244 (1970), 37–54.

- [Fröhlich 1972] A. Fröhlich, "Artin root numbers and normal integral bases for quaternion fields", *Invent. Math.* 17 (1972), 143–166.
- [Goss 1996] D. Goss, Basic structures of function field arithmetic, Ergebnisse der Math. (3) 35, Springer, Berlin, 1996.
- [Kwon 1996] S.-H. Kwon, "Sur les discriminants minimaux des corps quaternioniens", Arch. Math. (Basel) 67:2 (1996), 119–125.
- [Martinet 1971] J. Martinet, "Modules sur l'algèbre du groupe quaternionien", Ann. Sci. École Norm. Sup. (4) 4 (1971), 399-408.
- [Martinet 1977] J. Martinet, "Character theory and Artin L-functions", pp. 1–87 in Algebraic number fields: L-functions and Galois properties (Durham, Durham, 1975), edited by A. Fröhlich, Academic Press, London, 1977.
- [Mestre 1983] J.-F. Mestre, "Courbes elliptiques et formules explicites", pp. 179–187 in Séminaire de théorie des nombres (Paris, 1981/1982), Progress in Math. 38, Birkhäuser Boston, Boston, MA, 1983.
- [Mestre 1986] J.-F. Mestre, "Formules explicites et minorations de conducteurs de variétés algébriques", *Compositio Math.* 58:2 (1986), 209–232.
- [Murty and Murty 1997] M. R. Murty and V. K. Murty, Non-vanishing of L-functions and applications, Birkhäuser, Basel, 1997.

[Poitou 1977] G. Poitou, "Sur les petits discriminants", pp. Exp. No. 6, 18 in Séminaire Delange-Pisot-Poitou, 18e année (1976/77), Secrétariat Math., Paris, 1977.

- [Serre 1970] J.-P. Serre, *Cours d'arithmétique*, Presses Universitaires de France, Paris, 1970.
- [Serre 1978] J.-P. Serre, Représentations linéaires des groupes finis, revised ed., Hermann, Paris, 1978.
- [Stark 1974] H. M. Stark, "Some effective cases of the Brauer-Siegel theorem", *Invent. Math.* 23 (1974), 135-152.

- [Tollis 1997] E. Tollis, "Zeros of Dedekind zeta functions in the critical strip", Math. Comp. 66:219 (1997), 1295-1321.
- [Weil 1972] A. Weil, "Sur les formules explicites de la théorie des nombres", *Izv. Akad. Nauk SSSR Ser. Mat.* 36 (1972), 3–18. Reprinted as pp. 249–264 in his *Œuvres*, v. 3, Springer, Heidelberg, 1979.
- [Witt 1936] E. Witt, "Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung p^f", J. Reine angew. Math. **174** (1936), 237–245. Reprinted as pp. 120–128 in his Gesammelte Abhandlungen, Springer, Heidelberg, 1991.

Sami Omar, Université Bordeaux I, Laboratoire A2X, U.M.R. Université, CNRS numéro 5465 351, Cours de la Libération, F-33405 Talence, France (omar@math.u-bordeaux.fr)

Received February 14, 2000; accepted in revised form November 4, 2000