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We present a computer program based on bistellar operations
that provides a useful tool for the construction of simplicial man-
ifolds with few vertices. As an example, we obtain a 16-vertex
triangulation of the Poincaré homology 3-sphere; we construct
an infinite series of non-PL d-dimensional spheres with d + 13
vertices for d > 5; and we show that if a d-manifold, withd > 5,
admits any triangulation on n vertices, it admits a noncombina-
torial triangulation on n + 12 vertices.

1. INTRODUCTION

In the early days of topology, manifolds were of-
ten studied via triangulations. The combinatorial
structure makes the computation of various invari-
ants possible, and theorems can be proved based on
the assumption of a suitable triangulation. See, for
example, [Kuiper 1979; Moise 1977; Stillwell 1993]
for accounts of some main lines in the historical de-
velopment. Since the manifolds themselves, and not
their combinatorial structure, are the real objects of
interest in topology, there was a growing desire to
get away from triangulations. In the 1930’s and 40’s
algebraic tools gradually replaced the combinatorial
ones, and to the extent that from this time on there
still was an interest in decomposing a manifold, the
more economical CW complexes gained popularity.
While triangulations have always remained of in-
terest to discrete geometers and geometric and PL
topologists, the emergence of computers has subtly
changed the general situation. It is now possible
(at least in principle) to study compact manifolds
and compute their invariants on a machine. But a
fundamental question naturally arises: How do you
present the manifold to a computer? It is clear that
some finite combinatorial encoding must be used.
A decomposition as a CW complex may be elegant
and also economical in terms of the number of cells,
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FIGURE 1. Bistellar moves for d = 2 (left) and d = 3 (right).

but it is in general difficult to explain the attach-
ing maps to a computer. One needs something like
a regular CW complex, where the attaching maps
are determined by the combinatorics of inclusion of
closed cells. However, the conceptually easiest pre-
sentation is as a simplicial complex, say, given as the
list of its facets (maximal faces). Such an encoding
is clear and simple, as long as it is not too large.
Thus, the matter of the size of a triangulation has
taken on practical significance. It is of interest to
say something about the number of vertices, or the
total number of faces, of a triangulation, and also
to explicitly construct minimal or otherwise optimal
triangulations.

For earlier work on the topic of minimal triangu-
lations see [Altshuler and Steinberg 1974; 1976; Bar-
nette and Gannon 1976; Brehm and Kiihnel 1987;
Brehm and Swiatkowski 1993; Kiihnel 1990; 1995;
Kiihnel and Banchoff 1983; Walkup 1970]. For algo-
rithmic approaches to recognition problems for man-
ifolds see the papers [Matveev 1998; Nabutovsky
1996; Thompson 1994].

The work reported in this paper grew out of a
desire to have a computer tool for erperimentation
with triangulations. We had three purposes in mind:

1. to be able to start with some triangulation of a
manifold and let the computer search for smaller
triangulations;

2. to be able to determine heuristically the homeo-
morphism type of a manifold and, in particular,
to recognize (combinatorial) spheres; and

3. to be able to search for counterexamples to con-
jectures, where such examples might be hard to
find due to their size or complexity.

Since to determine the homeomorphism type of a
manifold is a delicate and much studied matter, the
second point needs immediate clarification. What
we have in mind is a procedure for heuristically com-
paring a given test manifold with reference man-
ifolds having similar invariants from a library of
standard manifolds on few vertices, with no guar-
antee for success. In future work the combinatorial
ideas of this paper can hopefully be expanded and
combined with algorithms for computing topological
invariants (not only homology, but also fundamen-
tal group, characteristic classes, intersection forms,
multiplicative structure of cohomology, ...) to cre-
ate a truly versatile tool for manipulation and iden-
tification of manifolds.

A computer program, BISTELLAR [Lutz 1999a],
was written which repeatedly modifies a triangula-
tion by local so called “bistellar operations”. Such
operations for dimensions 2 and 3 are illustrated in
Figure 1; we defer the formal definition to Section 2.
The program accepts as input a simplicial manifold
M (or any pure simplicial complex) presented via
the list of its facets. It then searches through other
triangulations of M via bistellar moves, using ran-
domness controlled by a “simulated annealing” type
strategy, to be explained in Section 3.

The program has turned out to be quite useful for
the first two purposes. For reasons that will be ex-
plained later (searching for counterexamples to the
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“g-conjecture for spheres”), we needed non-PL tri-
angulations of the d-sphere (d > 5) of manageable
size. As a stepping stone in the construction we gave
BISTELLAR the task to compute a small triangula-
tion of what Rolfsen [Rolfsen 1976, p. 308] calls “the
ubiquitous Poincaré homology sphere”. As reported
in Section 5 the program produced a triangulation
on 16 vertices which seems to be the smallest known
triangulation of this manifold. It follows from work
of Walkup [1970] that any triangulation must have
at least 11 vertices. Thus, it is at the moment im-
possible to say where between 11 and 16 the truth
about the optimal number of vertices lies. However,
after having run our program over millions of trian-
gulations, we are prepared to believe that 16 vertices
might in fact be best possible for this manifold.

The 16-vertex triangulation of the Poincaré space
is the starting point for a proof that there exist non-
PL triangulations of the d-sphere on d + 13 vertices
for all d > 5. This is in turn used to show that if an
arbitrary d-manifold admits some triangulation on
n vertices, then it admits a non-PL triangulation on
n+12 vertices (d > 5). Also, the (d+13)-vertex non-
PL spheres complement earlier theorems of Barnette
and Gannon [1976] and Brehm and Kiihnel [1987];
see Section 6.

The search for minimal triangulations using our
program has been continued by one of us (Lutz),
and has led to several new results. They will be
presented elsewhere [Kohler and Lutz 1999; Kiihnel
and Lutz 1999; Lutz 1999d], but we summarize the
main findings.

Combinatorial triangulations were found for

S?% x S% on 11 vertices,

S3% x S% on 12 vertices,

53 x S3 on 13 vertices,

(82 x S5?) # (52 xS?) on 12 vertices,
RP* on 16 vertices.

In all these cases, the theoretically minimal numbers
of vertices for combinatorial triangulations of these
manifolds are achieved.

The triangulations of S® x S% on 12 and of S3 x S®
on 13 vertices are of particular interest, since they
attain the minimal numbers of vertices that any
(nonspherical) combinatorial 5- or 6-manifold can
have. They therefore establish that the lower bound

given in [Brehm and Kiihnel 1987] for the number
of vertices of combinatorial d-manifolds is sharp in
dimensions 5 and 6. For a statement of this bound
see Theorem 8 and the sentence following it.

An extended version of the program, BISTEL-
LAR_EQUIVALENT [Lutz 1999b], was used to de-
termine the homeomorphism type of a large number
of manifolds, including all triangulated 3-manifolds
that have a vertex-transitive automorphism group
on n < 15 vertices [Kohler and Lutz 1999; Lutz
1999d]. The idea behind this is to first construct ref-
erence triangulations of interesting manifolds with
few vertices. If then a test object has the same ho-
mology as a particular reference manifold (this can
be checked with the computer program HOMOL-
OGY by Heckenbach [1997]), it was possible in many
cases to find a bistellar equivalence between the two
manifolds, and thus to show that they are PL home-
omorphic. For this we first searched for a small tri-
angulation of the test object, and then applied fur-
ther bistellar flips until, eventually, we were able to
show that the modified test object is combinatori-
ally isomorphic to the reference manifold.

Naturally, this works particularly well for mani-
folds with a unique minimal triangulation, such as
PL d-spheres that can be minimally triangulated as
the boundary complex of the (d + 1)-dimensional
simplex. Therefore the program can be used, at
least as a heuristic, to determine whether a given
simplicial complex is a combinatorial manifold (i.e.,
whether all vertex links are PL spheres). Other
manifolds that have a unique minimal triangula-
tion are, for example, the twisted sphere product
(or 3-dimensional Klein bottle) S%x S! [Altshuler
and Steinberg 1974; 1976; Walkup 1970] and the
complex projective plane CP? [Kiihnel and Banchoff
1983], in both cases on 9 vertices.

The program has not yet achieved any success for
the third purpose, that of finding counterexamples.
At the end of Section 2 we report on some experi-
ments of this kind.

The paper is structured as follows. In the next
section we review some definitions and some gen-
eral facts about triangulations of manifolds, bistel-
lar flips and the counting of faces. Section 3 presents
the program. In Section 4 we discuss the Poincaré
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homology 3-sphere and construct some highly sym-
metric triangulations for input into BISTELLAR.
Section 5 presents the 16-vertex triangulation that
was found. In Section 6 we derive via multiple sus-
pensions the non-PL d-spheres on few vertices, and
discuss how their existence relates to the existing
theoretical bounds for such objects. In Section 7 we
construct a highly symmetric triangulation of RP3
using the same general technique as in Section 4.

2. BACKGROUND AND DEFINITIONS

We collect here some definitions and discuss a bit
more the background to this paper, including some
general facts concerning triangulations of manifolds.
For the general notions of topology we refer to [Still-
well 1993] and for PL topology to [Glaser 1970; Hud-
son 1969; Rourke and Sanderson 1972].

All manifolds in this paper are compact, connected
and closed. Since PL concepts play such a role here,
we recall the following definitions. A PL sphere is a
simplicial complex which is piecewise linearly home-
omorphic to the boundary of a simplex. A combina-
torial manifold (or PL manifold) is a triangulation
of a topological manifold such that the link at every
vertex is a PL sphere.

For d # 4, a triangulation of the d-sphere is PL
in the first sense if and only if it is a PL manifold
in the second sense. For d < 3 this follows from the
work of Moise [1952] and for d > 5 from the work
of Kirby and Siebenmann [1977]; namely, there is a
unique PL structure for spheres in these dimensions.
For d = 4 this question is not fully understood: Is
a combinatorial manifold homeomorphic to the 4-
sphere necessarily a PL sphere? Since in dimension
4 the category of PL manifolds is equivalent to the
smooth category, the question is equivalent to: Does
there exist an “exotic” 4-sphere? (We are grateful
to M. Kreck for clarifying this distinction.)

It was shown by Radé [1925] that all 2-manifolds
and by Moise [1952] that all 3-manifolds can be
triangulated; see also [Moise 1977; Stillwell 1993].
Since the link of a vertex in a triangulated 2-mani-
fold is a polygon and the link of a vertex in a trian-
gulated 3-manifold is a 2-sphere (and therefore PL),
all 2- and 3-dimensional manifolds are PL.

The situation is much more subtle in four dimen-
sions. Freedman constructed in 1982 a nondiffer-

entiable analogue of the complex projective plane
(see [Freedman and Luo 1989; Freedman and Quinn
1990, Sections 8.3 and 10.1]), and this fake CIP? pro-
vides an example of a 4-manifold that cannot be
triangulated as a combinatorial manifold. By com-
bining work of Casson with that of Freedman (see
[Akbulut and McCarthy 1990, p. xvi|) one obtains
examples of topological 4-manifolds that cannot be
triangulated at all. For expositions of these trian-
gulation questions and related matters see, for in-
stance, [Kirby and Siebenmann 1977, Annex 2 and
3; Kuiper 1979; Lashof 1965; Marin 1988; Moise
1977; Stillwell 1993].

In 1963 Milnor listed seven problems that he con-
sidered the toughest and most important in geomet-
ric topology (see [Lashof 1965]). Among them is the
question whether every topological manifold can be
triangulated, now known to have a negative answer.
Also on the list is the double suspension problem
that asks whether the double suspension of a ho-
mology 3-sphere is a topological sphere. This prob-
lem was settled by Edwards [Edwards 1975] in 1974
for the double suspension of the Mazur homology
3-sphere which he proved is a topological 5-sphere
(see [Daverman 1986, Chapter 12]). The theorem
has later been generalized:

Theorem 1 [Cannon 1979]. The double suspension
82HY of any d-dimensional homology sphere H? is
homeomorphic to S4+2.

It follows that 82H?, although homeomorphic to
S92 has a non-PL structure, since H¢ appears as
the link of some 1-simplex in 82H¢. This fact will
be of importance in Section 6.

We now specialize the discussion to the concepts
and tools that will be needed in this paper.

Definition 2 [Pachner 1987]. Let M be a simpli-
cial d-manifold (or any pure d-dimensional simpli-
cial complex), and let A be a (d—i)-face of M, where
0 < i < d. If linky,(A) is the boundary Bd B of an
i-simplex B that is not a face of M, the operation
®, on M defined by

D,4(M):=(M\(AxBdB))U ((BAdA)* B)
is called a bistellar i-mowve.

We also say bistellar operations or bistellar flips for
bistellar moves. Bistellar i-moves with i > |d/2]
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are also called reverse (d — i)-moves. Note that a
0-move adds a new vertex to a triangulation, while
a reverse 0-move deletes a vertex; see Figure 1. Two
pure simplicial complexes are bistellarly equivalent if
there exists a finite sequence of bistellar operations
leading from one triangulation to the other (and vice
versa).

It is easy to see that bistellar equivalence implies
being PL homeomorphic, for any simplicial mani-
folds. For combinatorial triangulations the converse
is also true.

Theorem 3 [Pachner 1987, Theorem 1]. Two combi-
natorial manifolds are bistellarly equivalent if and
only if they are PL homeomorphic.

Define the bistellar flip graph of a triangulable mani-
fold M to have as nodes the triangulations of M (or,
more precisely, their isomorphism classes up to rela-
beling the vertices), and an edge between two nodes
if one triangulation can be obtained via a single bis-
tellar flip from the other (and vice versa). If the
dimension of M is at most 3, then this graph is con-
nected, as shown by the work of Moise [Moise 1952]
together with Theorem 3. We will see in Section 6
that if d > 5 then this graph has infinitely many con-
nected components. Of course, the manifolds within
each connected component of the bistellar flip graph
are pairwise PL homeomorphic. If M can be trian-
gulated as a combinatorial manifold, then by Pach-
ner’s theorem the (infinite) space of all combinato-
rial triangulations of M is divided into equivalence
classes of pairwise PL homeomorphic triangulations
which coincide with connected components of the
bistellar flip graph. For a discussion of Pachner’s
theorem in a topological environment see [Lickorish

1997].

We now consider counting faces of all dimensions,
not just vertices (dimension zero). For more details
and references to this area see the survey [Billera
and Bjorner 1997], and for triangulations of spheres
and polytopes [Stanley 1985].

Let f; be the number of i-dimensional faces of
a triangulated d-manifold M (with f_; = 1), and
define numbers h; by

d+1 d+1

Z hi $d+1—i — Z fi71($ - 1)d+1—i‘
i=0 =0

(2-1)

The sequence (fo,..., fa) is called the f-vector of
M, and (hg,. .., hay1) its h-vector. The correspond-
ing g-vector (go, . .-, g|(a+1)/2)) is defined by go =1
and g; = h; — hj_q, for ¢ > 1.

It was shown by Klee [1964] for any triangulated
manifold M that the face numbers (fo, ..., fi@a-1)/2))
determine the remaining numbers (f|a+1)/2/; - - - > fa)
via linear relations. From (2-1) we see that this
means that (ho,...,R|441)/2)) determine the com-
plete f-vector; therefore so does (go, ..., g|(a+1)/2])-
Thus the g-vector of a triangulated manifold con-
tains complete information about its f-vector.

The relevance of this for our program is the fol-
lowing.

Theorem 4 [Pachner 1987, p. 83]. Suppose that M’ is
obtained from M by a bistellar k-move, where 0 <
k < |(d—1)/2]. Then

Grr1(M') = gea (M) + 1,
9i(M") =g,(M) foralli+#k+ 1.

Also, if d is even and k = d/2, then g;(M') = g;(M)
for all i.

This means that it is very easy to follow and control
the successive f-vectors during a sequence of bistel-
lar flips. In our program we compute and store the
initial g-vector, which is then updated with a +1
(or —1) in position k41 for each k-move (or reverse
k-move).

Remark. In the case of odd-dimensional manifolds
the result implies that the bistellar flip graph is bi-
partite—it can be colored by the sum (mod 2) of
the entries of the g-vector. In even dimensions, d/2-
moves do not change the g-vector and sometimes
even lead to a combinatorially isomorphic triangu-
lation of a manifold, that is, the bistellar flip graph
may have loops.)

The linear relations of Klee take on a particularly at-
tractive form if M triangulates a sphere (the Dehn—
Sommerville relations):

hi = hqy1—;. (2-2)

If furthermore M is polytopal (i.e., combinatorially
isomorphic to the boundary complex of a simpli-
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cial convex polytope), then by a theorem of Stanley
[Stanley 1980]

(2-3)

(90s - - - ,gL(dH)/gJ) is an M-sequence.

The combinatorial condition of being an M-sequence
(M for Macaulay) is defined as follows, showing that
it can easily be tested by machine. For integers
k,n > 1 there is a unique way of writing

[k Q1 a;
n_(k)+<k—1>+ +<z>
so that a; > ap_1 > --- > a; > 1 > 1. Then define
k _ ak—l) (ak,1—1> (ai—1>
6(”)_<kf1 Tl 2 )T )
Also let 8%(0) = 0. A sequence (ng,ny, ..
negative integers is an M-sequence if

.) of non-

ng=1 and 8*(n;) < ny_, for all k > 2.

A nontrivial consequence of (2-3) is that g; > 0
for polytopal spheres. The “g-theorem” states that
the conditions (2-2) and (2-3) together characterize
the f-vectors of polytopal spheres. The sufficiency
of these conditions was proved by Billera and Lee
[1981].

The conjecture to which we wanted BISTELLAR
to search for counterexamples is the “g-conjecture
for spheres”, which states that condition (2-3) is
valid for all triangulated spheres, not just polytopal
ones. If correct, this would imply a characterization
of the f-vectors of spheres.

The g-conjecture can be deduced from known re-
sults for all d-spheres up to dimension 4, but is open
for d > 5. Attempts during the last 20 years to
prove it have so far been without success. It there-
fore seemed to us that the possibility of its falsity
should be considered and tested.

In order to look for counterexamples we started
with non-PL triangulations of the 5- and 6-sphere
and let the bistellar flip program search through
thousands of triangulations. This purpose is what
originally made us look for small triangulations of
the Poincaré 3-sphere and its suspensions; see Sec-
tion 6 for a description of the spheres we used to
start the computer search. The bistellar flip pro-
gram guarantees by Theorem 3 that all triangula-
tions visited during the search are non-PL, and, in
particular, that they are not polytopal. At each step
the g-vector is updated, as described in Theorem 4,

and tested for being an M-sequence. The parame-
ters for the program can be set to put priority on
creating a g-vector that is not an M-sequence (if
possible), for example a g-vector with some nega-
tive entry.

So, what was the result? No counterexamples to
the g-conjecture were found. Although no conclu-
sions can be drawn, we hope that this is an indica-
tion that the conjecture is correct.

3. THE BISTELLAR FLIP PROGRAM

The computer program that will now be presented
performs walks on the bistellar flip graph of trian-
gulations of a manifold M. By necessity we must re-
strict attention to some connected component of this
graph. For a particular triangulation of M from this
component (the input) we want to perform bistellar
modifications with the objective to obtain “small”
(hopefully even minimal), or otherwise sought-after,
triangulations of M (within the component). As
an objective function that we want to optimize, we
could take for example the total number of faces
of a triangulation. Nevertheless, the sum G of the
entries of the g-vector seems to be a more appro-
priate objective function, since any up-move — that
is, an i-move with 0 < ¢ < [(d—1)/2| —increases G
by one and any down-move (reverse up-move) de-
creases G by one, so that we have good control over
G. (If d is even, then d/2-moves do not change G.)
In addition to the goal of minimizing the objective
function G we perform moves according to priority
rules. Reverse 0-moves are given the highest priority
as they delete a vertex, then come reverse 1-moves,
reverse 2-moves, etc. If no further reverse moves are
available, this might be due to the fact that we have
achieved a global minimum for G within our com-
ponent of triangulations. But we can as well have
gotten stuck in some local minimum.

A concept that is very useful in such situations is
simulated annealing [Kirkpatrick et al. 1983]. In a
continuous version of simulated annealing (see [Rin-
nooy Kan and Timmer 1989, for instance) one wants
to find a global minimum z, € R" for a real val-
ued objective function f : R™ — R, ie., z, € R"
such that f(z,) < f(z) for all x € R". Starting at
some initial point y one moves to a randomly picked
neighboring point 3" if Af = f(y') — f(y) < 0. If
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Af > 0, then we move “uphill” to y" with probabil-
ity exp(—Af/B) or otherwise stay put at y. In the
next step a new neighboring point y” of y’ (or of y if
we have not moved) is chosen at random and so on.
The cooling parameter 3 > 0 describes how likely
it is to move “uphill” and is usually decreased with
time (the number of steps).

We now describe an appropriate annealing-type
strategy for bistellar flips. As soon as we are trapped
in a “local” minimum, we perform an up-move. (Up-
moves are also performed according to priority rules,
such as “perform a (k+1)-move before a k-move”.)
Sometimes, this already paves the way for further
reverse moves that lead away from the local mini-
mum. But we might also fall back into the same
local minimum in the following round. After a cer-
tain number of up-moves has become necessary (we
call this the relazation parameter) we start “heating
up” the function G, i.e., for a number of steps given
by the heating parameter we perform only up-moves
(as long as this is possible), with the exception that
we usually do not perform 0-moves, since this would
blow up the size of the complex too quickly. Then
we let the system relax until we have to heat up
again. If there is more than one option for moves
of a certain priority, we pick one of these options
randomly and then execute the move.

An Implementation of the Bistellar Flip Program

We start with some triangulation of a d-manifold,
represented by the list of its facets, and determine
all its faces and compute its f- and g-vector. Next,
we check for every (d — i)-face of the triangulation
whether it is contained in precisely ¢+ 1 facets. The
collection of these faces (together with their respec-
tive links) form the raw options for bistellar i-moves.
If we want to consider proper options for i-moves,
then we include only those raw options for i-moves
for which in addition the links satisfy the condition
of being the boundary of an i-simplex that is not a
face of the triangulation. This last condition is easy
to check.

When we determine the raw options at the be-
ginning, we have to check for all f; i-faces how of-
ten they are included in one of the f; facets. This
amounts to f; - f4 operations. Nevertheless, in the
following rounds we do not have to recompute the
raw options from scratch, since with any bistellar

flip we simply cut out a ball locally and replace it
by another ball. All raw options for faces in the in-
terior of the ball that we remove have to be deleted
and raw options for the faces in the interior of the
new ball have to be included. Raw options for faces
on the common boundary of the balls might also
change. But altogether, there is only a constant
number of faces involved in updating the raw op-
tions. Finally, to find out which of the raw options
of a given priority are proper options, we have to
test the condition on links mentioned above.

We wrote the program BISTELLAR in GAP, as
all required operations for sets and lists are available
in this computer algebra package [Schonert et al.
1996]. See sidebar on the next page for an excerpt
describing our flip strategy for 3-manifolds. For
complete information about BISTELLAR, see [Lutz
1999a].

In higher dimensions, the strategy for the options
can easily be adapted, although it takes time and
experiments to figure out reasonable parameters for
heating and relaxation. (This is a common problem
with simulated annealing algorithms.)

4. THE UBIQUITOUS POINCARE HOMOLOGY
3-SPHERE

The first example of a nonsimply connected mani-
fold having the same homology as the ordinary 3-
sphere was found by Poincaré [1904]. It was con-
structed from two solid double tori identified along
their boundary surfaces of genus 2. For this and
other constructions of this space, see [Rolfsen 1976,
p. 244-250 and 308-311; Stillwell 1993, p. 263—-266;
Weber and Seifert 1933, p. 245]. This manifold,
whose existence prompted the 3-dimensional Poin-
caré conjecture, has had an enormous influence on
the subsequent development of topology. It is dis-
cussed in many places; in addition to the sources
already mentioned, see, for example, [Dehn 1910;
Kirby and Scharlemann 1979; Kneser 1929; Threlfall
and Seifert 1931]. We particularly mention [Kirby
and Scharlemann 1979], where eight constructions
of this space are given and proved to be equiva-
lent. Also, several of the given references discuss
the fact that the fundamental group of the Poincaré
homology 3-sphere is the binary icosahedral group,
of order 120.
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## initial settings ##
InputFacets;
Compute_RawOptions;
Compute_f_and_g_vector;
g_min:=g;

## parameters ##
rounds:=1;
relaxation:=0;
heating:=0;

while rounds <= 50000 do

## strategy for options ##
options:=[];
if heating > O then
Include_MoveOptions(1);
if options = [] then
Include_ReverseMoveOptions (1) ;
heating:=0; fi;
heating:=heating-1;
else
Include_ReverseMoveOptions(0);
if options = [] then
Include_ReverseMoveOptions(1);
if options = [] then
Include_MoveOptions(1);
if options = [] then
Include_MoveOptions(0); fi;
relaxation:=relaxation+1;
if relaxation = 10 then
heating:=15;
relaxation:=0; fi; fi; fi; fi;

## perform Move or ReverseMove ##
ChooseOptionAtRandom;
ExecuteOption;
Update_RawOptions;
Update_f_and_g_vector;
Print(rounds," ",g,"\n");
if g < g_min then
g_min:=g;
Print ("f-vector = ",f,"\n");
Print(facets,"\n"); fi;

rounds:=rounds+1;
od;

Excerpt from the BISTELLAR program in dimen-
sion 3, showing our version of the simulated anneal-
ing algorithm for performing walks in the bistellar
flip graph of triangulations of a 3-manifold.

Triangulations of the Poincaré homology 3-sphere
on 17 and 18 vertices were constructed by Brehm.
This is mentioned in the proof of Proposition 3.28 of
[Kiihnel 1995, p. 55], but no details are given. The
first task for our bistellar flip program was to try to
improve on this.

In order to have a starting triangulation for the
program at hand, we first construct a “small” trian-
gulation of the Poincaré homology 3-sphere. For
this, we consider the description of the Poincaré
sphere as the spherical dodecahedron space which
is the cell decomposition of the solid dodecahedron
where opposite pentagons on the boundary are iden-
tified by a coherent twist of 7 /5 radians; see [Threl-
fall and Seifert 1931] or [Weber and Seifert 1933].

We triangulate the boundary of the dodecahedron
by introducing a midpoint for every pair of identified
opposite pentagons (see Figure 2).

FIGURE 2. Aj-invariant triangulation of the Poincaré
3-sphere.

Into the interior of the dodecahedron we place an
icosahedron in such a way that every vertex of the
icosahedron corresponds to a copy of a midpoint of
a pentagon. For every vertex of the icosahedron we
form the cone over the respective pentagon. For
every edge of the icosahedron we include the tetra-
hedron that is determined by this edge and the edge
that separates the two corresponding neighboring
pentagons. Similarly, for any triangle on the bound-
ary of the icosahedron we take the tetrahedron that
is made up by the triangle and the intersection-
vertex of the three corresponding neighboring pen-
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tagons. Finally, we triangulate the interior of the
icosahedron by introducing a center point and we
take the cone over the boundary of the icosahedron
with respect to the center point. The resulting tri-
angulation of the Poincaré homology 3-sphere has
5464 12 + 1 = 24 vertices and is invariant under
the 60-element group As of rotations of the icosahe-
dron and the dodecahedron.

Instead of an icosahedron, we could also place a
bipyramid over a pentagon into the interior of the
dodecahedron. In this case, the north and south
pole of the bipyramid are joined to the dark shaded
subcomplexes of Figure 3. Then take one vertex
of the equatorial pentagon of the bipyramid and
let it correspond to the light shaded subcomplex
of Figure 3. By rotations of the cyclic group Zs
we obtain four additional equatorial subcomplexes,
and the seven subcomplexes that we have described
cover the boundary of the dodecahedron.

FIGURE 3. Zs-invariant triangulation of the Poincaré
3-sphere.

Now, triangulate the space between the bipyramid
and the (identified) boundary of the dodecahedron
similarly as before. For the interior of the bipyramid
we introduce an edge connecting north and south
pole and then slice the bipyramid like an orange.
This provides us with a Zs-invariant 18-vertex tri-
angulation of the Poincaré sphere. As was men-
tioned, such a triangulation was previously found
by Brehm. By some modification of the identified

boundary it is not too difficult to obtain nonsym-
metric 17-vertex triangulations, but we were unable
to reach 16 vertices by hand.

5. A NON-SYMMETRIC TRIANGULATION X7, ON 16
VERTICES

We applied the bistellar flip program to both the
above 18-vertex and the 24-vertex triangulation. Af-
ter some running time we obtained a 16-vertex tri-
angulation.

Theorem 5. There exists a triangulation (without any
symmetries) of the Poincaré homology 3-sphere on
16 wvertices with f-vector f = (16,106, 180, 90).

Proof. The list of facets

1249 17 811 2 61014 4 6 711 6 71213
1 2 415 1 71112 2 61215 4 61011 6 10 11 12
1 2 614 1 81013 2 7 913 4 61014 6121315
1 2615 1 91112 2 7 914 4 71115 7 81014
1 2914 1 91114 2 71014 4 8 912 7 81115
1 3 412 1101315 2 81115 4 8 913 7 81415
1 3 415 2 3 510 2 81215 4 81013 7 91415
1 3 710 2 3 511 3 4 514 4 81014 8121415
1 3 712 2 3 710 3 4 515 4 81214 9101112
1 31015 2 3 713 3 41214 4101113 9101116
1 4 912 2 31113 3 51015 5 6 713 9101516
15 613 2 4 913 3 51114 5 7 913 9111416
15 614 2 41113 3 71213 5 7 915 9141516
1 5 811 2 41115 3111314 5 8 912 1011 1316
1 5 813 2 5 811 3121314 5 8 913 1013 1516
1 51114 2 5 812 4 5 6 7 5 91012 1113 1416
1 61315 2 51012 4 5 614 5 91015 1213 14 15
1 7 810 2 61012 4 5 715 6 71112 1314 1516

determines a 3-dimensional (pure) simplicial com-
plex 3%, on 16 vertices with f-vector

f = (16,106, 180, 90).

Since this simplicial complex was obtained by means
of bistellar flips from a triangulation of the Poincaré
sphere, it is PL. homeomorphic to this space.

Alternatively, we can assemble the 90 tetrahedra
in the interior of the dodecahedron. Omnce again,
we obtain a triangulation of the solid dodecahedron
where opposite pentagons on the boundary are iden-
tified by a coherent twist of w/5 radians. Figure 4
shows the corresponding triangulation of the bound-
ary with the respective identifications. Vertices 1-11
lie on the boundary of the dodecahedron, whereas
vertices 12-16 lie in the interior.

If a combinatorial manifold has a (combinatorial)
symmetry, then the links of the vertices that are
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FIGURE 4. 16-vertex triangulation of the Poincaré sphere.

mapped onto each other must be combinatorially
equivalent. For X3¢ the links of the vertices {3,6},
{10,13,14} and {2,4,5,7,12} are pairwise combi-
natorially equivalent within each group, and there
are no other such equivalences. Thus, the automor-
phism group of X3 is a subgroup of Sy x S3 x S.
However, none of these 1440 permutations, apart
from the identity, is in fact a symmetry, and there-
fore 33 has trivial automorphism group. O

Is there a 15-vertex triangulation of the Poincaré
homology 3-sphere? It follows from [Walkup 1970,
Theorem 4] that at least 11 vertices are needed. (We
are grateful to R. Forman for pointing this out to
us.) We let our bistellar flip program run for up
to 10° moves with changing relaxation and heating
parameters. From time to time the triangulation
Y3 appeared or other triangulations on 16 vertices
with larger f-vectors, but never any smaller triangu-
lation or any nonequivalent triangulation with the
same f-vector.

Conjecture 6. The triangulation X3, of the Poincaré
homology 3-sphere has the component-wise minimal
f-vector f = (16,106, 180,90) for a triangulation of
this manifold and is the unique triangulation with
this f-vector.

The boundary of the identified dodecahedron is a
Z-acyclic space with the same fundamental group
as the Poincaré homology 3-sphere [Bredon 1972,
p. 57]. In particular, this 2-dimensional space is
not contractible. What is the minimal number of

vertices of a simplicial complex that is Z-acyclic but
not contractible?

By taking the restriction of 3%, to the boundary
of the identified dodecahedron we obtain a trian-
gulation on 11 vertices. The bistellar flip program
brought this number down to 10. The corresponding
f-vector is f = (10,40,31). Subsequently another
triangulation on 10 vertices with f = (10,40,31),
shown in Figure 5, was found by hand. Its facets
are

12 4 14 9 23 7 35 6 45 8

12 5 15 7 23 8 35 9 47 9

13 6 1510 24 6 37 9 4710

13 8 16 7 2410 3710 58 9

1310 16 9 26 7 45 6 5810

14 8 23 5 26 8 45 7 68 9
2810

FIGURE 5. A Z-acyclic noncontractible complex on
10 vertices.

We do not know if 10 vertices is best possible for
a complex with these properties.

Remark. Taking instead the restriction of 33, (de-
scribed in Section 4; see Figure 2) to the boundary of
the identified dodecahedron we obtain a triangula-
tion on 11 vertices, on which Aj acts transitively on
facets and without stationary points. Its nerve com-
plex provides an 11-dimensional As-invariant vertex-
transitive Z-acyclic simplicial complex on 30 ver-
tices [Lutz 1999c].
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6. A SERIES OF NON-PL d-SPHERES ON d+13 VERTICES
FORd > 5

It follows from Theorem 1 that if we suspend X3
twice, then we obtain a non-PL 5-sphere. If we sus-
pend further, we obtain non-PL spheres of higher
dimensions.

Theorem 7. Let d > 5. Then there are non-PL tri-
angulations of the d-dimensional sphere on d + 13
vertices.

Proof. We first show that for d > 5 there exist par-
ticularly simple non-PL triangulations of the d-di-
mensional sphere on d + 14 vertices. For this, we
suspend X3¢ (d—3)-times, i.e., we form (d—3)-times
the join product of 33¢ with S°. By the associativity
of the join product with respect to the PL-structure
[Rourke and Sanderson 1972, 2.24(1)],

((++- (236 % 8%) % S%) % - % §%) % §°)
=23 % (S0 % S0 %% 8% 5°)
= N3 % 5474

If we take for S?* the boundary complex of the
(d—3)-simplex, then the latter simplicial complex
has 16 + (d — 2) vertices. Note also that it has 90 -
(d — 2) facets, and that the list of its facets is easily
compiled by concatenation from the list in Section 5
of the 90 facets of ¥3; with the list of all (d—3)-
subsets of a (d—2)-set.

An improvement of the number of vertices by one
can be obtained if we use Datta’s trick to construct
one-point suspensions of triangulated manifolds M.
(We thank W. Kiihnel for pointing out this trick to
us.) The Datta construction is as follows. Suspend
M by using two vertices w; and w,. Then pick a
vertex v of M and replace the collection of facets
that contain v by the facets that we obtain from the
(d—1)-facets of the link of v by adding as an extra
vertex either w; if w, is already contained in the re-
spective (d—1)-facet, or otherwise wy if w; is already
contained. The reverse procedure to this operation
is called starring a verter in “an edge” in [Bagchi
and Datta 1998, Def. 9]. The authors of that paper
remark that this generalized bistellar operation does
not change the PL homeomorphism type of the sus-
pension if M is a manifold (or a pseudomanifold). If
we take (d—3)-times the one point Datta-suspension

of 33, then we obtain a non-PL d-sphere with d+13
vertices. O

Theorem 7 complements the following two results,
which show that triangulated manifolds with “few”
vertices must be PL spheres.

Theorem 8. Let M be a triangulated d-manifold on n
vertices.

(a) [Barnette and Gannon 1976] If n < d + 6 and
d > 5, then M is a PL sphere.

(b) [Brehm and Kiihnel 1987] If n < 3[d/2] + 3 and
M is combinatorial, then M is a PL sphere.

Brehm and Kiihnel [1987] also show that if n =
3d/2+ 3, then M is either a PL d-sphere or a “man-
ifold like a projective plane” (the latter case can
occur only for d = 2, 4, 8 or 16). The following
consequence of Theorem 7 shows that the assump-
tion “combinatorial” can not be removed from the
Brehm-Kiihnel theorem.

Corollary 9. There exist non-PL d-spheres with n <
3d/2 + 3 wvertices for d > 19.

Question 10. Are there non-PL d-spheres for d > 5
with less than d + 13 wvertices?

We tried on this question with BISTELLAR for d =
5. Starting with the (ordinary) double suspension
with 20 vertices of the 16-vertex triangulation of the
Poincaré homology 3-sphere, we were able to get
down to 18 vertices, but not further. The f-vector
of the smallest non-PL 5-sphere that we found is
f=1(18,139,503,904, 783, 261).

We next show that for d > 5 there exists to any
triangulation of a d-manifold M a non-PL triangu-
lation of M with few additional vertices.

Theorem 11. Let M be a topological d-manifold, for
d > 5, that can be triangulated with n vertices. Then
there are non-PL triangulations of M with n + 12
vertices.

Proof: Let M be a simplicial d-manifold with n
vertices and d > 5. If the triangulation of M is
non-PL, then nothing has to be done. So assume
that M is combinatorial. Let (by Theorem 7) ¢
be a simplicial non-PL sphere on d + 13 vertices.
Then there exists a vertex v of X¢ for which the
corresponding link is not a combinatorial sphere.
Choose a facet of X¢ that is not contained in the
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star of v and delete this facet from ¥?. Also delete
some facet from M and glue the remaining com-
plexes together along the boundaries of the deleted
simplices. The resulting manifold is the connected
sum X% # M. Topologically, X% # M is homeomor-
phic to M, but on the PL level it provides a non-PL
triangulation of M, since linksa(v) = link,s(v). We
count the vertices of X¢# M. The complexes M and
¥4 contribute n and d+ 13 vertices respectively. By
the identification of the boundaries of the two d-
simplices, we loose d+ 1 vertices. Thus, X% # M has
n+ (d+13) — (d+ 1) = n + 12 vertices. O

Finally, we prove the result on connected compo-
nents of the bistellar flip graph referred to in Sec-
tion 2.

Theorem 12. Let M be a triangulable manifold of di-
mension d > 5. Then there are infinitely many con-
nected components of the bistellar flip graph of M.

Proof. Let H be any homology 3-sphere with nontriv-
ial fundamental group 7, (H), such as the Poincaré
homology 3-sphere. We construct in three steps in-
finitely many triangulations of M that cannot pair-
wise be reached from one another by bistellar flips.

First, we form k-fold connected sums of H. These
connected sums are again homology spheres, never-
theless they are pairwise nonhomeomorphic for dif-
ferent values of k. This is due to the fact that the
fundamental group of a connected sum M # N of two
manifolds M and N, with (nontrivial) fundamental
groups (M) and 7;(N) respectively, is the free
product 7 (M) % w;(N). Thus the connected sums
H#* and H#' have distinct fundamental groups if
k # 1.

In the second step, we take for k # [ the join prod-
ucts of the boundary complex of a (d—3)-simplex
with H#* and H#'. The resulting simplicial com-
plexes, S¢ respectively S¢, are non-PL spheres (as
in the proof of Theorem 7) that have the homology
spheres H#* and H#! sitting in their respective tri-
angulations as the links of some (d—4)-faces. From
the combinatorics of the join construction it is easy
to see that the links of (d—4)-faces in S¢ are all non-
homeomorphic to H#!, and the links of (d—4)-faces
in S are all nonhomeomorphic to H#*. Now, focus
on a copy of H#* that sits in S¢ as the link of a
(d—4)-face F. If we apply any bistellar flip to S,

then this operation may alter but not delete this
copy of H#*, This is so, because the definition of
bistellar flips shows that the face F', or any subface
of F', cannot be the pivot face of a bistellar move,
and the link of F' will itself be altered at most by
a bistellar move and thus its homeomorphism type
is preserved. The same argument used in reverse
shows that the bistellar flip will not produce H#! as
the link of some (d—4)-faces in S{. It thus follows
that S cannot be reached from Sy via bistellar flips,
and vice versa.

Finally, we will use the infinite number of exam-
ples of pairwise nonbistellarly equivalent triangula-
tions of d-spheres S¢ to obtain an infinite number
of pairwise nonbistellarly equivalent triangulations
of M. For this, let ® be the set of those spheres S§
such that H#* is not homeomorphic to the link of
any of the (d—4)-faces of M. The set @ is infinite,
since there are only finitely many links in M. Then,
just as in the proof of Theorem 11, form connected
sums S¢ # M of the spheres S¢ € ® with M in a
way that guarantees that H#* remains as the link of
some (d—4)-face of S¢ # M. By the same argument
as in the second step, S{ # M and S{ # M cannot
be reached from one another via bistellar flips. [

7. AN A;-INVARIANT TRIANGULATION of RIP* WITH
29 VERTICES

The idea of coherent twists on the dodecahedron
can be used to create other interesting 3-manifolds
besides the spherical dodecahedron space. For in-
stance, Weber and Seifert [1933] constructed a hy-
perbolic dodecahedron space, a manifold with ho-
mology H, = (Z,Z:,0,Z), by again identifying the
boundary of the solid dodecahedron, this time with
a coherent twist of 37/5 instead of 7/5 radians.

If we twist by 57/5, we obtain RP?®. Figure 6
gives a triangulation of the identified boundary for
the latter manifold (where the identified boundary
is the nonorientable surface RP?).

As done previously for the spherical dodecahedron
space, we place an icosahedron with additional cen-
ter point into the interior of the dodecahedron. This
yields an As-invariant triangulation of RP? with 29
vertices. Moreover, there is also an As-invariant tri-
angulation of RP? on 6 + 12 + 1 vertices that is
defined by placing an icosahedron with center point
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FIGURE 6. 29-vertex triangulation of RP3.

into the interior of an outer icosahedron with identi-
fications on the boundary by reflection at the origin.
For a vertex-minimal triangulation of RIP® on 11 ver-
tices see [Brehm and Swiatkowski 1993; Kéhler and
Lutz 1999; Walkup 1970].
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