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MULTISCALE COUPLINGS IN PROTOTYPE HYBRID
DETERMINISTIC/STOCHASTIC SYSTEMS: PART II, STOCHASTIC

CLOSURES∗

M. A. KATSOULAKIS† , A. J. MAJDA‡ , AND A. SOPASAKIS§

Abstract. Couplings of microscopic stochastic models to deterministic macroscopic ordinary
and partial differential equations are commonplace in numerous applications such as catalysis, de-
position processes, polymeric flows, biological networks and parametrizations of tropical and open
ocean convection. In this paper we continue our study of the class of prototype hybrid systems
presented in [8]. These model systems are comprised of a microscopic Arrhenius dynamics stochastic
process modeling adsorption/desorption of interacting particles which is coupled to an ordinary dif-
ferential equation exhibiting a variety of bifurcation profiles. Here we focus on the case where phase
transitions do not occur in the microscopic stochastic system and examine the influence of noise in
the overall system dynamics.

Deterministic mean field and stochastic averaging closures derived in [8] are valid under stringent
conditions on the range of microscopic interactions and time-scale separation respectively. Further-
more, their derivation is valid only for finite time intervals where rare events will not trigger a large
deviation from the average behavior in the zero noise limit. In this paper we study such questions
in the context of simple hybrid systems, demonstrating that deterministic closures based on various
separation of scales arguments cannot in general capture transient and long-time dynamics. For this
purpose we develop coarse grained stochastic closures for this class of hybrid systems and compare
them to deterministic, mean-field and stochastic averaging closures. We show that the proposed
coarse grained closures describe correctly the microscopic hybrid system solutions in all test cases
examined, including rare events and random transitions between multiple stable states.

Key words. Coupled Hybrid Systems; Stochastic Closures; Multi Scale Interactions; Critical
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1. Introduction
In this paper we study the influence of micro-/sub- grid scale fluctuations in hy-

brid dynamical systems consisting of coupled macroscopic, deterministic differential
equations and microscopic, stochastic lattice particle systems. We focus on model pro-
totype systems proposed in the earlier companion paper [8] that are computationally
tractable with direct numerical simulation even for long times, but still can exhibit
a host of complex phenomena, as further demonstrated here. Our findings strongly
suggest that deterministic closures of the hybrid system such as mean field, stochastic
averaging or moment equations may be either inadequate as descriptions of the overall
system or simply difficult to both derive and assess in their effectiveness. Motivated
by such considerations, we propose a class of stochastic closures based on systematic
coarse-graining of the microscopic stochastic lattice dynamics that yield computa-
tionally inexpensive reduced hybrid models and capture correctly the transient and
long-time behavior of the full hybrid system.

Couplings of atomistic or molecular, and more generally microscopic stochas-
tic models to deterministic macroscopic ordinary and partial differential equations
(ODE/PDE) are commonplace in applications ranging from catalysis and deposition
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processes to polymeric flows, to stochastic models for tropical and open ocean convec-
tion and complex biological networks, see for instance [20, 19, 23, 17, 21, 24]. In this
category of problems microscopic stochastic processes, typically simulated by Monte
Carlo (MC) methods, model small scale activity, for instance adsorption, desorption,
surface reaction and surface diffusion of particles on an interface or boundary layer,
in contact with a gas/fluid phase. The micromechanisms are interrelated with the
large scale fluid flow modeled by continuum ODE/PDE describing the evolution of
fluid and thermodynamic variables.

Challenges in all these hybrid problems arise in the direct numerical simulation
of realistic size systems due to scale disparities between the discrete stochastic mi-
croscopic models and the continuum macroscopic equations; secondly, the fact that
the coupled systems have nonlinear interactions across a wide range of scales, implies
that the stochasticity inherited from the microscopic model can play a subtle but im-
portant role in the dynamic behavior of the overall system. In this paper we address
such issues in the context of prototype mathematical models of a deterministic ODE
coupled with a stochastic spin flip/spin exchange Ising model, that capture essential
features of complex hybrid systems. These models were first proposed in [8] where
we obtained deterministic mesoscopic models from the hybrid system by employing
two methods: stochastic averaging principle and mean field closures, focusing on the
case where phase transitions do not occur in the stochastic system. In the averag-
ing principle case a faster stochastic mechanism was assumed compared to the ODE
relaxation; as a result, local equilibrium - parametrized with respect to the slow, de-
terministic variables - was enforced with respect to the Gibbs measure on the lattice
system. Under these circumstances remarkable agreement was numerically observed
between the hybrid system and the averaged system predictions. In fact, one of the
principal motivations behind introducing the model systems in [8] was specifically to
allow for testing the derivation of computationally inexpensive mesoscopic closures
for the average behavior of the hybrid systems in various asymptotic limits, and to
have computationally feasible detailed comparisons of the derived mesoscopic theories
against direct numerical simulations of the full hybrid system.

In this paper we specifically examine the influence of micro-/sub- grid scale noise
in hybrid dynamical systems. Although in [8] remarkable agreement was observed
between direct numerical simulations of hybrid systems and deterministic closures,
long-time simulations and asymptotic analysis in a linearized stochastic PDE limit
strongly suggest that fluctuation-driven rare events do occur in several parameter
regimes and are not captured by the deterministic mesoscopic equations; in fact this
possibility can be mathematically quantified in the case of stochastic averaging for
systems of stochastic differential equations using large deviations arguments, [6]. Sim-
ilar issues may also arise when strong noise is present in the system, in which case
fluctuations play a significant role in the overall dynamics; for instance noise is im-
portant when the external deterministic system exhibits multiple steady states (e.g.
bistability, phase transitions, etc.) or when bifurcations of various types may arise. In
this paper we demonstrate such phenomena in the context of simple hybrid systems
and further demonstrate that deterministic closures based on various separation of
scales arguments cannot capture transient and long-time dynamics. This profound
influence of noise is missed by the aforementioned methods, in spite of the fact that
they may rely on many occasions on rigorous derivations: all theoretical results are
derived on finite-time intervals, where the influence of noise asymptotically vanishes
due to the Law of Large Numbers scalings that are typically employed. We refer to
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the relevant discussion in Section 4 of this paper. Similarly, computational closure
methods relying on relatively short runs of microsimulators such as the Equation-
Free, [14] and HMM [4] approaches may also have to account for such phenomena
when deciding the integration time for the micro simulation and determining suitable
coarse-grained observables such as a number of moments.

As a result of these observations which are further detailed in Section 4, it is
evident that we need to develop mathematical strategies that allow fluctuations to be
properly and systematically included in the deterministic mesoscopic models. In this
paper, we address this issue by employing recently developed coarse-grained stochastic
models for lattice dynamics of Ising-type systems [9, 10, 13], in order to describe
the microscopic mechanisms with a hierarchy of coarser (and thus computationally
preferable) but still discrete, stochastic observables. The proposed class of stochastic
closures, presented in Section 5, indeed gives rise to computationally inexpensive
reduced hybrid models that capture correctly the transient and long-time behavior of
the full hybrid system. In particular, as demonstrated with detailed comparisons to
direct numerical simulations in Section 6, the coarse-grained stochastic closures yield
pathwise agreement with the full hybrid system even in regimes where rare events
may occur and through random transitions in multiple steady states and bifurcation
regimes. We also refer to [3] regarding multiscale methods for Ising-type systems
which are based on renormalization group and multigrid ideas. Finally we remark
that a hybrid coarse-grained model along the lines of the ones studied here, was
already introduced in [15] as a stochastic parameterization of unresolved features of
tropical convection; such models are expected to provide a computationally efficient
stochastic model whose predictions can be directly related to observational data.

In this paper we focus on hybrid systems where phase transitions do not occur in
the microscopic lattice dynamics, but rather complex dynamic behavior is primarily
due to the bifurcations of the externally coupled deterministic system, and its cou-
pling with the microscopic stochastic model. Phase transitions in the microscopic
lattice system are due to strong particle/particle interactions and such hybrid sys-
tems demonstrate even more complex behavior than the ones considered here, for
instance regimes of strong intermittency, and random oscillations; this case is treated
separately in a follow-up publication.

2. Hybrid models
We introduce the microscopic spin flip stochastic Ising process {σt}t≥0, modeling

the adsorption and desorption of particles on a one-dimensional surface, coupled to
an ODE that serves as a caricature of an overlying gas-phase dynamic; we also refer
to [23] for such a system arising in the modeling of well-mixed reactors in catalysis.

The microscopic stochastic process is defined by its generator L and the two-way
coupled system is written as

d

dt
~X =

1
τc

G( ~X,σ) (2.1)

d

dt
Ef(σ)=ELf(σ) (2.2)

where σ̄ denotes a spatial average coverage, f is a test function, G the ODE function
and τc corresponds to the characteristic time for the ODE. We provide all further
details for system (2.1,2.2) below. Examples of ODEs such as (2.1) considered here
are scalar equations with bistable behavior or saddle node bifurcations, as well as a
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spatially homogeneous complex Ginsburg-Landau equation exhibiting Hopf bifurca-
tions. In addition to the spin flip mechanism, we can also consider spin exchange, as
well as combined spin flip / spin exchange mechanisms. In this paper we concentrate
only on one of them, namely spin flips.

We start with a detailed description of (2.2). We consider a microscopic stochastic
model defined on a periodic lattice of size N which we denote by L={1,2, . . . ,N}.
At each lattice site x∈L, an order parameter σ, is allowed to take the values 0
or 1. In accordance with the classical Ising model we refer to the order parameter
as spin. We will assume that sites cannot be occupied by more than one particle.
A spin configuration σ is an element of the configuration space Σ={0,1}L and we
write σ ={σ(x) :x∈L} denoting by σ(x) the spin at x. Physically this mechanism
may describe the desorption of a particle from a surface described by the lattice to
the gas phase above and conversely the adsorption of a particle from the gas phase
to the surface. Similarly it can describe phase transitions without order parameter
conservation although here we concentrate on the case where phase transitions are
absent in the microscopic system.

The stochastic process {σt}t≥0 is a continuous time jump Markov process on
L∞(Σ,R) with generator, [16],

Lf(σ)=
∑
x∈L

c(x,σ)[f(σx)−f(σ)] (2.3)

for any test function f ∈L∞(Σ,R). Here σx signifies the configuration after a flip at
x,

σx(y)=
{

1−σ(x), if y =x
σ(y), if y 6=x,

and c(x,σ) denotes the rate of a spin flip at x for the configuration σ (see 2.6).
Since there are N = |L| sites on the lattice then the system can be in any of

2|L| possible states while the energy of any particular state is given by the following
Hamiltonian,

H(σ)=−1
2

∑
x∈L

∑
y 6=x

J(x,y)σ(x)σ(y)+
∑

x

hσ(x), (2.4)

where J(x,y) is an inter-particle potential and h is a given external potential. We let,

J(x,y)=
1

2L+1
J

(
|x−y|
2L+1

)

where L denotes the range of microscopic interactions. Here J is assumed to be even,
J(r)=J(−r) and as an example, can take a form similar to [9],

J(r)=
{

J0 if 0≤ r≤1
0 otherwise,

where J0 is a parameter which based on its sign describes attractive, repulsive or
no-interactions. For attractive microscopic interactions for instance, J0 is positive.

By applying a spin flip stochastic model we create new states from old ones gen-
erated by a Markov process as described below. Equilibrium states of the stochastic
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model are described by the Gibbs states at the prescribed temperature T . If we denote
the inverse temperature by β =1/(kT ) we then have,

µβ,N (dσ)=
1
Z

e−βH(σ)PN (dσ) (2.5)

where PN (dσ) denotes the (product) prior distribution on L,

PN (dσ)=
∏
x∈L

ρ(dσ(x)) and ρ(σ(x)=0)=
1
2
, ρ(σ(x)=1)=

1
2
.

Here Z is the partition function, guaranteeing that (2.5) is a probability measure.
In this model we implement spin flip Arrhenius dynamics. Under this type of

mechanism the simulation is driven based on the energy barrier a particle has to
overcome in flipping from one state to another given be (2.7) below. For Metropolis
and other choices of dynamics see [9]. The Arrhenius spin flip rate c(x,σ) at lattice
site x and spin configuration σ is given by

c(x,σ)=
{

cde
−β[U0+U(x)], when σ(x)=1,

ca when σ(x)=0,
(2.6)

where,

U(x)=
∑
z 6=x

z∈L

J(x,z)σ(z)−h, (2.7)

with absorption / desorption constants,

ca = cd =1/τI ,

and τI denotes the characteristic time of the stochastic process. Here U0 represents
the energy associated with the surface binding of the particle at location x which we
set to U0 =0.

In general we write the spin flip rate (2.6) as,

c(x,σ) := ca(x,σ)+cd(x,σ)= ca(1−σ(x))+cdσ(x)exp(−β(U0 +U(x)) (2.8)

and therefore the probability of a spin flip at x during time [t,t+∆t] is,

c(x,σ)∆t+O(∆t2). (2.9)

The dynamics as described here leave the Gibbs measure (2.5) invariant, since they
satisfy the detailed balance condition

c(x,σ)= c(x,σx)exp(−β∆xH(σ))

where

∆xH(σ)=H(σx)−H(σ).

We present below some of the candidate examples for our ODE (2.1). The for-
mulations studied were chosen in order to display interesting solution profiles through
succinct and simple equations. They include bistable, saddle and Complex Ginzburg
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Landau (CGL) equations [1]. The ODE (2.1) and the stochastic system (2.2) are
coupled via, respectively, the external field, h≡h( ~X)= cX +h0 with ~X =X +Y i for
appropriate constants c and h0 whose values are specified for each case examined and
the area fraction (or total coverage) defined as the spatial average of the stochastic
process σ, σ = 1

N

∑
x∈Lσ(x).We summarize here the main types of examples and sta-

bility behavior which we will study in more detail later. All parameters involved in
the formulations below are explicitly provided in the simulation Section 6.2. Here τc

denotes the characteristic time for the ODE.
• Example 1 (Bistable):

G(X,σ)=a(σ̄)X + γ̃X3, where a(σ̄)= b(1− σ̄)+z γ̃ <0 (2.10)

In particular bistability arises according to the sign of a(σ̄). If a(σ̄)≤0 we have a
stable node at 0 while otherwise we have two stable nodes at ±

√
−a(σ̄)/γ̃.

• Example 2 (Saddle):

G(X,σ)=a(σ̄)+ γ̃X2, where a(σ̄)= b(z− σ̄). (2.11)

Similarly this example displays saddle behavior depending on the sign of a(σ̄)/γ̃. For
a(σ̄)/γ̃ >0 there exist no nodes while otherwise we obtain one stable and one unstable
node at ±

√
−a(σ̄)/γ̃.

• Example 3 (CGL):

G( ~X,σ)=
[(

a(σ̄)+γ −ω
ω a(σ̄)−γ

)
− γ̃| ~X|2

]
~X,where:

a(σ̄)= b(σ̄−z),
~X =X +Y i.

(2.12)

This example exhibits a Hopf bifurcation. The Jacobian of the linearized system has
eigenvalues

λ=λ(σ̄)=a(σ̄)± i
√

ω2−γ2 (2.13)

and in general we have either a stable node at (0,0) for a(σ̄)<0 or a limit cycle
otherwise.

The parameters in each example are chosen so that the noise constantly probes
the critical values for which bifurcations occur under each of the examples above. The
coupled system therefore can move between regions of stability or instability based on
the coupling noise parameter σ̄. Further details on the exact values of all parameters
used and respective behavior of the bifurcations are to be found in the numerical
simulations Section 6.2.

Each of the bifurcation ODEs (2.10 - 2.12) that enters in system (2.1,2.2) has its
own time scale, τc and competes with the characteristic time for the stochastic model
τI . We define

τ = τc/τI

and note the following three possibilities:
• τ >>1 =⇒ ODE equilibrates slower than spin flip model.
• τ ≈ 1 =⇒ ODE equilibrates at similar times as the spin flip model.
• τ <<1 =⇒ ODE equilibrates faster than spin flip model,

where without loss of generality we fix τI ≡1 and vary τc accordingly for the cases
specified above.
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We will monitor in our simulations how the phase portrait of our dynamical
system (2.1,2.2) transforms when the critical parameter coupled to σ̄ passes through
its bifurcating value. We perform these numerical comparisons under the three cases
of τc outlined above and a variety of values for the fixed parameters of the external
potential and the ODEs corresponding to a wealth of different phase space portraits.

3. Deterministic Closures and the Role of Stochastic Fluctuations
In this section we outline deterministic closures of the hybrid system (2.2), (2.1)

studied in [8] in two distinct asymptotic regimes. First, in the case of weak long range
interactions L→∞, we obtain a coupled, possibly spatially distributed mean field
deterministic mesoscopic system for the evolution of X and the average local coverage
corresponding to the stochastic order parameter σ. Second, using stochastic averaging,
we obtain an effective ODE for the variable X =X(t) in the time-asymptotic limit
τ >>1, i.e. when the relaxation time τI of the stochastic system (2.2) is much faster
than the relaxation time τc of the ODE (2.1). The rigorous derivations for these
closures can be found in [8].

3.1. Local and Global Mean Field Models. In this subsection we obtain
in the asymptotic limit of long range interactions N =2L+1 for N,L→∞ a spatially
distributed deterministic closure of (2.2), (2.1), without any time-scales separation
assumption. In that case, equilibrium mean-field theory becomes asymptotically ex-
act (see [8]). We briefly outline here the derivation of mean-field equations for our
coupled system (2.2), (2.1). We consider the spin flip Arrhenius type dynamics which
we presented in Section 2, and using the definition of the generator, we obtain the
following time evolution law for the average coverage Eσ(x) and the average position
E ~X: {

d
dtE

~X = 1
τc

EG( ~X,σ̄)
d
dtEσ(x) = 1

τI
E
[
(1−σ(x))−σ(x)e−βU(x; ~X,σ)

] (3.1)

where U(x; ~X,σ),

U(x; ~X,σ)=
∑
z 6=x

J(x,z)σ(z)−h( ~X).

Note that (3.1) is exact but not closed in terms of Eσ(x) and EX. Although such
a system cannot provide a predictive tool by itself, it can certainly be used, since
it is exact, as a numerical benchmark for the deterministic and stochastic closures
presented next.

In order to proceed further and close the system above we consider an averaged
but still stochastic quantity, namely the empirical measure,

µN (dy,t)=
1
N

∑
x∈L

σt(x)δx(dy), for y∈R. (3.2)

Note that if A⊂R then

µN (A,t)=
number of particles in A

N
. (3.3)

In this case our ODE, (2.1) becomes exactly,

d ~X

dt
=G( ~X,µ̄N ) with µ̄N (t)=

∫
R

µN (dz,t)= σ̄t . (3.4)
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Passing to the weak-∗ limit in µN (dy,t) we have the following result: for a smooth
long-ranged potential J(x,y)= 1

N J( |x−y|
N ) and any finite time T , we have that

lim
N→∞

X(t)=Y (t) and lim
N→∞

µN (dy,t)=u(y,t)dy uniformly in [0,T ] (3.5)

where (Y,u) solves

{
d
dt

~Y = 1
τc

G(~Y ,ū)
d
dtu = 1

τI

{
1−u−ue−β(J∗u−h(~Y ))

} for t∈ [0,T ], y∈ [0,1], (3.6)

ū(t)=
∫ 1

0
u(y,t)dy and G corresponds to the given ODE as in (2.10), (2.11) or (2.12).

As discussed in [8] relation (3.5) is analogous to the Law of Large Numbers yielding
the mean behavior of the hybrid system and treating fluctuations as a higher order
correction. Examples of different choices for G will be considered in the numerical
test cases below.

A particular but important sub-case follows here if we make the assumption that
J ≡J0 i.e assuming a uniform interaction potential. We subsequently obtain the
following mean field model ODE system describing total spatial averages,{

d
dt

~Y = 1
τc

G(~Y ,ū)
dū
dt = 1

τI
(1− ū)− 1

τI
ūe−βJ0ū+βh(~Y )

for t∈ [0,T ]. (3.7)

The exact mean-field formulations corresponding to each of our examples will be
presented in the simulations Section 6.2 below.

3.2. Stochastic Averaging. We now assume that τ >>1 which implies
that the stochastic system evolves with a characteristic time which is much faster
compared to that of the ODE. In this case we can apply a stochastic averaging prin-
ciple, which is conceptually similar to the one for systems of stochastic differential
equations with fast and slow scales, see for instance [6].

The main requirement here is the ergodicity property of the stochastic process
{σt}t≥0. Indeed, for any fixed, finite N and ~X, the process σ is ergodic with (2.5) as
the unique invariant measure, [18]; in particular we have,

lim
T→∞

1
T

∫ T

0

G( ~X,σ̄t)ds= Ḡ( ~X) for ~X ∈R2 (3.8)

where

Ḡ( ~X)=Eµβ,N
G( ~X,σ̄) for ~X ∈R2. (3.9)

Due to special structure of G which depends on σ̄ linearly (see (2.10, 2.11, 2.12)), we
always have

Eµβ,N
G( ~X,σ̄)=G( ~X,uβ,N (h( ~X)))

where,

uβ,N (h)=Eµβ,N
σ̄ =

1
Z

∑
{σ}

∑
x∈L

σ(x)e−βH(σ)PN (σ). (3.10)
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Furthermore (3.10) is the average coverage of the microscopic system which in equi-
librium statistical mechanics is known as average magnetization. It is clear from the
formula that for finite N , uβ,N (h) is an analytic function of h, we refer to [5] (Theo-
rem V.4.3) for a detailed discussion of its properties (e.g. monotonically increasing,
concave for h>0, symmetry in h, etc.). In other words there are no first-order phase
transitions for finite N , and in this case (3.9) and the averaged ODE (3.12) below are
always well defined, regardless of temperature and strength of interactions. In fact
we can show the following: for an arbitrary bounded time interval [0,T ] with fixed N
and τc we have

lim
τI→0

P
(

sup
0≤t≤T

| ~X(t)− x̄(t)|>δ
)

=0, (3.11)

for any δ >0 where ~X = ~X(t) solves (2.1), and x̄= x̄(t) is the solution of the averaged
system (depending on the lattice size N)


d
dt x̄t = 1

τc
Ḡ(x̄t)

Ḡ(x̄t) =G(x̄t,uβ,N (h(x̄t)))
x̄0 =x

for t∈ [0,T ]. (3.12)

Remark 3.1. As pointed out earlier, for a finite N , the spin flip system has no
phase transitions which can arise depending on the competition between fluctuations
and interactions, in the N→∞ limit. Therefore the results above always apply since
in that context N is kept fixed, while τI →0 (τ = τc/τI →∞). However, even for finite
N , phase transitions are manifested as hysteresis in Monte Carlo simulations (see for
instance Figures 1 and 2 in [9]). A similar phenomenon arises also here, since the
coupling of (2.1) to the spin flip system is through the external field h=h( ~X). The
phase transition case in the stochastic lattice system will be examined extensively in
[7]; in this case the coupled system (2.1, 2.2) not only demonstrates metastability but
also oscillations and intermittency. For practical ways which allow us to obtain
and implement the averaged system (3.12) we refer to [8]. Once uβ,N (h) has been
determined it is an easy task to obtain the corresponding averaging closure for each
of our ODE examples.

4. Regimes of Validity of Deterministic Closures
Both of the closures presented in the previous section have been successful under

extensive numerical tests in [8] when applied reasonably within the limits of their
respective underlying assumptions as outlined in the previous section. In this section
we examine the impact of applying these closures in situations for which the underlying
mathematical assumptions are expected to be violated and noise could be important.

One important underlying assumption for both the stochastic averaging and mean
field closures is that they are valid for a finite time interval [0,T ], [8]. In the case of in-
finite time intervals, even for small noise, large deviation effects may be present which
can alter the stability of the hybrid system. Similarly if the coupling is subjected to
high noise levels, (e.g. τ <<1) deterministic closures are expected to fail. Alterna-
tively changes in the system’s temperature can create phase transitions, which in turn
can generate a whole new set of phenomena (e.g. intermittency or oscillations) which
do not exist in the uncoupled spin flip system. The results presented here deal with
the case of absence of phase transitions in the spin flip system; the phase transition
case is treated in detail in [7]. In all of the cases outlined above, the hybrid system
may display transient and long-time behavior which can be completely different from
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Fig. 4.1. Typical example of success for the stochastic averaging closure in the regime τ >>1 for
(2.12). Comparisons of solutions in time for the microscopic coupled system versus the stochastic
averaging closure. See [8] for a discussion and details of the solutions. Parameters τ =5 and
βJ0 =2.

those predicted by the deterministic closures. Chosen examples presented in this sec-
tion display the capabilities as well as the shortcomings of deterministic closures. For
instance, a case where stochastic fluctuations may be critical is the blow-up (solutions
tending to ∞) examples which are studied in Section 4.2. In this case the analogue
of (3.12) cannot predict blow-up which occurs for the direct numerical simulations of
the full stochastic model.

Before we start examining the limitations for the deterministic closures presented
in Section 3 we should briefly present a characteristic case where the approximation
works well within the limits of validity of the underlying assumptions. As a typical
test case of success for the stochastic averaging closure (3.12) we present a solution
of our coupled system (2.1,2.2) for the Hopf bifurcation ODE (2.12) in Figure 4.1 for
τ >>1. We therefore solve our hybrid model under the assumption of fast (τ =5)
stochastic dynamics and in this case for βJ0 =2. Note that here we are away from
the phase transition regime which occurs for βJ0 =4. It should be pointed out that
there is a small but systematic error which is evident in our solution in Figure 4.1 due
to the fact that we are approximating uβ(h) via mean field theory [8]. Although the
case τ =5 is not much bigger than 1 as required by the mathematical theory (3.11),
this stochastic averaging type closure performs well and approximates the solutions
for coupled systems with fixed stable equilibria or single periodic orbit as long as we
stay within the assumptions of its derivation. Several more such examples have been
undertaken under different types of bifurcation couplings and a small fraction have
been presented in [8].

We next examine three examples where stochastic fluctuations will be important.
Under these circumstances we will present cases for which deterministic models are
expected to fail.

4.1. Example 1: Bistable Case. As a first such example we present
a coupled system consisting of a bistable type bifurcation ODE with a shallow, dou-
ble well potential (2.10). Our objective is to allow the stochastic process to induce
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spontaneous jumps of the hybrid system (2.1,2.2) solution within a reasonable compu-
tation time; clearly deterministic closures such as mean field or stochastic averaging
could not possibly capture such a solution correctly. Furthermore we could not apply
stochastic averaging in this case since it would not be valid for relaxation times which
here are as small as τ = .001. In fact based on our results in [8] we know that for such
relaxation times the stochastic noise is substantial thus inducing jumps of the solution
between the potential wells. Although we do not examine the phase transition case
in the spin flip system, here the behavior seen in our simulations is driven by phase
transitions through the coupling in (2.2) with the external ODE.

More specifically we examine the coupled system (2.2), (2.1) with the following
type of bistable bifurcating ODE,

dX

dt
=

1
τc

(
a(σ̄)X + γ̃X3

)
, (4.1)

where we let a(σ̄)=z+b(1− σ̄), with b=4,z =−1 and γ̃ =−100. The external po-
tential we apply in this example is linear and has the form, h=h(X)= cX +h0 with
c=−1,h0 = .005. Note that as long as a(σ̄)>0, (4.1) has three nodes: 0,±

√
−a(σ̄)/γ̃;

furthermore (4.1) has two main bifurcation states: bistable at ±
√
−a(σ̄)/γ̃ or single

node at 0.
The mean-field formulation and stochastic averaging closure corresponding to the

top equation of (3.7) for this bistable example are respectively presented below,

Mean field:

{
d
dtY = 1

τc
[b(1− ū)+z]Y + γ̃

τc
Y 3

dū
dt = 1

τI
(1− ū)− 1

τI
ūe−βJ0ū+βh(Y ) (4.2)

Stochastic averaging:
d

dt
x̄=

1
τc

[b(1−uβ,N (h(x̄)))+z]x̄+
γ̃

τc
x̄3. (4.3)

Although both the stochastic and mean-field closures are provided above for this ex-
ample it is only the mean-field system which is expected to be valid for the parameter
regimes of the numerical example in Figure 4.2. The stochastic closure (4.3) would
only be valid if τ >>1. The mean field closure (4.2) predicts nodes at Y =0 and
Y =±.1. We display the solutions for the bistable deterministic/stochastic coupled
system versus the mean-field equation in Figure 4.2. In general we note that: (a)
The deterministic closure attains and remains for all time at the closest, according
to dynamics, stable node based on its initial position. (b) Due to the high noise
the stochastic process jumps occur almost immediately for the coupled system. The
solution switches between the stable nodes of (4.2). Based on these findings it is
clear that the deterministic closures will fail to capture the transient dynamics which
are driven by stochasticity as Figure 4.2 strongly suggests, although they capture
the correct average states. Similar failures are recorded, but not presented here, in
the case of the stochastic averaging closure although since τ = .001 this behavior is
expected. The case of τ = .001<<1 exhibits high noise values thus deterministic clo-
sures are certainly expected to fail. In the next section we examine how failure of the
deterministic closures may still occur even though noise levels are not as high.

4.2. Example 2: Saddle Bifurcation. Strong noise is just one of many
reasons for which the closures we presented so far may fail. What if strength of noise
is in fact lowered? Could we have solutions which can still not be captured by our
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Fig. 4.2. Comparisons for the microscopic (q =1) and mean-field solutions for the coupled
system in the (4.1) case. Solutions presented for βJ0 = .01 and τ = .001 so that the noise levels are
quite high. Other parameters: L=20,N =1000 with b=4,z =−1, γ̃ =100,c=−1 and h0 = .005.

closures? We display below such an example where the failure in obtaining the correct
system solution is not just attributed to noise but mainly to the occurrence of a rare
event which can possibly appear in long enough time when the noise level is low; on
the other hand, recall that the deterministic closures derived in Section 3 are valid
only for finite times.

The saddle bifurcation example which we examine here has two fixed points which
either appear or disappear based on the sign of the stochastic noise parameter σ̄ which
is expressed through the coupling. The specific dynamical system corresponding to
(2.1) is,

dX

dt
=

1
τc

(
r(σ̄)+ γ̃X2

)
, where we let r(σ̄)= b(z− σ̄) (4.4)

We apply the following type of external potential: h(X)= cX +h0. As usual all
parameters are provided at the tables which follow. Here b=1,z = .5, γ̃ =−.05,c=
5,h0 =−1,τI =1 and βJ0 = .01.

The ODE in (4.4) has a stability profile which depends on the sign of r(σ̄). In
the case of r(σ̄)<0 we obtain one stable and one unstable node at: ±

√
−r(σ̄))/γ̃.

If however r(σ̄)>0 then no nodes exist. Last as r(σ̄) approaches 0 then the two
nodes at ±

√
−r(σ̄))/γ̃ merge and eventually disappear creating a saddle bifurcation.

In this example we will set τ =1. Although this value is not in the range of τ >>
1 the stochastic averaging closure could still be applied successfully based on our
experimental simulation findings in [8]. We have similar expectations for the mean
field closure. In that respect we present and briefly study both deterministic closures
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Fig. 4.3. Saddle ODE example. Extended time runs. Solutions for both microscopic Monte
Carlo system and stochastic averaging closure. Parameters: b=1, γ̃ =−.05,τ =1 and βJ0 = .01.
Note the rare event jump which eventually drives the system to a finite time blow-up. The stochastic
averaging closure is unable to track such a jump.

below

Mean field:

{
d
dtY = b

τc
[z− ū]+ γ̃

τc
Y 2

d
dt ū = 1

τI
(1− ū)− 1

τI
ūe−βJ0ū+βh(Y ) (4.5)

Stochastic averaging:
d

dt
x̄=

b

τc
[z−uβ,N (h(x̄)]+

γ̃

τc
x̄2. (4.6)

The solutions for both the averaging principle closure and the microscopic coupled
system are displayed in Figure 4.3. A simple numerical study of both the mean field
and stochastic averaging above shows that both predict the exact same stable node
at ū≈ .498,Y ≈ .197. This estimate is in complete agreement with the microscopic
simulation of our hybrid system as can be seen in Figure 4.3. However both of these
closures (4.5) and (4.6) are assumed to hold in finite time and this in fact is supported
by our simulations.

Indeed the values predicted by the stochastic averaging closure are captured in
the hybrid simulation as can be seen in the first part of Figure 4.3 for short times.
However for long enough time a rare event jump occurs in the microscopic hybrid
system which is not followed by the stochastic averaging or the mean field solution
and creates a blow-up at finite times as Figure 4.3 suggests.

4.3. Example 3: Hopf Bifurcation. For our last major example in this
subsection we examine the hybrid system (2.1, 2.2) where the ODE is of CGL type
(2.12):

d ~X

dt
=

1
τc

[A ~X−| ~X|2 ~X], (4.7)

where A=
(

a(σ̄)+γ −ω
ω a(σ̄)−γ

)
,| ~X|2 =X2 +Y 2 and a(σ̄)= b(σ̄−z) with b=4 and z =

.5. We apply a linear external potential h( ~X)= c(X +h0) with c= .5,h0 =−1 and
choose the remaining parameters as follows: ω =1,τI =1,τc = .01,γ = .9,β = .01,J0 =
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1,X(0)=1,Y (0)=1. Equation (4.7) has a stable node at (X,Y )=(0,0) for a(σ̄)<0.
Otherwise if a(σ̄)≥0 we have a limit cycle with radius depending on the size of σ̄
(non-symmetric limit cycles occur for values of σ̄ approaching 1).

The mean-field equations (3.7) for this hybrid model are

Mean field:




d
dtY1 = 1

τc
[(a(ū)+γ)Y1−ωY2−Y 3

1 −Y 2
1 Y2]

d
dtY2 = 1

τc
[ωY1 +(a(ū)−γ)Y2−Y 2

1 Y2−Y 3
2 ]

dū
dt = 1

τI
[1− ū− ūe−βJ0ū+βh(~Y )],

(4.8)

while the corresponding averaging closure for this case is,

Stochastic Averaging:
{ d

dt x̄t = 1
τc

[(a(uβ,N (h(x̄t)))+γ)x̄t−ωȳt− x̄3
t − x̄2

t ȳt]
d
dt ȳt = 1

τc
[ωx̄t +(a(uβ,N (h(x̄t)))−γ)ȳt− x̄2

t ȳt− ȳ3
t ].

(4.9)
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Fig. 4.4. CGL case. The mean field and microscopic hybrid system solutions compared in
time. The mean field closure is unable to predict the interchange between the node at (Y1,Y2,ū) and
random radii limit cycles for this hybrid system. Parameters: τ = .01 and βJ0 = .01.

The stochastic averaging closure (4.9) is unable to track the correct behavior for
the solutions of the system (2.1,2.2) since the assumption τ >>1 is violated for the
parameter regimes of the numerical example in Figure 4.4. On the other hand the
mean field closure (4.8) appears to be more suitable since no timescale separation
assumption is required. The mean field closure however reveals constant radius limit
cycles centered at (Y1,Y2,ū)≈ (0,0,.5); this is also validated from analysis of the Jaco-
bian corresponding to the linearization of (4.8) around such a state, which shows the
following eigenvalues λY1 ≈ .05+ .41i, λY2 ≈ .05− .41i and λū≈−2.1. However, mean
field fails to capture the true behavior of our hybrid system which consists of random
interchanges between the node at (0,0,.5) and limit cycles of random radii, see Figure
4.4; this phenomenon is clearly driven by noise which induces transitions through the
bifurcation point defined by the sign of a(σ̄).

5. Coarse-Graining and Stochastic Closures
Motivated by the examples in the previous section where stochastic noise played

a crucial role in transient and long-time dynamics we now pursue the derivation of re-
duced stochastic approximations of the hybrid models that will allow both enhanced



M. A. KATSOULAKIS, A. J. MAJDA AND A. SOPASAKIS 467

computational efficiency but also improved accuracy and predictive capability over
deterministic closures. More precisely we obtain stochastic closures of the hybrid sys-
tem in terms of a coupled ODE / coarse grained stochastic lattice model. Uncoupled
stochastic coarse grained closures were first introduced in [9] and [10]. Here we extend
these methods to hybrid systems and test their validity in the context of the three
examples, presented earlier, where deterministic closures fail.

5.1. Coarse Graining of the Hybrid System. Using the empirical measure
µN defined in (3.3) as a starting point, we define the coarse grained random process,

η(k)=T (σ)(k) :=
∑

x∈Dk

σ(x), for k =1,...,n, (5.1)

and η =η(k) :k∈Lc ={1, . . . ,m}, with η(k)∈{0,1, . . . ,q} the coverage of the coarse cell
Dk for 1≤k≤m and N =(mq). Note that each Dk consists of q microcells and the
order parameter ηk counts the number of particles in each coarse cell Dk. Here the
coarse lattice Lc is defined through,

Lc =
1
m

Z∩ [0,1] where Lc⊂L. (5.2)

We define the coarse configuration space Hm,q ={0,1, . . . ,q}Lc . The projection opera-
tor T is defined implicitly by (5.1). For any test function g∈L∞(Hm,q;R) we have,

f(σ) :=g(T (σ))=g(η)

where f is a test function in L∞(Σ;R). Therefore (2.2) with generator (2.3) can be
written as follows in terms of the coarse lattice Lc,

d

dt
Ef(σ)=E

∑
x∈L

c(x,σ)[f(σx)−f(σ)]=E
∑

k∈Lc

∑
x∈Dk

c(x,σ)[f(σx)−f(σ)] (5.3)

Note that for x∈Dk we have,

T (σx)(k)=
∑

y∈Dk

σx(y)=
{

η(k)+1 when σ(x)=0
η(k)−1 when σ(x)=1.

Thus the right hand side of (5.3) can be expressed in terms of g as,

f(σx)−f(σ)=(1−σ(x))[g(η+δk)−g(η)]+σ(x)[g(η−δk)−g(η)]

where δk ∈Hm,q denotes the configuration with a single particle at site k∈Lc. Re-
arranging the summations accordingly in the microscopic generator L in (5.3) for σ
and corresponding coarse state η =T (σ) with rates from (2.6) we obtain,

d

dt
Eg(η)=

d

dt
Ef(σ)=E

∑
k∈Lc

ca(k)[g(η+δk)−g(η)]+cd(k)[g(η−δk)−g(η)] (5.4)

where g∈L∞(Hm,q;R) is a test function and ca(k),cd(k) denote the exactly coarse
grained adsorption and desorption rates,

ca(k)=
∑

x∈Dk

c(x,σ)(1−σ(x)), cd(k)=
∑

x∈Dk

c(x,σ)σ(x).



468 STOCHASTIC CLOSURES FOR HYBRID SYSTEMS

Note that these rates depend on the microscopic configuration σ and not on the coarse
random variable T (σ). In order to derive a Markov process for the coarse variable
η =T (σ) we need to express these rates in terms of η. Indeed for the adsorption we
have,

ca(k)=
∑

x∈Dk

c(x,σ)(1−σ(x))=
∑

x∈Dk

d0(1−σ(x))=d0[q−η(k)] (5.5)

where d0 =1/τI and U0 denotes the energy associated with the surface binding at x,
(which for simplicity we take U0 =0). Based on relation (5.5) we can therefore define
the coarse grained adsorption rate

ca(k,η)=d0[q−η(k)] (5.6)

and expresses the rate by which η(k) is increased by 1. We wish to obtain a similar
such relation for the desorption cd(k). Since U(x)= Ū(k)+O(q/(2L+1)) (see [8]) we
have

cd(k) =
∑

x∈Dk
c(x,σ)σ(x)=d0

∑
x∈Dk

σ(x)e−β(U0+U(x))

=d0

∑
x∈Dk

σ(x)e−β(U0+U(x)) =e−β(U0+Ū(k)+O( q
2L+1 ))∑

x∈Dk
d0σ(x)

=d0η(k)e−β(U0+Ū(k))exp
[
O
(

q
2L+1

)] (5.7)

where

Ū(k)=
∑
l∈Lc

l 6=k

J̄(k,l)η(l)+ J̄(0,0)(η(k)−1)−h( ~X), (5.8)

and the coarse grained interaction potential J̄(k,l) is computed as average of pairwise
interactions between microscopic spins on coarse cells Dk and Dl,

J̄(l,k)=m2

∫
Dk

∫
Dl

J(r−s)dr ds.

Disregarding the exp
[
O
(

q
2L+1

)]
term in (5.7) we propose the following approximate

desorption coarse grained rate,

cd(k,η)=d0η(k)e−β(U0+Ū(k)). (5.9)

Based on rates (5.9) and (5.6) we can now provide the coarse grained Markov process
generator for η based on (5.4),

Lcg(η)=
∑
k∈Lc

ca(k,η)[g(η+δk)−g(η)]+cd(k,η)[g(η−δk)−g(η)] (5.10)

and the corresponding coarse grained dynamics

d

dt
Eg(η)=ELcg(η), where g∈L∞(Hm,q;R). (5.11)

Thus the hybrid system (2.1, 2.2) is approximated by the stochastic closure,{
d
dt

~X = 1
τc

G( ~X,η̄)
d
dtEg(η) =ELcg(η)

(5.12)
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where η̄ = σ̄. Note that in fact for this approximation to work we only require that
2L+1>>q and not that N→∞ or τ <<1 as is the case for the deterministic closures
in Section 3; furthermore as in most asymptotics the condition q <<2L+1 will require
a relatively modest q/(2L+1) ratio. We will present further numerical as well as
theoretical results showing the capabilities and possible limitations of this stochastic
coarse grained closure in Section 6.

6. Validity Regimes of Stochastic Closures
In this section we examine the coarse grained closure presented above for both

the uncoupled and coupled spin flip dynamics cases and present both theoretical
estimates of its capabilities as well as numerical simulations and comparisons against
the microscopic hybrid system. There are several interesting issues regarding the
extent to which we may apply this coarse graining method in order to approximate
a microscopic dynamics process. In the derivation presented in Section 5 we did not
make use of any underlying assumptions such as N→∞ as in the derivation of the
mean field models or an assumption τ <<1 on time scale separation. On the other
hand the approximation itself included an error (5.7) which depends on the fraction
of coarse graining q over the interaction radius L. The main questions which we
undertake to answer in this section are: (a) general comparison and capabilities of
the coarse graining closure for the hybrid system (2.1,2.2) under different parameter
regimes (b) how far can we extend the assumption q <<L and maintain a reasonably
accurate approximation. We examine these and other similar questions below in the
setting of our prototype hybrid system (2.1, 2.2) coupled to the ODE cases presented
in Section 4 for which the deterministic closures failed.

6.1. Uncoupled spin flip dynamics. We begin with a theoretical estimate
for the uncoupled dynamics case that gives a first concrete indication regarding the
regimes of validity of the method.

First we define the concept of relative entropy that will provide a measure of
accuracy for the proposed coarse grained procedure. We consider two probability
measures π1(σ) and π2(σ) on the discrete state space S. We further define the relative
entropy for these measures as

R(π1|π2)=
∑
σ∈S

π1(σ)log
π1(σ)
π2(σ)

.

Using Jensen’s inequality we can show that the relative entropy can be thought of as
a distance between two measures π1 and π2 since the following is true,

R(π1|π2) ≥0 and
R(π1|π2) =0 if and only if π1(σ)=π2(σ) for all σ∈S.

Note that the relative entropy is not a true metric since R(π1|π2) 6=R(π2|π1) for all
possible measures π1,π2. Nevertheless there is an important inequality which allows
us to use the relative entropy as a tool for estimating distance between two measures
[22],

R(π1|π2)≥C

(∑
σ∈S

|π1(σ)−π2(σ)|
)2

≡C‖π1−π2‖21 ,

where C is an order one constant which is independent of the measures and the
measure space. In order to compare the process {T σ}t≥0 and {η}t≥0 we need to
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carry out an a priori analysis on the coarse path space D(Σc) i.e. on the space of
all right-continuous paths ηt : [0,∞]→Σc. We denote by Qσ0,[0,T ] the measure on
D(Σ) for the process on the interval [0,T ],{σt}t∈[0,T ] with the initial distribution σ0.
Similarly Qc

η0,[0,T ] denotes the measure on the coarse path space D(Σc). With a slight
abuse of notation we also use T∗Q to denote the projection of the measure Q on
the coarse path space, i.e., the exact coarsening of the measure Q. Based on these
definitions we have,

Theorem 6.1. Suppose the process {ηt}t∈[0,T ] defined by the coarse generator L̄c is
the coarse approximation of the microscopic process {σt}t∈[0,T ] then for any q <L and
N where mq =N the information loss as q/L→0 is

1
N
R
(
T∗QT∗σ0,[0,T ]

∣∣Qc
η0,[0,T ]

)
=TO

(
q

2L+1

)
. (6.1)

We refer to [12] for the proof. The relative entropy estimate above demonstrates
the limitations of the coarse graining method since it gives an order one error for
nearest neighbor interactions (L=1). This is not surprising in view of well-known
renormalization calculations for the Ising model, as well as explicit numerical com-
parisons [9]. On the other hand, (5.7) rigorously identifies a small parameter in the
coarse-graining process (see [9] for the analysis details), namely the ratio q/(2L+1);
as it is the case with most asymptotics, from a practical/computational point of view
a small parameter can be selected to be fairly large, see for instance the values of q
and L in the simulations here and in [9, 11]).

Although the estimate in Theorem 6.1 is for finite times [0,T ] only, and grows
with T , it is still useful; in the case of phase transitions in the microscopic lattice the
estimate ensures numerical accuracy during nucleation, which is typically an initial
stage of the evolution. We refer to simulations partly motivated by our rigorous
results in [11] that make precisely this point. In addition we have that, the coarse-
grained Gibbs measure µcg

m,q lies within a controlled error from the exact coarse grained
measure [13]. More specifically, we easily obtain the equilibrium version of Theorem
6.1, namely

1
N
R((T∗µN )|µcg

m,q)=O
( q

2L+1

)
. (6.2)

As a result of Theorem 6.1 and the Gibbs measure estimate (6.2), the transient, as well
as the long time dynamics are expected to be captured accurately by the coarse grained
closure. Indeed, we display numerical comparisons in Figure 6.1 of the coarse graining
closure against the corresponding microscopic dynamics for the uncoupled equation
(2.2) under three cases of dynamics: attractive (βJ0 =2), repulsive (βJ0 =−4) and
non-interacting (βJ0 =0). In the simulations presented in Figure 6.1 we test pathwise
agreement toward equilibrium between both the microscopic as well as the coarse
grained process but also the level and effects of noise. For these simulations we apply
a piecewise constant potential with L=100 while the number of particles is N =1000.
We used the same seed for the random number generator so that we will be able to
compare effects attributed to each solution and not to different paths of the stochastic
process itself. For further details on the numerics we refer to the Appendix Section
A.

Based on the simulations in Figure 6.1 the coarse graining closure displays remark-
able agreement with respect to the microscopic process. The coarse grained closure
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Fig. 6.1. Microscopic versus coarse grained (q =10) relaxation dynamics for the uncoupled
stochastic model (2.2) under three different dynamics (attractive) βJ0 =2, (non-interacting) βJ0 =0
and (repulsive) βJ0 =−4. The coarse grained process seems to both, follow the microscopic dynamics
to the correct equilibrium dynamics but also capture correctly the noise on its transition path towards
equilibrium. We zoom in the case βJ0 =−4 in order to further display the agreement between the
two processes. Other parameters: L=100,N =1000

.

presented in this figure tracks well not only the path to equilibrium but also the re-
spective noise in time. However this is not entirely surprising due to the estimate in
Theorem 6.1 as well as (6.2).

6.2. Stochastic Fluctuations in Hybrid Systems. In the following sub-
sections we present numerical examples of the coarse graining closure for a number
of different types of coupled systems. We examine couplings with ODEs of the type
considered in (2.10-2.12). Although a large number of numerical test cases were un-
dertaken only a limited representative number are shown here through tables and
figures while our general findings are summarized. We give particular emphasis on
the parameter regimes for which the deterministic closures were not able to produce
accurate approximations and specifically revisit the related examples from Section 4.
Note that we focus on numerical examples with interaction potentials of different sizes
L but not L=1 (nearest neighbor) since our theoretical results imply more accuracy
as L→N and q→1.

6.2.1. Example 1: Bistable Case. Here we re-examine Example 1 from
Section 4.1 using the exact same parameters. We carried out comparisons of the
microscopic and coarse grained hybrid system solutions for X and σ̄ corresponding
to τ =5,1 and .1 respectively for the case of βJ0 = .01 where typically the noise levels
are highest.

In the following table we provide further simulation results in terms of CPU
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Fig. 6.2. Pathwise comparisons of system (2.1,2.2) for the bistable bifurcation ODE (4.1).
We observe complete agreement for the cases presented here of the microscopic and coarse grained
(q =10) simulations. Solutions presented for the case of βJ0 = .01 and τ = .001 so that the noise
levels are quite high. Other parameters: b=4,z =−1, γ̃ =100,c=1 and h0 = .005.

comparisons for the hybrid system above:

System Type CPU Time
Microscopic 6695 sec.
Coarse Grained at q =10 237 sec.
Coarse Grained at q =20 93 sec.
Coarse Grained at q =50 44 sec.
Coarse Grained at q =100 28 sec.

Note the CPU reduction even for small q values. The horizontal line in the table
separating the cases q =20 and q =50 denotes the point after which we seem to have
coarse grained excessively. This is once again in agreement with our theoretical esti-
mate in Theorem 6.1. In fact the cases of q =50 and 100 examined numerically in the
table above showed progressive deterioration in agreement between the coarse grained
and microscopic dynamics. The simulations corresponding to the cases of q =10 and
q =100 are presented in Figures 6.2 and 6.3 respectively. The case of q =10 shows
excellent agreement between the two dynamics while the case for q =100 displays the
expected deterioration.

6.2.2. Example 2: Saddle Bifurcation. We now re-examine Example
2 from Section 4.2. We will show that the solutions display pathwise agreement
between the microscopic and coarse grained Monte Carlo simulation for long time.
Note that for this example the stability profile changes every time the stochastic
process parameter σ̄ passes through .5. We run this simulation far enough in time
until the rare event which we witnessed before in Section 4 occurs. As expected the
rare event jump is leading to finite time blow-up. Remarkably the random jumps for
both the microscopic and coarse grained closures occur at almost the same locations.
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Fig. 6.3. An example of over-coarse graining according to Theorem 6.1. Pathwise comparisons
of the same system (2.1,2.2) with the bistable bifurcation ODE (4.1). We do not observe as much
agreement for the cases presented here between the microscopic and coarse grained (q =100) simu-
lations. Solutions presented for the case of βJ0 = .01 and τ = .001 so that the noise levels are quite
high. Other parameters: b=4,z =−1, γ̃ =100,c=1 and h0 = .005.

We compare the solutions of this coupled system in Figure 6.4 for three different
types of coarse grainings: Microscopic (q =1), coarse grained with q =10,20. Note
that all three simulations fall almost on top of each other with small discrepancies at
the very moment that we observe the finite-time blow up.

We summarize the comparisons for the microscopic Monte Carlo simulations for
this example against the equivalent coarse grained and averaging principle solutions
of (5.12) in the table below. The averaging principle statistics are also included from
[8] for comparison purposes. Note the remarkable agreement regardless of relaxation
time τ or value of βJ0! All numerics run up to a time of t=1000 (or 10000 data
samples).
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Fig. 6.4. Example of saddle ODE achieving a rare event potential well escape solution for
the coupled system. Long time statistics for the case of βJ0 = .01 and τ =1. Other parameters:
b=1., γ̃ =−.05

Relative Error Comparisons: |X̄Mic−X̄AP |/|X̄AP |.
Microscopic vs Averaging Principle
Case βJ0 = .01 βJ0 =2 βJ0 =−2
τ = .1 ∞ .1 .71
τ =1 .87 .04 0.
τ =5 .08 .04 0.

Relative Error Comparisons: |X̄Mic−X̄CG|/|X̄CG|.
Microscopic vs Coarse Grained

Case βJ0 = .01 βJ0 =2 βJ0 =−2
τ = .1 − 0. 0.
τ =1 .05 0. 0.
τ =5 0. 0. 0.

In general we observe significant agreement between the microscopic and coarse-
grained Monte Carlo solutions regardless of relaxation time used as well as significant
speed up in CPU time (see Figure 6.4).

6.2.3. Example 3: Hopf bifurcation. For our last major example in this
subsection we revisit Example 3 from Section 4.3 using the exact same parameters as
in Section 4.3.

In Figure 6.5 we display the solutions from the mean field closure, the hybrid
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Fig. 6.5. Saddle ODE: Comparisons between the solutions of our hybrid system (5.12) and the
mean field closure, microscopic (4.7), coarse grained closure for q =20 and (over) coarse grained
closure for q =50. Same parameters as in Figure 4.4: τ = .001 and βJ0 = .01.

system solution (q =1) and the coarse grained solutions for q =20 and q =50. We
observe that once again the coarse grained closure captures correctly the behavior of
our hybrid system. Furthermore we show numerical evidence of over-coarse graining
in the case of q =50 where we observe a small deterioration in the approximation of
the solution in accordance with the spirit of Theorem 6.1.

Last we also present CPU comparisons for different coarse graining values for this
example in the following table:

Coarse Graining Microscopic q=10 q=20 q=50 q=100
CPU Time 10225 sec 451 sec 201 sec 106 sec 95 sec

The vertical line between q =20 and q =50 denotes that we have coarse grained too
much, according to the results in Theorem 6.1. Surprisingly however, even though we
over-coarse grained relative to L=20, the case q =50 seems to also approximate well
the microscopic dynamics as can be seen in Figure 6.5.
Remark 6.2. We can also carry out detailed statistical analysis including power
spectra, auto- and cross- correlations for the microscopic and the coarse grained time
series. However here the results are conclusive since we have demonstrated path-
wise agreement between microscopic and coarse grained dynamics. On the other hand
we refer to [7] where such a statistical analysis is undertaken for more challenging
examples exhibiting intermittency and random oscillations in the presence of phase
transitions in the microscopic dynamics.
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7. Conclusions and discussion
In this paper we studied the influence of micro- or sub- grid scale noise in hy-

brid dynamical systems consisting of coupled macroscopic, deterministic differential
equations and microscopic, stochastic lattice particle systems. We focused on model
prototype systems proposed in the earlier companion paper [8] that are computa-
tionally tractable with direct numerical simulation even for long times, but can still
exhibit a host of complex phenomena, as further demonstrated here. Our findings
strongly suggest that deterministic closures of the hybrid system such as mean field,
stochastic averaging or moment equations may be either inadequate as descriptions of
the overall system or simply difficult to both derive and assess in their effectiveness.
Specifically, we have established that deterministic closures have substantial devia-
tions from the hybrid system in both transient and long-time regimes: (a) high noise
levels can account for failures in deterministic closures regardless of simulation time
length and, (b) similarly weak noise becomes important in long times and induces
rare events that can substantially alter the long-time dynamics.

Motivated by such considerations, we proposed a class of stochastic closures based
on systematic coarse-graining of the microscopic stochastic lattice dynamics that yield
computationally inexpensive reduced hybrid models and capture correctly the tran-
sient and long-time behavior of the full hybrid system, including rare events and
random transitions between stable points and bifurcation regimes. In particular,
based on the simulations our findings for the coarse grained closure are as follows:
(a) Agreement with microscopic dynamics even if τ is not in the range of >>1 for
very long times (b) Pathwise agreement (c) Agreement even in case of solutions with
stable nodes which switch in time due to fluctuations. Those are solutions which
due to the inherent stochastic noise in the system move between successive poten-
tial wells. Remarkably the coarse grained simulation follows these moves exactly for
very long times (d) Remarkable CPU time improvement based on the size q of coarse
graining used. (e) Care must be taken so as to not over coarse grain since in that
case we see a deterioration in accuracy of the coarse grained simulation. There is a
correlation between the size of the potential radius L and the size of coarse graining
q after which this deterioration starts to occur, which is mathematically quantified
by the relative entropy estimates in Section 6.1. Similarly, based on Theorem 6.1,
the nearest neighbor case of L=1 should produce higher approximation errors. Cases
with smaller interaction potentials (L=10) have also been examined successfully in
[11] for uncoupled dynamics but the extent for which the approximation will succeed
for small L should be probed further.

In this paper we exclusively focused on hybrid systems where phase transitions
do not occur in the microscopic lattice dynamics; on the other hand complex dynamic
behavior was due to the bistability or the type of bifurcation behavior of the externally
coupled deterministic system, and its coupling with the microscopic stochastic model.
Phase transitions in the microscopic lattice system are due to strong particle/particle
interactions and such hybrid systems demonstrate even more complex behavior than
the ones considered here, for instance regimes of strong intermittency, and random
oscillations; this case is treated separately in a follow-up publication [7].

Appendix A. Numerical Implementations.
The full coupled system is numerically solved by performing both, a Monte Carlo

simulation for (2.2) and an adaptive ODE solver for (2.1). Each iteration of the Monte
Carlo simulation produces a variable time step ∆ti within which a spin-flip occurs at
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a specific lattice node based on the transition probability

[ca(k,σ)+cd(k,σ)]∆ti +O(∆t2i )

where k denotes a lattice location and spin σ. The Monte Carlo simulation proceeds
by flipping spins, for a total given time ∆t=

∑
i∆ti and then pauses. The ODE solver

then iterates until the given time step ∆t has been exhausted. This procedure repeats
until the total time is exhausted or other types of stopping criteria have been met.

Specifically we obtain a solution of (2.2) by implementing a process-type kinetic
Monte Carlo (KMC) algorithm [2] for spin flip Arrhenius dynamics. The microscopic
algorithm itself has been presented in [8] and we direct the interested reader there
for the details. The coarse grained versions of the algorithm follows the exact same
numerical implementation using the corresponding coarse grained rates from Section
5.

As expected a kinetic Monte Carlo algorithm produces no “null” steps and there-
fore every iteration is a success. (A version of the pseudo-code just described has
also been created which implements a local update scheme at every iteration thus
improving speed at the reciprocal expense of allocating more computer memory).

To solve our ODEs we employ a 4th order adaptive Runge-Kutta-Fehlberg (RKF).
The scheme applies a Runge-Kutta method of order 5 to estimate the error in a Runge-
Kutta method of order 4. Further the scheme enforces a computational advantage of
performing only six evaluations per time step instead of eleven. At each iteration, the
time step is adjusted up or down to control the error.

We use a finite size interaction potential range L<∞. In all simulations in this
work we set N =1000 lattice nodes. We produce simulations and compare observables
at microscopic (q =1) and coarse-grained (q >1) levels. For consistency purposes we
use the same seeds for our random number generator in order to be able to compare
simulations for different coarse grained values of q. This allows us to focus on the dif-
ferences attributed only to the coarse graining variable and not on those resulting from
different paths due to the initial seed. In the case of several realizations we initialize
each new microscopic realization with a different seed. Once again for comparison
purposes, we initialize each subsequent coarse grained realization with the same seed
used in the respective microscopic simulations. All simulations are compared in the
same non-dimensional time units.
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