Computing the Summation of the Möbius Function

Marc Deléglise and Joël Rivat

CONTENTS

1. Introduction
2. A Combinatorial Identity
3. Outline of the Method
4. Tabulating M by Blocks
5. Computing $\mathrm{S}_{1}(\mathrm{x}, \mathrm{u})$ and $\mathrm{S}_{2}(\mathrm{x}, \mathrm{u})$

References

We describe an elementary method for computing isolated values of $M(x)=\sum_{n \leq x} \mu(n)$, where μ is the Möbius function. The complexity of the algorithm is $O\left(x^{2 / 3}(\log \log x)^{1 / 3}\right)$ time and $O\left(x^{1 / 3}(\log \log x)^{2 / 3}\right)$ space. Certain values of $M(x)$ for x up to 10^{16} are listed: for instance, $M\left(10^{16}\right)=-3195437$.

1. INTRODUCTION

Möbius [1832] was the first to study the function $\mu(n)$, defined for positive integers n by

- $\mu(1)=1$,
- $\mu(n)=0$ if n has a squared prime factor;
- $\mu\left(p_{1} \ldots p_{k}\right)=(-1)^{k}$ if all the primes p_{1}, \ldots, p_{k} are different.

Mertens [1897] introduced the summation function

$$
M(x)=\sum_{n \leq x} \mu(n)
$$

which is defined for all real $x \geq 0$. He verified that $|M(x)| \leq \sqrt{x}$ for $x<10000$, and conjectured that this inequality holds for any x. Von Sterneck [1912] verified this up to 500,000 . (The Riemann Hypothesis implies the weaker conjecture $|M(x)|=$ $O\left(x^{1 / 2+\varepsilon}\right)$ for all $\varepsilon>0$.)

However, Odlyzko and te Riele disproved the Mertens conjecture when they showed [1985] that

$$
\liminf _{x \rightarrow+\infty} \frac{M(x)}{\sqrt{x}}<-1.009, \quad \limsup _{x \rightarrow+\infty} \frac{M(x)}{\sqrt{x}}>1.06
$$

Pintz [1987] made this result effective, proving that there exist values of $x<\exp \left(3.21 \times 10^{64}\right)$ such that $|M(x)|>\sqrt{x}$.

The first value of x for which $|M(x)|>\sqrt{x}$ is still unknown, but Dress [1993] has verified that it exceeds 10^{12}. He also proposed in his paper a
method for computing an isolated value of $M(x)$, using $O\left(x^{3 / 4} \log ^{1 / 2} x\right)$ time and $O\left(x^{1 / 2}\right)$ space.

Lagarias and Odlyzko [1987] proposed an analytic method for computing $\pi(x)$ (the number of primes not greater than $x)$ in $O\left(x^{1 / 2+\varepsilon}\right)$ time and $O\left(x^{1 / 4+\varepsilon}\right)$ space. They mentioned that their algorithm could be adapted for computing $M(x)$. To our knowledge, nobody has tried to compute $\pi(x)$ or $M(x)$ using their method yet.

In this paper we explain another method for computing an isolated value of $M(x)$ using

$$
O\left(x^{2 / 3}(\log \log x)^{1 / 3}\right)
$$

time and $O\left(x^{1 / 3}(\log \log x)^{2 / 3}\right)$ space. Our method is elementary, and was inspired by [Lehman 1960]. We give a table of certain values of $M(x)$ for x up to 10^{16}, and also some computation times.

2. A COMBINATORIAL IDENTITY

For completeness we recall some classical results concerning the Möbius function. Our goal is to obtain Lemma 2.1 below, which is essentially derived from [Lehman 1960, p. 314].

It follows immediately from the definition that $\mu(n)$ is a multiplicative function. Next, we have the Möbius inversion formula

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

This is obvious for $n=1$. For $n>1$, we write $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ with $k \geq 1$, and obtain

$$
\begin{aligned}
\sum_{d \mid n} \mu(d) & =1+\sum_{i} \mu\left(p_{i}\right)+\sum_{i, j} \mu\left(p_{i} p_{j}\right)+\cdots \\
& =1-k+\binom{k}{2}-\binom{k}{3}+\cdots=(1-1)^{k}=0 .
\end{aligned}
$$

The inversion formula easily implies, for $x \geq 1$, that $\sum_{n \leq x} M(x / n)=1$. Indeed,

$$
\sum_{n \leq x} M\left(\frac{x}{n}\right)=\sum_{n \leq x} \sum_{d \leq \frac{x}{n}} \mu(d)=\sum_{l \leq x} \sum_{d \mid l} \mu(d)=\mu(1)
$$

Lemma 2.1. For $1 \leq u \leq x$ we have the combinatorial identity

$$
M(x)=M(u)-\sum_{m \leq u} \mu(m) \sum_{\frac{u}{m}<n \leq \frac{x}{m}} M\left(\frac{x}{m n}\right)
$$

Proof. We use the Möbius inversion formula, together with the equality $\sum_{n \leq x} M\left(\frac{x}{n}\right)=1$ with x replaced by x / m :

$$
\begin{aligned}
\sum_{m \leq u} \mu(m) \sum_{n \leq \frac{x}{m}} M\left(\frac{x}{m n}\right) & =\sum_{m \leq u} \mu(m)=M(u) \\
\sum_{m \leq u} \mu(m) \sum_{n \leq \frac{u}{m}} M\left(\frac{x}{m n}\right) & =\sum_{l \leq u} M\left(\frac{x}{l}\right) \sum_{m \mid l} \mu(m) \\
& =M\left(\frac{x}{1}\right)=M(x)
\end{aligned}
$$

The result follows by writing $M(u)-M(x)$.

3. OUTLINE OF THE METHOD

Observe that the sum in Lemma 2.1 has more than x terms, but these terms often have the same value. This comes from the general fact that, for $y>0$, the sequence $(\lfloor y / n\rfloor)_{n}$ takes at most $2\lfloor\sqrt{y}\rfloor+1$ different values:

- the values $\lfloor y / n\rfloor$ for $1 \leq n \leq\lfloor\sqrt{y}\rfloor$,
- the values $0,1, \ldots,\lfloor\sqrt{y}\rfloor$ corresponding to $n>$ $\lfloor\sqrt{y}\rfloor$.

We apply this idea to split the sum in Lemma 2.1. For $1 \leq u \leq \sqrt{x}$ we have $M(x)=M(u)-S_{1}(x, u)-$ $S_{2}(x, u)$, with

$$
\begin{aligned}
& S_{1}(x, u)=\sum_{m \leq u} \mu(m) \sum_{\frac{u}{m}<n \leq \sqrt{\frac{x}{m}}} M\left(\frac{x}{m n}\right), \\
& S_{2}(x, u)=\sum_{m \leq u} \mu(m) \sum_{\sqrt{\frac{x}{m}}<n \leq \frac{x}{m}} M\left(\frac{x}{m n}\right) .
\end{aligned}
$$

For any $y>0$ of the form $y=x / m$, and any $k \leq \sqrt{y}$, it is not difficult to compute the number of values of n with $\sqrt{y}<n \leq y$ and $\lfloor y / n\rfloor=k$.

For both $S_{1}(x, u)$ and $S_{2}(x, u)$ the number of terms in the sum is at most

$$
\sum_{m \leq u} \sqrt{x / m}=O(\sqrt{x u})
$$

This summation will be done using a table of values of $\mu(n)$ for $1 \leq n \leq u$ and a table of values of $M(n)$ for $1 \leq n \leq x / u$.

We will see later that it is possible to build these tables in $O((x / u) \log \log (x / u))$ time. By choosing $u=x^{1 / 3}(\log \log x)^{2 / 3}$, we get a total time of

$$
O\left(\frac{x}{u} \log \log x+\sqrt{x u}\right)=O\left(x^{2 / 3}(\log \log x)^{1 / 3}\right)
$$

The tabulation of $\mu(n)$ for $n \leq u$ costs $O(u)$ space, which is acceptable. Unfortunately the tabulation of M would need $O(x / u)=O\left(x^{2 / 3}\right)$ space, which is not available on current computers when $x \geq 10^{15}$. Hence we have to work by blocks of size $L \approx u$, as we will explain now.

4. TABULATING M BY BLOCKS

We suppose $L \geq u \geq x^{1 / 3}$ and we want to tabulate M for $a \leq n<b=a+L$. Since we have $M(n)=$ $M(n-1)+\mu(n)$, it suffices to know $M(a-1)$ and have a table of $\mu(n)$ for $a \leq n<b$ in order to build a table of $M(n)$ for $a \leq n<b$. The additional cost (from μ to M) is $O(L)$ time.

Hence it suffices to be able to tabulate $\mu(n)$ for $a \leq n<b$. This must be achieved without the help of a table of primes up to b, which would be too big. The following algorithm uses only a table of primes up to \sqrt{b} :

Algorithm 4.1 (Tabulation of μ).

Input: bounds $b>a>0$.
Output: a table $t(n)$ of values of $\mu(n)$ for $a \leq n<b$.

1. for each $n \in[a, b)$, set $t(n)=1$.
2. for each prime number $p \in[2, \sqrt{b}]$, do:

- for each multiple $m \in[a, b)$ of p^{2}, set $t(m)=0$.
- for each multiple $m \in[a, b)$ of p, multiply $t(m)$ by $-p$.

3. for each $n \in[a, b)$ such that $t(n) \neq 0$, do:

$$
\begin{aligned}
& \text { - if }|t(n)|<n, \text { multiply } t(n) \text { by }-1 \\
& \text { - if } t(n)>0, \text { set } t(n)=1 \\
& \text { - if } t(n)<0, \text { set } t(n)=-1
\end{aligned}
$$

In order to use this algorithm for tabulating M by blocks up to x / u, we need a table of the prime numbers up to $\sqrt{x / u}$. Such a table is easy to build using Eratosthenes' sieve, a process that requires $O(\sqrt{x / u})$ space. The finished table takes $O(\sqrt{x / u} / \log (x / u))$ space, by Chebyshev's Theorem. Since $\sqrt{x / u} \leq L$, the space cost of tabulating M by blocks is $O(L)$. For each block $a \leq n<b$ the number of operations we do is

$$
O\left(L+\sum_{p \leq \sqrt{b}}\left(1+\frac{L}{p^{2}}+\frac{L}{p}\right)\right)=O\left(\frac{\sqrt{b}}{\log b}+L \log \log b\right)
$$

which is $O(\sqrt{x / u}+L \log \log (x / u))$.
Hence the total cost for tabulating M by blocks of size L up to x / u is $O((x / u) \log \log (x / u))$ time and $O(L)$ space.

5. COMPUTING $S_{1}(x, u)$ AND $S_{2}(x, u)$

For $1 \leq a \leq b$ we have

$$
a \leq \frac{x}{m n}<b \Longleftrightarrow \frac{x}{m b}<n \leq \frac{x}{m a}
$$

We suppose we have tabulated $M(n)$ for an interval of size L, namely for $a_{k} \leq n<a_{k+1}$ with $a_{k}=1+k L$, for some $k \leq x /(u L)$. The number of terms of the sum over m and n corresponding to this block is
$\sum_{m \leq u}\left(\min \left(\left\lfloor\frac{x}{m a_{k}}\right\rfloor,\left\lfloor\sqrt{\frac{x}{m}}\right\rfloor\right)-\max \left(\left\lfloor\frac{x}{m a_{k+1}}\right\rfloor,\left\lfloor\frac{u}{m}\right\rfloor\right)\right)$.
The total number of terms we have to sum is obtained by summing the preceding expression over $k \leq x /(u L)$. Reversing the order of summation shows that the total equals the sum over $m \leq u$ of
$\sum_{k \leq \frac{x}{u L}}\left(\min \left(\left\lfloor\frac{x}{m a_{k}}\right\rfloor,\left\lfloor\sqrt{\frac{x}{m}}\right\rfloor\right)-\max \left(\left\lfloor\frac{x}{m a_{k+1}}\right\rfloor,\left\lfloor\frac{u}{m}\right\rfloor\right)\right)$.

n	10	11	12	13	14	15
$M\left(1 \times 10^{n}\right)$	-33722	-87856	62366	599582	-875575	-3216373
$M\left(2 \times 10^{n}\right)$	48723	-19075	-308413	127543	2639241	1011871
$M\left(3 \times 10^{n}\right)$	42411	133609	190563	-759205	-2344314	5334755
$M\left(4 \times 10^{n}\right)$	-25295	202631	174209	-403700	-3810264	-6036592
$M\left(5 \times 10^{n}\right)$	54591	56804	-435920	-320046	4865646	11792892
$M\left(6 \times 10^{n}\right)$	-56841	-43099	268107	1101442	-4004298	-14685733
$M\left(7 \times 10^{n}\right)$	7917	111011	-4252	-2877017	-2605256	4195668
$M\left(8 \times 10^{n}\right)$	-1428	-268434	-438208	-99222	3425855	6528429
$M\left(9 \times 10^{n}\right)$	-5554	10991	290186	1164981	7542952	-12589671

TABLE 1. Values of $M\left(k \times 10^{n}\right)$.

The sequence $\left(\left\lfloor x /\left(m a_{k}\right)\right\rfloor\right)_{k}$ forms a subdivision of the interval $\lfloor u / m, \sqrt{x / m}\rfloor$ such that the above sum over k is at most $\sqrt{x / m}$. Hence the cost of computing $S_{1}(x, u)$ is $O(\sqrt{x u})$ time and $O(L)$ space.

Turning now to $S_{2}(x, u)$, we start by defining $l(y, k)=\#\{n: \sqrt{y}<n \leq y,\lfloor y / n\rfloor=k\}$. The computation of $l(y, k)$ clearly needs $O(1)$ time. We have

$$
\begin{aligned}
S_{2}(x, u) & =\sum_{m \leq u} \mu(m) \sum_{k \leq \sqrt{\frac{x}{m}}} M(k) l\left(\frac{x}{m}, k\right) \\
& =\sum_{k \leq \sqrt{x}} M(k) \sum_{m \leq \min \left(u, x / k^{2}\right)} \mu(m) l\left(\frac{x}{m}, k\right) .
\end{aligned}
$$

This last sum is appropriate for use in a tabulation of M done by blocks of size L without any additional cost. Hence the computation of $S_{2}(x, u)$ can be achieved in $O(\sqrt{x u})$ time and $O(L)$ space.

We therefore get a total time cost of

$$
O((x / u) \log \log x+\sqrt{x u})=O\left(x^{2 / 3}(\log \log x)^{1 / 3}\right),
$$

by choosing

$$
u=x^{1 / 3}(\log \log x)^{2 / 3} .
$$

The total space cost is $O(L)$ with $L \geq u$. In our program we chose $L=4 u$. (Our program is written in $\mathrm{C}++$, compiled with GNU C/C ++ , and is 270 lines long. For more information, contact the second author.)

Tables 1 and 2 show some of the values obtained.

x	$M(x)$	time (s)
10^{6}	212	0.06
10^{7}	1037	0.28
10^{8}	1928	1.36
10^{9}	-222	6.74
10^{10}	-33722	32.74
11^{11}	-87856	160.99
10^{12}	62366	878.37
10^{13}	599582	4927.23
10^{14}	-875575	24048.91
10^{15}	-3216373	115614.87
10^{16}	-3195437	555276.59

TABLE 2. Values of $M\left(10^{n}\right)$ and computation times on a 64 -bit DEC Alpha 3000 Model 300 with 96 Mbytes of memory.

REFERENCES

[Dress 1993] F. Dress, "Fonction sommatoire de la fonction de Möbius; 1. Majorations expérimentales", Experimental Math. 2 (1993), 93-102.
[Lagarias and Odlyzko 1987] J. Lagarias and A. Odlyzko, "Computing $\pi(x)$: an analytic method", J. Algorithms 8 (1987), 173-191.
[Lehman 1960] R. S. Lehman, "On Liouville's function", Math. Comp. 14 (1960), 311-320.
[Mertens 1897] F. Mertens, "Über eine zahlentheoretische Funktion", Akad. Wiss. Wien Math.-Natur. Kl. Sitzungber. IIa 106 (1897), 761-830.
[Möbius 1832] A. F. Möbius, "Über eine besondere Art von Umkehrung der Reihen", J. reine angew. Math. 9 (1832), 105-123.
[Odlyzko and te Riele 1985] A. Odlyzko and H. te Riele, "Disproof of the Mertens conjecture", J. reine angew. Math. 357 (1985), 138-160.
[Pintz 1987] J. Pintz, "An effective disproof of the Mertens conjecture", Astérisque 147-148 (1987), 325-333, 346.
[von Sterneck 1912] R. D. von Sterneck, "Die zahlentheoretische Funktion $\sigma(n)$ bis zur Grenze 500000", Akad. Wiss. Wien Math.-Natur. Kl. Sitzungber. IIa 121 (1912), 1083-1096.

Marc Deléglise, Institut Girard Desargues (URA 746), Département de Mathématiques, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbaine, France (deleglis@lmdi.univ-lyon1.fr)

Joël Rivat, Institut Girard Desargues (URA 746), Département de Mathématiques, Université Lyon 1, 43
Boulevard du 11 Novembre 1918, 69622 Villeurbaine, France (rivat@caissa.univ-lyon1.fr)

Received January 2, 1996; accepted April 12, 1996

