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Circle packings are configurations of circles with specified pat-

terns of tangency, and lend themselves naturally to computer

experimentation and visualization. Maps between them dis-

play, with surprising faithfulness, many of the geometric prop-

erties associated with classical analytic functions. This paper

introduces the fundamentals of an emerging “discrete analytic

function theory” and investigates connections with the clas-

sical theory. It then describes several experiments, ranging

from investigation of a conjectured discrete Koebe 1
4

theorem

to a multigrid method for computing discrete approximations

of classical analytic functions. These experiments were per-

formed using CirclePack, a software package described in the

paper and available free of charge.

1. INTRODUCTIONThe topic of \circle packing" is of relatively recentorigin and is a natural one for computer experimen-tation and visualization. What may be surprising,however, are the deep connections it shares withclassical complex analysis. These connections arethe subject of our paper.Circle packings were introduced by Thurston,�rst in the construction of hyperbolic polyhedraand only later in connection with complex analy-sis. In particular, Thurston [1985] conjectured thatmaps between certain packings could be used to ap-proximate classical conformal mappings. This con-jecture was proved in [Rodin and Sullivan 1987];many additional connections with analytic func-tions have emerged since then. This is fertile newground for computer experimentation in, amongother topics, geometry, combinatorics, probabil-ity, numerical approximation, and discrete com-plex analysis. Our purpose here is to demonstrate
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features of the emerging theory through several ex-periments, conducted using CirclePack, a softwarepackage developed by Stephenson (Section 6).A circle packing is a con�guration of circles hav-ing a prescribed pattern of tangencies. Our in-terest lies in maps from one circle packing to an-other that preserve tangency relationships. Thesemaps exhibit two related but distinct connectionsto complex analysis: approximation and analogy.Avoiding formalities for now, let's begin with theseminal example of approximation.
ApproximationThurston's conjecture concerned the approxima-tion of a conformal map F from the unit disc Donto a domain 
. (We want to have F (0) = 0and F 0(0) > 0, but we'll suppress the issue of nor-malizations.) Three pairs of circle packings givingsuccessively better approximants are illustrated inFigure 1. In each case the packing Pj on the right isa portion of a regular hexagonal packing|namely,those circles whose centers lie in 
|while Qj onthe left is a repacking of the same combinatoricpattern (that is, the circles have changed sizes andlocations, but remain tangent to one another in the

same pattern as Pj) and is extremal in the unitdisc. The existence of Qj follows from the Koebe{Andreev{Thurston Theorem quoted later.Given any such pair Qj; Pj, one de�nes a piece-wise a�ne mapping fj that identi�es the center ofeach circle of Qj with the center of the correspond-ing circle of Pj. The Rodin{Sullivan Theorem tellsus that such maps fj (appropriately normalized)approximate the classical conformal mapping fromD onto 
. In particular, as the radii of the cir-cles used to form Pj decrease to zero, the piece-wise a�ne maps fj : Qj ! Pj converge uniformlyon compact subsets of D to the classical conformalmap F : D ! 
.
Discrete AnalogyThe analogy aspect of our topic is suggested whenone looks at individual maps, such as the fj's inFigure 1. One �nds that each, in isolation, al-ready displays many geometric properties tradi-tionally associated with analyticity. That is, eachindividual map between circle packings seems topresent us with an object that behaves geometri-cally like a discrete analytic function. This per-spective, spelled out below, is at the heart of our

THE FUNDAMENTAL ANALOGYClassical analytic functions may be treated geometrically as mappings between domains. Globally, they mustbe continuous and orientation-preserving; however, the key conditions are entirely local: At a generic point themapping is locally one-to-one and \conformal". This means angle-preserving, but is typically recast as \mapsin�nitesimal circles to in�nitesimal circles". At isolated critical points the mapping may be branched, meaningthat it has the local mapping properties of z 7! (z � a)k for some integer k > 1.In the discrete setting, the domains and ranges are circle packings. A map f : Q! P is said to be a discreteanalytic function if it preserves tangency and orientation: that is, if tangency of c1; c2 in Q implies tangencyof f(c1); f(c2) in P . This is the discrete version of continuity. Any mutually tangent triple of circles in P getsmapped to such a triple in Q; orientation-preservation is simply the requirement (assumed in the sequel withoutfurther comment) that if the former triple is positively oriented in Q, then so is the latter in P . We �nd thatthe \local" mapping conditions are quite automatic: A ower in P consists of a circle c, the \center", and theclosed chain fc1; : : : ; cng of successively tangent neighbors, the \petals", and comparing a ower in Q to itsimage ower in P , one sees the local mapping behavior of f . At a branch point, for example, the petals of theimage ower wrap more than once around its center.Summarized rather loosely: A classical analytic function is a continuous orientation-preserving map carryingone pattern of in�nitesimal circles to another, while a discrete analytic function is a continuous orientation-preserving map carrying one pattern of real circles to another.
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FIGURE 1. Approximations to a conformal mapping.
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experiments, and we want to establish it �rmlyhere at the beginning because it provides a familiarcontext for the entire paper.In classical function theory, the UniformizationTheorem allows one to concentrate on functions de-�ned on the three standard domains: the unit discD , the plane C , and the Riemann sphere S2. Ourdiscrete experiments can be arranged analogously:The Discrete Uniformization Theorem, discussedlater, tells us that given an appropriate abstractpattern for a packing, encoded in an abstract com-plex K, there is an essentially unique extremal cir-cle packing PK , termed the \maximal packing" forK. Its circles have mutually disjoint interiors andpack one and only one of the spaces D , C , or S2, de-pending on K. (For instance, in Figure 1, the Qj'sare the maximal packings in D associated with thecombinatorics of the Pj's.) Maximal packings serveas the standard domains for our maps.
Experimental SetupEach of the discrete analytic functions f we con-sider will map a maximal packing PK for some sim-ply connected complex K to another circle pack-ing P having the same combinatorics: f : PK ! P .We adhere to the following standard normalization.A distinguished vertex of K is designated as � andthe corresponding circle is centered at the origin

in both PK and P ; in other words, f(0) = 0. An-other distinguished vertex of K, designated , hasits circle centered on the positive y-axis.
ExamplesWe present several examples, classi�ed accordingto their classical models. When K triangulates asphere, for example, PK and P must both packS2, so f : PK ! P is a discrete rational function.We will not be working with packings of S2 in thispaper, but the reader may enjoy the illustrationin Figure 2. The domain is the univalent max-imal packing, while the range is a seven-sheetedbranched cover of S2 with twelve branch points (theshaded circles). The combinatoric pattern of thesepackings happens to be dual to that of the buck-minsterfullerene molecule C60.If PK packs C , then f is clearly a discrete en-tire or entire meromorphic function, depending onwhether P is a planar or spherical packing. Liou-ville's Theorem holds, so P cannot lie in a boundedregion; in fact, Callahan and Rodin [1993] haveproved an analogue of Picard's Theorem (for thehexagonal case), stating essentially that P mustcover the sphere, with the possible exception of atmost two points. Examples are di�cult to display,but Figure 3 demonstrates packings for a discrete

PK

f-

P

FIGURE 2. A discrete rational function.
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analogue f of the complex sine function: the topdiagram shows a portion Q of the domain, which ismapped by f to the upper half of the plane in thebottom (a regular hexagonal packing); note thatf(0) = 0 and f(�=2) = 1. The full domain �lls Cand is generated by reecting Q in the real axis andthen repeatedly reecting the result in its verticalsides. Simultaneously, f is extended by Schwarzreection in the range. The reader can con�rmthat the mapping properties mimic those of sin z.

��=2 �=2?f(z)

�1 1
FIGURE 3. A discrete sine function.One �nds much more exibility among discreteanalytic functions on the disc|when PK packs D|and that is where most of our experiments take

place. Figure 4 illustrates three examples, all withthe same complex K (and therefore the commondomain PK). The �rst, f1, has a range packingwhose circles have mutually disjoint interiors; wecall it univalent. The function f2 has a range pack-ing that twists back over itself, covering some partsof its range twice; we say it is a locally univa-lent, (globally) two-valent discrete analytic func-tion. The third function f3 is a branched two-valent function; the branch point is associated witha circle in its range packing P whose chain of neigh-bors wraps twice around it. This behavior is di�-cult to see in Figure 4, but we investigate it moreclosely in the next section.These examples are intended to give the readera basic intuition about discrete analytic functions.The emerging theory seems remarkably faithful toits classical counterpart: certain topological under-pinnings are pro forma, but the rigidity imposedby the circles seems to force a geometric behav-ior tantamount to discrete analyticity. In addi-tion to the Uniformization, Liouville, and PicardTheorems already mentioned, one �nds in the lit-erature geometrically precise discrete analogues ofthe Schwarz and Pick Lemmas, of Dirichlet-typeboundary value problems and the Perron method,of distortion theorems, discrete versions of famil-iar classes of functions, polynomials, exponentials,Blaschke products, analogues of Brownian motionand harmonic measure, and so forth. Also, eachdiscrete analytic function f induces a \ratio func-tion" f#, de�ned later, whose behavior is remark-ably like that of the modulus of a classical deriva-tive.
Outline of the PaperWe investigate both the approximation and anal-ogy facets of discrete analytic functions. The pa-per begins with the basics of circle packing: termi-nology, notation, existence and uniqueness results,and numerical algorithms. In Section 3 we formallyde�ne discrete analytic functions, state analoguesof certain classical theorems, and give the funda-mental approximation results.
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FIGURE 4. Discrete analytic functions on the disc.The strong parallels with classical theory mo-tivate three experiments on the analogy side, de-scribed in Section 4. Experiment #1 is aimed atDieudonn�e's extension of the Schwarz Lemma, #2at the Koebe 14 Theorem, and #3 at generationof a discrete entire function. The fact that dis-crete functions also numerically approximate theirclassical models motivates four experiments on theapproximation side, described in Section 5. Ex-periments #4 and #5 approximate �nite Blaschkeproducts and complex polynomials; #6 approxi-mates disc algebra functions with speci�ed bound-ary curves; and #7 returns to the conformal map-pings �rst proposed by Thurston, introducing a

\multigrid" method that shortens packing compu-tations considerably.The paper's experiments were carried out andthe images generated using CirclePack, a softwarepackage developed by the second author (see Sec-tion 6). The multigrid method is implemented us-ing specialized routines by the �rst author, exe-cuted through CirclePack. Needless to say, thelive experiments and animated sequences of im-ages available using CirclePack are far more in-formative than the few isolated images we couldpresent here. The reader is encouraged to acquirethe software by anonymous ftp (see the section onElectronic Availability at the end). Accompanying
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scripts allow one to run through most of the exper-iments and images of the paper using nothing morethan mouse clicks. For the more involved reader,just a handful of rudimentary commands in Cir-clePack will permit open-ended experimentation|and there is a lot of new, unexplored territory.
2. BASIC CIRCLE PACKINGThe key to working with circle packings lies in rec-ognizing their dual natures: combinatoric on onehand and geometric on the other. To illustratein a simple case, take the euclidean circle packingof Figure 5 (left). Its (euclidean) carrier, denotedcarrP , is the geometric two-complex shown on theright, formed by centers of circles, edges joiningthe centers of tangent circles, and faces formed bymutually tangent triples of circles. We encode thecombinatorics of the packing in the abstract sim-plicial two-complex K that is simplicially equiva-lent to carrP . The geometric information residesin a vector R = f�0; �1; : : :g that has a radius �jfor each vertex vj of K (that is, for each circle ofP ). We call K(R) a labeled complex and writeP � K(R) to indicate the association with P . The

centers of the circles would also seem to be impor-tant in our bookkeeping; but in fact, as we will see,they are essentially determined by K and R.The labeled complex is the central organizingmechanism for all our subsequent work. One typ-ically does not expect things to be as straightfor-ward as in Figure 5, however: Radii may be in oneof three di�erent geometries; packings may twistaround, with carriers that overlap themselves; theymay have branch circles; they might even have in-�nitely many circles; and so forth. One can seethe potential variety from illustrations in Section 1.The best way for the reader to develop intuitionis by hands-on manipulation using CirclePack|which, incidentally, also uses labeled complexes forits bookkeeping.Two circle packings Q and P have the same com-binatorics if they share the same complex K, andin this case there is a natural circle packing map be-tween them that identi�es corresponding circles|that is, circles associated with the same vertex ofK. These maps are the subjects of our experi-ments. We work primarily in the euclidean planeC and the hyperbolic plane, represented here asthe unit disc D with the Poincar�e metric.

FIGURE 5. Left: A univalent euclidean packing. Right: The shaded object is the packing's carrier.
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CombinatoricsThe abstract pattern of tangencies in a packing|which circles are supposed to be tangent to whichothers|is referred to as the packing's \combina-torics" and is encoded in K. The appropriate con-ditions on K are most easily captured as follows:The complex K is (simplicially equivalent to) a tri-angulation of an oriented topological surface. Fur-thermore, we restrict attention here to complexesK that are simply connected and of bounded de-gree; the latter condition means that there is a�nite bound on the number of vertices neighboringany one vertex. Two technical conditions are alsoassumed without further comment: namely, everyboundary vertex of K must have at least one inte-rior neighbor, and the set of interior vertices mustbe edge-connected.WhenK is �nite|as in any concrete experimen-tal situation|it triangulates either a closed topo-logical disc (the typical situation in this paper) or asphere (if it has no boundary). In�nite complexesK that we encounter will be triangulations of opentopological discs.
GeometryThe geometry of an actual circle packing for Kresides in the radii and centers of its circles. In fact,the bookkeeping is best handled by concentratingon the radii, which may be treated as parameters.In particular, let D denote one of the geometricspaces S2, C , or D . A vector of positive numbers,denoted R = f�0; �1; : : :g with an entry �j = R(vj)for each vertex vj of K, is termed a label for K(in the geometry of D), and we refer to K(R) as alabeled complex. Of course, most labels R will notbe compatible collections of radii: circles of thesesizes just wouldn't �t together in D according tothe prescription of K.Necessary and su�cient conditions for geometriccompatibility are given in terms of angle sums: Fixa vertex v of K. For each face hv; u; wi 2 K, circlesof radii R(v), R(u), R(w) may be arranged in theprescribed geometry to form a mutually externally

tangent triple. The appropriate law of cosines thengives an angle at v in the geometric face formed bythe centers of these circles. Summing the anglesover all faces of K containing v gives the anglesum at v, denoted �(v) = �R(v). If v is an interiorvertex, circles having the radii associated with vand its immediate neighbors can be �t together inD to form a coherent ower if and only if�R(v) = 2�� for some integer � = �R(v) � 1:
(2.1)This is known as the packing condition for R atv. The integer � � 1 is called the order for v; theneighbors of (the circle for) v wrap � times aroundit. When the packing condition (2.1) holds for allinterior vertices v, we say that R is a packing labelfor K.

Theorem. Suppose K is a simply connected com-plex and R is a label for K in the space D. ThenR records the radii of some circle packing P forK in D if and only if R is a packing label . Thepacking P � K(R) is uniquely determined up toautomorphisms of D.Given a packing label R for K, an associated cir-cle packing P is easily constructed. We describethe procedure as implemented in CirclePack: Re-call that two distinguished vertices of K have beendesignated as � and . We build P by �rst cen-tering a circle of radius R(�) at the origin. Nexta vertex v neighboring � is chosen (the default inCirclePack is the �rst entry in the stored list ofall neighbors of �) and a circle of radius R(v) isdrawn tangent to the circle for � with center on thepositive x-axis. Now, remaining circles are addedsuccessively, each placed (with proper orientation)only after two contiguous neighbors have alreadybeen drawn. The conditions on our complexes en-sure that all circles may eventually be placed andthe packing condition (2.1) on interior radii guar-antees that the order in which they are placed isirrelevant. A �nal normalization rotates the wholecollection of circles so that the one associated withvertex  is centered on the positive imaginary axis.
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(This seems to work best for visual clues to packingsymmetries.) The �nal con�guration P is what weterm essentially unique, that is, it is determinedup to placement of the initial two circles (in otherwords, up to an automorphism of the underlyingspace D).The natural simplicial map from K to carrPprovides an immersion of K in the space D. If v isa vertex of K for which �R(v) = 1, the immersionis locally univalent at v. If � � 2, the immersionhas multiplicity � at v, and v is said to be a branchpoint (or branch vertex or branch circle) of order� � 1. As we will see, di�erent packing labels Rprovide di�erent immersions.
Maximal PackingsThe above discussion begs the question of whetherthere exist any packing labels for a given K. Theseminal result in the topic addresses this [Morgan1984]:
Theorem (Koebe–Andreev–Thurston). Let K be a tri-angulation of S2. There exists a circle packing PKin S2 whose carrier is simplicially equivalent to K.Moreover , the circles of PK have mutually disjointinteriors, and PK is unique up to automorphismsand inversions of S2.Generalizations and extensions of this theorem saythat for each (simply connected) complex K there

exists an essentially unique canonical packing de-noted PK , which we call themaximal packing forK[Beardon and Stephenson 1990]. The appropriatespace, C , D , or S2, is determined by the combina-torics of K, and we call K parabolic, hyperbolic, orelliptic, accordingly. The maximal packing labelassociated with PK will be denoted by RK . (Max-imal packings may be de�ned using covering the-ory even for nonsimply connected complexes; see[Beardon and Stephenson 1990].)Maximal packings enjoy the following properties:� They are always univalent.� When K triangulates the sphere, PK packs S2and K is elliptic.� When K is �nite but has boundary vertices|the situation that pertains in nearly all the pack-ings of the paper|PK is the so-called Andreevpacking of D , in which all the boundary circlesare horocycles; in a completely natural way, ahorocycle in D may be treated as a circle hav-ing in�nite hyperbolic radius and center at thepoint of tangency with the unit circle T. Inparticular, for each vertex w 2 @K, we haveRK(w) =1.� In�nite complexes must be either hyperbolic orparabolic. We will use only two parabolic com-plexes in the sequel: the hexagonal complex H,whose maximal packing is the familiar \pennypacking" of Figure 6, left, and the \ball bearing

FIGURE 6. Left: The penny packing PH . Middle: The maximal packing PB of the ball-bearing complex. Right:The regular heptagonal packing (of the hyperbolic plane).
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complex" B of Figure 6, middle. (The normal-izations for PH and PB depend on the circum-stances.) By way of contrast, the last part ofFigure 6 illustrates the regular heptagonal cir-cle packing, which is in�nite but hyperbolic.
ResultsHere we accumulate the basic theoretical resultson circle packing that underlie our experiments.(They represent a consolidation of results from avariety of sources.) Assume that K is �nite andsimply connected, with boundary|that is, it tri-angulates a closed topological disc. Of �rst impor-tance, of course, is the existence of an essentiallyunique maximal packing PK, as noted previously;in this instance, PK packs D . Its \maximal" natureis reected in the �rst result:
Discrete Schwarz Lemma. If R is a hyperbolic pack-ing label for K, then R(v) � RK(v) for every ver-tex v of K. Moreover , equality at a single interiorvertex v implies R � RK .
Global Monotonicity Lemma. Let R1 and R2 be pack-ing labels for the (hyperbolic or euclidean) complexK. If R1(w) � R2(w) for every boundary vertex w,then R1(v) � R2(v) for every vertex of K. More-over , equality at a single interior vertex v impliesR1 � R2.
Dirichlet Boundary Radii. Let g be a positive func-tion de�ned on the boundary vertices of K. Thenthere exists a unique euclidean packing label Rg forK with the property that Rg(w) = g(w) for everyboundary vertex w. The analogous result holds forhyperbolic packings, with the added feature that gmay assume the value 1.
Dirichlet Boundary Angle Sums. Let ' be a positivefunction de�ned on the vertices of @K, and assumethat there is some euclidean packing P � K(R)such that '(w) � �R(w) for every w 2 @K. Thenthere exists a unique packing label R0 for K so that�R0(w) = '(w) for all w 2 @K. The analogousresult holds in the hyperbolic setting , with the addedfeature that ' may assume the value 0.

The Dirichlet results provide the theoretical basisfor most of our packings; note, in fact, that a max-imal packing in D is the solution of the hyperbolicDirichlet problem with boundary radii speci�ed tobe in�nity. Fortunately the solutions of these prob-lems are e�ectively computable, meaning that onecan compute approximations to any desired degreeof accuracy. CirclePack employs an iterative algo-rithm �rst proposed by Thurston: For instance, tosolve a typical boundary radius problem, one �rstassigns the speci�ed radii to boundary vertices ofK and arbitrary radii to the interior ones, givingan initial label RI . Now, one repeatedly visits theinterior vertices and upon each visit adjusts thatcomponent of the label so that the angle sum atthat vertex is 2�. The succession of adjusted la-bels will converge to the desired packing label. (See[Bowers 1993], for instance.) The algorithm is anissue in Experiment #7; we also discuss CirclePackfurther in Section 6. Finally, we point out that ourtheoretical and computational results hold equallywell when the packings share a common branch set,as described in the next section.
3. DISCRETE ANALYTIC FUNCTIONSIn spirit, a discrete analytic function f is a mapbetween circle packings that preserves tangenciesand orientation. Speci�cally, if Q and P are twocircle packings with the same combinatorics, thenf : Q! P is the map that identi�es correspondingcircles. This is slightly abstract for our purposes,however, so let's establish notation and give a moreconcrete de�nition.Denote the vertices of K by fv0; v1; v2; : : :g, withv0 = �, the distinguished interior vertex used fornormalizations. In the domain packing Q, denotethe circle associated with vj by Cj, the radius ofCj by rj, and the center of Cj by zj; in the rangepacking P denote the analogous quantities by cj,�j, and wj. (Note that the radii and centers de-pend on the geometry; a packing in D , for instance,might be treated as hyperbolic, euclidean, or spher-ical depending on the circumstances.)
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Definition. A discrete analytic function f betweentwo circle packings Q and P sharing the same com-plex K is a simplicial mapf : carrQ! carrPsatisfying f(zj) = wj for j = 0; 1; 2; : : :. The asso-ciated ratio function f# is the real function de�nedon the centers byf#(zj) = �jrj = radius cjradiusCj ; for j = 0; 1; 2; : : : .The key condition on f is that it map centers tocorresponding centers; from there, its simplicial na-ture (i.e., mapping edges to edges and faces tofaces) can be arranged in various ways|for in-stance, using some type of barycentric coordinates.In any case, the resulting map f is continuous,open, discrete, and orientation-preserving, impor-tant mapping properties paralleling classical ana-lytic functions. We will see that the ratio functionf#, which after all reects the factor by which acircle is stretched or shrunk under f , plays the roleof the modulus of the derivative of f ; it too couldbe extended in some ad hoc way to all of carrQ,but we only use its values at the centers zj.As we have said, in spirit f is a map betweencircle packings, and so, despite the formal de�ni-tions, we will frequently abuse notation: In placeof f : carrQ ! carrP , we generally just writef : Q ! P . We may well say cj = f(Cj), thoughtechnically this is not true of the circles as pointsets under the map f between carriers. The vertexvj of K, its circle Cj, and the center zj of Cj areso strongly identi�ed that we may refer to f(vj)when we actually mean f(zj), and to f#(vj) whenwe mean f#(zj). In discussing branching below,we attach the same meaning to the statement that\vj is a branch vertex of K" or \cj is a branch cir-cle of P" as we do to the formally correct \zj is abranch point of f".We are now in a position to state various resultsin forms reminiscent of their classical models. Forinstance, the existence and essential uniqueness ofthe maximal packing PK may be interpreted as

a discrete version of the Uniformization Theorem:Within the combinatoric regime dictated by K, wemay view P in the role of a general simply con-nected Riemann surface. The packing PK is the\standard" domain for K|packing one of S2, C ,or D , depending on K.
Discrete Uniformization Theorem. Assume that P isa circle packing whose complex K is simply con-nected . There exists a discrete analytic functionf : PK ! P , where PK is (that is, packs) thesphere, the plane, or the unit disc. The function fis unique up to automorphisms of PK .In our experiments, the domain packing Q is al-ways PK , the maximal packing for K in its nativegeometry. The image packing P will be consideredin a geometry appropriate to the circumstances.Our standard normalization places vertex � at theorigin in both PK and P , so f(0) = 0, and placesthe vertex  on the positive y-axis in both domainand range.The branch structure of f : PK ! P requiressome explanation: Suppose v is an interior ver-tex of K and fu1; u2; : : : ; ukg is the closed chainof neighboring vertices. The associated circles ofPK form a necessarily univalent ower, with theangle sum �RK (v) = 2�. In the range packingP � K(R), however, the corresponding chain ofcircles fc1; c2; : : : ; ckg may wrap some number � oftimes around v, meaning �R(v) = (2�)�; thus v isassociated with a branch point of order ��1 for f .Figure 7 illustrates a ower from PK with six petalcircles and the corresponding branched ower fromP ; in the latter, the petals wrap twice around theshaded center (� = 2), for a simple branch point.The collection � of branch vertices, each repeatedaccording to its order, is called the branch set of f .Combinatoric necessary and su�cient conditionson branch sets are described in [Dubejko 1995]: �is a branch set for some f if and only if every sim-ple closed edge-path � in K has at least 2k + 3edges, where k is the number of points of � that �encloses. This condition is easily veri�ed when thevertices of � are not too crowded together, and no
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?f

FIGURE 7. Local behavior at a branch point.
di�culties arise in arranging the branch points inour experiments.The circle packing map f3 of Figure 4 has onesimple branch point; indeed, the owers of Fig-ure 7 are taken from its domain and range. Thestructure of P3 is actually not so complicated ifone views it as being comprised of two \sheets", assuggested in Figure 8: when these sheets are cross-connected along the indicated branch cut endingat the branch circle, they project to form P3.

?projection

FIGURE 8. Sheets pasted to form a branched packing.
Discrete AnalogyWe hope that the analogy with analytic functionsis clear to the reader. It might help to restate (andextend) the Discrete Schwarz Lemma of the previ-ous section in the new terminology.
Discrete Schwarz–Pick Lemma [Beardon and Stephen-son 1990, Lemma 5]. Let f : PK ! P be a discreteanalytic function with P � D and f(0) = 0. Thenf#(0) � 1, with equality if and only if f is an auto-morphism of D . Moreover , if d denotes hyperbolicdistance in D , thend(f(zj); f(zk)) � d(zj; zk)for any two interior centers zj and zk of PK , withequality if and only if f is an automorphism of D .In Section 1, we mentioned several other speci�cparallels, though in less precise terms. The Dis-crete Liouville Theorem, for instance, would saythat there is no nontrivial discrete analytic func-
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tion de�ned on the plane (that is, with a paraboliccomplex) whose image lies in a bounded region ofthe plane. We leave formulations of other statedresults to the reader. Experiments with furtheranalogies are described in the next section.
Discrete ApproximationWe are also in position, now, to quote the funda-mental approximation result in the terminology ofdiscrete analytic functions. Here 
 is a boundedsimply connected domain in the plane with dis-tinguished points a; b; the Pj, for j = 1; 2; : : :, areunivalent circle packings lying in 
 with complexesKj . Write fj for the univalent discrete analyticfunctions fj : PKj ! Pj.
Theorem. Using the notation established above, as-sume the following conditions:
(1) The radius of the largest circle of Pj goes to zeroas j goes to in�nity .
(2) The carriers of the Pj exhaust 
.
(3) The degrees of the Kj are uniformly boundedabove.
(4) fj(0)! a as j goes to in�nity .
(5) f�1j (b) > 0 for all j.Then the discrete analytic functions fj convergeuniformly on compact subsets of D to the classicalconformal mapping F : D ! 
 satisfying F (0) = aand F�1(b) > 0. Moreover , the ratio functions f#jconverge uniformly on compact subsets of D to jF 0j.The convergence fj ! F was proven in [Rodin andSullivan 1987] in the case that theKj are hexagonalcomplexes, con�rming Thurston's 1985 conjecture.It was extended to general complexes in [Stephen-son 1990], though with an added assumption of auniform bound on the ratios of the radii of any twocircles from Pj. The result as stated is proven in[He and Rodin 1993].Because analyticity is a local property, this orig-inal conformal case has wider implications. By re-laxing global univalence and incorporating branchpoints, Dubejko has shown how to approximate,�rst �nite Blaschke products, then polynomials,

and thereby general analytic functions on D [Du-bejko 1995; a]. Also, by results in [Dubejko andStephenson 1995], convergence fj ! F in any ofthese settings implies convergence f#j ! jF 0j. Ourexperiments involving approximations are in Sec-tion 5.
4. DISCRETE ANALOGYOur �rst three experiments address analogies be-tween discrete and classical analytic functions. Ba-sic topological parallels|open mapping, discrete-ness, orientation, and so forth|come free in thediscrete theory because we use simplicial maps. Itis only with the circles, however, that we acquirethe geometry and rigidity so reminiscent of classi-cal analyticity.Experiments #1 and #2 investigate fundamen-tal geometric constants. Both suggest not onlythat analogous constants exist in the discrete the-ory, but that they may be quite close to their classi-cal values. (We display only a representative sam-ple of our experimental trials.) Of course, experi-ments alone prove nothing. They can be valuable,nonetheless, particularly since in some sense it is\coarse" circle packings, those with small numbersof circles, that should be considered; by the approx-imation results, one expects the discrete analyticfunctions based on very \�ne" circle packings toreect the behavior of classical analytic functions.Analogy is a two-way street, of course, and Ex-periment #3 attempts to use classical motivationsto address an existence question in the discrete the-ory.
Experiment #1: The Dieudonné–Schwarz LemmaAccording to the classical Schwarz Lemma, if F :D ! D is analytic with F (0) = 0, then jF 0(0)j � 1,and we have seen the discrete version stated above.However, there is an extension of the classical re-sult due to Dieudonn�e that shows that
jF 0(z)j � 8<: 1 for jzj � p2� 1,(1 + jzj2)24jzj(1� jzj2) for p2� 1 < jzj < 1,
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and these bounds are sharp. Does this also carryover to discrete analytic functions? In this sectionwe consider the inequality for jzj � p2� 1, and inSection 5 the inequality for jzj > p2� 1: Since weare following an experimental philosophy here, wepose the question as a hypothesis:
Hypothesis. There exists a universal constant C1 >0 so that the following holds: If K is hyperbolicand f : PK ! P is a discrete analytic functionwith P � D and f(0) = 0 and if z is the (hyper-bolic) center of a circle of PK with jzj � C1, thenf#(z) � 1.Figure 9 illustrates a simple prototype experiment.The maximal packing PK is on the left, the rangepacking P on the right. CirclePack was used tocompute the ratio of euclidean radii of circles in Pto their counterparts in PK and to shade in the cir-cles in PK for which this ratio exceeds 1. The Hy-pothesis concerns how closely the centers of theseshaded circles can approach the origin. For pur-poses of reference, the classical \exclusion zone",the region wherein the modulus of the derivativecannot exceed 1, is indicated by a circle of radiusp2� 1 superimposed on PK.

There is an endless supply of experiments to try:di�erent complexes, choices of branch point(s), andchoices of boundary radii. As a challenge, we de-cided to �x a complex|the one underlying Fig-ure 9|and see which circles we could force to be-come shaded. Imagine this as a video game:
PackMan. The domain PK on the left of your screenis �xed, and on the right is another hyperbolicpacking P for K. With your controls you canchange the boundary radii and/or branch structureof P . With each change, CirclePack immediatelyrecomputes the new P and then shades any cir-cle of PK that happens to be (euclideanly) smallerthan its new counterpart. Your goal is to manip-ulate P so as to shade as many circles of PK aspossible (thereby saving the planet).Figure 10 displays the accumulated results|we didour best, but were not able to shade any circleshaving centers of modulus less than p2� 1.What's your best strategy? How can you forcethe shading closer to the origin? The game is quiteintriguing: The Discrete Schwarz Lemma impliesthat a circle of P is hyperbolically smaller than itscounterpart in PK ; thus the only hope that it be

f-

PK

FIGURE 9. Prototype of Experiment 1. The inner circle in the domain represents the exclusion zone, of radiusp2� 1.
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PK

FIGURE 10. Accumulated PackMan trials with �xedK.euclideanly larger is to force its center towards theorigin in P . There are two ways you might try toarrange this: either by introducing branch pointsin P , thus sweeping some of its circles towards theorigin, or by decreasing some boundary circles ofP , in the hope of pulling others towards the origin.The �rst approach has a classical precedent: Thefunctions that show the sharpness of Dieudonn�e's

classical constant are twofold Blaschke products.The discrete analogue would involve a packing Phaving a single branch point and in�nite boundaryradii. More about such functions in Section 5.The second approach is a tricky balancing act:When you reduce boundary circles, the repackingcomputations (to form the new P ) will bring circlestowards the origin while simultaneously shrinkingtheir hyperbolic radii. To see how delicate natureis in balancing these competing e�ects, considerthe discrete analytic function f of Figure 11: Thepackings PK and P are quite similar. Visualize Pas being obtained from PK by pushing in to make asmall dent in D near w = i. As one might expect,reducing circles to make this dent while keepingthe origin �xed forces a stretching behavior on theopposite side of the origin, and that is reected inthe shaded circles of PK. Note that some of theircenters lie perilously close to the classical exclusionzone.All our experiments tend to support the exis-tence of a discrete exculsion zone of some radiusC1 about the origin, and only recently did we �nda situation that cracks the classical barrier, show-ing that C1|if it exists|is necessarily less thanp2�1. The example f is shown in Figure 12. Therange packing P has a branch circle far out near
PK Pi

FIGURE 11. A delicate balance.
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PK P

FIGURE 12. Penetrating the classical zone.the boundary, which accounts for the large horocy-cle covering most of the disc. There is one vertexv whose circle is shaded and penetrates the exclu-sion zone, its center having modulus approximately0:378; we point out, however, that it is a very nearthing since f#(v) = 1:0000112 just barely exceeds1 in this example. (Our thanks to Richard Ruppfor running the experimental trials that suggestedthis function.)In summary, there seems to be a discrete exclu-sion zone somewhat smaller than the classical one.
Experiment #2: Koebe’s 1

4
TheoremThe classical Koebe 14 Theorem may be restatedas follows: Let F be analytic and univalent on theunit disc D , with F (0) = 0. If its range F (D ) failsto contain the closed unit disc �D , then jF 0(0)j � 4;this bound is sharp. Our experiments probe thediscrete analogue. For � > 0, let D(�) denote thedisc fjzj < �g.

Hypothesis. There exists a universal constant C2 sothat the following holds: Let K be hyperbolic andlet f : PK ! P be a univalent discrete analyticfunction with f(0) = 0. Suppose carrPK containsthe disc D(�). If carrP fails to contain the closedunit disc �D , then f#(0) � C2=�.

For the classical theorem (wherein � is 1), the sharpbound is 4. Is the discrete result true with C2 equalto 4? Approximation results imply that C2|if sucha constant exists|can be no smaller than 4.This problem highlights some more-or-less typi-cal discretization issues that can arise when mim-icking a continuous theory. For instance, what dowe mean by the range of f? We have chosen tointerpret this as the carrier of P ; in our runs, then,we can avoid covering �D by having some boundarycircle of P centered at the point w = i. Like-wise, we are forced to consider the carrier in thedomain, which is why the disc D(�) is needed inthe Hypothesis. Let �K � 1 denote the supremumof those � with D(�) � carrPK . Then �K canbe arbitrarily small, depending on K and v0, andwe must account for it in the bound on f#(0)|just consider that D(�K) plays the role of domainplayed by the unit discD(1) in the classical setting.Next, what is the most appropriate interpreta-tion of univalence? In the Hypothesis, we meanthat the circles of P have mutually disjoint inte-riors. However, that turns out to be di�cult toarrange computationally; there are as yet no uni-valence criteria in circle packing (no analogues, forexample, of Nehari's condition) that might tell youfrom the radii alone whether a packing P will be
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PK f- P

FIGURE 13. Prototype of Koebe Experiment. The thick circle in the range is the unit circle.univalent when laid out. For practicality's sake, wesubstitute the weaker condition of carrier univa-lence, meaning that the carrier of P is univalentlyimmersed in C . This encompasses more functions,so any constant obtained provides an upper boundon the constant C2 of the Hypothesis.In the classical theory, the extremal functions arederived from the Koebe function k(z) = z=(1�z)2.Speci�cally, multiply this by 4 and rotate clockwiseby �=2 to get F (z) = �4ik(z), which is a classi-cal univalent analytic function satisfying F (0) = 0and with range C nfiy : y 2 [1;1)g. Its image re-gion, in essence, has had its boundary pushed o�to in�nity, apart from a portion that sneaks in tocapture the point w = i, thereby failing to cover �D .A computation shows that jF 0(0)j = 4. We modelour discrete experiments on F .The prototype experiment is shown in Figure 13.Here �K � 0:82, so our aim is to compare f#(0)to 4=�K � 4:88. The carrier of P omits the imag-inary axis from w = i up; our normalization andthe combinatoric symmetry of K were chosen toaid the reader in interpreting the pictures. In thisinstance, we forced P to form a deep notch by pre-scribing certain boundary angle sum conditions:
(a) The bottom of the notch, enlarged in the right-hand panel of Figure 13, was formed by twoneighboring boundary circles with angle sumsprescribed at 54�.

(b) Each side of the notch was formed by two bound-ary circles having prescribed angle sums of �.
(c) The remaining boundary circles had no anglesum constraints, but rather had large prescribedradii.This is a mixed Dirichlet problem. There existsan essentially unique circle packing satisfying thesethree conditions, and the approximate solution wascomputed with CirclePack; normalization placesthe proper circle at the origin and ensures thatthe bottom of the notch reaches w � i. The re-sult is the packing P displayed in Figure 13. Carewas taken in specifying the radii of condition (c) tomaintain univalence (and in this case, symmetry).The value of f#(0) obtained is 2.36. It is clear,however, that we can improve on this. The ideais to further increase the circle at the origin bytightening up conditions (a), (b), and (c): makethe notch sharper, include more circles in its sides,and enlarge the remaining free boundary circles,and do this while keeping the packing univalent.Two additional trials are shown in Figure 14. Thevalues of f#(0) were increased to 3.06 (top row)and 3.38 (bottom row).We applied an additional technique, which wassuggested by one of the referees of this paper, toget even more out of this sameK. Namely, we aug-mented K by adding seven edges, one to connecteach circle on the left side of the notch in Figure 14
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FIGURE 14. Two experiments to explore the bound in the circle-packing equivalent of Koebe's theorem. Onthe top, f#(0) = 3:06, and on the bottom, f#(0) = 3:38.

FIGURE 15. Augmenting the complex pushes the bound further, to 3.68.
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(bottom) to its counterpart on the right; seven ad-ditional vertices are thrown in to triangulate thequadrilateral interstices thus formed. Any univa-lent packing of the augmented complex yields aunivalent packing of K. The packing for this aug-mented complex is shown in Figure 15, with thenew edges and circles appearing as dashed lines.Comparison with Figure 14 (bottom) shows thatthis technique draws the two sides of the notchmuch closer together while preserving univalence.By trying various boundary conditions, we havebeen able to push the value of f#(0) to approxi-mately 3.68.The packing of Figure 16 is approaching the ex-treme situation for the prototype complex usingour techniques: Some of its boundary circles over-lap one another severely, but the packing remainscarrier-univalent. The notch is deep and straightand the outer free boundary circles are huge. None-theless, the value of f#(0) reaches only 3.84, stillwell within the working bound of 4=�K � 4:88.We have experimented with numerous complexesand packings, but have yet to �nd one for which thehypothesis fails with C2 equal to the classical con-stant 4. Large values for f#(0) seem to arise fromKoebe-like functions; attempts to vary from pack-ings mimicking regions with single straight slitshave led invariably to smaller values.

Experiment #3: The Error FunctionIt is evident that any attempt to study in�nite cir-cle packings would encounter experimental prob-lems. However, there are also considerable theo-retical hurdles. The fundamental issue for an in-�nite complex K concerns the existence and va-riety of packings. The entries of the associatedin�nite packing labels R = f�0; �1; : : :g must sat-isfy an in�nite system of equations|namely, theangle sums of interior vertices must be multiplesof 2�. There are currently very few methods forgenerating solutions. Indeed, the only examples sofar are these: Maximal packings for in�nite com-plexes; discrete polynomials created in [Dubejko a];univalent packings �lling simply connected planedomains [He and Schramm]; ad hoc constructions,such as the sine function described in Section 1 (seeFigure 3); and \Doyle spirals".We restrict attention to the hexagonal case, withcomplex H, where progress is most likely. If P is acircle packing for H, the discrete analytic functionf : PH ! P would be an example of a discrete en-tire function. We know some things, a priori, aboutsuch packings P . For instance, by the discrete Pi-card Theorem [Callahan and Rodin 1993] (whichcan be extended to include branched packings), Pmust cover all of C , with the possible exception ofone point.

FIGURE 16. Approaching the extremal for the prototype.
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FIGURE 17. A selection of Doyle spirals.How many packings P are there for H? By Sul-livan uniqueness, any univalent P is a M�obius im-age of PH ; that is, f is a linear polynomial. Arecent result [Dubejko 1996] yields the same con-clusion if f# is bounded. As for nonunivalent pack-ings, Dubejko created �nitely branched packings Pwhose carriers are �nite valence (branched) coversof C ; these are discrete polynomials. An observa-tion of Peter Doyle leads to a two-parameter fam-ily of \Doyle spirals" like those shown in Figure 17;the function f in each case behaves as a discreteexponential function. There are as yet no otherpackings known for H, and the search for furtherexamples motivates the experiments in this section.We begin by looking more closely at the spirals.First, note in Figure 17 that the packings are in-deed hexagonal: every circle is tangent to six oth-ers. The circles spiral in towards a point, which we

take to be w = 0, and out towards in�nity. Thesespirals should be pictured as lying on the univer-sal cover of C � = C nf0g; each circle is actually aprojection to C � of in�nitely many circles on thisuniversal cover. In order to get reasonable illus-trations we have chosen pairs of parameters whichcause the circles to line up with one another fromone sheet to the next. (See [Beardon et al. 1994]for a complete analysis of Doyle spirals.)Figure 18 shows the domain and range of one ofthese discrete exponentials f ; with the help of achain of shaded circles, one sees the familiar map-ping properties of exponential functions, such asrange, periodicity, and local univalence. Moreover,the growth of radii in P is precisely exponential,as one would expect|after all, if f is supposed tobe a discrete exponential, then f# should be expo-nential also.

PH

f-

P
FIGURE 18. A discrete exponential function.



Dubejko and Stephenson: Circle Packing: Experiments in Discrete Analytic Function Theory 327

In a private communication, Peter Doyle posedthe following question:
Question. Do there exist any locally univalent circlepackings of H other than M�obius images of PH orDoyle spirals?One might be skeptical for reasons involving thedistortions in owers of the packing. Our experi-ments suggest a more optimistic view, though theyare far from conclusive. We attempt to mimic thesimplest classical locally univalent entire functionafter the exponential, namely, the error functionerf(z) = 2p� Z z0 e�t2 dt:For a classical description of the value distribu-tion theory for this function, see [Nevanlinna 1970,p. 168], for example.Our aim here is to develop a circle packing P forH whose associated discrete analytic function fmimics erf. An opening is provided by our knowl-edge of the derivativeerf 0(z) = 2p�e�z2 :This should tell us something about f#, allowingus to construct f by integration. Here is the ex-periment:� For the domain, take PH to have circles of radius" = 0:07, with the circle for vertex � centered atthe origin and that for  centered on the positivey-axis.� For each n > 1, let H(n) denote the subcomplexof H formed by vertices in generations 1; 2; : : : ;n from �. (The corresponding packings P (n)Htaken from PH are shown in the �rst frame ofFigure 19, with their boundaries marked, forn = 5; 7; 9; 11, and 13.)� For �xed n, visit each vertex vj 2 H(n), �ndthe center zj of its circle in PH (and P (n)H ) andcompute �j = ��erf 0(zj)�� ": (4.1)

These values de�ne a label R for H(n), and ifthey were used as radii for a new packing Qn ofH(n), then the function fn : P (n)H ! Qn wouldsatisfy f#n � jerf 0j at all the points zj, a strongsign that fn is the restriction to P (n)H of the func-tion f we're looking for.� Unfortunately, the label R will not be a pack-ing label forH(n); that is, circles with these radiiwill not quite �t together. Therefore, we mod-ify our procedure slightly: Compute the �j by(4.1) only for the boundary vertices vj of H(n).Then solve the Dirichlet problem for the uniqueinterior radii that go with these to form a (un-branched) packing label; call it Rn.� Let Pn be the resulting normalized circle pack-ing of H(n). The images become complicated asn grows; more about that in a moment. (SeeFigure 19.)Repeating the experiment for successive integersn, the hope is that the �nite packings Pn will con-verge geometrically to an in�nite packing P ; equiv-alently, that the packing labels on the H(n) willconverge to a packing label on H. Presumably, ifP does not degenerate to a regular hexagonal pack-ing, one could then show that P behaves like theerror function|certainly it would not be a Doylespiral.Seeing the packings evolve graphically is fasci-nating in several regards:
(1) From the very �rst image one sees that theevolving mapping behavior of the fn's closely mim-ics that of the error function. The image developstwo logarithmic branch values at approximatelyw = �1, the two asymptotic values of erf. Asnew generations of circles are added, the grow-ing image ows out and around the singularities.The static images in Figure 19 quickly become toocomplicated to interpret; however, chains of circlesthat seem to \wrap" around one singularity beginto cover the other singularity (Picard's Theoremis not in danger). When running CirclePack, onecan selectively highlight portions of the packings to
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n = 5

n = 7 n = 9

n = 11 n = 13

FIGURE 19. Towards a discrete error function. The �rst panel shows the packings P (n)H , for n = 5; 7; 9; 11, and13; these packings are obtained by restricting PH according to the boundaries shown. The remaining panelsshow Pn for the same values of n.
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see the mapping behavior dynamically. It preciselymodels the well-known behavior of erf.
(2) The speed with which CirclePack computes suc-cessive packing labels is surprising. Recall thatupon adding a new generation (going from H(n) toH(n+1)), the new boundary radii are determinedby (4.1), then associated interior radii are com-puted. When the second author �rst ran theseexperiments, the packing radii from Pn were re-tained as the initial guess for the interior radii ofPn+1. After adding the new boundary, it was foundthat no adjustments were needed in these interiorradii: the radii from each stage seemed to be cor-rect for the successive stage. This persisted for25 new generations! The implication was excit-ing: perhaps the Pn are nested pieces of an in�nitecircle packing. On the 26th generation, however,the recomputation mechanism of CirclePack kickedin, showing that the earlier data had simply beenwithin acceptable error tolerances.
(3) Nonetheless, the stability of the successive pack-ings is impressive, as can be judged in these trialsby watching one particular circle, say that at theorigin, as n grows. Does its radius have a posi-tive and �nite limit? For large n, computationaltimes and roundo� errors become problems. Forinstance, owers of Pn can become quite distortedas one moves out in the generations from � becausethe ratios between the radii of neighbors will growwithout bound. Figure 20 shows a central circleand its six neighbors; the radii of the petals varyenough to cause nonneighboring petals to overlap.Aside from maximal packings and Doyle spirals,there are as yet no known locally univalent discreteentire functions based on any complex K, hexago-nal or otherwise. Ultimately, experiments can onlysuggest whether an approach has possibilities andperhaps give clues to a rigorous solution. At a min-imum, however, these trials mark the discrete er-ror function as a frontrunner in addressing Doyle'squestion.

FIGURE 20. Distorted hex ower.
5. DISCRETE APPROXIMATIONThe four experiments described in this section con-cern approximation in the vein of the Theoremat the end of Section 3; that is, we exploit thepropensity of discrete analytic functions to con-verge to classical ones as their underlying circlepackings become \�ner" (contain more numerousand smaller circles).To clarify the shift in emphasis, return for a mo-ment to Experiment #3 on a discrete error func-tion: We employed a parameter " that remained�xed in those trials. Were we to make it succes-sively smaller, the procedures there could producea sequence of discrete analytic functions on �nitesubcomplexes of H that would converge uniformlyon compacts of C to erf. Our goal before, however,was a single in�nite packing whose associated mapmimics erf, rather than a succession of �nite pack-ings whose maps approximate it.Parallels will probably continue to emerge, butour aim now shifts to the generation of sequencesof discrete analytic functions approximating clas-sical ones. The next three experiments involve ap-proximation of functions from important families:�nite Blaschke products, polynomials, and disc al-gebra functions. The last experiment suggests anapproach to speeding up circle packing computa-tions.



330 Experimental Mathematics, Vol. 4 (1995), No. 4

Experiment #4: Discrete Blaschke ProductsThe analytic functions known as �nite Blaschkeproducts arise in several mathematical contexts,perhaps because they enjoy such a variety of char-acterizations: n-fold Blaschke products are pre-cisely the n-valent proper (analytic) maps of Donto itself. Within the important class of \inner"functions in D , these are the �nite valence onesand the only ones that are continuous up to @D .They play a role in iteration theory because theyrestrict to locally one-to-one maps of the unit cir-cle to itself. They arise frequently in applicationsbecause, after a change of variables, they compriseprecisely the n-degree rational mappings of the lefthalf-plane onto itself.In any serious discrete analytic function theory,one would certainly hope for analogues of �niteBlaschke products. As it happens, circle packingversions are particularly easy to generate and aregeometrically very faithful to their classical mod-els. In particular, as in the classical case, they seemto provide the extremal functions for a variety ofsituations. Among these is the Dieudonn�e SchwarzLemma from Section 4, which we will revisit in amoment.The classical representation of a �nite Blaschkeproduct B depends on its zeros (counting multi-plicities) and takes the form
B(z) = ei�zk mYj=1 jajjaj aj � z1� �ajz ;where � 2 R , k and m are nonnegative integers,and fa1; : : : ; amg are nonzero points of D . Thefunction B is called an n-fold Blaschke product andthe points aj (along with the origin, if k � 1) areits zeros. Note that the zeros determine B, up toa rotation.For the discrete setting, the product construc-tion is not available|indeed, we have no complexarithmetic! However, there is an alternative: It iswell known that B has n�1 branch points (count-ing multiplicities) and that these points determineB up to composition with an automorphism of D .

Branching is a geometric feature and, as we sawin Section 3, is available in the discrete setting. Infact, this provides a pleasing counterpoint to theclassical theory, for we know of no practical clas-sical methods for constructing Blaschke productsfrom their branch sets.Given K, a discrete n-fold �nite Blaschke prod-uct is a discrete analytic function b : PK ! P ,wherein P is a packing of K in D having n � 1branch points (counting multiplicities) and havingall boundary circles of in�nite (hyperbolic) radius.The procedure for constructing such packings P(in our examples we use only simple branch points)goes as follows: Choose a set of n� 1 distinct inte-rior vertices � = fv1; : : : ; vn�1g forming a branchstructure as described in Section 3. Set the \aims"(target angle sums) of the vertices vj to 4�; theother interior vertices have their usual aims of 2�.Set the boundary radii of P to (hyperbolic) in�n-ity. Repack using CirclePack. The existence andessential uniqueness of the resulting packing wereestablished in [Dubejko 1995].Our prototype experiments involve fourfold dis-crete Blaschke products based on hexagonal com-plexes K. We assume that the desired branch setconsists of z1 = 0:15� 0:25i;z2 = �0:15� 0:25i;z3 = 0:5i:The maximal packing PK for a small hexagonalcomplex is displayed in Figure 21 (left). No circlesare centered precisely at the zj, so we have chosenthree nearby ones as our branch circles, and shadedthem darkly in Figure 21. The image packing P inthe same �gure, created using CirclePack, is di�-cult to interpret because its circles are four layersdeep. Circles corresponding to boundary verticesof K are horocycles in both PK and P : this is thediscrete version of the requirement that Blaschkeproducts map the unit circle to itself. With dili-gence, one may be able to trace these boundarycircles in P as they wind four times about the in-side of the unit circle. (While running CirclePack,
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PK
b-

P

FIGURE 21. A fourfold Blaschke product. The dark circles in the domain are the branch circles, and the lightlyshaded ones are those whose image in P contains 0 (they are easy to pick out using CirclePack).one can graph the domain and range in variousways to better decipher the mapping properties.)A larger example is illustrated in Figure 22. Thepacking PK is much �ner (1657 circles) and as be-fore we have chosen three branch circles (darklyshaded) near z1, z2, and z3. In the range, the cir-cles are again four layers deep; we display only theboundary circles, which wrap four times around,and the three branch circles (the small points nearthe origin). It was recently shown [Dubejko 1995]

that discrete Blaschke products approximate clas-sical ones. To test this, we estimated (using eu-clidean barycentric coordinates) the zeros for theb of Figure 22, used them to construct a classicalBlaschke product B, and computed the zeros of B0.We get Z1 � 0:138� 0:245i;Z2 � �0:138� 0:245i;Z3 � 0:000 + 0:488i;
PK
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P

FIGURE 22. A �ner fourfold Blaschke product. The shaded circles have the same meaning as in Figure 21, butotherwise only the boundary circles are shown.
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PK
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P

FIGURE 23. Extremal discrete Blaschke product. The dots in the domain represent x and y (nearer the origin).values that are in fair agreement with the pre-scribed branch points z1, z2, and z3 of b.Let's apply �nite Blaschke products in a furtherprobe of the Dieudonn�e{Schwarz Lemma of Ex-periment #1 (where we already encountered a dis-crete �nite Blaschke product in Figure 12). Nowwe are interested in that portion of Dieudonn�e's re-sult that applies for p2�1 < jzj < 1. His extremalfunctions are twofold Blaschke products. In par-ticular, suppose for convenience that z = x, a realnumber with p2 � 1 < x < 1. Then the BlaschkeproductB(z) = z z + h1 + hz with h = 1� 3x2x(1 + x2)will achieve precisely Dieudonn�e's bound, namelyB0(x) =Mx = (1 + x2)24x(1� x2) :A computation [Carath�eodory 1960, x 291] showsthat the (unique) critical value of B isy = p1� h2 � 1h :A prototype experiment in the discrete settingis illustrated in Figure 23. We begin with a moreor less random maximal packing PK and proceed

as follows: First, choose a circle of PK centered ata real number x satisfying p2 � 1 < x < 1 (theouter dot in Figure 23). Observing that in this in-stance x � 0:69032, we see that Dieudonn�e's clas-sical bound on derivatives at x is Mx � 1:50834.Computation also gives the auxiliary values h ��0:42150 and y � 0:22105 (the inner dot in Figure23) associated with x.We cannot precisely mimic the classical extremalfunction for this x because PK has no circle cen-tered at y. However, we can choose a nearby branchcircle. The resulting map b : PK ! P is a dis-crete twofold Blaschke product. CirclePack tellsus that b#(x) � 1:4522, which is within the clas-sical bound Mx. Further experiments with thiscomplex K suggest that b is indeed the discreteextremal for the ratio function at x|for instance,moving the branch point to various other circlesresults in smaller ratio functions|so Dieudonn�e'sbound seems to hold there. Of course, there areother points x and other complexes to check, andwe have uncovered instances in which Dieudonn�e'sbound is violated by small margins. Nonetheless,the preliminary evidence is that the qualitative fea-tures in the discrete setting mimic the classical caseand that there are likely to be discrete bounds onratio functions that are close to the classical ones.
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Experiment #5: Discrete PolynomialsDubejko [1995; a] investigated in�nite branchedcircle packings. In particular, he proved the ex-istence of a full set of discrete polynomials andshowed that any classical complex polynomial canbe approximated by these discrete ones uniformlyon compacts of C . Indeed, this result implies thata wide variety of analytic functions on many do-mains are subject to such approximation. How-ever, since discrete polynomials involve in�nite cir-cle packings, this has little practical value. In whatfollows we will describe a constructive method forapproximation that uses �nite branched hexagonalpackings like those of Experiment #4 above.Let F : C ! C be a complex polynomial. Weassume that the critical set of F , which we denotebrF = ft1; : : : ; tmg (with repeats to account formultiplicities), is known. We further assume, forconvenience, that F (0) = 0 and F (1) = 1. Weconstruct discrete approximants fn of F that arede�ned on �nite portions of the hexagonal complexH. As we go along, we will illustrate with a simpleprototype experiment:
Prototype: F (z) = z3 � 3z�2 with brF = f1;�1g:

First, let's establish notation: Let PH denote themaximal packing for H, normalized to give all cir-cles radius 12 and to center circles at z = 0 andat z = 1. For positive integers n, de�ne D(n) =fjzj < ng; scale PH by the factor 1=n and let Qnconsist of the circles of PH=n lying inside D(n).Write Kn for the complex of Qn. Figure 24 illus-trates the prototype case n = 3.For n su�ciently large, brF will lie in D(n) andwe may choose a set Vn = fv1(n); : : : ; vm(n)g ofdistinct vertices of Kn that forms a branch struc-ture for Kn. Our strategy is to choose Vn in sucha way that the centers zj(n) of the correspondingcircles of Qn approximate brF . More precisely, wewantzj(n)! tj as n!1 for each j = 1; 2; : : : ;m:(The speci�c conditions on branch structures weredescribed earlier; these conditions and the one justgiven are very easily arranged if n is su�cientlylarge.)For each (su�ciently large) n, construct a newpacking Pn for Kn as was done in the previousexperiment. That is, assign angle sum 4� to thevertices of the set Vn � Kn, assign in�nite hy-perbolic radii to the boundary vertices of Kn, and

13PH

D3

FIGURE 24. Q3 (left, shaded region) and its complex K3 (right).
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P3

D(3)

g3-

FIGURE 25. The intermediate function g3. The range packing P3 is 3 circles deep, so only the boundary circlesand the (extremely small) branch circles are shown.compute the resulting branched packing Pn � D .Let gn : Qn ! Pn denote the discrete analytic func-tion; the prototype g3 is illustrated in Figure 25.The branch vertices v1(3) and v2(3) are associatedwith the shaded circles in the domain; these arethe ones centered nearest (in fact, at) �1.The construction of Pn is carried out in the unitdisc because the Dirichlet problem is conceptuallyand numerically easy to solve in hyperbolic geom-etry. However, the function fn approximating Frequires one �nal normalization: De�ne fn = �gn,where the complex number � is chosen so thatfn(1) = 1. In other words, fn : Qn ! �Pn.As n goes to in�nity, the domains of the fn ex-haust C and the branch points of the fn convergeto the branch points of F . All the while, fn(0) = 0and fn(1) = 1. In separate work, the second authorhas proved what the experiments suggest; namely,that the fn will converge uniformly on compacts ofC to F . Figure 26 is obtained from f3 and f4 in ourprototype case: The domains Q3 and Q4 are shownwith the branch circles shaded; the image packingsare too confusing for static display, but we haveshown the images under f3 and f4 of a represen-tative closed curve �, a regular hexagon. One can

compare these images to F (�) (the dashed curvesin Figure 26) to get some feel for the accuracy ofthe approximations.The constructions of fn for even larger values ofn are relatively easy in CirclePack and the behav-ior of F emerges fairly rapidly. It is clear, however,that one would not choose this method to approxi-mate polynomials in any practical situation. None-theless, it does work, and in slightly altered circum-stances, circle packing might bring something newto the table. The next experiment may be a casein point.
Experiment #6: Prescribed Boundary CurvesThroughout this discussion,  will denote a closedplane curve that intersects itself only transversely,if at all, and that has no triple points. We saythat  is admissible if it is the image of the unitcircle under a function F = F in the disc algebraA(D ), that is, a function F that is analytic in Dand continuous on �D . Marx [1974] characterizedadmissible curves by their winding numbers andcrossing behavior. In this section we describe acircle packing method for approximating F . Thisis an extension of the scheme of Thurston, which
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FIGURE 26. The approximating functions f3 and f4.applies when  is a Jordan curve (and hence au-tomatically admissible). However, in general thefunction F will necessarily have branch points; ourmethod permits speci�cation of the branch sets sothat we may approximate, uniformly on compactsof D , any desired classical solution.For our prototype experiment, let  be the ori-ented curve of Figure 27 (left). This was chosenbecause it is evidently admissible|in fact, the im-age Riemann surfaces of the solutions in A(D ) arefairly easy to visualize. One of the legal branch

sets consists of a simple branch point with imagew1 and a double branch point with image w2, andthis is the particular solution F we choose to ap-proximate. For the sake of variety, we will use thein�nite ball-bearing complex B in place of hexag-onal combinatorics.Write Q" for the maximal packing of B scaledso that the larger circles have radius ". Overlay with Q" as shown in Figure 27. Let a1 and a2 des-ignate two smaller circles nearest w1 and w2. Webuild a range circle packing P = P" whose carrier
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w1 w2


FIGURE 27. An admissible curve , and the portion of the ball-bearing packing it encloses. The shaded circlesa1 and a2 are those nearest the points w1 and w2.approximates the image Riemann surface of f bypasting together various pieces of Q". The carrierpieces and their edge identi�cations are displayedin Figure 28. We omit the details because the anal-ogous constructions are quite standard in geomet-ric function theory. We point out, however, thatthe resulting geometric complex G is a simply con-nected branched covering of a portion of the plane.The circles associated with the faces of G formP , which may be pictured as a branched coveringover a portion of Q" (some circles have as manyas three circles of P lying over them). Note thatalthough P has only one circle lying over each of a1and a2, the pastings give eight petals for the owerof a1 and twelve for that of a2; this is where thebranching occurs.The complex K for P is simplicially equivalentto G, hence is simply connected. Let the maximalpacking PK in D be normalized in the usual way.The map f = f" : PK ! P is the discrete analyticfunction that approximates F . In Figure 29, thecircles of PK and P associated with the branchingare shaded for reference.As " goes to zero, one can show that the sim-plicial maps associated with the f" converge uni-formly on compacts of D to an analytic functionF mapping the unit circle to  and having the

?projection 

FIGURE 28. Constructing the range packing.
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FIGURE 29. The approximating map.speci�ed branch values w1; w2. This, of course,is the desired map F. The proof techniques arebasically those of the conformal setting, thoughone must work outside small neighborhoods of thebranch points and �ll those in as removable singu-larities at the last [Dubejko 1995].This construction process could be completelyautomated; Chad Sprouse, a 1993 Summer REUstudent of the second author, developed a veryclever scheme for carrying out the cut/paste op-erations. This has not yet been implemented, butthe eventual goal would be to generate the f" byproviding nothing more than a parameterization of and a choice of branch points.
Experiment #7: Multigrid Packing AlgorithmsRodin and Sullivan's proof [1987] of Thurston'sconjecture immediately raised questions about thepotential of circle packing as a practical numeri-cal technique. It is not yet competitive in termsof accuracy and speed with more classical numeri-cal methods, such as implementations of Schwarz{Christo�el or more recent zipper methods of [Mar-shall]. Nonetheless, circle packing may ultimatelyhave advantages on certain parallel computer ar-chitectures, such as massively parallel machines;

for multiply connected regions; for regions under-going dynamical change; or even as a preproces-sor feeding into a classical method. Also, as ourearlier experiments show, circle packing extends tobranched and multivalent situations, and even per-haps to maps between Riemannian surfaces. (Cer-tainly, in an increasingly \quantum" world, thereis some place for quantum complex analysis!)The algorithm currently used in CirclePack forcomputing (approximate) packing labels is the it-erative method of Thurston described at the end ofSection 2|it is roughly analogous to the \methodof relaxation" (or Gauss{Seidel) for the Dirichletproblem in classical discrete potential theory. But,whereas this latter problem permits much more ef-�cient algebraic methods, circle packing problemsare highly nonlinear and no replacement for relax-ation has been found.A potential advantage in circle packing, however,lies in the faithful way in which discrete analyticfunctions on even coarse packings mimic classicalfunctions. We exploit that here to implement amultigrid method for computing approximate con-formal mappings. We describe it by means of arelatively simple prototype experiment and thengive some results in more substantial trials. The
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same technique can be applied in nonunivalent andbranched setting, such as those discussed in Exper-iments #4{#5.Our goal in this section is to approximate theclassical conformal mapping F from D onto a givensimply connected domain 
 in the plane, F : D !
. The approach was outlined in Section 1 andillustrated there by Figure 1: one �lls 
 with aportion P of some regular hexagonal circle packingand computes the associated maximal packing PK ;the desired approximant is the piecewise a�ne mapassociated with f : PK ! P . Using successively�ner packings improves the approximation.At each stage, the packing P and its complexK are easily determined; the real work enters incomputing the maximal packing label RK , whicheasily yields PK. We assume hereafter that 
 liesin D and carry out all computations in hyperbolicgeometry. Thurston's algorithm proceeds from aninitial guess RI to RK using iterative relaxation.The direct method generates RI by simply as-signing to interior vertices the current (hyperbolic)radii of their circles in P � 
 � D and assigningin�nite radii to boundary vertices, since we knowthat they will be horocycles in PK . CirclePack thencycles repeatedly through the list of interior ver-tices, making adjustments until it reaches an ap-proximation to RK within assigned tolerance. Ofcourse, most radii change considerably from theirvalues in RI , and the direct method may convergerelatively slowly. Our aim is to improve e�ciencyby making a more informed choice of the initiallabel RI .As its name suggests, the multigrid method at-tempts to use information gleaned from coarser cir-cle packings to shorten computations on �ner ones.Two stages of the prototype experiment are illus-trated in Figure 30.Assuming that f1 : PK1 ! P1 is known, we wantto compute f2 : PK2 ! P2. In other words, PK1 ,P1, and P2 are known, and we seek PK2, the max-imal packing at the �ner stage. Our opening isprovided by the ratio functions: Since f1 approx-imates F (albeit not very well), its ratio function

f#1 approximates jF 0j. As f#2 will also approxi-mate jF 0j, we see that f#1 gives some preliminaryinformation about the (as yet unknown) f2.
Strategy. Use the ratio function for a known ap-proximation f1 to set the initial radii for computa-tion of a �ner approximation f2.Here's the central idea: Suppose v is an interiorvertex of K2 whose associated circles are C 2 PK2(unknown) and c 2 P2. Choose a vertex v0 2 K1with associated circles C 0 2 PK1 and c0 2 P1 so thatc0 is as close as possible to c in 
; see Figure 30.The radius of C, radC, is unknown. We expectC to be near C 0 in D , but more importantly, weexpect f#2 (v) to approximate f#1 (v0):

f#2 (v) � f#1 (v0) =) rad cradC � rad c0radC 0 :Note that since we are working in D , the appropri-ate radii and ratio functions are all hyperbolic. Weconclude from the implication above that
radC � r = rad c(rad c0)=(radC 0) = rad cf#1 (v0) : (5.1)

We take r to be our initial guess for the label atv: that is, we set RI(v) = r. If we do likewise forall interior vertices v of K2 and set the label to 1for all boundary vertices, we have our initial labelRI . CirclePack then takes over to compute RK2 ,and thereby PK2 .In our practical implementation of this idea, weemploy hexagonal packings, arranged so that ateach successive stage the radii are cut in half. Forinstance, Figure 31 superimposes the packings P1and P2 of Figure 30. CarrP2 is actually a re�ne-ment of carrP1, and each vertex ofK1 may be iden-ti�ed with one from K2.Here, then, is the speci�c procedure for choosingRI for K2:� If v is a boundary vertex of K2, then obviouslyset RI(v) =1.
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FIGURE 30. Two stages of the multigrid method.
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FIGURE 31. P1 and P2 superimposed.� If v is an interior vertex of K2 that is identi�edwith an interior vertex v0 of K1, then in accor-dance with (5.1), set
RI(v) = R2(v)f#1 (v0) ;where R2 is the hyperbolic label for P2.� If v is an interior vertex of K2 that is not iden-ti�ed with a vertex in K1 but that is the mid-point of some segment vw, where v0 and w0are neighboring interior vertices of K1, chooseRI(v) = 12(RI(v) +RI(w)).� If v is any other vertex of K2, choose RI(v) =ln(2) (which happens to be the maximal hyper-bolic radius of the central circle in any univalentower having six petals).Of course, this whole process may now be repeatedthrough a cascade of successively �ner packings.The �rst author developed code to do this, usinga link to CirclePack for the computations at eachstage. Stages 2, 3 and 4 for the prototype experi-ment are illustrated in Figure 32; they involve 500,1992, and 7990 circles. We computed a �fth stagealso, but it has more circles (32001) than can rea-sonably be displayed here.

How e�cient is this multigrid approach? Wehave accumulated rudimentary data in Table 1 con-cerning the discrete maps of D onto an ellipse 
.The three middle stages of the cascade are shownin Figure 33. Roughly speaking, the multigrid ap-proach cut by a factor of �ve the time needed tocompute the �nest maximal packing label.
RemarksThere are numerous open, and largely unexplored,issues in the numerics of circle packing, having todo, for example, with algorithms, strategies, accu-racy, and rates of convergence.Most intriguing is the computation of packinglabels. The equations they must satisfy are horri-bly nonlinear. There may well be e�cient, indirectapproaches to solving them, such as vector-valuedNewton's method [Carter 1989] or the minimiza-tion approach of [Colin de Verdi�ere 1991]. How-ever, for us the more interesting questions arisewhen the \labels" are associated directly with thegeometry|that is, when they're thought of as radiisubject to adjustment|and when features of dis-crete analyticity can be brought to bear. In thisvein, our multigrid method, coupled with the iter-ative algorithm of Thurston, raises many fascinat-ing questions. (See [Stephenson 1990], for instance,where radius adjustments, tied to the movement ofhyperbolic area, are modeled by means of Markovprocesses.) Moreover, the iterative algorithm andmultigrid method both �t quite beautifully withthe massively parallel architectures of certain com-puters. Numerical e�ciency has not been a highpriority in CirclePack, but we are currently portingthe algorithms to a MasPar MP-2, and we antici-pate a powerful packing engine that can be linkedto CirclePack, allowing a closer study of packingalgorithms and the associated dynamics of circlepackings.This is not to say that circle packing will soonreach a practical stage. In regard to speed, a cur-sory glance at the Table shows that circle packing isslow: the CPU time needed for the �nest multigridapproximation, for instance, was over two hours.
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FIGURE 32. Stages 2, 3, and 4 for the prototype domain.
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FIGURE 33. Stages 2, 3, and 4 for an ellipse.
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multigrid method direct methodstage circles tolerance time ri�es time ri�es factor1 173 10�4 0.69 1445 1.28 2719 0.542 709 10�4 6.76 19615 13.10 36313 0.623 2814 10�5 69.28 220766 216.62 672822 0.364 11277 10�6 1473.94 5440000 3808.87 13387000 0.415 45062 10�6 6441.00 23234000 49014.00 163130000 0.16Total 7991.67 28915826
TABLE 1. Running times for the determination of the discrete maps from a disk into an ellipse (Figure 33),with and without the multigrid approach. The computations were carried out using CirclePack on a SunSPARCstation 10, model 40. Tolerance indicates by how much angle sums of interior vertices were allowed todi�er from 2�. Time refers to CPU user time required, in seconds. Ri�es is the number of circle adjustmentsrequired during the iterative computation. Factor gives, for each stage j, the ratio between the time for themultigrid method (accumulated from stages 1 through j) and the time for the direct method at Stage j.Don Marshall's Zipper program, which uses tra-ditional algorithms to compute conformal maps,handles this ellipse in less than a minute. Classicalnumerical methods seem likely to retain a speed ad-vantage in situations where they apply. However,with modest improvements in packing e�ciency,circle packing may have a role in approximatingmore general functions, as suggested in our earlierexperiments. There are also potential applicationsin graph embedding (see [Mohar 1993; Miller andThurston 1990], for example) and in grid genera-tion.

Roundo� is another issue: as the number of cir-cles in a packing grows, errors can begin to a�ectthe packing's integrity. A detail of one small por-tion of the stage 5 packing for the region 
 of Fig-ure 32, highlighted in Figure 34, shows this. Theglobal properties of the maximal packings remainremarkably stable despite these errors in the outerreaches, plus there are some randomization tech-niques that should ameliorate this particular prob-lem. Nonetheless, questions on the e�ects of accu-mulated errors as well as on the ultimate accuracyof the discrete approximations remain open.

@D
f5-




FIGURE 34. Left: Detail of the stage-5 maximal packing calculated for the region 
 of Figure 32; accumulatederrors have led to �ssures and misplaced circles. Right: Corresponding portion of the range packing in 
.
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FIGURE 35. Comparison of images for the sine map from Figure 3. Left: We choose one ower in the domain.Right: This ower's image under the sine function (solid curves) is compared with the corresponding circles(dashed) from the regular hex packing.Some sense of the faithfulness of circle packingmaps can be gained with direct comparisons totheir classical analytic counterparts. Suppose, forinstance, that f : Q ! P is a discrete analyticfunction that mimics a classical function F de�nedon some open set 
 containing Q. Each circle C ofQ has, as a closed curve in 
, a closed image curveF (C). Of course, F (C) will in general not be acircle. How close is it to a circle? In particular,how close is it to the corresponding actual circlef(C)? The paper provides many opportunities forsuch comparisons, but we illustrate with just twoexamples and leave additional comparisons to thereader.The classical sine function is so familiar that wedecided to run our �rst comparison with the pack-ings of Figure 3. Applying the function sin to thecircles in the upper half of Figure 3, we intended toobtain a set of image curves that we could juxta-pose with the circles of the lower half. However, wewere surprised to �nd that the two images are in-distinguishable at the resolution of the �gure. Evenwhen we concentrate on one ower and magnify(Figure 35), the image under the true sine functiondi�ers from the image under the discrete analogueby only about 1/500, and the images under sinare indistinguishable from circles. Considering therather coarse nature of the domain packing here,

the similarity of these range images seems remark-able.For our second comparison (Figure 36), we chosethe discrete conformal mapping f2 of Figure 30.We obtained our conformal map F : D ! 
 (alsoan approximation, of course) by using Don Mar-shall's Zipper conformal mapping package. Again,the images F�1(C) appear indistinguishable fromcircles. Inaccuracies in the locations are not sur-prising, and their pattern makes sense if one refersto Figure 30. Two large boundary horocycles ofthe maximal packing are a mere three generationsfrom the circle at the origin. They can't providemuch sensitivity for an important (in the sense ofharmonic measure) section of @
, and they seemto have pushed the other circles toward �1 withrespect to their conformally \correct" locations.
6. ABOUT CIRCLEPACKFor readers who would like to experiment with cir-cle packings on their own, here are some technicaldetails about CirclePack, the software used for thispaper. CirclePack allows the creation, manipula-tion, color display, printing, and storage of circlepackings in any of the three standard geometries(the spherical routines are in an early stage of de-velopment). In addition to the tangency packings
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FIGURE 36. Comparison of images for the discrete conformal map f2 of Figure 30. Left: Twelve circles werechosen from the packing of the region 
. Right: The corresponding circles in the maximal packing (dashedcurves), and inverse images of the shaded circles under the conformal map taking the disk to 
 (solid curves).discussed in this article, CirclePack is capable ofhandling packings with overlap angles speci�ed in-dividually for edges ofK. The complexesK under-lying the packings may be simply connected, likethose in this article, or multiply connected; planaror nonplanar; with or without boundary. Pack-ings of up to 100,000 circles are possible, depend-ing on machine resources. Parameters for the pro-gram's operation are in a con�guration �le, allow-ing various defaults and features to be tailored tothe user's needs. User-developed remote routinesmay be called from within CirclePack; some exam-ples, along with basic code segments and header�les, are provided in the distribution. All data�les have ASCII formats. Postscript is used forprintable output.CirclePack is written in C, runs under X-Win-dows, and is built on the XView graphical user in-terface. User commands are implemented throughcommand-line arguments, mouse-based actions, or

with prepared scripts. Figure 37 illustrates a typ-ical screen. A detailed help �le, accessible fromwithin CirclePack, provides context-sensitive help.The lines from a typical script are shown below.The �rst line activates Pack 0 (each packing beingidenti�ed by a number); it then reads in a set ofcircle packing data, sets the screen size, and dis-plays the packing. The next line sends a copy ofthe data to Pack 2, activates Pack 2, converts itspacking to hyperbolic geometry, and sets two of itsvertices' \aims" to 4.0� (to create branch points).The last line sets the boundary radii of Pack 2 toin�nity, tells the program to repack using up to20,000 iterations of Thurston's algorithm; recom-putes the circle centers, and displays the packing.All these commands and many others can be is-sued individually by typing them on a commandline or by using mouse operations, but it is partic-ularly helpful to run through sample scripts to geta feeling for how things work.
[1]:= act 0; infile_read Q3.p; set_screen -h 7; disp -w -c;[2]:= copy 2; act 2; geom_to_h; set_aim -d; set_aim 4.0 26 33;[3]:= set_rad -.1 b; repack 20000; fix; disp -w -u -c b -cf 26;

Sample CirclePack script
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FIGURE 37. Sample CirclePack screen under X-Windows.CirclePack was developed by Stephenson on aSun SPARCstation with equipment and researchsupport provided, in part, by the National ScienceFoundation and the Tennessee Science Alliance.Retrieval information is given on the next page.
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Electronic AvailabilityCirclePack is available by anonymous ftp from the hostarchives.math.utk.edu (Mathematics Archives), in thedirectory software/multi-platform/circle.packing. It oc-cupies approximately 10 Meg when installed. The dis-tribution contains all source code, executables for SunSPARCstations, help �les, numerous packing data sets,and prepared command scripts. A make�le is providedand should permit recompilation on other platforms,though help from someone having systems experienceis recommended.The distribution also contains, in subdirectory CPE,scripts that run through several of the experiments de-scribed in this paper. For instance, to generate thepackings of Figure 26, run CirclePack using the scriptCPE-5-poly.cmd. The \script window" (seen in the up-per right hand corner of Figure 37) will appear, and youcan run through the sequence of prepared commands bysimply clicking on the button \Execute next cmd".
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