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Abstract

Topological string theory with twistor space as the target makes visi-
ble some otherwise difficult to see properties of perturbative Yang-Mills
theory. But left-right symmetry, which is obvious in the standard for-
malism, is highly unclear from this point of view. Here we prove that
tree diagrams computed from connected D-instanton configurations are
parity-symmetric. The main point in the proof also works for loop dia-
grams.

1 Introduction

Perturbative Yang-Mills scattering amplitudes have many unexpected sim-
plifications that have been found in very early studies [1], in more contem-
porary investigations of multi-gluon tree level scattering [2, 3], and in
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studies of loop diagrams [4, 5].

A certain topological string theory [6] in which the target space is twistor
space [7] gives a new approach to understanding some of these questions.
(For an open string version of twistor string theory, see [8]. For an alterna-
tive proposal involving mirror symmetry, see [9]. See also further develop-
ments in [10].) However, while making some aspects of perturbative gauge
theory more transparent, the twistor formalism obscures other properties
such as the parity invariance or left-right symmetry of the model.

For example, tree amplitudes with all but two gluons having positive
helicity are called maximal helicity violating or MHV amplitudes. They
are described by a simple holomorphic function [2, 3] that can be readily
computed in twistor space [6]; the computation involves current algebra
correlation functions, something which is natural in view of observations
made some time ago [11]. Parity symmetry converts these amplitudes to
amplitudes with all but two gluons having negative helicity; we call these
the dual, opposite helicity, or googly MHV amplitudes. In the standard
formalism, it is obvious that the parity conjugate amplitude is obtained
by exchanging the two types of spinors (or, for real momenta, by simply
complex-conjugating the amplitude). In the twistor formalism, this is far
from apparent, but has been shown to be true at tree level if only connected
D-instantons are considered [12], and also in another approach [13] based
on tree diagrams with MHV amplitudes for vertices [14].

The purpose of the present paper is to make this result more transparent
and to generalize it. We will consider amplitudes with p positive helicity
gluons and q negative helicity gluons for arbitrary p, q. For any number of
loops, we will show, in section 2, that the twistor amplitude can be expressed,
after integrating out some of the variables and introducing some new ones,
as an integral in which the integration region is symmetrical in p and q.

For tree diagrams, we go farther and prove in section 3 that the measure,
as well as the integration region, is symmetric in p and q, and therefore
that the amplitudes computed in twistor theory are parity-symmetric. We
cannot extend this analysis to loop diagrams, because the proper definition
of the integration measure for loop diagrams in twistor space (that is, for
D-instanton configurations of positive genus) remains unclear.

The proof of parity invariance includes as a special case a new method
of computing the tree level dual MHV amplitudes, that is the amplitudes
with (p, q) = (2, n− 2), since the “ordinary” MHV amplitudes with (p, q) =
(n− 2, 2) are readily computed from twistor space.
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Another argument for parity symmetry in twistor string theory has been
given in [15], based on a Fourier transform that presumably is a real analog
of the Serre duality that we use in section 2.

As in [12], we consider only connected D-instantons. This poses some-
thing of a puzzle, because there is also evidence [14] that tree amplitudes
can be computed from completely disconnected D-instanton configurations.
It is not yet clear why there is apparently more than one way to compute
Yang-Mills tree amplitudes from curves in twistor space.

2 Parity Invariance And Serre Duality

2.1 Wavefunctions

We consider in U(N) gauge theory the scattering of external gluons that
are described by spinors λi, λ̃i and momenta pi aȧ = λi aλ̃i ȧ. A momentum
eigenstate with momentum pi is described in twistor space by a wavefunction
that is roughly

(1) Ψi(λ, µ) = δ(〈λ, λi〉) exp(i[µ, λ̃i]).

The idea is that the delta function describes a state with λ = λi, and the
plane wave dependence on µ describes a state with λ̃ = λ̃i. Here essentially
as in [14],1 for any holomorphic function f , the symbol δ(f) represents the
closed (0, 1)-form −idf δ2(f), where the δ function is normalized so that∫ |dz dz|δ2(z) = 1. The normalization ensures that for any complex number
b and any function f(z), we have

(2)
∫
dz δ(z − b)f(z) = f(b).

Actually, though the details will not be important for most purposes, the
wavefunction (1) should be modified slightly to have the right homogeneity
in all variables. Using the standard transformation law of the delta function,
the object δ(〈λ, λi〉) is homogeneous of degree −1 in both λ and λi; when we
want to make this explicit we write it as δ(−1,−1)(〈λ, λi〉). On the support of
the delta function, λ is a nonzero multiple of λi, so there is a well-defined and

1We will include a factor of −i in the definition of δ(f) relative to [14] to avoid having
an unnatural factor in eqn. (2). What we here call δ2(f) was called δ(f) in [14].
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non-zero holomorphic function λ/λi. Hence we can define a more general
delta function

(3) δ(n−1,−n−1)(〈λ, λi〉) = (λ/λi)nδ(−1,−1)(〈λ, λi〉).

The wavefunction for a positive helicity gauge boson of momentum pi = λiλ̃i
is actually

(4) Ψ+
i (λ, µ) = δ(0,−2)(〈λ, λi〉) exp

(
i[µ, λ̃i](λi/λ)

)
.

The powers of λ/λi have been included to ensure that Ψ+ is homogeneous
of degree zero in λ, µ. It is also homogeneous of degree −2 under (λi, λ̃i)→
(tλi, t−1λ̃i), and this ensures, as expected (see section 2 of [6] for a review),
that the scattering amplitude for a gluon of positive helicity scales under that
transformation as t−2. To write a twistor space wavefunction for a gluon of
the same momentum and negative helicity, we must include the fermionic
homogeneous coordinates ψA, A = 1, . . . , 4 of CP3|4. The wavefunction is

(5) Ψ−i (λ, µ, ψ) = δ(−4,2)(〈λ, λi〉)ψ1ψ2ψ3ψ4 exp
(
i[µ, λ̃i](λi/λ)

)
.

The weights are chosen so that the wavefunction is homogeneous of degree
zero in overall scaling of λ, µ, and ψ. Under (λi, λ̃i) → (tλi, t−1λ̃i), the
wavefunction scales as t2, and that therefore is the scaling of the scattering
amplitude for a gluon of negative helicity. Again, this is the standard result.

To write a wavefunction for an external particle of helicity h = 1 − k/2,
we write a similar formula with k factors of ψ. In addition, each external
particle is also labeled by an element Ti of the Lie algebra of U(N), which
we have omitted in writing the wavefunctions.

2.2 Curves In Twistor Space

In twistor string theory, Yang-Mills scattering amplitudes are computed by
integration over the moduli space of holomorphic curves in CP3|4. Such a
curve can be described as follows.

Begin with an abstract Riemann surface C and a holomorphic line bundle
L (which must have enough nonzero holomorphic sections or the following
construction will be vacuous). A holomorphic map Φ : C → CP3|4 (which
generically will be an embedding) is described by picking sections Pa(x),
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Qȧ(x) and χA(x) of L (x denotes a point in C) and setting

λa = Pa(x)
µȧ = Qȧ(x)(6)

ψA = χA(x).

Geometrically, L = Φ∗(O(1)), where O(1) is the usual line bundle over CP3|4

(whose sections are functions homogeneous of degree one in the homogeneous
coordinates λ, µ, ψ of CP3|4), and hence every holomorphic curve in CP3|4

arises by this construction for some L. Let M be the moduli space of such
curves; the moduli are the moduli of C and L and the parameters that
enter in picking the polynomials Pa, Qȧ, and χA. The parameters in the
polynomials should be taken modulo an overall scaling, since a common
scaling of Pa, Qȧ, and χA does not change C.

Each external gluon of momentum pi and wavefunction Ψi couples to C
via an interaction Wi =

∫
C TrΨi ∧ V , where V is a vertex operator (in the

worldsheet theory of the D1-brane) that was described in [6]; the trace is
taken in the Lie algebra of U(N). To compute the scattering amplitudes for
external gluons of momentum pi and wavefunctions Ψi, we must evaluate
the integral

(7)
∫

M
dµ

〈∏

i

Wi

〉

where dµ is a suitable holomorphic measure, and the integral really is taken
over a suitable real cycle in M.

There is no problem in integrating over the parameters in the polynomials
P,Q, and χ. Indeed, each of Pa, Qȧ, and χA takes values in a common vector
space U = H0(C,L). Picking an arbitrary basis uσ, σ = 1, . . . , r for this
vector space, we expand

Pa =
∑
σ

pσ auσ

(8) Qȧ =
∑
σ

qσ ȧuσ

χA =
∑
σ

ηAσ uσ.
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A natural measure for integrating over P , Q, and χ is then

(9) Ω0 =
r∏

σ=1

∏

a, ȧ, A

dpσ a dqσ ȧ dη
A
σ .

This measure is independent of the choice of basis uσ, since the number of
bosonic and fermionic variables is the same for each σ. Since we really want
to consider P , Q, and χ up to a common scaling, we want to integrate not
over the space C4r|4r of P,Q, and χ, but over the corresponding projective
space CP4r−1|4r. Being C∗-invariant, the natural measure Ω0 descends to an
equally natural measure Ω on CP4r−1|4r.

If C has genus zero, then C and L have no moduli, and hence the measure
just described can serve as a measure on M. For C of positive genus, C
and L do have moduli. It is not at all clear what sort of measure should be
used to integrate over those moduli, so at the moment there is not a clear
framework for higher genus computations in twistor space. For this reason,
in section 3, when we verify parity invariance of the scattering amplitudes
in a precise fashion, we consider only the contributions from curves of genus
zero. However, an important part of the calculation can be carried out for
arbitrary genus, as we will now see.

2.3 Parity Symmetry And Duality

Because of the factor δ(〈λ, λi〉) in the wavefunction Ψi of the ith external
gluon, this gluon is actually attached to the curve C at a point xi at which

(10) 〈λ(xi), λi〉 = 0.

Equivalently, since λa(x) = Pa(x) along C, the condition is

(11) 〈P (xi), λi〉 = 0.

Twistor space is constructed in a way that breaks the parity symmetry
between λi and λ̃i. λ̃i enters the formalism quite differently. As we saw
in the formulas of section 2.1 for the wavefunctions, the factor in Ψi that
depends on λ̃i is exp

(
i[µ, λ̃i](λi/λ)

)
. Since on C, µȧ = Qȧ(x), this factor

actually becomes exp
(
i[Q(xi), λ̃i](λi/λ)

)
. There is such a factor for each i,

and these factors are the only factors in the integrand of (7) that depend on
Q. So the integral over Q reads

(12)
∫
dQ

∏

i

exp
(
i[Q(xi), λ̃i](λi/λ)

)
.
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Concretely, the integral over Q is an integral
∫ ∏

σ ȧ dqσ ȧ over all of the
coefficients when Q is expanded in the basis uσ. As in [12], we assume that
the integral should be taken as an integral over the real axis. This being so,
the integral over Q simply gives a product of delta functions, asserting that
the amplitude receives its contribution from curves C and sets of points xi
such that

(13)
∑

i

[Q(xi), λ̃i](λi/λ(xi)) = 0

for every Q ∈ H0(C,L).

Now we can see why parity symmetry is a problem: the curves C and sets
of points xi that contribute to the scattering amplitude are constrained by
the set of equations (11) and (13) in which λi and λ̃i enter quite asymmet-
rically. Our goal is to express these conditions in a symmetrical fashion.

To do this, we let K denote the canonical line bundle of C, and for each
point xi ∈ C, we letO(xi) denote the line bundle whose holomorphic sections
are holomorphic functions on C that are allowed to have a simple pole at xi.
The line bundle K(x1, . . . , xn) = K⊗(⊗ni=1O(xi)) (which we also abbreviate
as K(xi)) has for its holomorphic sections the holomorphic differentials on
C that may have simple poles at the xi (and no other singularities). Such a
differential ω has, at each point xi where there may be a pole, a residue, a
complex number ci = Resxiω.

Suppose instead that ω is a holomorphic section of K(xi) ⊗ L−1 = K ⊗
L−1⊗(⊗iO(xi)). Thus, ω is now a holomorphic differential with values in L−1

that may have poles at the xi. We can still define the residues ci = Resxiω,
but now the ci, instead of being complex numbers, take values in the vector
spaces L−1

xi , the fibers of L−1 at xi.2

Suppose that, for ȧ = 1, 2, we can find P̃ȧ ∈ H0(C,K(xi) ⊗ L−1) such
that, for all i,

(14) λ̃i ȧ(λi/λ(xi)) = ResxiP̃ȧ.

Notice that the left hand side of (14) takes values in L−1
xi , because of the

appearance of λ(xi) in the denominator. Thus, the left and right hand sides
of (14) take values in the same vector space, and the equation makes sense.

2Locally, near xi, we can trivialize L−1; once this is done, ω is an ordinary differential
form with a possible pole at xi, and its residue is a complex number. This number
depends on how L−1 was trivialized; the intrinsic description is that ci is a vector in the
one-dimensional vector space L−1

xi .
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If so, let ω = QȧP̃ȧ, for any Qȧ ∈ H0(C,L). As Qȧ, ȧ = 1, 2, is a
holomorphic section of L, ω is a section of K(xi) and thus can be interpreted
as an ordinary holomorphic differential on C with possible simple poles at
the xi. Its residues are therefore ordinary complex numbers, which simply
equal Qȧλ̃i ȧ(λi/λ(xi)) (indeed, the residue of ω = QP̃ at xi is the value
there of Q, which has no pole at xi, times the residue of P̃ ). The usual
residue theorem asserts that the sum of these residues vanishes:

(15)
∑

i

Qȧ(xi)λ̃i,ȧ(xi)(λi/λ(xi)) = 0.

But this is precisely the desired condition (13)!

Below, we will show that, conversely, (13) is satisfied only if there exists
a differential P̃ȧ obeying (14). Assuming this for a moment, we can now
restate the basic conditions (11) and (13) to treat λi and λ̃i symmetrically.
We set L̃ = K(xi)⊗ L−1. Thus

(16) L ⊗ L̃ = K(xi).

The right hand side of the last formula depends only on the choice of the
curve C and the points xi ∈ C; there is no asymmetry here between λ and
λ̃. The left hand side is symmetrical in L and L̃; when we exchange λ and
λ̃, we will also exchange L and L̃.

The basic equations obtained so far relating λ, λi, and λ̃i to Pa and P̃ȧ
are as follows:

λa(xi) = Pa(xi)
〈λ(xi), λi〉 = 0(17)

λ̃i ȧ(λi/λ(xi)) = ResxiP̃ȧ.

The second of these equations asserts that λi is a multiple of λ(xi), so
(λi/λ) is a well-defined complex number, as is assumed in writing the third
equation. Also, it follows from the first two equations that

(18) λi a = wiPa(xi)

for some wi (which takes values in L−1
xi ). The third equation in (17) similarly

implies that

(19) λ̃i ȧ = w̃i P̃ȧ(xi)

for some w̃i.

Eqn. (19) may require some elucidation. There are two ways to think
about P̃ȧ. If it is viewed as a section of K ⊗ L−1 that has a pole at xi,
then it has a residue ri ȧ at xi which takes values in L−1. This is the
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point of view we used so far; it enabled us to invoke the residue theorem
to derive (15). A different point of view is more helpful for understanding
the symmetry between λ and λ̃. If we view P̃ȧ simply as a section of a
line bundle K(xi)⊗L−1, then its “value” at xi is an element which we call
P̃ȧ(xi) of the fiber of this line bundle at xi; this fiber is (K(xi)⊗ L−1)xi =
K(xi)xi ⊗ L−1

xi . The relation between the two points of view comes from
the fact that, with K(xi) understood as the line bundle whose sections
are holomorphic differentials with possible simple poles at the xi, the fiber
K(xi)xi is naturally trivial.3 The trivialization is made by the residue
map; if ω is a holomorphic differential with a simple pole at xi, then the
coefficient of the pole, which is the value of ω at xi, is in a natural way a
complex number, namely Resxiω. Going back to our problem, what in one
point of view is called ResxiP̃ȧ, an element of L−1

xi , is in the other point of
view simply called P̃ȧ(xi), an element of (K(xi) ⊗ L−1)xi . The two points
of view are compatible because the latter space is isomorphic by the residue
map to L−1

xi .

This hopefully makes it clear that (19) is equivalent to the third equation
in (17), with w̃i = (λ(xi)/λi). Since λi a = wiPa = wiλa(xi), we similarly
have wi = (λi/λ(xi)). Thus wiw̃i = 1. We cannot expect to find any
further constraints on wi and w̃i, because we are free to rescale λi → tiλi,
λ̃i → t−1

i λ̃i, for any ti ∈ C∗. Clearly all the conditions that we have described
are completely symmetric in λ and λ̃, establishing the parity invariance of
the formalism.

For an alternative view of things, we combine the three equations in (17)
to write

(20) λi aλ̃i ȧ = Pa(xi)ResxiP̃ȧ.

Now let

(21) ωaȧ = PaP̃ȧ.

Each component of ωaȧ, a, ȧ = 1, 2, is a section of K(xi); that is, it is an
ordinary holomorphic differential with possible simple poles at the xi. The
factorization (21) implies that

(22) ωaȧω
aȧ = 0.

3Our notation here is really too compressed. We recall that K(xi) is an abbreviation
for K(x1, . . . , xn) = K ⊗ (⊗iO(xi)). By K(xi)xi we mean K(x1, . . . , xn)xi , that is, the
fiber of K(x1, . . . , xn) at xi. A partial justification of our overly compressed notation is
that for analyzing the fiber of K(x1, . . . , xn) at xi, the existence and location of the xj
with j 6= i are irrelevant. Thus the fiber of K(x1, . . . , xn) at xi is naturally isomorphic
to the fiber of K ⊗ O(xi) at xi; the latter is perhaps a better candidate for being called
K(xi)xi .
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And finally, we have

(23) λi aλ̃i ȧ = Resxiωaȧ.

These conditions are actually closely related to the saddle point equation
[16] that describes high energy, fixed angle scattering in string perturbation
theory. The relation will be further explored elsewhere.

Clearly, equations (22) and (23) are symmetrical in λ and λ̃. Moreover, all
the structure described previously can be deduced from those equations. For
example, (22) says that at any given x ∈ C, ωaȧ is a null vector and so has
a factorization ωaȧ = PaP̃ȧ, unique up to P → tP , P̃ → t−1P̃ . To make this
factorization globally, we must interpret P and P̃ as sections of suitable line
bundles, reasoning as follows. We define a complex quadric W ⊂ CP3 that
has homogeneous complex coordinates Zaȧ, a, ȧ = 1, 2 obeying ZaȧZaȧ = 0.
As long as the ωaȧ have no common zeroes, which is true generically, we can
define a map Φ : C →W by setting Zaȧ = ωaȧ; this maps C to W (and not
just to CP3) since ωaȧωaȧ = 0. Since the Zaȧ are homogeneous coordinates,
Φ is well-defined even at poles of ωaȧ (if ωaȧ has a pole at x = xi, one
can define Φ near xi by Zaȧ = (x − xi)ωaȧ). The quadric W is isomorphic
as a complex manifold to CP1 × CP1; there are two natural line bundles
O(1) and O(1)′ over it, and the Zaȧ are elements of H0(W,O(1) ⊗ O(1)′).
Moreover, there are sections λWa ∈ H0(W,O(1)) and λ̃Wȧ ∈ H0(W,O(1)′)
with Zaȧ = λWa λ̃

W
ȧ .4 Finally, to recover the formalism that we found above,

we set L = Φ∗(O(1)), L̃ = Φ∗(O(1)′), Pa = Φ∗(λWa ), and P̃ȧ = Φ∗(λ̃Wȧ ).

The Converse Statement

We still must prove the converse statement that (13) holds only if λ̃i ȧ can
be expressed as in (14) in terms of a suitable differential P̃ȧ.

We consider the exact sequence of sheaves

(24) 0→ K ⊗ L−1 i→ K(xi)⊗ L−1 r→ ⊕iL−1
xi → 0.

By K ⊗ L−1 we mean the sheaf of sections of the line bundle K ⊗ L−1,
and similarly for K(xi)⊗ L−1. Also, ⊕iL−1

xi is the sheaf whose sections are
families {αi} with each αi a vector in L−1

xi . The map r is the “residue”
map which maps a holomorphic section φ of K(xi) ⊗ L−1, which we recall

4The quickest way to prove these assertions is to start with CP1×CP1 and let λWa and
eλWȧ denote the homogeneous coordinates of, respectively, the first and second factor (so
they are the holomorphic sections of O(1) and O(1)′, respectively). Then simply define

a map from CP1 × CP1 to CP3 by Zaȧ = λWa eλWȧ . Clearly this maps CP1 × CP1 to the
quadric ZaȧZ

aȧ = 0; it is easily seen to be an isomorphism.
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is a holomorphic section of K ⊗ L−1 with possible poles at the xi, to the
family {αi} where αi = Resxi(φ). The map i is the “inclusion” of sheaves,
which maps a holomorphic section ρ of K ⊗ L−1 to the “same” section of
K(xi)⊗L−1. i(ρ) does not have poles at xi, and so has vanishing residues;
hence ri(ρ) = 0. Conversely, if a section φ of K(xi) ⊗ L−1 is annihilated
by r, that is, it has no poles at xi, then it can be regarded as a section of
K ⊗ L−1, and hence is of the form i(ρ) for some ρ. These assertions are
part of the statement that the sequence (24) is exact. The remainder of the
statement of exactness is the assertion that i is injective, which is obvious,
and that r is surjective, which expresses the fact that locally the residues of
a differential can be specified arbitrarily.

The short exact sequence of sheaves (24) leads to a long exact cohomology
sequence which reads in part

(25) . . . H0(C,K(xi)⊗ L−1) r→ ⊕iL−1
xi

δ→ H1(C,K ⊗ L−1) . . . .

In our problem, we have a family {αi}, with αi = λ̃i ȧ(λi/λ) (in this dis-
cussion we regard ȧ as a fixed number, 1 or 2), and we want to know if
there is a global differential P̃ such that αi = ResxiP̃i. The exactness of
the sequence (25) asserts that P̃ exists if and only if δ({αi}) = 0. The def-
inition of the map δ is that δ({αi}) is an element of H1(C,K ⊗ L−1) that
can be represented by the K⊗L−1-valued (0, 1)-form ζ =

∑
i αidxδ(x−xi),

where x is an arbitrary local holomorphic parameter near x = xi (and as
explained in section 2.1, δ(x − xi) = idxδ2(x − xi)). One can verify, using
the transformation of the delta function under a change of coordinates, that
ζ is independent of the choices of local coordinates.

ζ is nonzero as a differential form, but we need to know if it is nonzero
as an element of H1(C,K ⊗L−1). For this, we can use Serre duality, where
asserts that H1(C,K ⊗ L−1) is the dual space to H0(C,L), and more pre-
cisely that an element ζ ∈ H1(C,K⊗L−1) vanishes if and only if

∫
C ζQ = 0

for every Q ∈ H0(C,L). In our case, because of the delta functions in the
definition of ζ, the integral is trivially done:

∫
C ζQ =

∑
i αiQ(xi). Putting

it all together, we have established what we wanted to know: the family
{αi} can be written as ResxiP̃ , for some global differential P̃ , if and only if∑

i αiQ(xi) = 0 for every Q ∈ H0(C,L).

This completes the demonstration that the twistor representation of the
scattering amplitude can be expressed by integration over a left-right sym-
metric set of parameters – C, the xi, L and L̃, and Pa and P̃ȧ.
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3 Explicit Evaluation For Genus Zero

In genus zero, we can make this much more explicit. Moreover, because the
integration measure is known in genus zero, we can give a complete proof
of parity invariance of the tree level scattering amplitudes, by showing that
after the manipulation explained in section 2, the integration measure as
well as the integration region becomes left-right symmetric.

To compute the scattering amplitude, we must integrate over the choice
of curve C and line bundle L, over the points xi ∈ C at which the external
gluons are attached, and over the polynomials Pa, Qȧ, and χA. In genus zero,
C and L have no moduli. The integration measure for the polynomials was
explained in section 2. Finally, the integration measure over the xi comes
from the path integral of free fermions on the worldvolume of the D1-brane,
as explained in [6]. We describe C ∼= CP1 by homogeneous coordinates uα,
α = 1, 2, and write uαi for the homogeneous coordinates of xi. For a single
trace subamplitude with external gluons attached in a definite cyclic order
(which we take to be simply 123 . . . n), the measure that comes from the
worldvolume path integral is

(26)
∏

i

∫
〈ui, dui〉 1∏

k〈uk, uk+1〉 .

The wave functions all contain a factor δ(〈P (ui), λi〉), which is supported
for ui such that P (ui) is a multiple of λi. Which multiple it is does not
matter, since (26) is homogeneous in ui, for each i. It is convenient to take
the multiple to be 1, which we do by using the fact that5

∏

i

∫
〈ui, dui〉 1∏

k〈uk, uk+1〉
∏
m

δ(〈P (um), λm〉)(27)

=
∏

i

∫
d2ui

1∏
k〈uk, uk+1〉

∏
m

δ
2(Pa(um)− λma).

One advantage of taking the multiple to be 1 is that we can drop all factors of
(λi/λ) in the wavefunctions of section 2. Upon doing so, the wavefunctions
look much more appealing.

5If the argument of the delta function on the left vanishes at ui = αi, for some αi, then
by homogeneity it vanishes at ui = wαi for any w. However, on the left, ui is a homo-
geneous variable and we can just set w = 1. Instead, on the right, as P is homogeneous
of degree q − 1, there are q − 1 values of w for which the argument of the delta function
vanishes; however, each contributes to the integral with a factor of 1/(q − 1) that comes
from the fact that if f(x) vanishes at x = x0, the contribution of this zero to

R
dx δ(f(x))

is 1/|f ′(x0)|.
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We suppose that p of the external gluons have positive helicity and q
have negative helicity, with p + q = n. In this case, according to the rules
in [6], the line bundle L is L = O(q − 1). The gluons with right-handed or
positive helicity form a set R, and the gluons with left-handed or negative
helicity form a set L. The polynomials Pa, Qȧ, and χA are of degree q − 1
in the uα. The space U of degree q − 1 polynomials f(uα) is q-dimensional.
Taking advantage of the fact that there are precisely q points in L, we pick
a basis for U consisting of basis elements fi, i ∈ L, such that for all i, j ∈ L,
fi(uj) = δij . (fi is only defined for i ∈ L and fi(uj) is only constrained to
equal δij if in addition j ∈ L.) Explicitly (though we will never use this
formula), this is accomplished by taking

(28) fi(u) =
∏

j∈L, j 6=i

〈u, uj〉
〈ui, uj〉 .

Our general recipe for the integration measure says that we should expand
(for example) Pa =

∑
i∈L pi afi, whereupon the integration measure is

(29)
∏
a

dPa =
∏

i,a

dpi a.

With our choice of basis, pi a = Pa(ui) for i ∈ L, and we can alternatively
write the integration measure as

(30)
∏

i∈L,a
dPa(ui).

The integration measures for the other polynomials Q and χ is precisely
analogous and can be written as in (29) or (30).

The combined integration measure for P,Q, and χ is independent of the
choice of basis, but picking a basis enables us to integrate over P, Q, or
χ separately. This has several benefits. The first is that we can trivially
integrate over χ and eliminate the fermions from the discussion. As we
explained in section 2, for every i ∈ L, the external gluon wavefunction
contains a factor

∏4
A=1 ψ

A. For the ith external gluon, ψA = χA(ui), so the
dependence of the integrand on the χA is

(31)
∏

i∈L

4∏

A=1

χA(ui).

On the other hand, with our choice of basis, the measure for integrating over
χ is

∏
i,A dχ

A(ui). The definition of fermion integration gives immediately

(32)
∫ ∏

i,A

dχA(ui)
∏

j∈L

4∏

B=1

χB(uj) = 1,
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so with our choice of basis, the fermion integral simply gives a factor of 1.

As described in section 2.2, the scattering amplitude also contains a factor

(33)
∫
dQȧ exp


i
∑

j

[Q(uj), λ̃j ]


 .

(As noted following eqn. (27), we can drop factors of λ/λj . This is done be-
low without comment.) We saw in section 2.3 that the integral is supported
on the locus on which uj and λ̃j are such that

(34) λ̃j ȧ = Resuj P̃ȧ

for some P̃ȧ ∈ H0(C,K(ui)⊗ L−1). We can write explicitly

(35) P̃ȧ = 〈u, du〉 Tȧ(u)∏
i〈ui, u〉

,

where Tȧ(u) is a polynomial homogeneous of degree p−1, or in other words is
a section of L̃ = O(p−1). This ensures that P̃ȧ is a differential homogeneous
of degree 1−q with possible simple poles at the ui or in other words a section
of K(ui)⊗ L−1. Calculating the residues, we can rewrite (34) as

(36) λ̃j,ȧ =
Tȧ(uj)∏
k 6=j〈uk, uj〉

.

The scattering amplitude will be expressed as an integral over Tȧ. We pick
a basis f̃τ of Ũ = H0(C, L̃) and expand Tȧ in this basis: Tȧ =

∑
τ tτ ȧf̃τ .

The integration measure over Tȧ is then taken to be

(37)
∏

τ, ȧ

dtτ ȧ.

Aiming for left-right symmetry, we define the basis of Ũ in a “dual” fashion
to the basis of U that was chosen earlier. As Ũ is p-dimensional, we introduce
one basis element f̃i for each i ∈ R, normalized so that f̃i(uj) = δij for j ∈ R.
Explicitly (though again we will not use this formula),

(38) f̃i(u) =
∏

j∈R, j 6=i

〈u, uj〉
〈ui, uj〉 .

The integration measure then becomes

(39)
∏

i∈R, ȧ
dTȧ(ui),

in perfect parallel with the integration measure for P and Q as described
earlier (see (30)).
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We now expect that

∫
dQȧ exp


i
∑

j

[Q(uj), λ̃j ]


(40)

= g(u1, . . . , un)
∫
dTȧ

∏

j

δ

(
λ̃j ȧ − Tȧ(uj)∏

k 6=j〈uk, uj〉

)

for some function g(uj). This expresses the fact that, as we know from
section 2.3, the integral on the left has delta function support on the locus
on which (36) is obeyed for some Tȧ.

To determine g(uj), we act on both the left and right hand side with∏
j∈L

∫
d2λ̃j,ȧ. The integration contour is taken to be the real axis. On the

left hand side of (40), the part of the exponent that involves λ̃j for j ∈ L is
just

∑
j∈L[qj , λ̃j ]. (The qj were defined so that Q(uj) = qj for j ∈ L and the

measure in integrating over Q is just
∏
j∈L,ȧ dqj ȧ.) This being so, we get

(41)
∏

j∈L

∫
d2λ̃j,ȧ

∫
dQȧ exp


i
∑

j

[Q(uj), λ̃j ]


 = (2π)2p,

where each integral over λ̃j ȧ gives a factor 2πδ(qj ȧ), and the integral over
Q is done with these delta functions. To apply

∏
j∈L

∫
d2λ̃j,ȧ to the right

hand side of (40), we simply note that

∏

j∈L

∫
d2λ̃j,ȧ

∫
dTȧ

∏
m

δ

(
λ̃mȧ − Tȧ(um)∏

k 6=m〈uk, um〉

)
(42)

=
∫
dTȧ

∏

m∈R
δ

(
λ̃mȧ − Tȧ(um)∏

k 6=m〈uk, um〉

)
,

where all we have done is to evaluate the integrals over the λ̃j for j ∈ L
using the delta functions for m ∈ L. The delta functions that remain are
therefore the ones for m ∈ R, and these, with our choice of basis, give simply

(43)
∏

k∈R

∫
dtk ȧ

∏

m∈R
δ

(
λ̃mȧ − tmȧ∏

j 6=m〈uj , um〉

)
=

∏

k∈R,m 6=k
〈um, uk〉2.

On the right hand side, all factors are squared simply because each tk has
two components tk ȧ, ȧ = 1, 2; k is restricted to R but m ranges over both
L and R.
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Comparing these formulas, we see that

(44) g(u1, . . . , un) = (2π)2p
∏

k∈R,m 6=k
〈um, uk〉−2.

Now, we assume that the underlying scattering amplitude is defined as

(45)
1

(2π)2p

∫
dP dQdχ

〈∏

i

Wi

〉

where as in (7), 〈∏iWi〉 is the correlation function of vertex operators in
the worldvolume theory of the D-instanton, and the integral over P, Q, and
χ is the integral over the moduli space M of D-instantons, as described in
[6] and in section 2. The only novelty we are adding here relative to what
was explained in [6] is that a factor of (2π)−2p must be included in the
definition in order to ensure parity symmetry. (This can be interpreted as a
normalization factor in the wavefunctions or the gauge coupling constant.)
We have seen that with our choice of basis, the integral over χ gives 1, and
the integral over Q can be replaced by an integral over T with the extra
factor g(ui). It also was shown in [6] that the evaluation of the correlation
function gives

∏
j

∫ 〈uj , duj〉
∏
m〈um, um+1〉−1, and in eqn. (27) we explained

how to convert
∫ 〈u, du〉 to

∫
d2u. (However, we will here take all integration

variables, including u, to be real and replace δ functions by ordinary delta
functions.) So all told upon replacing the integral over Q by an integral over
T via the above-described recipe, the formula for the scattering amplitude
becomes

A =
∫
dPa dTȧ

∫ ∏

j

d2uj
1∏

h〈uh, uh+1〉
1∏

k∈R,m 6=k〈um, uk〉2
(46)

∏

i

δ2 (λi a − Pa(ui)) δ2

(
λ̃i ȧ − Tȧ(ui)∏

l 6=i〈ul, ui〉

)
.

We have not quite achieved manifest parity-invariance, but as will soon
be clear, this can now be obtained by an elementary change of variables.
Let φi = 1 for i ∈ L and 0 for i ∈ R, and let φ̃i = 1 − φi. Then as we will
see, (46) is equivalent to the manifestly symmetric expression

A =
∫
dPa dTȧ

∫ ∏

j

d2uj
1∏

m〈um, um+1〉
1∏

l 6=k〈ul, uk〉2
(47)

∏

i

δ2

(
λi a − Pa(ui)∏

s 6=i〈us, ui〉φi

)
δ2

(
λ̃i ȧ − Tȧ(ui)∏

t6=i〈ut, ui〉eφi

)

There are a total of 4n integration variables and 4n delta functions, so the
integral really reduces to a sum over contributions of delta functions.
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We make the change of variables

ui → ui
∏

k 6=i
〈uk, ui〉−1/(q−1), i ∈ L

ui → ui, i ∈ R(48)
P → P

T → T∏
j∈L, k 6=j〈uk, uj〉1/(q−1)

We find that

P (ui) → P (ui)∏
k 6=i〈uk, ui〉

, i ∈ L(49)

P (ui) → P (ui), i ∈ R.
These formulas show that the delta functions containing P in (45) transform
into the delta functions containing P in (46). Also, since the measure for
the P integration is dPa =

∏
i∈L
∏
a d

2Pa(ui), the first formula in (48) shows
that this measure transforms as

(50)
∏
a

dPa →
∏
a dPa∏

i∈L, j 6=i〈uj , ui〉2
.

(The denominator is squared because we must transform Pa for a = 1, 2.)
We also have

T (ui)∏
j 6=i〈uj , ui〉

→ T (ui), i ∈ L(51)

T (ui)∏
j 6=i〈uj , ui〉

→ T (ui)∏
j 6=i〈uj , ui〉

, i ∈ R.

These formulas imply that the delta functions containing T in (45) transform
into the delta functions containing T in (46). Furthermore, since the measure
for integrating over T is dTȧ =

∏
i∈R
∏
ȧ dTȧ(ui), the second formula shows

that

(52)
∏
ȧ dTȧ∏

i∈R, j 6=i〈uj , ui〉2

is invariant under the rescaling. Finally,

(53)
∏
i d

2ui∏
j〈uj , uj+1〉

is invariant under any scaling of the ui, and in particular under the trans-
formation in (48). If we combine these assertions, we find that the given
change of variables does indeed transform (46) into (47).
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