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THE CHEVALLEY INVOLUTION AND A DUALITY

OF WEIGHT VARIETIES∗

BENJAMIN J. HOWARD† AND JOHN J. MILLSON‡

To the memory of Armand Borel

Abstract. In this paper we show that the classical notion of association of projective point sets,
[DO], Chapter III, is a special case of a general duality between weight varieties (i.e. torus quotients of
flag manifolds) of a reductive group G induced by the action of the Chevalley involution on the set of
these quotients. We compute the dualities explicitly on both the classical and quantum levels for the
case of the weight varieties associated to GLn(C). In particular we obtain the following formula as a
special case. Let r = (r1, . . . , rn) be an n-tuple of positive real numbers and Mr(CP

m) be the moduli
space of semistable weighted (by r) configurations of n points in CP

m modulo projective equivalence,
see for example [FM]. Let Λ be the vector in Rn with all components equal to

P
i
ri/(m + 1). Then

Mr(CP
m) ∼= MΛ−r(CP

n−m−2) (the meaning of ∼= depends on r and will be explained below, see
Theorem 1.6). We conclude by studying “self-duality” i.e. those cases where the duality isomorphism
carries the torus quotient into itself. We characterize when such a self-duality is trivial, i.e. equal to
the identity map. In particular we show that all self-dualities are nontrival for the weight varieties
associated to the exceptional groups. The quantum version of this problem, i.e. determining for
which self-adjoint representations V of G the Chevalley involution acts as a scalar on the zero weight
space V [0], is important in connection with the irreducibility of the representations of Artin groups
of Lie type which are obtained as the monodromy of the Casimir connection, see [MTL], and will be
treated in [HMTL].

1. Introduction. In this paper we show that the classical notion of association
of projective point sets,[DO], Chapter III, is a special case of a general duality between
weight varieties (i.e torus quotients of flag manifolds) of a reductive group G induced
by the action of the Chevalley involution on the set of these quotients. We will
build up the theory in stages, first the duality for Grassmannians of GLn(C), then for
general flag manifolds of GLn(C) then the duality for general flag manifolds of general
semisimple complex groups. At each stage there are three types of isomorphism
theorems, the first type is a Kähler isomorphism of symplectic quotients, the second
type is an algebraic isomorphism of Mumford quotients and the third type is an
explicit formula for the isomorphism of homogeneous coordinate rings in terms of
combinatorial Lie theory. We now give details.

1.1. Duality results for torus quotients of Grassmannians.

1.1.1. Duality of symplectic quotients of Grassmannians. We describe
the duality result for symplectic quotients of Grassmannians. Let B be the nonde-
generate symmetric bilinear form on Cn such that the standard basis {ǫ1, ..., ǫn} is
orthonormal. Let T be the maximal compact subgroup of H (so T is a product of
dimC(H) circles). Then the operation Ψ of taking orthogonal complement with re-
spect to B induces a map Ψ : Grk(Cn) → Grn−k(Cn) which carries torus orbits to
torus orbits, since it satisfies the formula

(1) Ψ(h · x) = h−1 · Ψ(x)

∗Received July 2, 2004; accepted for publication September 9, 2004.
†Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA

(bhoward@math.umd.edu).
‡Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA

(jjm@math.umd.edu). Both authors were partially supported by NSF grant DMS-0104006.

685



686 B. J. HOWARD AND J. J. MILLSON

Let |r| =
∑n

i=1 ri and a = |r|/k. We will see in §2 that Ψ maps the torus
momentum level r = (r1, ..., rn) for T to the torus momentum level Λ − r = (a −
r1, ..., a − rn). Consequently we obtain the following duality theorem.

Theorem 1.1. Let r = (r1, ..., rn) ∈ t∗ ∼= Rn be in the image of the momen-
tum mapping for the action of T on (Grk(Cn), aωk). Then the map Ψ : Grk(Cn) →
Grn−k(Cn) induces a homeomorphism (also to be denoted Ψ) of the symplectic quo-
tients (Grk(Cn), aωk)//rT to (Grn−k(Cn), aωn−k)//Λ−rT . In case r is not on a wall,
see [FM], §4, then both symplectic quotients are smooth and the map Ψ is a Kähler
isomorphism.

1.1.2. Duality of Mumford quotients of Grassmannians.

Linearization of the torus action. Let H be the maximal torus of GLn(C)
consisting of the nonzero diagonal matrices and let PH be the image of H in
PGLn(C). Let ωk be the symplectic form on Grk(Cn) induced by the embedding
into u(n)∗ as the orbit of the k–th fundamental weight ̟k, the highest weight of the

representation of GLn(C) on
∧k

(Cn). Let Lk be the dual of the k–th exterior power
Tk of the tautological k-plane bundle over Grk(Cn). We will refer to Tk as the tauto-
logical line bundle over Grk(Cn). Let P ⊂ GLn(C) be the stabilizer of the coordinate
plane spanned by the first k standard basis vectors. The bundle Lk is the homoge-
neous GLn(C)–bundle over Grk(Cn) = GLn(C)/P with the isotropy representation
det−1

k : P → C∗ where detk assigns to p ∈ P the determinant of the upper k by k block
of p. In particular the total space of Lk is the quotient of the product GLn(C) × C
by the equivalence relation (g, z) ∼ (gp, detk(p)z). Since Lk admits a GLn(C) action
it admits an H action. Assuming the entries of r are integers we may identify r with
the character χr of H whose value at the diagonal matrix with entries (z1, ..., zn) is
zr1

1 · · · zrn
n . For any integer b we may use this character to twist the action of H on

the line bundle L⊗b
k . We will use the symbol L⊗b

k (r) to denote the H–line bundle L⊗b
k

equipped with the twisted (by χr) H action. The group H acts on Grk(Cn) through
the quotient PH . In what follows we will need conditions on r that are necessary and
sufficient in order that the action of H on L⊗b

k (r) descends to an action of PH . Let
|r| =

∑
i ri.

Lemma 1.2. The induced action of H on L⊗b
k (r) descends to an action of PH if

and only if bk = |r|.
Proof. Let h = µI be a nonzero scalar matrix. Then for [g, z] in the total space

of L⊗b
k (r) we have

h[g, z] = [hg, χr(h)z] = [gh, µ|r|z] = [g, detk(h)−bµ|r|z] = [g, µ−kb+|r|z].

Thus h[g, z] = [g, z] ⇔ bk = |r|.
The reader will verify that the condition bk = |r| is necessary in order that there

exist a nonzero section of L⊗b
k (r) that is invariant under the group of nonzero scalar

matrices. Thus if it is not satisfied there will be no nonzero H–invariant sections
of L⊗b

k (r). For this reason we assume that |r| is divisible by k and we will reserve
the symbol a for the quotient |r|/k. We will abbreviate L⊗a

k to La
k henceforth. Let

Λ = (a, a, ..., a) ∈ Zn
+.

Definition 1.3. For any integral r satisfying the condition that |r| is divisible
by k we will refer to the line bundle La

k(r) equipped with the previous action of PH
as the r–linearization of the action of PH on Grk(Cn).
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The bundle isomorphism induced by the complex Hodge star. Before
stating our duality theorem concerning Mumford quotients we need to recall the defi-
nition of a semistable point. A point x ∈ Grk(Cn) is semistable for the r–linearization
of PH if there exists some N ∈ Z+ and an H–invariant section s of L⊗Na

k (Nr) such
that s(x) 6= 0 (here the symbol L(Nr) means we twist the action of H on L by the
character χN

r
).

Suppose now that r = (r1, ..., rn) ∈ Zn
+. We may form the Mumford quotients

Grk(Cn)//rH and Grn−k(Cn)//Λ−rH (using the linearizations corresponding to r

and Λ − r respectively). We will prove these Mumford quotients are isomorphic
varieties by constructing an explicit isomorphism of homogeneous coordinate rings.
To this end choose a complex orientation of Cn and let ∗ be the complex Hodge
star (see §2) associated to this orientation and the form B. We then define a bundle

isomorphism Ψ̂ : Lk → Ln−k as follows. Let x ∈ Grk(Cn). Let τ ∈ ∧k
((Cn)∗) and

let resx :
∧k((Cn)∗) → ∧k(x∗) be the restriction map. Then we define Ψ̂ by

Ψ̂(resx(τ)) = resΨ(x)(∗τ).

It will be proved in §2.2 that Ψ̂ is well defined and it will be proved in §4.3 that
Ψ̂ is an H–morphism of line bundles (with the H action on the target inverted). The

bundle map Ψ̂ induces a map of sections Ψ̃ : Γ(Grk(Cn),Lk) → Γ(Grn−k(Cn),Ln−k)
given by

Ψ̃(s)(x) = Ψ̂(s(Ψ−1(x))).

We will also use Ψ̂ resp. Ψ̃(x) to denote the maps on tensor powers that are induced

by Ψ̂ resp. Ψ̃. We will prove in §4.3 that Ψ̃ carries H–invariants to H–invariants and
consequently induces an isomorphism of homogeneous coordinate rings. We summa-
rize these statements in

Theorem 1.4.
(1) For all positive integers N the bundle isomorphism Ψ̂ from L⊗Na

k (Nr) to

L⊗Na
n−k (N(Λ − r)) satisfies

Ψ̂ ◦ h = h−1 ◦ Ψ̂, h ∈ H.

(2) The induced isomorphisms of sections Ψ̃ carry H–invariant sections of
L⊗Na

k (Nr) to H–invariant sections of L⊗Na
n−k (N(Λ − r)) for all N , and

consequently induce an isomorphism again to be denoted Ψ̃ of the ho-
mogeneous coordinate rings of the Mumford quotients Grk(Cn)//rH and
Grn−k(Cn)//Λ−rH.

Remark 1.5. We could have avoided the choice of form B by defining the duality
map to be the map from the k–planes in Cn to the (n − k)–planes in (Cn)∗ given by
mapping a plane x to its annihilator as suggested by [Do], Exercise 12.7, page 203.

However then we would not have had the explicit bundle map Ψ̃ induced by the complex
Hodge star.

We will not give an explicit formula for the isomorphism Ψ̃ on the standard basis
for the homogeneous coordinates because it is not much simpler than the more general
formula of Theorem 1.12. Moreover the formulas in this case may be found in [DO],
Ch. III.



688 B. J. HOWARD AND J. J. MILLSON

1.2. Duality of weighted projective configurations. We now explain how
the duality theorem for weighted projective configurations (and its special case , the
association of projective point sets) follows from the duality of symplectic torus quo-
tients of Grassmannians.

Theorem 1.6. Let Mr(CPm) be the moduli space of semistable weighted (by r)
configurations of n–points on CPm. Then

Mr(CPm) ∼= MΛ−r(CPn−m−2).

By the symbol ∼= we mean the two spaces are homeomorphic and in case r is not on a
wall, ( [FM], §4),then they are isomorphic as Kähler manifolds. If r is integral then
by ∼= we mean isomorphism as algebraic varieties.

Proof. In what follows the symbol ∼= will have the same meaning as in the state-
ment of the Theorem. By Gelfand-MacPherson duality, see for example [FM], §8, we
have Mr(CPm) ∼= Grm+1(Cn)//rH and MΛ−r(CPn−m−2) ∼= Grn−m−1(Cn)//Λ−rH .
But by Theorem 1.1 we have Grm+1(Cn)//rH ∼= Grn−m−1(Cn)//Λ−rH .

Remark 1.7. If all the components of r are equal (the “democratic linearization”)
then the resulting isomorphism is the classical association isomorphism, see [DO], Ch.
III.

1.3. Duality results for torus quotients of flag manifolds. It is remark-
able that the duality theorems for Mumford quotients and symplectic quotients for
Grassmannians almost immediately imply the corresponding results for torus quo-
tients of general flag manifolds. The proofs are based on using the following diagram
to promote the duality theorem for Grassmannians to a duality theorem for flag mani-
folds. We let Ψ : Fk(Cn) → Fl(Cn) be the mapping that makes the following diagram
commute.

Fk(Cn)
Ψ−−−−→ Fl(Cn)

i

y
yi

∏
i≤m Grki

(Cn)
F◦
Q

i
Ψi−−−−−−→ ∏

i≤m Grli (C
n)

Here k = (k1, ..., km) resp. l = (l1, ..., lm) := (n − km, ..., n − k1) and Fk(Cn)
resp. Fl(Cn) denotes the manifold of flags consisting of subspaces of dimensions
k1 < · · · km resp. l1 < · · · < lm and F is the map on products of Grassmannians
that reverses the order of the factors. We assume Fk(Cn) is given the symplectic
structure inherited by embedding it as the coadjoint orbit of λ = a1̟k1

+· · ·+am̟km
.

We put a = (a1, ..., am), b = (b1, ..., bm) := (am, ..., a1) and |a| =
∑

ai. We let
Λ = (|a|, · · · , |a|) and s = Λ− r.

1.3.1. The duality theorem for symplectic quotients of flag manifolds..

First the duality theorem for symplectic quotients (the proof may be found in §2).

Theorem 1.8. The map Ψ induces a homeomorphism of symplectic quotients:

Ψ : Fk(Cn)//rT → Fl(Cn)//sT.

Furthermore, if r is a regular value of the momentum mapping, then the symplectic
quotients are Kähler manifolds and Ψ is a Kähler isomorphism.
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Now the duality theorem for Mumford quotients. Let La

k
be the homogeneous

line bundle with isotropy representation the character corresponding to the negative
of the dominant weight λ = a1̟k1

+ · · · + am̟km
. We let r ∈ Zn

+ and let La

k
(r)

be the H-bundle represented by the line bundle La

k
with the H action twisted by

the character corresponding to r. We first give the relation between a and r that
is necessary and sufficient in order that PH act on La

k
(r). The following lemma is

Lemma 5.2 in the text.

Lemma 1.9. The action of H on La

k
(r) descends to an action of PH iff |r| =∑

i aiki.

We define the bundle map Ψ̂ to be the tensor product of the bundle maps for the
Grassmannians followed by a reversal of tensor factors.

We now state our isomorphism theorem for Mumford quotients, the proof is to
be found in §4.

Theorem 1.10.
(1) The map Ψ̃ induces an isomorphism of graded rings:

∞⊕

N=0

Γ(Fk(Cn),LNa

k
(Nr))H ∼=

∞⊕

N=0

Γ(Fl(Cn),LNb

l
(Ns))H .

(2) Equivalently, the map Ψ̃ induces an isomorphism of Mumford quotients:

Fk(Cn)//rH ∼= Fl(Cn)//sH.

An explicit formula for the ring isomorphism Ψ̃. We next give an explicit
formula for Ψ̃ on the homogeneous coordinate ring of the flag manifold in terms of
semistandard Young tableaux. The proof of the following theorem is to be found in
§5.

Let λ =
∑

i ai̟k. The N -th graded summand R
(N)
k

of the homogeneous coordi-
nate ring of Fk(Cn) is given by

R
(N)
k

= Γ(Fk(Cn), (La

k
)⊗N ) = VNλ.

Furthermore the N–th graded summand (R
(N)
k

)H of the homogeneous coordinate ring
of the Mumford quotient Fk(Cn)//rH is given by

(R
(N)
k

)H = Γ(Fk(Cn), (La

k
)⊗N (Nr))H = VNλ(Nr).

The last symbol denotes the Nr–th weight space of the irreducible representation
of GL(n, C) with highest weight Nλ. It is a standard result in representation theory
[Bo], Ch. V, Theorem 5.3, that there is a basis for VNλ resp. VNλ(Nr) consisting of the
semistandard fillings resp. semistandard fillings of weight Nr of the Young diagram
Da (the ith row has length equal to the ith component of Nλ) by the integers between

1 and n inclusive. We will call this the standard basis of R
(N)
k

(resp. (R
(N)
k

)H). If
T is a semistandard filling (of any weight) of the above Young diagram by 1, 2, .., n
we will let fT denote the corresponding element of the homogeneous coordinate ring

of the flag manifold Fk(Cn). The set of all such fT is a basis for R
(N)
k

. Note that Ψ̃

induces a map from R
(N)
k

to R
(N)
l

= Γ(Fl(Cn), (Lb

l
)⊗N ).
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We will describe this map relative to the standard basis, a fortiori this will describe
the map on the subrings of H–invariants.

We now describe a map from semistandard tableaux of weight r on the diagram
Da to semistandard tableaux of weight Λ−r on the diagram Db which we will denote
T 7→ ∗T . We explain how to obtain the dual tableau ∗T with an example.

Example 1.11. Let λ = 2̟2 + ̟3, N = 1.

T =
2 1 2
3 4 5
5

=⇒ T̃ =

2 1 2
3 4 5
5 2 1
1 3 3
4 5 4

=⇒ ∗T =
1 2 1
3 3 4
4 5

In general, extend T to a rectangular n by |a| diagram and fill in the complementary
indices in each column, listed in increasing order. Write the added columns in reverse
order to get ∗T .

We attach a sign ǫT to each semistandard tableau as follows. Form the enlarged
tableau T̃ as above. For each column Ci of T̃ define ǫi to be the sign of the permutation
of 1, 2, ..., n represented by that column read from top to bottom. Then define

ǫT = ǫ1...ǫn.

Theorem 1.12. The N -th graded component of the isomorphism Ψ̃ is diagonal

relative to the standard bases for R
(N)
k

and R
(N)
l

.
Moreover we have the formula

Ψ̃(fT ) = ǫT f∗T .

Remark 1.13. It is not obvious that the map of graded vector spaces given by the
formula in the theorem defines a ring homomorphism. Even for the case of rectangular
Young diagrams and when the weights ri are all equal, a direct algebraic proof using the
Plücker relations is not easy and was given in the thesis of D. Ortland - see the proof
of Chapter III,Theorem 1, in [DO]. However we know that this map of semistandard

tableaux is induced by the ring isomorphism Ψ̃.

1.4. Duality for general semisimple complex Lie groups. Let θ be the
Chevalley involution of the Lie group GLn(C) whence

θ(g) = (gt)−1.

Then θ carries a standard parabolic subgroup P to its opposite P opp and induces a
map Θ : G/P → G/P opp given by

(2) Θ(gP ) = θ(g)P opp.

Next if χ is a character of P then the χθ := χ ◦ θ is a character of P opp. Let
Lχ and Lχθ be the corresponding homogeneous line bundles. Then we obtain an

isomorphism of line bundles Θ̂ by defining

Θ̂([g, z]) = [θ(g), z].
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We will prove the following lemma in §2, see Lemma 2.12.

Lemma 1.14.
(1) Θ = Ψ.
(2) Θ̂ = Ψ̂.

The critical point here is that with this formulation i.e. using Equation 2 extends
the duality map to a duality map of weight varieties for all reductive groups. To
avoid complications we will restrict ourselves to the cases that either G is semisimple
or G = GLn(C) in what follows.

Remark 1.15. In fact we get the same map Θ (for general G) using another
description. Let n(w0) ∈ N(T ) be a representative for the longest element w0 in the
Weyl group. We may assume that it is fixed under θ (see §2). Then we define R :
G/P opp → G/Q (where Q is the standard parabolic conjugate to P opp) by R(gP opp) =
gn(w0)Q. The reader will verify that R induces the identity on the flag manifold
Mopp. Thus if we postcompose θ by R we obtain the same map Θ but we have another
presentation in terms of coset spaces. We will abuse notation and also use the same
symbol Θ for this new presentation. We have then Θ : G/P → G/Q with

Θ(gP ) = θ(g)n(w0)Q.

The reader will verify that with this description the induced map on line bundles
carries Lχλ

to Lχλ∨
where λ∨ is the weight contragredient to λ. In what follows we

will use whichever description of Θ is convenient.

We now state two theorems and a conjecture, the analogues of the three theorems
above for the quotients of flag manifolds of the group GLn(C).

1.4.1. Duality of symplectic quotients. The following theorem is proved in
§2.

Theorem 1.16. Let K be a semisimple compact Lie group with complexification
G and T be a maximal torus with T ⊂ K. Choose a Chevalley involution θ of G such
that θ carries K into itself and satisfies θ(t) = t−1 for t ∈ T . Let S be a subtorus of
T and Z(S) be the centralizer of S whence θ(Z(S)) = Z(S). Let M = K/Z(S). Let
r be an element of the moment polyhedron for the action of T on K/Z(S). Then the
Chevalley involution induces an isomorphism of Kähler manifolds

Θ : M//rT → M//−rT.

1.4.2. Duality of Mumford quotients. We next state the corresponding gen-
eral duality result for Mumford quotients. We continue with the notation of the
previous theorem. Let H be the complexification of T . There exists a Borel subgroup
B of G such that B ∩ θ(B) = H . We let Bopp denote θ(B). We let P be a parabolic
subgroup of G containing B and let P opp = θ(P ). We will assume G is the simply-
connected group thus the character lattice of H is the weight lattice of the Lie algebra
g. To emphasize this point we make the definition

Definition 1.17. In what follows we say the symplectic manifold M is integral
will mean λ is in the weight lattice of g. Here M corresponds to the orbit of λ. We
say r is integral if r is in the weight lattice.

Let λ be a dominant weight and assume that the corresponding character χλ

of H extends to a character of P but does not extend to any larger parabolic. Let
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Lχλ
be the homogeneous line bundle over the flag manifold M = G/P with isotropy

representation χ−1
λ . Then Lχλ

is a very ample H–bundle. We let r be another
weight and twist the action of H on Lχλ

by the character of H associated to r

to obtain Lχλ
(r). We can then form the Mumford quotient M//rH in the usual

way. Similarly we obtain a very ample H–bundle Lχλ◦θ
(−r) over the flag manifold

Mopp = G/P opp = G/Q with isotropy representation χλ◦θ. We will denote the
corresponding Mumford quotient by Mopp//−rH . We have a bundle isomorphism
Θ̂ : Lχλ

(r) → Lχλ◦θ
(−r) defined as in the case of GLn(C). We obtain

Theorem 1.18. The bundle isomorphism Θ̂ induces an isomorphism of Mumford
quotients

M//rH ∼= Mopp//−rH.

1.4.3. An explicit formula for duality on the ring level. There should
be an explicit formula for computing the isomorphism Θ̃ of homogeneous coordinate
rings associated to the previous isomorphism in terms of the Littelmann path model
[Lit] (or any other model) for the irreducible representations given by the graded
summands of the two coordinate rings.

Conjecture 1.19. In the Littelmann path models for the two homogeneous
coordinate rings the isomorphism Θ̃ is given by reversing Lakshmibai- Seshadri paths
and translating the initial points of the reversed paths to the origin.

1.5. Self-duality. We now suppose that the flag manifold M and the level r

have been chosen so that Θ carries M//rH into itself. We will then say the torus
quotient is self-dual. We may then ask

Problem 1.20 (Classical Problem). For which self-dual torus quotients M//rH
is Θ is equal to the identity?

The quantum version of the previous question is

Problem 1.21 (Quantum Problem). For which self-dual irreducible representa-
tions Vλ does the Chevalley involution act as a scalar on the zero weight space Vλ[0].

Remark 1.22. If the Chevalley involution is inner then it is clear that it acts on
Vλ[0], if not then the action on Vλ and Vλ[0] is defined only up to a scalar multiple,
see [MTL], §4.3.

The motivation for this problem is explained in [MTL] where it is solved for
the groups SLn(C) and G2(C). For each irreducible Vλ as above the authors in
[MTL] construct an action of the Artin group Bg associated to g (the fundamental
group of the quotient by the Weyl group of the space of regular elements in a Cartan
subalgebra) on Vλ[0] ⊗ C[[h]]. This representation is the monodromy representation
of the Casimir connection and by a very recent theorem of Toledano Laredo, see
[TL2], coincides with the representation constructed by Lusztig, [Lu], Ch. 41, using
the theory of quantum groups, see also [TL1] where the result was proved for the
case of SLn(C). In [MTL] the authors began a study of the irreducibility of these
representations. The starting point of this study of irreducibility was the observation
that in case Vλ was self-dual these representations commute with the action of the
Chevalley involution and hence if the Chevalley involution does not act as a scalar
(as is nearly always the case) they are reducible.
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We now describe our solution of the classical problem. The solution of the problem
for the groups GLn(C) and G2 follows from earlier work of the second author and V.
Toledano Laredo, [MTL]. In what follows note that r = 0 for all cases except for (1).

Theorem 1.23.
(1) Suppose G = GLn(C). Assume that k and r satisfy the self-duality conditions

k = l and r = s. The self-duality Θ : Fk(Cn)//rH → Fk(Cn)//rH is equal
to the identity if and only if the flag manifold is
(a) CP1 with the symplectic form corresponding to a̟1 and r = (a/2)̟2.
(b) Fk(Cn) = F1,n−1(Cn) with the symplectic form a̟1 + a̟n−1 and r =

a̟n.
(c) Fk(Cn) = Gr2(C4) with the symplectic form 2a̟2, a ∈ N and r = a̟4.

(2) Suppose G = Sp2n(C).Then the duality map Θ is equal to the identity if and
only if the flag manifold is
(a) The projective space CP2n−1 with the symplectic form corresponding to

a multiple of ̟1.
(b) The Lagrangian Grassmannian Gr0

2(C
4) with the symplectic form corre-

sponding to a multiple of ̟2.
(3) Suppose that G = SO2n+1(C). Then the duality map Θ is equal to the identity

if and only if the flag manifold is
(a) The quadric hypersurface Q2n−1 ⊂ CP2n with the symplectic form cor-

responding to a multiple of ̟1.
(b) The Lagrangian Grassmannian Gr0

2(C
5) with the symplectic form corre-

sponding to a multiple of ̟2.
(4) Suppose that G = SO2n(C). Then the duality map Θ is equal to the identity

if and only if the flag manifold is
(a) The quadric hypersurface Q2n−2 ⊂ CP2n−1 with the symplectic form

corresponding to a multiple of ̟1.
(b) One of the Lagrangian Grassmannians Gr0

2(C
4)+ ∼= CP1 and

Gr0
2(C

4)− ∼= CP1 with the Kähler forms corresponding to a constant
curvature form.

(c) The Grassmannian of isotropic two-planes Gr0
2(C

6).
(d) One of the Lagrangian Grassmannians Gr0

4(C
8)+ and Gr0

4(C
8)− with

the symplectic forms corresponding to multiples of ̟3 and ̟4.
(e) The isotropic flag manifold F 0

1,2(C
4) ∼= CP1 ×CP1 with the Kähler form

corresponding to the sum of any two constant curvature forms.

Remark 1.24. We see from the above that there are three infinite families of
examples where the duality is trivial, the line-hyperplane pairs, the lines in symplectic
vector spaces and the quadrics for the orthogonal groups. It is remarkable that all
the other examples are obtained from these three infinite families using exceptional
isomorphisms. We discuss two examples in detail. First, the example (4) (c), the
isotropic Grassmannian Gr0

2(C6) , is explained by the exceptional isomorphism D3
∼=

A3 which carries Gr0
2(C

6) to the member of the infinite family of line-hyperplane pairs
given by F1,3(C4). Second, the example of the two Lagrangians in (4)(d), is explained
by triality. Indeed we have

Gr0
4(C

8)+ ∼= Gr0
4(C

8)− ∼= Q6.

As for the other two not-quite-obvious examples, (2)(b) and (3)(b), we have, using
the exceptional isomorphism C2

∼= B2,
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(1) Gr0
2(C

4) ∼= Q3.
(2) Gr0

2(C
5) ∼= CP3.

1.6. The idea of the proof. We conclude the mathematical part of this Intro-
duction with a sketch of the proof of the previous theorem. The following definition
is critical in what follows.

Definition 1.25. A representation Vλ is good if it is self-dual and for some N
the Chevalley involution θ does not act as a scalar on VNλ[0].

We prove in what follows that if M//0H is a self-dual torus quotient then the
duality map Θ is nontrivial if and only if the representation Vλ is good, Theorem
6.7. Here we assume that M is the flag manifold associated to λ. We also prove
that the good representations are closed under Cartan products, see Definition 6.1.
In fact any Cartan product of self-dual representations is good provided at least one
factor is good, Theorem 6.4. Thus,for example, to prove that all self-dualities are
nontrivial for a given group G such that −1 ∈ W we have only to prove that all
the fundamental representations are good. We prove this for the groups G2, F4, E7

and E8 by branching a fundamental representation to a carefully chosen maximal
subgroup of maximal rank and observing that this restriction contains either a good
representation or a nonself-dual representation.

Acknowledgements. We would like to thank Philip Foth who after reading an
early version of this paper showed us a duality map different from our version of duality
that led us to find the connection of our original duality with the Chevalley involution.
We would like to thank Jeffrey Adams, Shrawan Kumar and Valerio Toledano Laredo
for helpful conversations. Also we used the program LiE to prove the fundamental
representations of the exceptional groups and the second fundamental representation
of SO(8) were good.

The second author would like to acknowledge the fundamental role that Armand
Borel played in his career both as a mentor and as an example of what it means to
be a mathematician.

2. The Chevalley involution and duality of symplectic quotients. We
recall the definition of a Chevalley involution. Choose a Cartan subalgebra h and a
Borel b containing h. Thus we obtain a system of roots R together with a positive
subsystem R+ ⊂ R and a simple subsystem S ⊂ R+. For each simple root α choose
a root vector xα corresponding to α. Let hα ∈ h be the coroot corresponding to α.
Then there is a unique negative root vector x−α such that [xα, x−α] = hα. We then
have the following consequence of the Chevalley presentation of g.

Lemma 2.1. There exists a unique involutive automorphism θ of g such that
(1) θ(xα) = −x−α for all α ∈ S.
(2) θ(x−α) = −xα for all α ∈ S.
(3) θ(hα) = −hα for all α ∈ S.

We will say a holomorphic involution of a simple complex Lie algebra g is a
Chevalley involution if θ satisfies the above formulas for some h, b and vectors xα,x−α

and hα, α ∈ S.

Remark 2.2. Any two Chevalley involutions θ1 and θ2 are conjugate by Proposition
2.8 of [ABV]. Furthermore it is possible to choose root vectors xα for all positive roots
α such that (1) and (2) continue to hold. This follows provided one has chosen the
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structure constants Nα,β for g in the Chevalley basis so that

Nα,β = −N−α,−β.

See [Sam], Ch II, §9.
In our study of self-duality for the weight varieties associated to the exceptional

groups we will need the following lemma.

Lemma 2.3. Suppose H is a Cartan subgroup of a simple complex Lie group G.
Suppose θ1 and θ2 are holomorphic involutions of G which carry H into itself and
satisfy θi(h) = h−1, h ∈ H, i = 1, 2. Then there exists h ∈ H such that

θ2 = Adh ◦ θ1 ◦ Adh−1.

Moreover both θ1 and θ2 are Chevalley involutions.

Proof. Let α be a root and gα be the corresponding root space. Then we have

θi(gα) = g−α, i = 1, 2.

Let αi, 1 ≤ i ≤ l be the simple roots. For each simple root αi choose a Chevalley
basis vector xαi

. Since θ1(xαi
) and θ2(xαi

) both lie in the one dimensional space g−α

there exist complex numbers ci such that

θ2(xαi
) = ciθ1(xαi

).

Choose h ∈ H such that Adh(xαi
) =

√
cixαi

whence Adh(x−αi
) = (1/

√
ci)x−αi

.
Then θ2 = Adh−1 ◦ θ1 ◦ Adh.

In what follows we will have a distinguished Cartan H . The above lemma allows
us to make an abuse of language and refer to the Chevalley involution of G (and H).

2.0.1. The action of the Chevalley involution on a self-dual represen-

tation. In this subsection we recall how θ acts on the weight space Vλ[0] of a self-
dual representation Vλ, see [MTL], §4.3. Indeed because Vλ is self-dual there exists
ΘVλ

∈ Aut(Vλ) of order 2 which intertwines the action ρ of GLn(C) with the action
ρθ = ρ ◦ θ on the same space. By Schur’s Lemma ΘVλ

is unique up to multiplication
by ±1. Then the action of θ on Vλ is defined to be the action of ΘVλ

. It is then
immediate that ΘVλ

carries the zero weight space Vλ[0] into itself.

Lemma 2.4. Suppose H is a Cartan subgroup of a simple complex Lie group G.
Suppose θ1 and θ2 are holomorphic involutions of G which carry H into itself and
satisfy θi(h) = h−1, h ∈ H, i = 1, 2 Let V be a self-dual irreducible representation of

G and let Θ
(1)
V and Θ

(2)
V be the operators assigned to θ1 and θ2 according to the rule

explained in the preceding paragraph. Then Θ
(1)
V and Θ

(2)
V are conjugate by an element

of H acting on V and consequently the restrictions of Θ
(1)
V and Θ

(2)
V to V [0] coincide.

2.0.2. The duality map. Let P be a standard parabolic subgroup of G and
M be the flag manifold G/P . Let P opp = θ(P ) and Q be the standard parabolic
subgroup conjugated to P opp. Let Mopp = G/P opp and N = G/Q. Then Mopp = N .
We have defined the map Θ : M → Mopp

Θ(gP ) = θ(g)P opp.
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Equivalently we have defined the duality map Θ : M → N by

Θ(gP ) = θ(g)n(w0)Q.

It is immediate that

(3) Θ(gx) = θ(g)Θ(x), x ∈ M

Let v ∈ g and VM be the fundamental vector field associated to v. Then the
infinitesimal version of Equation (3) follows immediately from Equation (3). We will
need it below so we state it as a lemma.

Lemma 2.5. Θ∗(VM ) is the fundamental vector field θ(v)N on N associated to
θ(v) ∈ g.

As a consequence of Equation (3) and Lemma 2.5 we have

Lemma 2.6.
(1) Θ(hx) = h−1Θ(x), h ∈ H, x ∈ M.
(2) Θ∗(VM ) = −VN , v ∈ h.

We now prove

Lemma 2.7. Θ is a Kähler isomorphism.

Proof. Since θ : G → G is holomorphic, any map of quotients it induces is also
holomorphic (by the universal property of quotients). Also any automorphism of a
Lie algebra induces an isometry of the Killing form (see [Sam], pg. 14). Since in the
semisimple case the metric on M is induced by the negative of the Killing form on k

we are done in the semisimple case. For the case of GLn(C) we replace the Killing
form by the trace form and argue analogously.

2.1. The action of the Chevalley involution on the momentum map.

The following result will tell us how Θ relates momentum levels for symplectic quo-
tients. Recall that N = Mopp so we have Θ : M → N .

Proposition 2.8. Let µM and µN be the momentum maps for the actions of T
on M and N respectively. Then there exists an element Λ ∈ (t∗)W such that

Θ∗µN = Λ− µM .

Proof. For v ∈ t we let VM and VN be the associated fundamental vector fields
on M and N respectively. Let hM

v and hN
v be the Hamiltonian potentials of VM and

VN . By Lemma 2.6 we have

Θ∗(VM ) = −VN .

We claim that there exists a linear functional Λ ∈ t∗ such

θ∗hN
v = Λ(v) − hM

v .

To prove the claim it suffices to prove the differentiated version

Θ∗dhN
v = −dhM

v .
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Let p ∈ M and w ∈ Tp(M). Then we have

Θ∗dhN
v |p(w) = Θ∗(ιVN (Θ(p))ωN |Θ(p)(dΘ|p(w))) = ωN |Θ(p)(VN (Θ(p)), dΘ|p(w))

= −ωN |Θ(p)(dΘ|p(VN (p)), dΘ|p(w)) = −ωM (VM (p), w) = −ιVM (p)ωM (w).

The claim follows.

It remains to prove that Λ is invariant under the Weyl group. We first establish
the W–equivariance of Θ∗µN . To this end let x ∈ M and w ∈ W and let n(w) ∈ N(T )
be a representative of w in N(T ), the normalizer of W in U(n). We claim that we
may choose these representatives such that θ(n(w)) = n(w). Indeed the Tits repre-
sentatives, see [MTL], §2.5, exp (xα) exp (−x−α) exp (xα) have this property because
exp (xα) exp (−x−α) exp (xα) = exp (−x−α) exp (xα) exp (−x−α) as can be checked by
a computation in sl2(C). We next observe that it is an immediate consequence of the
K–equivariance of the momentum map for the action of K on M (and the relation
between the K and T momentum maps) that

µM (n(w) · x) = Ad∗w(µM (x)).

Then we have

Θ∗µN (n(w) · x) = µN (Θ(n(w) · x)) = µN (n(w)Θ(x)) = Ad∗wµN (Θ(x))

= Ad∗w(Θ∗µN )(x).

Since µM is also W–equivariant we find that Λ = Θ∗µN + µM is also W–equivariant.
Thus, since Λ(x) is a constant function Λ = Λ(wx) = Ad∗w(Λ(x)) = Ad∗w(Λ).

Corollary 2.9. If G is semisimple then Λ = 0 and we have

Θ∗µN = −µM .

We obtain a general isomorphism formula for the action of Θ on symplectic quo-
tients.

Theorem 2.10. The map Θ : M → N induces a homeomorphism (Kähler
isomorphism in the smooth case)

Θ : M//rT → N//Λ−rT.

2.2. Formulas for the Chevalley involution. The above isomorphisms will
be more useful if we have more explicit formulas for Θ. We begin with a remarkably
useful lemma. It will apply to all simple complex groups except SLn(C) and E6 (the
case of SO4n+2(C) will require a slight modification, see below).

Lemma 2.11. Suppose the Chevalley involution is inner with θ = AdJ . Let P
be a parabolic subgroup and M = G/P . Then Θ : M → M coincides with the map
induced by action of J by left translation.

Proof. The lemma is obvious if we use the description of Θ from Remark 1.15. If
θ = AdJ then we may take J as a representative of n(w0) and we obtain Θ(gP ) =
AdJ(g)JP = JgP.

Assume first that G is a classical group other than SLn(C) or SO4n+2(C). In
what follows J (or JG) will denote an element of G such that θ(g) = AdJ(g). Let
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Qn denote the n by n matrix with 1’s on the counter-diagonal and 0’s elsewhere. We
have

JSp2n(C) =

(
0 Qn

−Qn 0

)
, JSO4n(C) = Q4n, JSO2n+1(C) = (−1)n Q2n+1.

In the case of SO4n+2(C) there is an element again denoted J in O4n+2(C) such
that θ(g) = AdJ(g). Here J is simply Q4n+2.

Note that in all cases J is a scalar multiple of the matrix of the bilinear form
relative to the standard basis.

2.3. Computations for GLn(C). We begin by relating the duality maps Ψ and
Ψ̂ of the Introduction to the maps Θ and Θ̂ as promised in the Introduction.

Lemma 2.12.
(1) Θ = Ψ.
(2) Θ̂ = Ψ̂.

Proof. We first give the proofs for Grassmannians. To prove (i) first note that
the j-th column Cj(θ(g)) is the j–th row of g−1 whence

(Cj(θ(g)), Ci(g)) = δij .

Here ( , ) denotes the form B. Hence the last l = n−k columns of θ(g)) are orthogonal
to the first k columns of g and we have a commutative diagram

G/P
Θ−−−−→ G/P opp

πk

y
yπl

Grk(Cn)
Ψ−−−−→ Grl(Cn)

Here the vertical arrows are given by πk(gP ) = g · e1 ∧ · · · ∧ ek and πl(gP opp) =
g · ek+1 ∧ · · · ∧ en. the first statement follows.

To prove the second statement we have only to observe there is another commu-
tative square.

G ×P C Θ̂−−−−→ G ×P opp C

fk

y
yfl

Tk
Ψ̂−−−−→ Tl

Here the vertical arrows are given by fk([g, z]) = zg · e1 ∧ · · · ∧ ek and fl([g, w]) =
wg · ek+1 ∧ · · · ∧ en. The bundle on the upper left is obtained from the equivalence
relation (g, z) ∼ (gp, det−1

k (p)z) and the bundle on the upper right is obtained from
the equivalence relation (g, w) ∼ (gp, det−1

l (p)w).
The reader will verify that the statements in the lemma may now be deduced for

the case of flag manifolds for GLn(C) by comparing the diagram

Fk(Cn)
Ψ−−−−→ Fl(Cn)

i

y
yi

∏
i≤m Grki

(Cn)
F◦
Q

i
Ψi−−−−−−→ ∏

i≤m Grli (C
n)

with the analogous diagram where Ψ is replaced by Θ and the factors Ψi are
replaced by the factors Θi.
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In order to apply Proposition 2.10 we need to compute Λ. We have seen that
Λ = 0 in the semisimple case. We now compute Λ for GLn(C).

Proposition 2.13. Suppose that µM takes values in the orbit corresponding to
the n–tuple of eigenvalues (arranged in weakly decreasing order) λ = (λ1, . . . , λn) and
µN takes values in the orbit corresponding to the n–tuple of eigenvalues (ν1, . . . , νn).
Then

Λ = (λ1 + νn)̟n.

We will apply the Proposition to the case where λn and µn are both zero. We
record the resulting formula in the form we will use it.

Corollary 2.14. Suppose that µM takes values in the orbit of
∑n−1

i=1 ai̟i and

µN takes values in the orbit of
∑n−1

i=1 bi̟i. Then

Λ = (

n−1∑

i=1

ai)̟n.

Proof. With the assumptions of the corollary we have λ1 =
∑n−1

i=1 ai and νn = 0.

We need a preliminary lemma. Let e be the standard coordinate flag in Cn

e = (Ce1, Ce1 ∧ e2, . . . , Ce1 ∧ · · · ∧ en−1).

Lemma 2.15. Suppose M is the manifold of full flags in Cn. Then we have
(1) Θ(e) = (Cen, Cen−1 ∧ en, . . . , Ce2 ∧ · · · ∧ en).
(2) Suppose µM is normalized so that it takes values in the orbit with smallest

eigenvalue equal to zero. Then

µM (e) =

n−1∑

i=1

ai̟i.

Proof. The first statement follows from the first statement in Lemma 2.12.

The second statement follows from an explicit computation of the moment map
for the Grassmannian Grk(Cn) with the symplectic structure given by embedding it
as the orbit of ̟k. The moment map is given in [GGMS] as follows. For an n by k
matrix A, define µi([A]), for 1 ≤ i ≤ n, as

µi([A]) =

∑
i∈J | detA(J)|2∑
J | detA(J)|2 ,

where J ranges over the k-element subsets of {1, . . . , n}, and A(J) is the k by k
submatrix of A whose rows are the rows of A indexed by J . Then µ = (µ1, . . . , µn)
is the moment map for the torus. We see then that the value of the moment map at
the standard coordinate k–plane is ̟k. If we change the symplectic structure to be
the one corresponding to the orbit of a̟k then the value at e will be a̟k. Since the
moment map for the full flag manifold under the diagonal torus action is the sum of
the moment maps for each factor the second statement follows.
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Remark 2.16. The point here is to check that the value ̟k is attained at the
flag e.

The Proposition is now a consequence of the following lemma

Lemma 2.17. We have the following identity of t∗–valued functions on M :

µM + µN ◦ Θ = (λmax ◦ µM + λmin ◦ µN )̟n.

Proof. For ease of notation we prove only the special case where the flag manifold
is the manifold of full flags. Note first that the difference between the left-hand side
and the right-hand side is invariant under the action of R2 that translates µM by s̟n

and translates µN by t̟n. Hence it suffices to prove the formula in the case that the
λmin ◦ µM = 0 and λmin ◦ µN = 0. Hence we may assume that µM and µN are as
in the corollary. We now compute both sides on the standard coordinate flag e. This
will determine Λ. By the first statement in Lemma 2.15 we have

Θ(e) = Ψ(e) = (Cen, Cen−1 ∧ en, . . . , Ce2 ∧ · · · ∧ en).

Hence Θ(e) = n(w0)(e) where n(w0) is a representative in N(T ) for the longest
element w0 in the Weyl group. Hence we have

µN (Θ(e)) = µN (n(w0)(e)) = Ad∗w0(µN )(e) = Ad∗w0(

n−1∑

i=1

bi̟i).

Note that the last equality followed from the second statement in Lemma 2.15. Thus
µN (Θ(e)) has first coordinate equal to zero. On the other hand, by the second state-

ment in Lemma 2.15 we see that µM (e) has first coordinate equal to
∑n−1

i=1 ai. Since
the sum of these two vectors has all components equal we conclude that all compo-
nents of the sum are equal to

∑n−1
i=j ai whence Λ = (

∑n−1
i=1 ai)̟n. But it is immediate

that the eigenvalues of µM are the sums
∑n−1

i=j ai. Hence the largest eigenvalue of µM

is
∑n−1

i=1 ai and since the smallest eigenvalue of µN is zero by definition the lemma is
proved.

3. The Mumford Quotient.

3.1. Definition of Mumford Quotient. We refer the reader to [Do] for addi-
tional details. Suppose that G is a reductive algebraic group, V is a projective variety,
and η : G × V → V is regular action of G. Let π : L → V be an ample line bundle
over V . A G–linearization of L is a regular action η̃ : G × L → L which is linear on
fibers and makes the following diagram commute:

G × L eη−−−−→ L

id×π

y
yπ

G × V
η−−−−→ V

Given such a linearization, we automatically get linearizations on all tensor powers
L⊗N of L. Thus G has an action on sections s of L⊗N given by (g·s)(x) = g·s(g−1·x) =
η̃(g, s(η(g−1, x))). Let Γ(V,L⊗N )G denote the G–invariant holomorphic sections of
L⊗N . We define the semistable points of V for the chosen linearization η̃ to be

V sseη = {x ∈ V | (∃N)(∃s ∈ Γ(V,L⊗N )G)(s(x) 6= 0)}.
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The Mumford quotient V//eη G is defined as the quotient space of V sseη such that two
points x, y ∈ V sseη are identified iff their G–orbit closures (computed in V sseη ) cl(G · x)
and cl(G ·y) intersect nontrivially. The Mumford quotient V//eη G is then a projective
variety corresponding to the geometric points of Proj(SG) where SG is the graded
ring

⊕
N≥0 Γ(V,L⊗N )G.

In the case where we have an action η of the complex torus H ⊂ G = GLn(C),
and a homogeneous line bundle L = G ×P C over G/P , the set of possible lin-
earizations correspond to the complex characters of H , which are all of the form
(z1, ..., zn) 7→ ∏n

i=1 zri

i where r = (r1, ..., rn) ∈ Zn. (See [Do], Chapter 7.) We denote
the linearization associated to r as V//r H .

3.2. Gel’fand-MacPherson duality of Mumford quotients. In the previ-
ous section the Mumford (or categorical) quotient was given for a group acting on a
projective variety, but there is an easier definition when the variety V is affine. We
may take the trivial line bundle L where the sections are simply O(V ). Any character
χ of G determines a linearization of the trivial line bundle. Semistability is defined
as before.

Let k = m + 1 and let L be the trivial line bundle Cn×k × C → Cn×k. The
group GLk(C) acts on the right of Cn×k by matrix multiplication. The group H of
nonsingular diagonal n by n complex matrices acts on the left of Cn×k.

Let the character deta : GLk(C) → C∗ and the character χr : H → C∗ be given.
The one–dimensional subgroup K = {(zIn, z−1Ik) : z ∈ C∗} of H × GLk(C) acts
trivially on Cn×k. Let G be the quotient of H × GLk(C) by K. The character
χr × deta defines a character of G iff |r| = ak, and we assume that is the case so that
we have a G–linearization of the trivial line bundle.

The quotient by GLk(C) alone is the Grassmannian Grk(Cn). There is a canonical
line bundle L1 over Grk(Cn) which is the quotient of the pullback of L over the
semistable points. The character χr now defines an H–linearization of L1. If we now
take a Mumford quotient of Grk(Cn) by H using the character r this results in the
quotient Cn×k//r×detaH × GLk(C).

On the other hand, if each ri > 0 then the quotient by H alone is (CP k−1)n.
Again there is a canonical quotient bundle L2 of the trivial bundle pulled back over
the semistable points, and the character deta determines a GLk(C)–linearization of
L2. If we now take the Mumford quotient by GLk(C) (projective equivalence) using
the character deta we again must get Cn×k//r×detaH × GLk(C).

This is illustrated by the following diagram:

Cn×(m+1) //detaGLm+1(C)−−−−−−−−−−−→ Grm+1(Cn)

//rH

y
y//rH

(CPm)n //detaGLm+1(C)−−−−−−−−−−−→ Mr(CPm)

where Mr(CPm) denotes the Mumford quotient Grk(Cn)//rH .

4. Duality for torus quotients of Grassmannians on the quantum level.

4.1. The Hodge star operator. To promote the duality map Ψ to a map
of bundles we recall the definition of the complex Hodge star operator ∗. Choose
an orientation for Cn (whence an orientation for (Cn)∗). Let vol ∈ ∧n

(Cn)∗ be
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the positively oriented element of unit length for the form induced by B. We will
say vol is a complex volume form. The complex volume form induces a map (by

interior multiplication) α :
∧k

(Cn) → ∧n−k
(Cn)∗. The form B induces a map β :∧n−k

(Cn)∗ → ∧n−k
(Cn). We define the complex Hodge star ∗ to be the composition

β ◦ α. We note that ∗ is an invertible linear map from
∧k

(Cn) to
∧n−k

(Cn). The

pair Ψ and ∗ induce a map from the trivial
∧k(Cn)–bundle over Grk(Cn) to the

trivial
∧n−k(Cn)–bundle over Grn−k(Cn). This bundle map carries the subbundle

Tk to the subbundle Tn−k. Consequently it induces a bundle isomorphism from the
tautological line bundle Tk over Grk(Cn) to the tautological line bundle Tn−k over
Grn−k(Cn) covering Ψ (so technically a bundle isomorphism from Tk to Ψ∗Tn−k). We
obtain the following diagram

Tk −−−−→ Grk(Cn) × ∧k
(Cn)

Ψ×∗

y
yΨ×∗

Tn−k −−−−→ Grn−k(Cn) × ∧n−k
(Cn)

In order to obtain an isomorphism of their duals we dualize the definition of ∗
to obtain a new isomorphism again denoted ∗ from

∧k
((Cn)∗) to

∧n−k
((Cn)∗). We

obtain an induced isomorphism of line bundles homomorphisms Ψ̂ covering Ψ from
Lk to Ln−k by dualizing the above diagram.

4.2. The Homogeneous Coordinate Ring of Grk(Cn)//r H. In this section
we describe a basis for the coordinate ring of Grk(Cn)//r H . We begin by recalling
that the Plücker embedding ιk of Grk(Cn) is the projective embedding of Grk(Cn)
corresponding to the very ample line bundle L. According to the general theory of
projective embeddings and line bundles we have an embedding

ιk : Grk(Cn) → P(Γ(Grk(Cn),L)∗).

It is standard that Γ(Grk(Cn),L) ∼=
∧k

((Cn)∗). In what follows we will need an
explicit formula for this isomorphism.

Let x ∈ Grk(Cn) and τ ∈ ∧k
((Cn)∗). We let resx :

∧k
((Cn)∗) → ∧k

((x)∗) = Lx

be the operation of restriction of covectors to x. If τ ∈ ∧k
((Cn)∗) we let τ̃ be the

section of L defined by

τ̃ (x) = resx(τ).

The following lemma is then standard

Lemma 4.1. The map τ → τ̃ induces an isomorphism
∧k

((Cn)∗) ∼=
Γ(Grk(Cn),L).

Let θi, 1 ≤ i ≤ n be the basis for (Cn)∗ dual to the standard basis ǫi, 1 ≤ i ≤ n.
For I = {i1, .., ik} ⊂ {1, 2, ..., n} with i1 < i2 < · · · ik we define

θI = θ1 ∧ θ2 ∧ · · · ∧ θk.

The linear functions θI as I ranges through the k–element subsets of {1, 2, ..., n} give

a basis for
∧k((Cn)∗) and consequently give homogeneous coordinates (the Plücker

coordinates) to be denoted Xi1,i2,...,ik
(or XI) on the projective space P(

∧
(Cn)),
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4.2.1. A basis for the homogeneous coordinate ring of Grk(Cn). We begin
by noting that we have the following formula for the homogeneous coordinate ring Rk

of Grk(Cn) as a graded vector space.

Rk =

∞⊕

N=0

Γ(Grk(Cn),L⊗N ) =

∞⊕

N=0

VN̟k
.

Here VN̟k
is the irreducible representation of GLn(C) with highest weight N̟k.

Let R̃k =
⊕∞

N=0 R
(N)
k be the graded ring C[Xi1,...,ik

], where i1, ..., ik ranges over k-
element subsets of {1, ..., n}. We have seen that

∧
((Cn)∗) ∼= Γ(Grk(Cn),L)) whence

the Plücker coordinates correspond to a basis of the degree one elements of Rk. We
obtain a map of rings φ : C[Xi1,...,ik

] → Rk. The following lemma is standard.

Lemma 4.2.

(1) φ is onto.
(2) The kernel of φ is generated by quadratic relations in the Plücker coordinates

called the Plücker relations.

We now define certain elements fT ∈ Rk defined by fillings T of rectangular Young
diagrams D with k rows by numbers between 0 and n. Let DN be the rectangular
Young diagram with k rows and N columns and let T be a filling of DN . Let Ii be
the entries in the i–th column of T . Define

fI = XI1XI2 · · ·XIN
.

We define deg(T ), the degree of T , by

deg(T ) = N

and note that fT is in the N -th graded summand R
(N)
k of Rk. Thus we find deg(fT ),

the degree of fT relative to the above grading, is also N . We can now describe a basis

for R
(N)
k . We recall that a filling T of DN is said to be semistandard if the entries in

each column are strictly increasing and the entries in each row are weakly increasing.
We will use SS(D, n) to denote the set of semistandard fillings of a Young diagram
D by the integers 1, 2, ..., n. We have, see [DO],Chapter I, Theorem 1.

Theorem 4.3. The functions fT as T ∈ SS(DN , n) form a basis for R
(N)
k .

We will call the basis of Rk given by the set of fT ’s with T semistandard, the
standard basis of Rk.

For i between 1 and n we define wi(T ) to be the number of times i appears in
T and we define the weight wt(T ) of T to be the n-tuple wt(T ) = (w1, · · ·wn). We
also define the weight wt(fT ) by wt(fT ) = wt(T ). This terminology is justified by the
following

Lemma 4.4. Under the action of H on the graded ring Rk the function fT is a
weight vector of weight wt(T ).
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4.2.2. A basis for the homogeneous coordinate ring Sk of Grk(Cn)//rH.

Let r = (r1, ..., rn) be a tuple of non-negative integers. Let a =
P

n
i=1 ri

k as usual. We
assume that a is an integer. We have the following formula analogous to Equation
4.2.1 for the underlying graded vector space of Sk

Sk =

∞⊕

N=0

Γ(Grk(Cn),L⊗Na(Nr))H =

∞⊕

N=0

VN̟k
(Nr).

Note that if fT ∈ SN
k then we have

deg(T ) = Na and wt(T ) = Nr.

We now check that this relation between r and the degree and weight of T is
automatically satisfied if we merely assume that wt(T ) is an integral multiple of r.
We thereby obtain a simpler description of the subring of H–invariants Sk ⊂ Rk.

Lemma 4.5. Sk is the subring of Rk spanned by the monomials fT such that
wt(T ) is a multiple of r.

Proof. Suppose that wt(T ) = ℓr with ℓ a positive integer. Suppose deg(T ) = M .
Then T is a filling of the k by M rectangle D whence (equating the total number of
boxes in D)

kM = wt(T ) = ℓ|r| so deg(T ) = M = ℓa.

As a consequence of the previous lemma, Theorem 4.3 and Lemma 4.4 we obtain
a basis for Sk.

Theorem 4.6. The set of standard basis vectors fT with weight a multiple of r

is a basis for Sk.

We will call the resulting basis the standard basis of Sk.

4.3. The proof of Theorem 1.4. In this subsection we prove Theorem 1.4.
We begin by proving the H–equivariance of ∗ and the bundle map Ψ̂. First we deal
with ∗.

Lemma 4.7. Let u ∈ ∧k
(Cn) and g ∈ GLn(C). Then

∗g u = det(g)(gt)−1 ∗ u.

In particular we have

∗h u = det(h)h−1 ∗ u, h ∈ H.

Proof. We recall from the Introduction that ∗ = β ◦ α where α is given by
contraction with the volume form vol and β :

∧n−k
((Cn)∗) → ∧n−k

((Cn) is the map
induced by B. We prove suitable equivariance formulae for each of α and β. First we
claim that for any g ∈ GLn(C) we have

α(gu) = det(g)(gα)(u).
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Indeed let v ∈ ∧n−k
((Cn)

α(gu) = vol(gu, v) = vol(gu, gg−1v) = det(g)vol(u, g−1v) = det(g)(gα)(v)

We conclude by observing that for g ∈ GLn(C) and τ ∈ ∧n−k
((Cn)∗) we have

β(gτ) = (gt)−1β(τ).

Indeed it suffices to prove that for v ∈ Cn we have b(gv) = (gt)−1b(v) where b : Cn →
(Cn)∗ is the map induced by the bilinear form B. But this is immediate.

The next corollary follows by dualizing the previous lemma.

Corollary 4.8. Let η ∈ ∧k
((Cn)∗) and h ∈ H. Then we have

∗g η = det(g)−1(gt)−1 ∗ η.

In particular we have

∗h η = det(h)−1h−1η.

We need another corollary. Let ρk be the k–the exterior power of the standard
representation of GLn and define ρθ

k by ρθ
k = ρk ◦ θ. Recall that θ is the Chevalley

involution θ(g) = (gt)−1.

Then we have by the above (since Ψ̃k is equal to the Hodge star on
∧k

((Cn)∗))

Corollary 4.9.

Ψ̃k ◦ ρk ◦ Ψ̃n−k = ρθ
k ⊗ det−1.

Next we deal with Ψ̂ : L⊗ma
k → L⊗ma

n−k and prove the first statement in Theorem
1.4.

Lemma 4.10.

Ψ̂ ◦ h = h−1 ◦ Ψ̂.

Proof. It suffices to prove the lemma for the case m = 1. We have

h(x, α⊗a) = (hx, χr(h)(hα)⊗a)

whence

Ψ̂(h(x, α⊗a)) = (Ψ(hx), χr(h)(∗hα)⊗a)

= (h−1Ψ(x), χr(h)(det(h)−1h−1 ∗ α)⊗a) = (h−1Ψ(x), χr(h)det(h)−ah−1(∗α)⊗a)

= (h−1Ψ(x), χΛ−r(h
−1)h−1(∗α)⊗a) = h−1Ψ̂((x, α⊗a).

Now we prove the second statement in Theorem 1.4. Note that the map Ψ̃ on
sections induced by the bundle map Ψ̂ is given by

Ψ̃(s)(x) = Ψ̂(s(Ψ−1(x))).
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The second statement in Theorem 1.4 follows from

Lemma 4.11. A section s is H–invariant ⇔ the section Ψ̃(s) is H–invariant.

Proof. By symmetry it suffices to prove the direction ⇒. So assume that s is
H–invariant. It suffices to prove that h−1Ψ̃ = Ψ̃ for all h ∈ H . But

(h−1Ψ̃)(x) = h−1Ψ̃(hx) = h−1Ψ̂(s(Ψ−1(hx))) = h−1Ψ̂(s(h−1(Ψ−1(x))))

= Ψ̂(h(s(h−1(Ψ−1(x))))) = Ψ̂(s(Ψ−1(x))) = Ψ̃(s)(x).

Later we will need the following immediate consequence of Corollary 4.9.

Lemma 4.12. Let ρN,a,k be the representation of GLn(C) on the vector space of
sections Γ(Grk(Cn),L⊗aN

k ). Let ρθ
N,a,k = ρN,a,k ◦ θ. Then we have

Ψ̃N,a,k ◦ ρN,a,k ◦ Ψ̃N,a,n−k = ρθ
N,a,n−k.

4.4. The proof of Theorem 1.12. In this subsection we prove the formula of
the introduction for the action of the isomorphism Ψ̃ on the standard basis vectors
fT for the homogeneous coordinate ring of Grk(Cn).

The bundle map Ψ̂ satisfies the formula

Ψ̂(resx(τ)) = resΨ(x)(∗(τ)), τ ∈
k∧

((Cn)∗)

We now have

Lemma 4.13.

Ψ̂(θ̃I) = sgn(I, J) θ̃J .

Proof. Let x ∈ Grk(Cn). Then we have θ̃I(x) = resx(θI). Now let y ∈
Grn−k(Cn). We have

Ψ̃(θ̃I(y)) = Ψ̂(θ̃I(Ψ
−1y)) = resΨ(Ψ−1(y))(∗θI) = sgn(I, J) resy(θJ) = sgn(I, J) θ̃(y).

The following corollary is an immediate consequence of the lemma.

Corollary 4.14.

Ψ̃(θ̃I1 ⊗ θ̃I2 ⊗ · · · ⊗ θ̃Ip
) = sgn(I1, J1) · · · sgn(Ip, Jp) θ̃J1

⊗ θ̃J2
⊗ · · · ⊗ θ̃Jp

.

Theorem 1.12 is a consequence of the corollary because fT is the image of a tensor
product of the above form under the linear map given by multiplication of sections.

5. Duality for torus quotients of flag manifolds on the quantum level.

5.1. The relation between partial flag manifolds and products of Grass-

mannians. In this section we extend our results on duality of homogeneous coordi-
nate rings of torus quotients of Grassmannians to torus quotients of flag manifolds.
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5.2. The homogeneous coordinate ring of the flag manifold. Let P be a
parabolic subgroup of G = GLn(C). Then G/P is a partial flag manifold Fk1,...,km

(Cn)
where 0 < k1 < k2 < · · · < km < n. The ample line bundles over G/P are para-
metrized by weights a1̟k1

+ · · · + am̟km
where each ai is a positive integer. In

what follows, let k = (k1, ..., km) and a = (a1, ..., am) and we will abbreviate the
above dominant weight to λa. Choose an m–tuple a as above. The m-tuple a cor-
responds to a character χa of P . We let La

k
be the line bundle over Fk(Cn) with

isotropy representation χ−1
a

(so La

k
had total space defined by the equivalence rela-

tion (gp, χa(p)z) ∼ (g, z)). We define Vλa
= Γ(Fk(Cn),La)∗. The group G acts on

Vλa
and the flag manifold Fk1,...,km

(Cn) is embedded in P(Vλa
) as the orbit of the line

through a highest weight vector.
In this section we will use the embedding

i : Fk(Cn) → Grk1
(Cn) × · · · × Grkm

(Cn)

to promote our duality results for Grassmannians to flag manifolds.
The line bundle La

k
is very ample and we obtain an equivariant projective embed-

ding

ι : Fk(Cn) → P(Γ(Fk(Cn),La

k
)∗) = P((Vλa

)∗).

Accordingly we have the following formula for the homogeneous coordinate ring
Rk of Fk(Cn)

Rk =

∞⊕

N=0

Γ(Fk(Cn), (La

k)⊗N ) =

∞⊕

N=0

VNλa
.

We have the very ample line bundle La1

k1
⊠ · · ·⊠Lam

km
over the product Grk1

(Cn)×
· · · × Grkp

(Cn).

We will also use R̃k to denote the homogeneous coordinate ring of Grk1
(Cn) ×

· · · × Grkp
(Cn). Hence

R̃k =

∞⊕

N=0

Γ(Grk1
(Cn)×· · ·×Grkp

(Cn),L⊗Na1

k1
⊠ · · ·⊠L⊗Nam

km
) = Va1̟1

⊗· · ·⊗Vam̟m
.

Recall that the irreducible representation Vλa
occurs with multiplicity one in the

tensor product Va1̟1
⊗ · · · ⊗ Vam̟m

. Hence there is a canonical GLn(C)–quotient
mapping π : Va1̟1

⊗ · · · ⊗ Vam̟m
→ Vλa

. We let α = π∗ be the dual map.
The following lemma will be very important in what follows.

Lemma 5.1.

i∗(La1

k1
⊠ · · · ⊠ Lam

km
) = La

k
.

Proof. We consider the following diagram

Fk(Cn)
∆−−−−→ Fk(Cn) × · · · × Fk(Cn)

Id

y
yπ

Fk(Cn)
i−−−−→ Grk1

(Cn) × · · · × Grkm
(Cn)
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We need the following simple general observation whose proof we leave to the
reader. Let P ⊂ Q be subgroups of a group G. Consequently we have a projection
π : G/P → G/Q. Let χ be a character of Q and let L be the homogeneous line bundle
with isotropy representation χ, that is, the line bundle with total space G×Q C where
(g, z) ∼ (gq, χ(q)−1z). Then the pull-back of L to G/P is the homogeneous line
bundle with isotropy representation χ|P .

From this observation we find that π∗(La1

k1
⊠· · ·⊠Lam

km
) is an outer tensor product of

the same form except the isotropy representations are the restrictions of the characters
corresponding to the weights ai̟ki

, 1 ≤ i ≤ m to P . The pull-back of this outer tensor
product by the diagonal map ∆ gives the inner tensor product. But the inner tensor
product of homogeneous line bundles is again homogeneous with isotropy character
the product of the characters of the factors. But this product is just the character
corresponding to the weight a1̟k1

+ · · · + am̟km
.

Combining these observations we obtain the following commutative diagram.

Fk(Cn)
ι−−−−→ P((Vλa

)∗)

i

y
yα

Grk1
(Cn) × · · · × Grkm

(Cn) −−−−→ P((Va1̟1
⊗ · · · ⊗ Vam̟m

)∗)

5.2.1. The r-linearization of the action of PH. Let H be the complex torus
of diagonal matrices in GLn(C), and let PH be the image of H under the quotient
map GLn(C) → PGLn(C). The H–linearizations of La

k
correspond to a character χr

of H given by (z1, ..., zn) → ∏
i zri

i , where r ∈ Zn. We denote the linearized bundle
associated to this character as La

k
(r).

Lemma 5.2. The induced action of H on La

k
corresponding to r descends to the

quotient group PH iff |r| =
∑

i aiki.

Proof. Let h = µI be a nonzero scalar matrix. Then for [g, z] in the total space
of La

k
(r) we have

h[g, z] = [hg, χr(h)z] = [gh, µ|r|z] = [g, (
∏

i

detai

ki
(µIn))−1µ|r|z] = [g, µ−

P
i
aikiµ|r|z].

Thus h[g, z] = [g, z] ⇔ |r| =
∑

i aiki.

5.2.2. The standard basis of Rk. In what follows we will construct the stan-
dard basis of Γ(Fk(Cn),La

k
). Since the basis vectors are weight vectors for H we will

also obtain a basis for Γ(Fk(Cn),La

k
)(r). By replacing λa by λNa one obtains the

standard basis for the N -th graded summand of the homogeneous coordinate ring
Rk.

Define a partition p = (p1, ..., pn) by

pi =

n∑

j=i

aj .

Let D be the Young diagram corresponding to the partition p (so there are pi boxes
in the i–th row, 1 ≤ i ≤ m). Let T be a filling (not necessarily semistandard but such
that the entries in each column are strictly decreasing) of D by elements in 1, 2, ..., n.
Our goal is to construct an element fT ∈ Rk. The key to doing this is first to construct
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a section of the line bundle La1

k1
⊠· · ·⊠Lam

km
over the product Grk1

(Cn)×· · ·×Grkp
(Cn)

then pull-back to Fk(Cn) using Lemma 5.1.
To do this we divide T up into m rectangular subtableaux T1, T2, ..., Tm where

Tn+1−i is a filling of a ki by ai rectangle. Thus we take T1 to be the rectangle that is
the union of the last a1 columns. See Example 5.5.

Next observe that fTi
is a section of the line bundle Lai

ki
, 1 ≤ i ≤ m. The tensor

product fT1
⊗ · · · ⊗ fTm

is the desired section of La1

k1
⊠ · · · ⊠ Lam

km

We define fT by

fT = i∗(fT1
⊗ · · · ⊗ fTm

).

Here i∗ denotes the pullback operation from sections of a line bundle to sections
of the pull-back bundle.

By Lemma 5.1 we have

Lemma 5.3. fT is a section of La

k
.

We now have the following theorem, see [GL], Chapter 7, Theorem 2.1.1.

Theorem 5.4. The set of sections {fT , T ∈ SS(D, n)} is a basis for
Γ(Fk(Cn),La

k
).

Example 5.5.
We consider the flag manifold Fk(Cn) = F2,3(C5) with the very ample line bundle

corresponding to the dominant weight weight 2̟2+̟3. The associated Young diagram
D is

D= .

Let T be the filling of D given by

T=
2 1 2
3 4 5
5

.

Hence

T1 =
1 2
4 5

and T2 =
2
3
5

.

The section fT is the pull-back to the flag manifold of the section over Gr2(C5)×
Gr3(C5) given by fT1

⊗ fT2
, where fTi

is the section of Lai

ki
over Grki

(Cn).

5.3. Duality of tableaux. We define a map ∗ on tableaux as follows. Let T
be a tableau. Suppose the ith column of T is ci = (p1, ..., pℓ), with distinct pj’s. Let
di = (q1, ..., qn−ℓ) where {p1, ..., pℓ, q1, ..., qn−ℓ} = {1, ..., n}, and qt < qt+1 for all t.
Let ∗T be the tableau whose ith column is dn−i+1 for 1 ≤ i ≤ n.

Example 5.6.

T =
2 1 2
3 4 5
5

=⇒

2 1 2
3 4 5
5 2 1
1 3 3
4 5 4

=⇒ ∗T =
1 2 1
3 3 4
4 5
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Theorem 5.7. The map ∗ takes semistandard tableaux to semistandard tableaux.

Proof. Let [n] denote the set {1, ..., n}. We define a partial order on the subsets
of [n] given by I ≤ J iff |I| ≥ |J | and iq ≤ jq for all q ≤ t, where I = {i1, ..., is}
and J = {j1, ..., jt} have elements listed in strictly increasing order. Define ∗I as
the complement of I in [n]. We show that I ≤ J implies ∗I ≥ ∗J by induction
on n. If n = 1 this is trivial. Now suppose that the statement is true for n − 1.
Let In−1 = I ∩ [n − 1] and let Jn−1 = J ∩ [n − 1]. Define ∗In−1 = [n − 1] \ In−1

and ∗Jn−1 = [n − 1] \ Jn−1. Clearly In−1 ≤ Jn−1. By the induction hypothesis,
∗In−1 ≥ ∗Jn−1. Suppose there is some ∗jq > ∗iq, where ∗jq is the qth element of ∗J
and ∗iq is the qth element of ∗I. Since ∗Jn−1 ≤ ∗In−1, we have that |∗Jn−1| ≥ |∗In−1|
and thus q = 1 + | ∗ In−1| and so n = ∗iq ∈ ∗I, a contradiction with ∗jq > ∗iq.

The columns of ∗T are stictly increasing by definition. Hence we need only show
that the rows are weakly increasing. Let ∗ti,j denote the (i, j)–entry of ∗T . We
must show that ∗ti,j ≤ ∗ti,j+1 for all (i, j) in the valid range. Let dj , dj+1 be adjacent
columns in ∗T . Then the respective complementary columns cn−j+1, cn−j are adjacent
columns of T . Since T is semistandard, the sets I, J of the entries of cn−j , cn−j+1

respectively are such that I ≤ J for the partial order on subsets of [n] mentioned
above. Hence ∗I ≥ ∗J , and since ∗I corresponds to dj+1 and ∗J corresponds to dj ,
we have that ∗ti,j ≤ ∗ti,j+1 for all i.

Note that if the columns of T are strictly increasing, then ∗ ∗ T = T .

We conclude our discussion of duality of tableaux with a formula for how ∗ changes
the weights. Let wi(T ) be the number of times the index i appears in T , and let
wt(T ) = (w1(T ), ..., wn(T )). Let Da be the Young diagram with m rows so that the
i-th row has length a1 + a2 + · · · + am−i+1.

Theorem 5.8. For all tableaux T with diagram Da

wt(T ) + wt(∗T ) = Λ = (|a|, |a|, ..., |a|).

Proof. The jth column of T and the (n − j + 1)th column of ∗T partition the
set {1, ..., n}. The total number of columns in either tableau is |a| =

∑
i ai. Fix any

i ∈ {1, ..., n}. Let cj denote the jth column of T and let dj denote the (n − j + 1)th

column of ∗T . The index i is in exactly one of cj , dj . Hence wi(T ) + wi(∗T ) = |a|,
the total number of columns.

5.4. Duality of Mumford quotients for flag manifolds.

5.4.1. The fundamental diagram. The orthogonal complement map Ψ maps
the flag Fk1,...,km

(Cn) to Fl1,..,lm(Cn) where li = n − kp−i+1. Denote l = (l1, ..., lm).
Let Λ = (|a|, |a|, ..., |a|) and let b = (am, am−1, ..., a2, a1), the tuple a in reverse order,

The extension of our duality theorem from Grassmannians to flag manifolds will
result from considering the diagram

Fk(Cn)
Ψ−−−−→ Fl(Cn)

i

y
yi

Grk1
(Cn) × · · · × Grkm

(Cn)
F◦
Q

i
Ψi−−−−−−→ Grl1(C

n) × · · · × Grlm(Cn)

We will refer to this diagram as the fundamental diagram in what follows.
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5.4.2. The bundle isomorphism Ψ̂ and the induced isomorphism of rings

of sections. Lemma 5.9. There is a bundle isomorphism Ψ̂ covering the isomor-
phism Ψ : Fk(Cn) → Fl(Cn). Moreover Ψ̂ satisfies

Ψ̂ ◦ h = h−1 ◦ Ψ̂.

Proof. We have seen in our analysis of duality for Grassmannians that the iso-
morphism Ψi can be covered by a bundle isomorphism Ψ̂i satisfying

Ψ̂ ◦ h = h−1 ◦ Ψ̂.

Hence the isomorphism F ◦ΠiΨi is covered by the bundle isomorphism F ◦ΠiΨ̂i

which satisfies the above equivariance condition with respect to the product H ×
· · · × H and hence a fortiori with respect to the diagonal. But by Lemma 5.1 the
bundles La

k
and Lb

k
are pull-backs by i of the corresponding bundles on the products

of Grassmannians. Hence the pull-back of F ◦ΠiΨi by i is a bundle isomorphism from
La

k
to La

k
.

We obtain induced isomorphisms Ψ̃ : Γ(Fk(Cn),La

k

⊗N) → Γ(Fl(Cn),Lb

l

⊗N
) by

the formula

Ψ̃(s)(x) = Ψ̂(s(Ψ−1)).

Later we will need that Ψ̃(s)(x) intertwines the representation ρk with the action
ρθ
l

where ρθ
l

= ρl ◦ θ. This follows immediately from Lemma 4.12. We state this result
as a lemma.

Lemma 5.10. Let ρN,a,k be the representation of GLn(C) on the vector space of
sections Γ(Grk(Cn),L⊗aN

k
). Let ρθ

N,a,k = ρN,a,k ◦ θ. Then we have

Ψ̃N,a,k ◦ ρN,a,k ◦ Ψ̃N,a,l = ρθ
N,a,l.

We next compute the action of the ring isomorphism Ψ̃ on the elements fT and
thereby determine how it changes weights of H .

Theorem 5.11.

Ψ̃(fT ) = ǫT f∗T .

Proof. We have the following diagram of homogeneous coordinate rings corre-
sponding to the fundamental diagram.

Rk

eΨ−−−−→ Rl

i∗
x

xi∗

R̃k

F◦
Q

i
eΨi−−−−−−→ R̃l

Let T be a tableau and fT ∈ R̄k. Then there are tableaux T1, ..., Tm such
that fT = i∗(fT1

⊗ · · · ⊗ fTm
), and Ψ̃(fT ) = i∗(Ψ̃1(fT1

) ⊗ · · · ⊗ Ψ̃m(fTm
)) =

(
∏

i ǫTi
)i∗(f(∗T1) ⊗ · · · ⊗ f(∗Tm)) = ǫT f∗T .

Corollary 5.12. Ψ̃ maps the subspace of R
(N)
k

of H–weight Nr isomorphically

to the subspace of R
(N)
l

of H–weight N(Λ− r).
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We have now proved one of our main theorems.

Theorem 5.13. The isomorphism Ψ̃ induces an isomorphism of graded rings

∞⊕

N=0

Γ(Fk(Cn),LNa

k
(Nr))H ∼=

∞⊕

N=0

Γ(Fl(Cn),LNb

l
(Ns))H

and consequently an isomorphism of Mumford quotients

Fk(Cn)//rH ∼= Fl(Cn)//sH.

Proof. The theorem follows immediately Corollary 5.12.

5.5. Duality of Kähler structures. We first observe that it follows from
the fundamental diagram on the corresponding result for Grassmannians that Ψ̃ :
Fk(Cn) → Fl(Cn) is a holomorphic isometry. We now check that the induced map
on quotient is also a holomorphic isometry (hence symplectic). We already know it is
holomorphic. We have only to check that it is symplectic.

Theorem 5.14. The map Ψ induces a homeomorphism of the symplectic quo-
tients:

Ψ : Fk(Cn)//rT → Fl(Cn)//sT.

Furthermore, if r is a regular value of the momentum mapping, then the symplectic
quotients are symplectic manifolds and Ψ is a symplectomorphism.

Proof.
We recall the fundamental diagram.

Fk(Cn)
Ψ−−−−→ Fl(Cn)

i

y
yi

Grk1
(Cn) × · · · × Grkm

(Cn)
F◦
Q

i
Ψi−−−−−−→ Grl1(C

n) × · · · × Grlm(Cn)
The map

∏
i Ψi on the bottom is symplectic, and the inclusion maps are symplec-

tic, so the Ψ map on the top is symplectic. The product T m acts in a Hamiltonian
fashion on each of the two products of Grassmannians. Let T ∆ be the diagonal. Then
the inclusion map i is equivariant with respect to T ∆. Let µ∆ be the momentum map-
ping for T ∆. Hence it suffices to prove that

∏
i Ψi carries (µ∆)−1(r) to (µ∆)−1(|a|−r).

Choose x = (x1, ..., xm) ∈ Fk such that µ∆(x) = r. Assume µi(xi) = r(i) ∈ Rn. We
have µ∆ =

∑
µi where µi is the momentum mapping for the action of Ti on the

ith factor of the product. We have seen that Ψi takes µ−1
i (r(i)) to µ−1

i (s(i)) where
r(i) + s(i) = (ai, ..., ai). Thus µ∆((

∏
i Ψi)(x)) = (

∑
i ai)(1, 1, ..., 1)− r.

5.6. Duality of Gelfand-Tsetlin systems.

5.6.1. The duality map as a map of coadjoint orbits. In this subsection
we will describe the duality map Ψ as a map of coadjoint orbits. We identify the dual
u∗(n) with the space Hn of n by n Hermitian matrices using the imaginary part of
the trace form. We note that ̟n is identified to In. We will in fact compute with
the map Φ which operates on flags by taking the orthogonal complement relative to
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the positive definite Hermitian form F . We note that if we use σ to denote complex
conjugation we have

Φ = Ψ ◦ σ.

The advantage in using Φ is that Φ is U(n)–equivariant.

Let Flag denote the disjoint union of all the flag varieties of various lengths. We
define a map E : Hn → Flag as follows. Let A ∈ Hn be given. Let λi1 , ..., λik

be the
distinct eigenvalues of A arranged in decreasing order and let Ej be the eigenspace
belonging to λij

. Then we define E(A) to be the flag of partial sums of the Ej whence

E(A) = (E1, E1 + E2, ..., E1 + E2 + · · · + Ek−1).

It is important to note that E loses information. A flag manifold equipped with
an invariant symplectic form does not determine a unique orbit. If we change the
orbit by adding a multiple of In we do not change the flag manifold as a symplectic
manifold. Indeed the map from the orbit to the flag manifold assigns the flag attached
to increasing partial sums of eigenspaces and the symplectic form depends only on the
differences of the eigenvalues. Note that R acts on Hn by translating by multiples of
In. If we choose a cross-section to this action we can lift Φ and Ψ. We will henceforth
choose the cross-section H0

n of Hermitian matrices with smallest eigenvalue equal to
zero.

Let Ξ : Hn → Hn be the map given by

Ξ(A) = λmax(A)In − A.

The reader will check that Ξ is a Poisson map and carries H0
n into itself. Let Σ :

Hn → Hn be complex conjugation so Σ(A) = A.

Lemma 5.15. The following diagram commutes

H0
n

Ξ−−−−→ H0
n

E

y
yE

Flag
Φ−−−−→ Flag

Proof. Suppose that λi1 , ..., λik
are the distinct eigenvalues of A arranged in

decreasing order. Then the eigenvalues of −A arranged in decreasing order are
−λik

, ...,−λi1 and consequently E(−A) = Φ(E(A)).

Corollary 5.16. The following diagram commutes

H0
n

Ξ◦Σ−−−−→ H0
n

E

y
yE

Flag
Ψ−−−−→ Flag

Remark 5.17. We note that (because A∗ = A)

Ξ ◦ Σ(A) = λmax(A)In − At = λmax(A)In + θ(A).

Thus the duality map Ψ lifted to the space of normalized coadjoint orbits is once again
given by the Chevalley involution (up to a translation).
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5.6.2. Duality of Gelfand-Tsetlin systems. We begin by recalling the de-
finition of the Gelfand-Tsetlin Hamiltonians λi,j : Hn → R, 1 ≤ i, j ≤ n. Let
Bj(A), 1 ≤ j ≤ n, be the upper principal j by j block of A. Then λi,j(A) is the
i–th eigenvalue of Bj(A) (the eigenvalues are arranged in (weakly) decreasing order).
The λi,j ’s Poisson commute [GS] and the λi,n are Casimirs. The set of λi,j ’s is called
the Gelfand-Tsetlin system. By restricting the Gelfand-Tsetlin system to any orbit
we obtain an integrable system on that orbit. Moreover the functions λi,j descend to
the torus symplectic quotients of orbits and hence define integrable systems on the
torus quotient of flag manifolds Fk(Cn)//rT .

Theorem 5.18. Assume that Fk(Cn) has the symplectic form corresponding to
a1̟k1

+ · · · + am̟km
and Fl(Cn) has the symplectic form corresponding to b1̟l1 +

· · · + bm̟lm Under the duality isomorphism Ψ : Fk(Cn)//rT → Fl(Cn)//sT we have

Ψ
∗
λi,j = |b| − λj+1−i,j = |a| − λi,j .

Proof. It suffices to prove the above formula when λi,j is pulled back to the orbit
and so Ψ is replaced by Ξ. We have

Ξ∗λi,j(A) = λi,j(Ξ(A)) = λi(Bj(λmax(A)In) − A)) = λi(|a|Ij − Bj(A)).

The theorem follows.

6. Self-duality. Let M be a flag manifold G/P and Mopp = G/P opp. In this
section we investigate the duality map Θ : M//rH → Mopp//sH in case P is conjugate
to P opp and r = s. Our main goal is to find the conditions when such a self-duality
is trivial i.e. Θ = Id. Roughly the following theorems say that self-duality is almost
never trivial. For our analysis of the case of GLn(C) we will take advantage of the
solution of the quantum problem in [MTL] although the analysis we give below would
work for GLn(C) as well. Our strategy below will be to first identify those cases with
integral a and r for which duality is trivial and then show that by scaling by real
numbers we obtain all the real cases as well.

6.1. The existence of good representations. Recall that we have defined a
dominant weight λ (or representation Vλ) to be good if Vλ is self-dual and if there
exists N such that the Chevalley involution does not act as a scalar on VNλ[0]. We will
see shortly that this condition on a representation exactly captures nontriviality of the
classical duality Θ on the corresponding weight variety. The point of this subsection
is to prove that good representations abound. We have

Definition 6.1. Suppose λ and µ are dominant weights and Vλ and Vµ are
the corresponding irreducible representations. Then the Cartan product of Vλ and
Vµ is the irreducible representation with highest weight λ + µ. There is a canonical
surjection πλ,µ : Vλ ⊗ Vµ → Vλ+µ. We will define the N–th Cartan power CNVλ to
be the irreducible representation VNλ.

We begin with a very useful lemma - the image of a nonzero decomposable vector
in the tensor product of two irreducibles in the Cartan product is nonzero.

Lemma 6.2. Suppose that λ and µ are dominant weights and that v1 ∈ Vλ, v2 ∈ Vµ

are nonzero vectors. Then we have

πλ,µ(v1 ⊗ v2) 6= 0
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Proof. Use Borel-Weil to interpret v1 and v2 as sections s1 and s2 of line bundles
Lλ and Lµ over a flag manifold M . The image πλ,µ(v1 ⊗ v2) then corresponds to the
product s1·s2 of the two sections under the multiplication map Γ(M,Lλ)⊗Γ(M,Lµ) →
Γ(M,Lλ⊗Lµ). But the product of two nonzero sections is never zero on an irreducible
variety.

We first apply this to

Lemma 6.3. Suppose that θ does not act as a scalar on VN0λ[0]. Then θ does not
act as a scalar on VkN0λ[0] for any k > 0.

Proof. Let k > 0 be given. It will be convenient to argue in terms of sections.
By hypothesis there exists s ∈ VN0λ[0] such that s is not an eigenvector of θ. We
claim that s⊗k is not an eigenvector of θ (note that since M is irreducible s⊗k 6= 0).
Suppose to the contrary that there exists z with

θ(s⊗k) = zs⊗k.

Let zi, 1 ≤ i ≤ k be the k–th roots of z. Then we have

k∏

i=1

(θ(s) − zis) = 0.

Again because M is irreducible we must have θ(s) − zis = 0 for some i. This is a
contradiction.

We now prove that good representations are stable under Cartan product and in
fact much more is true.

Theorem 6.4. Suppose that Vλ and Vµ are self-dual representations and Vλ is
good. Then the Cartan product Vλ+µ is good.

Proof. Since Vλ is good there exists N such that the Chevalley involution θ does
not act on VNλ[0] as a scalar. By the previous lemma θ does not act as a scalar
on VkNλ[0], k ≥ 1. Choose k so that VkNµ[0] 6= 0. Now choose a nonzero vector
v+ ∈ VkNλ[0] such that θ(v+) = v+ and another nonzero vector v− ∈ VkNλ[0] such
that θ(v−) = −v−. The Chevalley involution has either 1 or −1 as an eigenvalue on
VkNµ[0]. For convenience assume the former. Let u be an eigenvector belonging to 1.
Then the images of v+ ⊗ u and v− ⊗ u in the Cartan product are nonzero by Lemma
6.2 and belong to eigenvalues 1 and −1 respectively.

6.2. The branching trick. In this section we will give the main technique we
will use below to prove that certain fundamental representations are good. We will
refer to it as the “branching trick”. It is (a refinement of) one of the main techniques
used in [MTL], see §4.3 and Proposition 4.6.

We begin with the following lemma.

Lemma 6.5. Let G1 and G2 be simple complex Lie groups with G1 ⊂ G2. Let λ
be a dominant weight for G2 and µ be a dominant weight for G1. If Vµ occurs in the
restriction of the irreducible representation Vλ of G2 to G1 then VNµ occurs in the
restriction of the irreducible representation VNλ of G2 to G1 for all N ∈ N.

Proof. Suppose v is a nonzero vector of weight µ in Vλ which is annihilated by
the nilradical of g1. Then the image of the vector v⊗N in VNλ is nonzero (by Lemma
6.2) has weight Nµ and is again annihilated by the nilradical of g1.
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Recall that we have defined a representation Vλ to be good if Vλ is self-dual and
for some N ∈ N the Chevalley involution does not act on VNλ[0] as a scalar. The
“branching trick” is then the following

Proposition 6.6. Suppose that Vλ is an irreducible representation of simple
complex Lie group G2 and that G1 is a maximal rank subgroup so that the restriction
of Vλ to G1 contains an irreducible summand that is either good or not self-dual. Then
Vλ is good.

Proof. Let H be a Cartan subgroup of G2 which is contained in G1. Let θ1

be a Chevalley involution of G1 and θ2 be a Chevalley involution of G2 such that
both involutions stabilize H and consequently act on H by inversion. Since G1 is
the centralizer of an element of H it follows that θ2 carries G1 into itself. Hence by
Lemma 2.3, θ1 and θ2 are conjugate by an element Adh, h ∈ H , and by Lemma 2.4,
they coincide on the zero weight space of any self-dual representation of G1.

Suppose first that Vµ is good. Since Vµ is good there exists N so that θ1 does
not act as a scalar on VNµ[0]. Let v ∈ VNµ[0] satisfy θ1(v) 6= ±v. Hence by the above
paragraph θ2(v) 6= ±v. But by Lemma 6.5, VNµ ⊂ Vλ whence VNµ[0] ⊂ Vλ[0] and
v ∈ Vλ[0].

Suppose now that Vµ is not self-dual. Choose N such that Nµ is in the root
lattice for G1. Choose any nonzero vector v ∈ Vµ[0]. Then under the action of θ1

the vector v goes to into a different irreducible summand (corresponding to a copy of
the dual of Vµ) in the restriction of Vλ to G1. This summand has intersection zero
with Vµ by Schur’s lemma. Hence once again we have θ1(v) 6= ±v. The rest of the
argument is identical to that of the previous paragraph.

6.3. Quantum versus classical duality. Our goal in this section is to compare
the triviality of quantum and classical self-dualities. Let λ be a dominant weight and
M be the corresponding flag manifold. We will identify the weight spaces VNλ[Nr]
with the N–th graded summand of the spaces of invariant sections. In this section
we will assume r = 0 and will identify the map on sections Θ̃ with the action of the
Chevalley involution θ on the corresponding zero weight space VNλ[0]. We ask the
reader to make the required modifications in the proof to cover the case of GLn(C)

and the action of Ψ̃ on the graded summands. Recall by Corollary 5.12 this action
corresponds with the affine involution

Ψ̃ : VNλ[r] → VNλ∨ [Λ− r].

We will see below that in this case the self-duality condition forces r = (|a|/2)̟n =
(1/2)Λ.

Theorem 6.7. Suppose that the symplectic manifold M is self-dual and cor-
responds to an integral orbit (the orbit of an element λ = λ∨ of the weight lattice).
Then the classical duality map Θ is nontrivial (i.e.not equal to the identity) on M//0H
(resp. M//rH) if and only if Vλ is good.

The rest of this section will be devoted to proving the theorem. One direction is
easy. If θ acts as a scalar on every summand then it is immediate that Θ is equal to the
identity. Indeed we may choose m such that the ring Sm = ⊕∞

k=0S
(km) is generated

by elements of degree one (i.e. k = 1),see [Bou1],Chapter III, §1.3, Proposition 3. We
rename this ring S. By [Do], pg.39, we have an equality of maximal projective spectra

Projm(S) = Projm(R).
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Again θ acts by a scalar on any graded summand of S hence in particular it acts
as a scalar on the degree one summand V = S(1). Choose a basis of the degree one
elements V = S(1) of S to obtain a projective embedding F : M//H → P (V ∗). We
claim that F satisfies

F (Θ(x)) = θ(F (x)).

Indeed if we identify the dual of the projective space of the space of sections with
the hyperplanes in the space of sections then we have F (x) = Hx where Hx is the
hyperplane of sections that vanish at x, see [GH], page 176. The claim will follow if
we show

HΘ(x) = Θ̃−1(Hx).

But s(Θ(x)) = 0 ⇔ Θ̂−1(s(Θ(x))) ⇔ Θ̃−1(s)(x) = 0. The claim follows.
By assumption θ acts as a scalar on V and hence θ acts trivially on P (V ∗). Since

F is injective we deduce from the equivariance formula immediately above that Θ is
the identity.

Remark 6.8. It is not enough to require that θ act as a scalar on the degree one
elements of the original graded ring R because R might not be generated by elements
of degree one.

The rest of this section will be devoted to proving the converse i.e. if there exists
N0 such that θ does not act as a scalar on VN0λ[0] then Θ is not equal to the identity.

Accordingly we assume that θ does not act as a scalar on VN0λ[0]. Replace the
graded ring R of H–invariant sections by the subring S given by S = ⊕∞

k=0R
kN0 . By

[Do], pg. 39, we have an equality of maximal projective spectra

Projm(S) = Projm(R).

Also we note that by Lemma 6.3, θ does not act as a scalar on any graded summand
of S.

Finally, as before, we may choose m such that the ring Sm = ⊕∞
k=0S

(km) is
generated by elements of degree one (i.e. k = 1). We rename this ring S. Again θ
does not act as a scalar on any graded summand of S hence in particular it does not
act as a scalar on the degree one summand and again by [Do], pg.39, we have

Projm(S) = Projm(R).

Now we can complete the proof of the theorem. Let V be the space of degree one
elements, V = S(1) of S. We obtain a projective, embedding F : M//0H → P (V ∗)
with F (x) = Hx as above. We have seen that F satisfies

F (Θ(x)) = θ(F (x)).

Suppose now for the purpose of contradiction that Θ is the identity. Then for all
x ∈ M//0H we have θ(F (x)) = F (x). Let < ImF > denote the smallest projective
subspace of P (V ∗) containing the image of F . We first check that < ImF >= P (V ∗).
Indeed, suppose that < ImF > $ P (V ∗). Then there exists a nonzero element
s ∈ V which pairs to zero with every element of < ImF >. But this means that
∀x ∈ M//0H, s(x) = 0. This is a contradiction.
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Now we can prove that θ acts as a scalar on V ∗ and hence on V . Indeed we have
the eigenspace decomposition V ∗ = (V ∗)+ ⊕ (V ∗)−. Hence P (V ∗)+ and P (V ∗)− are
disjoint projective subspaces of P (V ∗) with union the fixed-point set of θ on P (V ∗).
Since M is connected either ImF ⊂ P (V ∗)+ or ImF ⊂ P (V ∗)−. Hence either
P (V ∗) =< ImF >= P (V ∗)+ or P (V ∗) =< ImF >= P (V ∗)−. In either case we find
that θ acts as a scalar on V . This contradicts the assumption that θ does not act as
a scalar on any graded summand of S and the theorem is proved.

6.4. From general flag manifolds to Grassmannians. In this section we
prove the classical analogue of Theorem 6.4 that (in the case that all representations
of G are self-dual) will allow us to reduce to the study of Θ from torus quotients of
general flag manifolds to “Grassmannians”, that is flag manifolds that are quotients
G/P where P is maximal. In case not all representations are self-dual the result will
allow us to reduce to the case of flag manifolds G/P where P is a “next-to-maximal”
parabolic (see the treatment of E6 below).

Let P and Q be parabolic subgroups of G such that P ⊂ Q. Then we have a
quotient map π : G/P → G/Q. Suppose that the flag manifolds G/P and G/Q are
carried into themselves by Θ. We will abbreviate G/P to M and G/Q to N .

Lemma 6.9. Suppose there exists z ∈ N such that H · ΘN (z) ∩ H · z 6= ∅. Then
for any w ∈ π−1(z) we have

H · ΘM (w) ∩ H · w 6= ∅.

Proof. Suppose π(w) = z and x ∈ H · ΘM (w)∩H · w. Then because π is a closed
H–equivariant map we find z ∈ H · ΘN (z), a contradiction.

Let ΘM resp. ΘN denote the induced maps on the quotients by H and Fix(ΘM )
resp. Fix(ΘN ) denote their fixed-point sets. By the previous lemma we have

π−1(Fix(ΘN )) ⊂ Fix(ΘM )).

We can now prove the reduction we need.

Proposition 6.10. Suppose that ΘN does not induce the identity on N//rH.
Then ΘM does not induce the identity on M//rH.

Proof. Let p : Nss → N//rH be the quotient map. Then, by assumption,
U = p−1(Fix(ΘN ) is a nonempty Zariski open subset of N whence V = π−1(U) is a
nonempty Zariski open subset of M . Hence V ∩ M ss is nonempty. Let w be a point
in this intersection. By the previous lemma we have H · ΘM (w) ∩ H · w 6= ∅ and
consequently the image of w in M//r is not fixed by ΘM .

Remark 6.11. The previous Proposition reduces the problem of showing that Θ
is nontrivial on a torus quotient of a general flag variety G/P to showing that Θ
is nontrivial on the torus quotients of Grassmannians G/Q where Q is a maximal
parabolic subgroup containing P .

6.5. Splitting the zero level - a nontriviality criterion. In this subsection
we give a useful condition we will use below, see §7.8, to prove that Θ is not equal to
the identity for three special cases. We will assume that θ is inner. Consequently Θ
takes each Grassmannian into itself.

Suppose that f : M → ∏n
i Mi is the inclusion from a flag manifold into a product

of Grassmannians and let fi : M → Mi be the surjection onto the i–th factor. Let
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T ⊂ ∏n
i Ti be the diagonal inclusion of the maximal compact torus into the product

of maximal compact tori and µi, 1 ≤ i ≤ n the momentum map for the action of Ti on
the i–th factor. Then µ =

∑n
i µi is the momentum map for T acting on the product.

Lemma 6.12. Suppose that θ is inner and there exists x ∈ M such that
(1) µ(f(x)) = 0.
(2) For some i, 1 ≤ i ≤ n we have µi(fi(x)) = ri 6= 0.

Then the duality map Θ : M//0H → M//0H is not equal to the identity.

Proof. Observe that µi(fi(Θ(x))) = −ri and consequently fi(Θ(x)) is not in the
same Ti orbit as fi(x). Hence x is not in the same T orbit as Θ(x).

6.6. Self-duality for SLn(C). For those values of k and r such that k = l and
r = s the duality map Ψ is a self-duality. In this section we will prove that except
for the case of Gr2(C4) with the symplectic form 2a̟2 and r = ̟4 and one more
infinite family of examples (see below)the resulting self-duality maps are not equal to
the identity map. We first examine the condition r = s. We assume that Fk(Cn) is
equipped with the symplectic form induced by embedding it as the orbit of

∑
i ai̟i.

Since si = |a| − ri the following formula is immediate.

Lemma 6.13. r = s ⇒ r = (|a|/2)̟n

We need to know that |a|/2 is an integer. This is in fact the case as will be seen
in the following lemma.

Let |λ| be the sum of the coefficients of λ when λ is expressed in terms of the
standard basis. Recall that λ is in the root lattice if and only if |λ| is divisible by n.
We now have

Lemma 6.14. Suppose λ =
∑n−1

i=1 ai̟i is self-dual. Then

|λ|/n = |a|/2

and consequently if λ is in the root lattice then |a| =
∑n−1

i=1 ai is an even integer.

Proof. Suppose first that n is odd, n = 2m + 1. Since ai = an−i we have

|λ| =

m∑

i=1

aii + an−i(n − i) = (

m∑

i=1

aii)n = (|a|/2)n.

Assume now that n = 2m. Then as in the odd case we have

|λ| = 2m(

m−1∑

i=1

ai) + mam = 2m(|a|/2)

We now recall Theorem 7.2 of [MTL].

Theorem 6.15. Suppose λ is a dominant weight for an irreducible representation
of SLn(C) which is in the root lattice. Then the Chevalley involution θ of SLn(C)
acts as a scalar on the zero weight space Vλ[0] if and only if λ is one of the following

(1) λ = (a, 0, . . . , 0,−a), a ∈ N.
(2) λ = (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
k

), 0 ≤ k ≤ n/2.

(3) λ = (a, a,−a,−a), a ∈ N.
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We want to deduce from this theorem the analogous result for the action of Ψ̃ on
the graded summands of the space of H–invariant sections which we know corresponds
to the weight space VNλ[(N/2)|a|̟n]. We refer the reader to §2.0.1 for the definition
of the action of the Chevalley involution on Vλ and Vλ[0] and the definition of the
operator ΘVλ

.

We now show we may choose Ψ̃ for ΘVλ
. This is a consequence of the next lemma

which in turn is an immediate consequence of Lemma 5.10.

Lemma 6.16. Let ρλ be the representation of GLn(C) on Vλ. Assume that Vλ is
self-dual. Then we have as representations of SLn(C)

Ψ̃ ◦ ρλ ◦ Ψ̃ = ρλ ◦ θ

or

Ψ̃ = ΘVλ
.

We next need to further modify the above theorem because. we are normalizing
the highest weight λ of an irreducible representation of SLn(C) to have last component
zero rather than to have the sum of its components |λ| equal to zero. Let H1 denote
the subgroup of H of elements of determinant 1. We note that λ is in the root lattice
if and only if |λ| is divisible by n and then the zero weight space for H1 in Vλ coincides
with the H weight space Vλ[(|λ|/n)̟n] =Vλ[(|a|/2)̟n]. We now obtain the version
of the previous theorem that we need

Corollary 6.17. Suppose λ is a dominant weight for an irreducible representa-
tion of GLn(C) which is self-dual and in the root lattice. Let M be the flag manifold
corresponding to λ and L be the line bundle over M corresponding to λ. Then the
action of Ψ̃ on the graded component of the graded ring of H–invariant sections of the
line bundle L corresponding to the vector space Vλ[r] is a scalar if and only if either
n = 2 or λ and r are one of the following

(1) λ = a̟1 + a̟n−1, r = a̟n,a ∈ N.
(2) λ = ̟k + ̟n−k, 2 ≤ k ≤ n − 2, r = ̟n

(3) n = 4 and λ = 2a̟2, r = a̟4, a ∈ N.

We now prove

Theorem 6.18. Assume that k and r satisfy the self-duality conditions k = l

and r = s. The self-duality Ψ : Fk(Cn)//rH → Fk(Cn)//rH is equal to the identity
if and only if either n = 2 or the flag manifold is

(1) Fk(Cn) = F1,n−1(Cn) with the symplectic form a̟1 + a̟n−1 and r = a̟n.
(2) Fk(Cn) = Gr2(C4) with the symplectic form 2a̟2 and r = a̟4.

Proof. The theorem follows from Theorem 6.7. We note that since, by the above
theorem, Ψ̃ acts as a scalar on all graded summands for the two exceptional cases we
may apply (the easy direction of) Theorem 6.7 to deduce that Ψ is in fact equal to
the identity in these two cases.

6.7. Self-duality for the isometry groups of bilinear forms.. In this sec-
tion we assume that M is a flag manifold of a classical group G where G is either
a symplectic group or a special orthogonal group. In the case of symplectic groups
and odd orthogonal groups −1 is an element of the Weyl group and all dualities are
self-dualities. We will use the theory of admissible pairs [La] or [Mu] to construct
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certain basis elements in the graded summands. However our goal is to find weight
zero monomials that are not eigenvectors of θ and as we will see below in order to do
this we need only those standard monomials which are products of extremal weight
vectors, i.e. correspond to a trivial admissible pairs. Hence,we do not need the diffi-
cult part of the theory which constructs elements p(λ, φ) for a nontrivial admissible
pair λ, φ. All we need from the general theory is that the standard monomials formed
from Bruhat chains of extremal weight vectors are linearly independent. We will also
use that for the Grassmannians associated to Sp2n(C) and SO2n+1(C) the Bruhat or-
der on the relative Weyl poset WP coincides with the restriction of the Bruhat order
from the ambient linear group [La], page 363, IX and page 365, IX. We will also need
the corresponding fact for the Bruhat order on WP for P the subgroup of SO2n(C)
which stabilizes one of the two types of Lagrangian subspaces (so P is miniscule), see
[GL], pg. 158.

Our goal is to prove the following theorem.

Theorem 6.19.
(1) Suppose G = Sp2n(C).Then the duality map Θ is not equal to the identity

with the exception of the torus quotients of
(a) The projective space CP2n−1.
(b) The Lagrangian Grassmannian Gr0

2(C4).
In both (a) and (b) the map Θ is the identity.

(2) Suppose now that G = SO2n+1(C). Then the duality map Θ is not equal to
the identity with the exception of the torus quotients of
(a) The quadric hypersurface Q ⊂ CP2n.
(b) The Lagrangian Grassmannian Gr0

2(C5).
In both (a) and (b) the map Θ is the identity.

(3) Suppose now that G = SO2n(C). Then the duality map Θ is not equal to the
identity with the exception of the torus quotients of
(a) The quadric hypersurface Q ⊂ CP2n−1.
(b) The isotropic Grassmannian Gr0

2(C
6).

(c) The Lagrangian Grassmannians Gr0
2(C4)+, Gr0

2(C4)−, Gr0
4(C8)+,

Gr0
4(C

8)−

(d) The isotropic flag manifold F 0
1,2(C

4).

In (a), (b) (c) and (d) the map Θ is the identity.

7. Proof of theorem 6.19. This section will be devoted to proving the theorem.
As explained about we will use the theory of standard monomials (in tableaux form)
due to Seshadri and Lakshmibai.

We will begin with a lemma that reduces the proof of the theorem for the classical
groups to the case of the Lagrangian Grassmannians or equivalently to the problem
of when the last fundamental representation is good.

Lemma 7.1. If the k–th fundamental representation is good or not self-dual for
G = Sp2k(C), resp. SO2k+1(C), resp. SO2k(C) then the k–th fundamental represen-
tation is good for G = Sp2n(C), resp. SO2n+1(C), resp. SO2n(C) with n > k.

Proof. First observe that for Sp2n(C) the fundamental representations are the

primitive exterior representations
∧k

0(C2n) of the standard representation and for the
orthogonal groups they are either the exterior powers of the standard representation
or a Spin representation. In this later case the Cartan square is an exterior power
of the standard representation (or else contained in it as the subspace fixed by the
complex Hodge star).
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We claim we have following formulas for branching to the maximal rank sub-
groups Sp2k(C) × Sp2(n−k)(C), resp. SO2k+1(C) × SO2(n−k)(C), resp. SO2k(C) ×
SO2(n−k)(C).

(1)
∧k

0(C2n)|Sp2k(C) × Sp2(n−k)(C) contains
∧k

0(C
2k) ⊠

∧0
(C2n−2k) as repre-

sentations of Sp2k(C) × Spn−k(C).

(2)
∧k

(C2n+1)|SO2k+1(C)×SO2(n−k)(C) contains
∧k

(C2k+1)⊠
∧0

(C2n−2k) as
representations of SO2k+1(C) × SO2(n−k)(C).

(3)
∧k

(C2n)|SO2k(C) × SO2(n−k)(C) contains both
∧k

(C2k)+ ⊠
∧0

(C2n−2k)

and
∧k

(C2k)− ⊠
∧0

(C2n−2k) as representations of SO2k(C) × SO2(n−k)(C).

These formulas in turn are an immediate consequence of the formula that the
standard representation restricts to the direct sum of the two representations ob-
tained from the standard representation from one factor tensored with the trivial
representation from the other factor together with the usual formula for the k–th
exterior power of a direct sum. Indeed to prove (1) we first note that the ana-

logue holds for the full exterior power
∧k

(C2n). But in general we have
∧k

0(C
2n) =

⊕k
j=0

∧j
0(C

2i) ⊗ ∧k−j
0 (C(2k−2i)) and the first formula follows.

The second formula is follows immediately from the usual formula for the exterior
power of a direct sum. The third formula follows from the formula for restricting an
exterior power together with the fact that

∧k
(C2k) is the direct sum of

∧k
(C2k)+

and
∧k

(C2k)−.
The lemma now follows from Proposition 6.6 and the observation CN (U ⊠ V ) =

CN (U)⊠CN(V ) where U ⊠V is the outer tensor product of the irreducible represen-
tations U of G1 and V of G2 (here CN (W ) denotes the N–th Cartan power of W ).

7.1. The second fundamental representation for the symplectic and

orthogonal groups. Before beginning our study of the last fundamental representa-
tion(s) for the classical groups we deal with the case of the Grassmannians Gr0

2(C
n).

Lemma 7.2. Let V̟2
denote the irreducible representation of either Sp2n(C) or

SO2n+1(C) with highest weight ̟2. Then
(1) V̟2

is good for Sp2n(C) provided n ≥ 3.
(2) V̟2

is good for SO2n+1(C) provided n ≥ 3.
(3) V̟2

is good for SO2n(C) provided n ≥ 4.
Moreover in all three cases the Chevalley involution does not act as a scalar on V3̟2

[0].

Proof. We first give a proof using standard monomials valid for the symplectic and
odd orthogonal cases. The weight zero cubic monomial mI in the Plücker coordinates
given by mI = X12X32X31 is not an eigenvector of J . Hence J has eigenvalues
of both signs on the third graded summand of the homogeneous coordinate ring of
Gr0

2(C
n)//0H .

We now deal with the case of SO2n(C). First we treat the case of SO8(C)
by branching the third Cartan power to the maximal subgroup of maximal rank
(SL2(C))4. Each zero weight summand in the restriction is the Cartan product
Sk1(C2) ⊠ Sk2(C2) ⊠ Sk3(C2) ⊠ Sk4(C2). Here Sk(C2) denotes the k–th symmet-
ric power of the standard representation. The zero weight space of this summand is
nonzero if and only if each ki is even. The Chevalley involution acts on this sum-
mand as the outer tensor product of the Chevalley involution in each factor and hence
each summand is an eigenvector of Chevalley (because the zero weight space of each
summand is one dimensional). The sign on the i–th factor depends whether ki is
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congruent to 0 or 2 modulo 4 ( it is +1 in the first case and −1 in the second). Using
LiE we find the −1 eigenspace is large and the +1 eigenspace is one-dimensional.

To do the case of general n we branch to the maximal subgroup of maximal
rank SO2n−2(C)× SO2(C). By the exterior product of a direct sum formula we have∧2

(C2n)|SO2n−2(C)×SO2(C) contains
∧2

(C2n−2)⊠
∧0

(C2) as a summand. But this
summand is good by induction.

Remark 7.3. The representation V̟2
is not good for SO6(C). Indeed the second

exterior power
∧2

(C6) is not a fundamental representation. It is the Cartan product
of the two spin representations, it has highest weight (1, 1, 0) = ̟2 + ̟3. Under the
isomorphism between Spin6(C) and SL4(C) it corresponds to the sum of the first and
third fundamental representations which in turn corresponds to the exceptional case
of the flag manifold F1,3(C4). Thus the Chevalley involution acts as a scalar on the

zero weight spaces of all Cartan powers of
∧2(C6).

7.2. The symplectic group Sp2n(C). In this subsection we will prove

Lemma 7.4. The representation of Sp2n(C) with highest weight ̟n is good if
n ≥ 3.

Note that J(ei) = ǫei where i = 2n + 1 − i and ǫ = −1 if 1 ≤ i ≤ n and +1
otherwise. Each column of the tableaux below represents the wedge of the coordinate
vectors corresponding to the entries in that column. According J acts on the basis
vector represented by the tableau by changing each entry to its bar and multiplying
by a sign which will not be important to us here.

The rest of this subsection will be devoted to proving the lemma.

Consider the case of Gr0
3(C

6), the space of isotropic three dimensional subspaces
of C6. Let

α =

1 1 2 3
2 4 4 5
3 5 6 6

β =

1 1 2 4
2 3 3 5
4 5 6 6

The sections α and β are standard basis vectors (i.e. correspond to standard
monomials) of the irreducible representation V4̟3

since the columns correspond to
extremal weights of the third exterior power of the standard representation ( i.e. they
index isotropic coordinate planes) and they are increasing in the Bruhat order. They
are in the 0–weight space V4̟3

[0], since the indices 1 through 6 appear exactly twice
each (more generally, an index i needs to appear with the same frequency as its
complement i = 2n + 1 − i.) The Chevalley involution θ maps α to β. Since α and
β represent standard monomials, the sections corresponding to α and β are linearly
independent. Hence θ does not act as a scalar on V4̟3

[0].

We now construct analogous sections αn and βn of the irreducible representa-
tion V4̟n

[0] of Sp2n(C) for all n ≥ 3 by induction. Suppose that n ≥ 4 and
αn−1, βn−1, γn−1 have already been constructed. Let αn have an n by 4 diagram,
and let αn(1, 1) = αn(1, 2) = 1, αn(n, 3) = αn(n, 4) = 2n. For j = 1, 2, and i ≥ 2 let
αn(i, j) = αn−1(i−1, j)+1, and for j = 3, 4 and i ≤ n−1 let αn(i, j) = αn−1(i, j)+1.
In other words, to get αn, first add 1 to all the entries of αn−1. Then slide the first
two columns down one level, and put in two 1’s and two 2n’s in the remaining empty
slots. Here is an example to get α4 from α3.
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α3 =
1 1 2 3
2 4 4 5
3 5 6 6

−→
2 2 3 4
3 5 5 6
4 6 7 7

−→
3 4

2 2 5 6
3 5 7 7
4 6

−→
1 1 3 4
2 2 5 6
3 5 7 7
4 6 8 8

= α4

Since the columns of αn−1 are isotropic, no column of αn−1 contains both an index
i and its complement i = (2n − 1) − i. Note that i + 1 = 2n + 1 − (i + 1) =
((2n − 1) − i) + 1 = i + 1. Therefore the columns of αn are isotropic as well. Sliding
the first two columns down preserves the property that rows are weakly increasing,
and the weight of αn is 0 since all indices occur twice.

The section βn is constructed from βn−1 in the same way as αn is constructed
from αn−1. The Chevalley involution takes αn to βn. Since βn is standard it is
independent of αn and consequently the Chevalley involution has eigenvalues +1 and
−1 on degree 4 weight 0 sections. The lemma is now proved.

We have now shown that Θ is nontrivial on the torus quotients of the symplectic
Grassmannians Gr0

n(C2m)//0H for all n ≥ 3.

7.3. The orthogonal group SO2n+1(C). In this subsection we will prove

Lemma 7.5. The representation of SO2n+1(C) with highest weight ̟n is good if
n ≥ 3.

The construction is similar to that of the symplectic case, as one might expect
since the Weyl groups are the same. The difference is that the middle index n + 1
may not appear in the tableau. To get αn for the orthogonal group from the αn for
the symplectic group, simply add one to each index which is greater than or equal to
n + 1. For example, when n = 3,

α3 =

1 1 2 3
2 5 5 6
3 6 7 7

β3 =

1 1 2 5
2 3 3 6
5 6 7 7

7.4. The orthogonal groups SO4n(C). In this subsection we will prove

Lemma 7.6. The irreducible representations of SO4n(C) with highest weights
̟2n−1 or ̟2n are good if n ≥ 3.

The Grassmannian of isotropic n-dimensional spaces in C2n has two components,
Gr0

n(C2n)+ and Gr0
n(C2n)−. The corresponding representations are the two spin rep-

resentations ∆+
2n and ∆−

2n and are miniscule. The weights of each representation lie
in a single Weyl group orbit and consequently must have the same parity in the num-
ber of negative signs, since any Weyl group element must negate an even number of
components. Without loss of generality we will treat the case of Gr0

n(C2n)+. The
(extremal) standard monomials correspond to tableaux that have columns represent-
ing weights which are all in the same Weyl orbit, and increasing in the Bruhat order
induced from SL2n(C), see [GL], page 158, for a description of the Bruhat poset.

We now show that the Chevalley involution does not act as a scalar for n even,
n ≥ 6. To prove this we begin with Gr0

6(C
12). Let
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α6 =

1 1 2 5
2 3 4 6
3 7 7 9
4 8 8 10
5 9 10 11
6 11 12 12

β6 =

1 1 2 7
2 3 4 8
3 5 5 9
4 6 6 10
7 9 10 11
8 11 12 12

The reader will observe that α6 and β6 satisfy that each column has even parity,
and so they define standard basis elements of the fourth Cartan power of the even
spin representation ∆+

12 of Spin(12). Furthermore, α6 is mapped by θ to β6 6= α6.

We construct α2k and β2k for k ≥ 3. To get α2k from α2k−2, first add 2 to
each entry, then slide the first two columns down two levels, and put in two each of
1, 2, 4k − 1, 4k in the appropriate positions.

For example,

α6 =

1 1 2 5
2 3 4 6
3 7 7 9
4 8 8 10
5 9 10 11
6 11 12 12

−→

4 7
6 8

3 3 9 11
4 5 10 12
5 9 12 13
6 10 14 14
7 11
8 13

−→

1 1 4 7
2 2 6 8
3 3 9 11
4 5 10 12
5 9 12 13
6 10 14 14
7 11 15 15
8 13 16 16

= α8

The parity is still even since adding 2 does not change the parity as you go from
2k − 2 to 2k, and adding the indices 1, 2 does not affect the number of negative signs
of the weights associated to the first two columns. Adding 4k − 1, 4k to the last two
columns adds two negative signs, and thus parity remains even.

The section β2k is formed in the same manner from the β2k−2. Hence the Cheval-
ley involution is non-trivial in the higher dimensions.

We need two more lemmas to take care of some missing cases.

Lemma 7.7. The fundamental representation V̟2n−1
for SO4n(C) is good pro-

vided n ≥ 2.

Proof. We have
∧2n−1

(C4n)|SO4n−2(C)× SO2(C) contains the nonself-dual rep-

resentation
∧2n−1

(C4n−2)+ ⊠
∧0

(C2).

We also need

Lemma 7.8. The fundamental representation V̟4
for SO4n(C) is good provided

n ≥ 3.

Proof. We have
∧4

(C4n)|SO4n−2(C) × SO2(C) contains the representation∧2
(C4n−2) ⊠

∧2
(C2).

All other fundamental representations for SO4n(C) follow from Lemma 7.6.

We have proved the following

Proposition 7.9. All the fundamental representations except the first of
SO4n(C) are good provided n ≥ 3.
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7.5. The orthogonal groups SO4n+2(C). In the case of SO4n+2(C) the last
two fundamental representations are not self-dual. The Cartan product of the last
two fundamental representations is the exterior power

∧2n(C4n+2).
Every self-dual representation is a Cartan product of Cartan powers of the first

2n− 1 fundamental representations together with the Cartan powers of
∧2n

(C4n+2).
By Theorem 6.4 we will be done once we prove

Lemma 7.10. The representation
∧2n

(C4n+2) = V̟2n+̟2n+1
is good if n ≥ 2.

Proof. We have
∧2n(C4n+2)|SO4n(C) × SO2(C) contains

∧2n−2(C4n) ⊠
∧2(C2).

The first factor is good provided n ≥ 2.

We have concluded our analysis of the even special orthogonal groups SO2n(C).

Proposition 7.11. All of the self-dual representations except the Cartan powers
of the standard representation of SO2n(C) are good provided n ≥ 5.

7.6. The exceptional cases for Sp2n(C) and SO2n+1(C).. We first prove
that Θ is trivial for torus quotients of the space of lines in the symplectic vector space
C2n. Let xi, 1 ≤ i ≤ 2n be the linear coordinates relative to an adapted basis chosen
as before so (ei, e2n+1−i) = 1 and all other symplectic products are zero. We let
i = 2n + 1 − i, 1 ≤ i ≤ 2n. It is then apparent that in any H–invariant monomial xI

in the coordinates xi the indices i and i must appear the same number of times and
consequently xI is invariant under θ. An analogous argument takes care of the torus
quotients of the quadrics Q. We leave to the reader the task of checking that any
H–invariant monomial in the Plücker coordinates for Gr0

2(C
4) (the symplectic case)

and Gr0
2(C5) (the orthogonal case) is invariant under θ.

Finally it remains to treat the case of the flag manifold of lines and planes in C4.
We will do this at the end of §7.8 for the case of general real parameters.

7.7. The exceptional cases for SO2n(C).. We prove that Θ acts trivially on
the torus quotients of the quadrics Q with a symplectic form corresponding to an
integral orbit in the same way as we did for torus quotients of the space of lines in
the symplectic vector space C2n.

Also Θ acts trivially on the torus quotients of Gr0
2(C6) because under the iso-

morphism between SO6(C) and SL4(C) the Grassmannian Gr0
2(C

6) corresponds to
the flag manifold F1,3(C4). Similarly Θ does not act trivially on the torus quotient of
F 0

1,2(C
6) because under the above isomorphism F 0

1,2(C
6) corresponds to the full flag

manifold F1,2,3(C4).
Next we explain why Θ is trivial on the torus quotients of the Lagrangian spaces

Gr0
2(C

4)+, Gr0
2(C

4)−, Gr0
4(C8)+, and Gr0

4(C
8)−. It is easy to check (for example by

using the Spin representation) that Gr0
2(C

4)+, and Gr0
2(C

4)− are isomorphic to CP1

and the corresponding torus quotients are points so it is clear that Θ is trivial for these
two cases. As for the cases of Gr0

4(C
8)+, and Gr0

4(C
8)− it follows from the triality

isomorphism, [FuHa], §20.3, that each of these two flag manifolds is isomorphic to
the quadric Q6 by an isomorphism that is torus equivariant (though perhaps with
a different but equivalent action) and conjugates the Chevalley involution to a new
involution that still acts on the torus by inversion. Hence by Lemma 2.3 the new
involution is conjugate to the Chevalley involution by an element Adh and induces
the same map as the Chevalley involution on any torus quotient. Since we have
seen that Θ is trivial on Q6//0H it follows that Θ is trivial on Gr0

4(C
8)+//0H and

Gr0
4(C

8)−//0H .
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We have now dealt with the cases of Gr0
n(C2n)+ and Gr0

n(C2n)− for n = 2 and
n = 4. The torus quotient of the flag manifold F 0

1,2(C
4) is equal to a point so it is

trivial that Θ is the identity for this case.

It remains to prove that Θ is not equal to the identity for the quotientsF 0
1,2(C

4)
and F 0

1,4(C
8)±//0H . We will prove this in the next section.

7.8. From integral parameters to general parameters. We first observe
that by Proposition 6.10 it suffices (except for a small number of examples) to pro-
mote the nontriviality results obtained above from integral parameters to general
parameters for Grassmannians. Here there is no problem. We use the “scaling trick”.
Namely if we scale the symplectic form by a real number c (thereby multiplying a and
r by c we do not change the torus quotient and we do not change Θ. To be precise
suppose the symplectic form is induced by embedding M into k∗ as the orbit Oλ. Let
mc be the automorphism of k∗ given by multiplication by c. Then mc is T –equivariant
and we have the following diagram

Oλ//rT
mc−−−−→ Ocλ//rT

Θ

x
xΘ

Oλ//rT
mc−−−−→ Ocλ//rT.

Thus Θ is either trivial for all c or nontrivial for all c.
This takes care of all the Grassmannian cases (i.e. the cases where P is maximal).

Also by using the “scaling trick” we may promote all of the above results from integral
parameters to rational parameters. By continuity this allows us to promote all the
cases where we have proved that Θ is trivial to the general case.

It remains to prove that Θ is not equal to the identity on the torus quotients
of F 0

1,2(C
4) and the two flag manifolds F 0

1,4(C
8)+ and F 0

1,4(C
8)−. In all three cases

there is a two real parameter family of symplectic forms. Because we have a two
parameter family the scaling trick does not suffice to extend our nontriviality result
from integral parameters to general parameters. We will give complete details in the
second case and third cases and give the main point for the easier first case. First
we claim it suffices to treat the case of F 0

1,4(C
8)+. Indeed the matrix in O(8) which

interchanges the fourth and fifth standard basis vectors and leaves all the other basis
vectors fixed interchanges F 0

1,4(C
8)+ and F 0

1,4(C
8)−, commutes with Θ and normalizes

the torus. Hence Θ is the identity on F 0
1,4(C

8)+//0T if and only if it is the identity
on F 0

1,4(C
8)−//0T . We now prove

Lemma 7.12. The map Θ is not equal to the identity on F 0
1,4(C

8)+//0T for any
of the symplectic quotients for the symplectic forms corresponding to the orbits of
a̟1 + b̟4 = (a + (b/2), b/2, b/2, b/2).

Proof. We will apply Lemma 6.12 to deduce that Θ is not equal to the identity.

Let St04(C
8) denote the submanifold of the Stiefel manifold of 8 by 4 complex

matrices with columns which are orthonormal for the standard hermitian form such
that the columns span a subspace which is Lagrangian for the bilinear form (x, y) =∑8

i=1 xiy9−i. Let π1 : St04(C
8) → Gr0

1(C
8) be the map sending a matrix to the

span of its first column, and let π4 : St04(C
8) → Gr0

4(C
8) take A to Im(A). Let

π1,4 : St04(C
8) → F 0

1,4(C
8) be given by π1,4(A) = (π1(A), π4(A)). Let ω1 be the

symplectic form corresponding to ̟1 for the isotropic Grassmannian Gr0
1(C

8), and
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let ω4 correspond to 2̟4 for Gr0
4(C

8). A momentum mapping µ1 for Gr0
1(C8) is

given by µ1(π1(A)) = (|a11|2 − |a81|2, |a21|2 − |a71|2, |a31|2 − |a61|2, |a41|2 − |a51|2).
We claim that a momentum mapping for Gr0

4(C
8) is given by µ4(π4(A)) = (|r1|2 −

|r8|2, |r2|2 − |r7|2, |r3|2 − |r6|2, |r4|2 − |r5|2), where ri is the i-th row vector of A and
|ri|2 is the length of the i–th row for the standard Hermitian form on C4. Indeed
since the columns of A are orthonormal for the standard Hermitian form on C8 it
follows that the momentum map ν for the action of the diagonal torus in U(8) is
given by ν(A) = (|r1|2, |r2|2, · · · , |r8|2). The torus T for SO(8) is embedded in the
torus for U(8) as the set of diagonal matrices such that zi = z−1

9−i, 1 ≤ i ≤ 8. Since
the momentum map for T is the orthogonal projection onto the Lie algebra of T the
claim follows. Thus µa,b

1,4 = aµ1 + bµ4 is a momentum map for the natural symplectic

embedding of F 0
1,4(C

8)+ into Gr0
1(C

8)×Gr0
4(C

8)+ for the symplectic form aω1 + bω4

on the product.
Let

A =




+α +α +γ +γ
+α +α −γ −γ
+α −α +γ −γ
+α −α −γ +γ
+β +β +δ +δ
+β +β −δ −δ
−β +β −δ +δ
−β +β +δ −δ




First we claim that the flag corresponding to A as above is isotropic and belongs
to F 0

1,4(C
8)+. Indeed the linear functional xI on

∧4(C8) obtained by wedging together
the first four elements of the basis dual to the standard basis of C8 takes value −16α2γ2

on A (the determinant of the upper four by four block). But xI is fixed by the Hodge
star and consequently takes the value zero on any element of F 0

1,4(C
8)−.

Next note that the columns of A ∈ St04(C
8) and µa,b

1,4(π1,4(A)) = 0 if α, β, γ, δ ∈ R
satisfy the following equations:

(1) 4α2 + 4β2 = 1, 4γ2 + 4δ2 = 1 (unit length)
(2) (a + 2b)(α2 − β2) + 2b(γ2 − δ2) = 0 (momentum 0)
For small enough t ∈ R, solutions are given by

α(t) =
√

1/8 + 2bt(4)

β(t) =
√

1/8 − 2bt(5)

γ(t) =
√

1/8 − (a + 2b)t(6)

δ(t) =
√

1/8 + (a + 2b)t(7)

For t 6= 0, α(t)2 6= β(t)2, and hence aµ1(π1(A(t))) 6= 0. Hence, [A(t)] ∈
F 0

1,4(C
8)+//0H is not fixed by Θ by Lemma 6.12.

For the symplectic flag manifold F 0
1,2(C

4), the reader will give an analogous (but
easier) argument using the matrix

A =




α γ
α −γ
β δ
β −δ



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8. The exceptional groups. In this section we will prove that the self-duality
map Θ is never equal to the identity on a torus quotient of a flag manifold of an
exceptional group.

We will prove the following theorem below using the branching trick

Theorem 8.1. Let G be an exceptional Lie group and Vλ be a self-dual represen-
tation of G. Then Vλ is good.

By Theorem 6.7 we then obtain

Corollary 8.2. Let M be an integral self-dual flag manifold associated to an
exceptional group. Then the self-duality map Θ on M//0H is not equal to the identity.

We then pass from integral parameters to general parameters using the scaling
trick.

8.1. The group G2. See [MTL] Theorem 1.7. By branching to SL3(C) one finds
that both the fundamental representations of G2 are good and hence by Theorem 6.4
all representations are good.

8.2. The group F4. We restrict the fundamental representations Vi, 1 ≤ i ≤ 4
to the subgroup Spin(9).The only bad representations for Spin(9) are the Cartan
powers of the first fundamental representation. We check by Lie that the restriction
of every fundamental representation contains a good irreducible summand.

8.3. The group E6. We will use the notation of [Bou2], page 261.

Lemma 8.3. Any self-dual highest weight λ may be written

λ = a(̟1 + ̟6) + b(̟3 + ̟5) + c̟2 + d̟4.

As a consequence a self-dual irreducible representation Vλ is a quotient of a tensor
product of Cartan powers of V̟1+̟6

,V̟3+̟5
, V̟2

and V̟4
.

We restrict the four basic representations V̟1+̟6
, V̟3+̟5

, V̟2
and V̟4

to the
maximal rank subgroup SL5(C) × SL2(C). We find using LiE that the restriction of
each of the four representations contains either a nonself-dual or a good irreducible
summand. Hence each of these representations is good and hence by Theorem 6.4
any quotient of a tensor product involving a Cartan power of one of the four basic
representations is good. Hence any self-dual representation is good.

8.4. The group E7. We restrict the fundamental representations Vi, 1 ≤ i ≤ 7
to SL8(C). The only self-dual representations for SL8(C) are the Cartan powers of
̟1 + ̟7. We again verify by LiE that the restriction of each Vi all contain either a
good representation or a nonself-dual irreducible summand.

8.5. The group E8. We restrict the fundamental representations to SL9(C).
We again check by LiE that at least one good representation occurs in the restriction
of each fundamental representation of E8.

9. Further questions. It appears that the duality map Θ preserves almost
every important structure connected with the Grassmannian. We list some that need
to be further investigated.
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9.1. Toric Degenerations of Torus Quotients of Flag Manifolds. The
duality map carries the toric space that is the degeneration of Gm+1(Cn)//rH to
the toric space that is the degeneration of Gn−m−1(Cn)//sH in the construction of
P. Foth and Yi Hu in [FH] since it permutes the Gelfand-Tsetlin Hamiltonians, see
§5.6.1. At the moment we have not yet proved that the duality map can be extended
to a map of total spaces of the degeneration. There are a number of other toric
degenerations of flag manifolds, which induce toric degenerations of torus quotients
of flag manifolds, see for example [GL], Chapter 11, where it remains to extend the
duality map to the total space of the degenerations.

9.2. Gel’fand Hypergeometric Functions. In the 1980’s Gel’fand and his
collaborators created a theory of hypergeometric functions on Grassmannians gener-
alizing the classical theory defined on the moduli spaces Mr(CP1), see [DM]. There
is evidence that our duality is compatible with these functions. Indeed in the early
real version of the theory this is proved in [GG]. However, it is not easy to see how
duality of hypergeometric functions would go in the complex case. Nevertheless, there
are reasons to believe that there should be such a duality. To begin with, the duality
map preserves the GGMS stratifications, see [GGMS]. We recall the definition. The
GGMS strata are parametrized by matroids on the set 1, 2, ..., n. Two points x and
y are in the same stratum if M(x) = M(y). For M a matroid on 1, 2, ..., n we let
SM denote the corresponding stratum. The dual M∗ of a matroid M is defined and
discussed in [Ox], Chapter 2. We have the following theorem [HM]

Theorem 9.1.

Ψ(SM ) = SM∗ .

However it is not clear that the duality map lifts to the families of arrangement
complements over the strata that give rise to the hypergeometric functions.

If a duality of hypergeometric functions could be established it would afford the
opportunity to carry over the very detailed information on monodromy obtained in
[DM] to some of the Gelfand examples.

9.3. Self-dual torus orbits. A very concrete problem suggested by the work
of [DO] is the problem of finding the fixed points of the duality map (“self-associated
point sets” in the terminology of [DO]). This problem is discussed in detail in Chapter
III of [DO]. We note that in [Foth], P. Foth gave a description of the fixed-point
set of an anti-holomorphic involution on a weight variety. The problem of finding
the self-dual torus orbits of flags is the analogous problem for the (holomorphic)
Chevalley involution. However the results of [DO] suggest this problem will be more
subtle. For example, it is proved in [DO] following [Co] that in two cases the fixed
set is closely related to the moduli theory of curves. Since one of these results is
very easy to describe we conclude with it. Note first that we obtain a self-dual
torus quotient by giving Grn(C2n) the symplectic form corresponding to 2̟n and
taking r = (1, 1, · · · , 1) = ̟2n so a = 2 = |r|/n. In [DO], Theorem 4, pg. 51, it
is proved that the fixed set Sn−1 of the self-duality Θ acting on the resulting torus
quotient (equivalently the moduli space of 2n–tuples of equally weighted (by 1) points

in CPn−1) is a rational subvariety of dimension n(n+1)
2 . In Example 4, pg. 37, of [DO]

it is proved that S2 is isomorphic to the Baily-Borel-Satake compactification of the
(level two) Siegel modular variety of genus 2.
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