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A question of Gordon, mistakenly attributed to Erdős, asks if

one can start at the origin and walk from there to infinity on

Gaussian primes in steps of bounded length. We conjecture

that one can start anywhere and the answer is still no. We

introduce the concept of periodic Gaussian moats to prove our

conjecture for step sizes of
p

2 and 2.

1. MOATIVATIONConsider an elementary question: starting at theorigin, and thereafter stepping only on the ratio-nal primes, can one walk to in�nity in steps ofbounded length? The answer it no, because for anyN 2 Z+ we can produceN consecutive composites:(N + 1)! + 2, (N + 1)! + 3, . . . , (N + 1)! +N + 1.At the 1962 International Congress of Mathe-maticians in Stockholm, Basil Gordon proposed ananalogous journey on the Gaussian primes: start-ing at the origin, and thereafter stepping only onthe Gaussian primes, can one walk to in�nity insteps of bounded length? (The Gaussian primesare the primes in Z[i]; shown at the left in whiteare all the Gaussian primes x + iy with �20 �x; y � 20.)The same problem was also posed in [Guy 1994;Montgomery 1994]. Still open, it has seeminglyjoined the ranks of the many number theoreticquestions that are easy to state but deeply di�-cult to solve. As often happens in such cases, oneturns to computational techniques for insight.To our knowledge three such computational pa-pers have appeared in the literature. Jordan andRabung [1970] �rst showed that at least one stepof size 4 is necessary on a walk to in�nity. Morerecently, Gethner, Wagon, andWick [Gethner et al.1998] showed that at least one step of size 4p2 is
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290 Experimental Mathematics, Vol. 6 (1997), No. 4implicit. In both cases, one shows the existenceof regions of composite Gaussian integers, calledGaussian moats, which surround the origin. In[Wagon 1996] the computational techniques usedin [Gethner et al. 1998] are described for some ofthe small moats.If one believes, as we do, that one cannot walk toin�nity on the primes in steps of bounded length,one way of showing this would be to prove the ex-istence of Gaussian moats of arbitrary minimumwidth. We call a Gaussian moat of minimumwidthk a Gaussian k-moat. For complete backgroundand history, see [Gethner et al. 1998].We o�er the following conjecture in answer toGordon's question:
Conjecture. Given any k > 0, there is an Mk suchthat taking steps of at most size k and starting onany Gaussian prime one can take at most Mk stepson distinct Gaussian primes before being forced tostep on a composite Gaussian integer .

The conjecture implies that, on any walk to in�nityalong Gaussian primes, one necessarily takes stepsof size at least k in�nitely often, and within pre-dictable bounds. Interestingly, Jordan and Rabung[1976] proved that the conjecture is true for k =p2, with Mk = 48, but they make reference nei-ther to the moat problem nor to their earlier paper[Jordan and Rabung 1970].
2. PERIODICITYOur conjecture arose after extensive experimentsby computer. Though �nding Gaussian k-moatsfor arbitrary k would certainly solve Gordon's orig-inal problem, the reality seems to be that, for eachk, there is a single connected maximal Gaussianmoat that extends throughout the complex planeand whose complement may consist of in�nitelymany nontrivial and nonoverlapping compact sub-sets of uniformly bounded size. We have provedthat such is the case for k = p2 and for k = 2.

FIGURE 1. The origin is at the center. The set B de�ned on page 291 is shown in dark gray (red in the onlineversion). The connected region shown in light gray (blue in the online version) is a periodic set contained inthe maximal Gaussian p2-moat. The black lines bound a period parallelogram S for this set.



Gethner and Stark: Periodic Gaussian Moats 291We begin by describing our method for show-ing the existence of the plane-�lling Gaussian p2-moat. Let S be the set of lattice points in thesquare with vertices 0, 65+65i, 130, and 65� 65i,and let B be the set of Gaussian integers relativelyprime to 65+65i. In other words, sieve out all mul-tiples of the Gaussian prime divisors of 65 + 65i.The set B is periodic with period S. Color thepoints in B red (see Figure 2). Now connect twopoints in B with a line if and only if they are atmost p2 apart. With the network of lines actingas boundaries, color the connected region in theplane containing the point 2 + 2i blue.S is a period parallelogram generated by 65 +65i in Z[i]. The blue region extends to all sidesof S and contains congruent points on oppositesides, the congruence being modulo S, and there-fore by periodicity extends to the entire complexplane in a single connected component. Except forprimes dividing 130 and their associates, all pointsin the extended blue region are Gaussian compos-ites by construction; thus, the maximal Gaussianp2-moat contains the periodic blue region as a sub-moat. In particular, the number of lattice points inS, namely (65p2)2 = 8450, gives an upper boundfor the number of steps of size at most p2 that onecan take before being forced to step on a Gaussiancomposite.We used the same method to show that the con-jecture is true for k = 2. As expected, the com-putations were longer and more complicated thanfor k = p2. To �nd a 2-moat, we used the lat-tice in Z[i] generated by 7113990 and the periodparallelogram with vertices0; 7113990; 7113990 + 7113990i; 7113990i:S is the set of lattice points in this region and B isthe set of all Gaussian integers relatively prime to7113990; that is, it is obtained by sieving out fromS all multiples of 2, 3, 2 � i, 3 � 2i, 4 � i, 5 � 2i,and 6� i. As before, B is periodic with period S.One can use a smaller lattice to generate a periodicGaussian 2-moat (and we ultimately did so), butwe chose S for ease in programming.

We took advantage of the symmetry about theline x = 12 � 7113990 = 3556995. More speci�cally,starting at the point 18i, we produced a connectedportion of a Gaussian 2-moat in the regionf(x; y) : 0 � x � 3556995; 0 � y � 400g:Importantly, the 2-moat includes points on the y-axis and the line x = 3556995 (to insure that themoat truly connects at both vertical sides of theperiod parallelogram). Symmetry about the liney = x guarantees a vertical component, a prioriconnected to the horizontal component, that con-nects the two horizontal sides of the period par-allelogram. This periodic submoat of the maxi-mal Gaussian 2-moat shows that the latter extendsthroughout the complex plane in a single connectedcomponent, whose complement may contain in�-nitely many nontrivial and nonoverlapping com-pact subsets. The number of lattice points in S,71139902 , gives an upper bound for the numberof steps one can take on distinct Gaussian primesbefore being forced to take a step on a Gaussiancomposite. The computation took approximately9.5 hours on an Atari 1040ST.
3. MOAT’S END?The next natural step would be to show that themaximal Gaussian p10-moat has a connected pe-riodic subset. We did some random experimentsto make a best guess at a set of Gaussian primesto sieve out from Z[i], and decided upon all primesof norm less than 200. We followed what we be-lieve to be a portion of the Gaussian p10-moatout to x = 3336000 and were able to stay within0 � y � 500. The computation took about 12hours. Our intention was simply to gain furtherevidence in support of our conjecture.The distribution of rational primes, mysteriousat best, is linked to the distribution of Gaussianprimes, and the Gaussian primes have the addeddi�culty of being 2-dimensional. The method ofsieving out small primes to �nd periodic subsets ofa k-moat, for arbitrary k seems hopeful for �nding



292 Experimental Mathematics, Vol. 6 (1997), No. 4a more general solution to the conjecture that allk-moats �ll the entire complex plane.
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