
Stochastic Systems
2016, Vol. 6, No. 1, 26–89
DOI: 10.1214/14-SSY163

DYNAMIC SCHEDULING FOR PARALLEL SERVER
SYSTEMS IN HEAVY TRAFFIC: GRAPHICAL

STRUCTURE, DECOUPLED WORKLOAD MATRIX AND
SOME SUFFICIENT CONDITIONS FOR SOLVABILITY OF

THE BROWNIAN CONTROL PROBLEM∗

By V. Pesic
†
and R. J. Williams

‡

XR Trading† and University of California, San Diego‡

We consider a dynamic scheduling problem for parallel server sys-
tems. J. M. Harrison has proposed a scheme for using diffusion control
problems to approximately solve such control problems for heavily
loaded systems. This approach has been very successfully used in the
special case when the diffusion control problem can be reduced to
an equivalent one for a one-dimensional workload process. However,
it remains a challenging open problem to make substantial progress
on using Harrison’s scheme when the workload process is more than
one-dimensional. Here we present some new structural results con-
cerning the diffusion control problem for parallel server systems with
arbitrary workload dimension. Specifically, we prove that a certain
server-buffer graph associated with a parallel server system is a for-
est of trees. We then exploit this graphical structure to prove that
there exists a matrix, used to define the workload process, that has
a block diagonal-like structure. An important feature of this matrix
is that, except when the workload is one-dimensional, this matrix is
frequently different from a choice of workload matrix proposed by
Harrison. We demonstrate that our workload matrix simplifies the
structure of the control problem for the workload process by prov-
ing that when the original diffusion control problem has linear hold-
ing costs, the equivalent workload formulation also has a linear cost
function. We also use this simplification to give sufficient conditions
for a certain least control process to be an optimal control for the
diffusion control problem with linear holding costs. Under these con-
ditions, we propose a continuous review threshold-type control policy
for the original parallel server system that exploits pooling of servers
within trees in the server-buffer graph and uses non-basic activities
connecting different trees in a critical manner. We call this partial
pooling. We conjecture that this threshold policy is asymptotically
optimal in the heavy traffic limit. We illustrate the solution of the
diffusion control problem and our proposed threshold control policy
for a three-buffer, three-server example.

Received November 2014.
∗Research supported in part by NSF grants DMS-0906535 and DMS-1206772.
MSC 2010 subject classifications: Primary 60K25, 68M20, 90B36; secondary 60J70.
Keywords and phrases: Stochastic networks, dynamic control, resource pooling, heavy

traffic, Brownian Control Problems, state space collapse, threshold policies.

26

http://www.i-journals.org/ssy/
http://dx.doi.org/10.1214/14-SSY163

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 27

CONTENTS

1 Introduction . 28
1.1 Heavy traffic approach . 28
1.2 Prior work for one-dimensional workload 30
1.3 Beyond one-dimensional workload: Contributions of this paper 31
1.4 Organization of the paper . 34
1.5 Notation and terminology . 34

2 Parallel server system . 36
2.1 System structure . 36
2.2 Stochastic primitives . 38
2.3 Scheduling control . 39

3 Sequence of systems, heavy traffic and the cost function 40
3.1 Sequence of systems . 40
3.2 Heavy traffic and fluid model 41
3.3 Diffusion scaling and cost function 43

4 Brownian Control Problem and Equivalent Workload Formulation 44
4.1 Brownian Control Problem (BCP) 44
4.2 Equivalent Workload Formulation (EWF) 46
4.3 Reduced EWF (REWF) . 48
4.4 Harrison’s choice of workload matrix and the dual program . 50

5 Structure of the server-buffer graph 50
5.1 Server-buffer graph . 50
5.2 Forest of trees structure . 51

6 Decoupled workload matrix and the cost function in the EWF . . 56
6.1 Decoupled workload matrix and associated control matrix . . 56
6.2 Columns of G and components of the control Ũ 61
6.3 Cost function in the EWF when the BCP has linear holding

cost . 62
6.4 Our decoupled workload matrix versus Harrison’s choice . . . 63

7 Solution of the BCP for certain graph and cost structure 65
7.1 Graph structure . 66
7.2 Control matrix G̃ and cost assumption 67
7.3 Solution of the REWF and BCP 69
7.4 Proof of Theorem 7.1 . 72

8 Proposed interpretation of the optimal solution of the BCP 74
8.1 Overall description of the control policy 74
8.2 Threshold policy . 75

9 Illustrative example . 79
9.1 Description and first order data 79
9.2 Brownian Control Problem 80

28 V. PESIC AND R. J. WILLIAMS

9.3 Solution of the REWF and BCP 80
9.4 Threshold policy . 83

10 Further research . 86
References . 87
Author’s addresses . 89

1. Introduction. In this paper, we consider a problem of dynamic
scheduling for parallel server systems. Such systems arise as stochastic mod-
els for “one pass” processing in a variety of applications in operations man-
agement, including manufacturing, computer systems and customer service
centers. An important feature of these systems is that servers can have over-
lapping capabilities that allow for flexible scheduling of jobs to available
servers. Indeed, parallel server systems constitute an important subclass of
more general stochastic processing networks in which one can study the im-
plications of server flexibility without the additional complications of feed-
back.

The structure of the parallel server systems considered in this paper is
described in detail in Section 2 below. Briefly, in these systems, multiple
types of jobs are processed using a bank of heterogeneous servers operating
in parallel. Jobs awaiting service are stored in buffers according to their type
and jobs exit the system after receiving service. Jobs from a given buffer may
be processed by one of several different servers and servers may process more
than one type of job. The system manager seeks to minimize holding costs
by dynamically scheduling waiting jobs to available servers. In general, it is
a challenging problem to design “good” control policies for these systems.

1.1. Heavy traffic approach. With the exception of a few special cases,
dynamic scheduling problems for parallel server systems cannot be solved
exactly, and it is natural to resort to more tractable approximations. Here
we consider one class of such approximations proposed by J. M. Harrison
[14, 17] called Brownian Control Problems (BCPs). For these approxima-
tions, stochastic processes describing queue-lengths in the original network
are approximated by diffusion processes under a rescaling of time and space.
The limiting regime for the approximation is one in which the number of
servers is kept fixed while the nominal load on the system approaches the
processing capacity of the system. This is often referred to as the conven-
tional heavy traffic regime. Harrison in fact proposes diffusion approxima-
tions for more general stochastic processing networks than the parallel server
systems considered here. However, there are a variety of open problems asso-
ciated with using Harrison’s scheme and by studying the subclass of parallel

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 29

server systems, which are interesting in their own right, we are able to pro-
duce some new results related to these open problems.

The steps in using Harrison’s [14, 17] scheme may be described as follows.
(This outline is the same for parallel server systems and for more general
stochastic processing networks.)

(I) Formulate a control problem for the original stochastic processing net-
work model.

(II) Formulate a notion of heavy traffic (when there is flexibility in assign-
ing jobs from a buffer to more than one server, the load on the servers
depends on the scheduling of jobs and so one needs to specify what is
meant by heavy traffic).

(III) Formulate a formal diffusion approximation (Brownian Control Prob-
lem) for the original control problem.

(IV) Solve the Brownian Control Problem (BCP).
(V) “Interpret” the solution of the BCP by proposing a policy for the

original network.
(VI) Investigate the performance of the policy proposed in (V). In par-

ticular, determine whether it is asymptotically optimal (in the heavy
traffic limit).

For stochastic processing networks that include the parallel server sys-
tems considered here, steps (I)–(III) have been well developed in works of
Harrison et al. [14, 17, 19]. For unitary networks, which include parallel
server systems, Budhiraja and Ghosh [11] have proved convergence of the
value function for the original system to that for the BCP, thereby justi-
fying removal of the word “formal” in step (III). (Kushner and Chen [23]
also proved such convergence for a certain family of parallel server systems.)
For step (IV), a substantial simplification of the Brownian Control Problem
was obtained by Harrison and Van Mieghem [19] to a so-called Equivalent
Workload Formulation (EWF). In this, the Brownian queue-length process
in the BCP is replaced by a Brownian workload process in the EWF. This
can result in a substantial reduction in dimension of the state space for the
diffusion control problem. It also connects with notions of resource pooling
introduced by Kelly and Laws [22].

In the special case when the Brownian workload process is one-dimen-
sional, there have been quite a few works executing some or all of steps
(IV)–(VI) for various kinds of stochastic processing networks and espe-
cially for parallel server systems [1, 6, 7, 13, 16, 18, 29, 32, 34]. Beyond
one-dimensional workload, there are a few examples of multi-class queue-
ing networks (which are not parallel server systems) in which the Brown-

30 V. PESIC AND R. J. WILLIAMS

ian workload dimension is low for which steps (IV)–(V), and occasionally
(VI), have been executed (see e.g., [10, 20, 22, 26, 27, 30, 33]). Also, several
methods for generically approximating solutions of the BCP have been pro-
posed for various stochastic processing networks, see e.g., [11, 15, 24, 25, 28].
However, these generic methods typically do not take advantage of elegant
structure revealed through solution of the EWF and BCP. Consequently, it
has remained an outstanding open problem to take advantage of the EWF
dimension reduction to execute steps (IV)–(VI) when the Brownian work-
load is not one-dimensional, and to develop interpretations in step (V) that
preserve elegant structure revealed through solution of the EWF and BCP.
In particular, for parallel server systems, this has been an open problem for
Brownian workload dimensions above one.

In this paper, towards breaking the aforementioned “dimension barrier”,
we provide some sufficient conditions for resolving steps (IV)–(V) for parallel
server systems with arbitrary Brownian workload dimension. In subsequent
work, we plan to address (VI) under these conditions.

To set the scene for describing our contributions, the next subsection re-
views the literature related to steps (IV)–(VI) when the Brownian workload
is one-dimensional. After that, in §1.3, we summarize the main contributions
of this paper. We follow that with subsections describing the organization
of this paper and notation and terminology.

1.2. Prior work for one-dimensional workload. Here we shall emphasize
work for parallel server systems, and will mention related work for more
general stochastic processing networks in passing. Henceforth, we shall just
use the term “workload” in place of “Brownian workload”.

When the workload dimension is one, for suitable holding costs (including
those that are linear and certain convex costs), the EWF and BCP can be
solved explicitly, and the optimal solution of the EWF is the least control
solution. This situation of one-dimensional workload is often refered to as
one of complete resource pooling (CRP), because, in the solution of the BCP,
the efforts of the individual servers can be efficiently combined to act as a
single pooled resource or “superserver”. Even in this case where the EWF
and BCP diffusion control problems can be solved, so that step (IV) is
resolved, there is still the challenge of executing steps (V)–(VI).

Harrison and López [18] initiated study of parallel server systems when
the workload is one-dimensional. For linear holding costs, they addressed
steps (IV) and (V) by giving an explicit solution for the BCP and using this
solution to propose a discrete review policy for use in the original paral-
lel server system. In the subsequent work [16], Harrison proved asymptotic
optimality of such a discrete review policy for the case of two servers and

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 31

two buffers with linear holding costs and special distributional assumptions
when the workload is one-dimensional, thus completing step (VI) for this
example.

Another important aspect of [18] was that Harrison and López gave an
elegant characterization of the situation when the workload dimension is
one. In particular, they proved that one-dimensional workload for parallel
server systems is equivalent to connectedness of a certain server-buffer graph
in which the servers and buffers are nodes and undirected edges between the
nodes are given by basic activities. (A basic activity is an activity that plays
a role in the solution of a first order (or fluid) approximation to the parallel
server scheduling problem.) We note that although the characterization in
[18] was developed in the context of linear holding costs, the proof does not
use the form of the cost and so this result is true for a more general cost
structure such as that in Harrison and Van Mieghem [19].

Williams [34] subsequently showed that the server-buffer graph identi-
fied in [18] is necessarily a tree and proposed a continuous review dynamic
threshold policy based on this structure. Bell and Williams [6, 7] proved
asymptotic optimality of such a dynamic threshold policy for linear holding
costs when the workload is one-dimensional, thus completing the final step
(VI) for parallel server systems with linear holding costs.

For parallel server systems with certain strictly convex holding costs and
one-dimensional workload, Stolyar [32] and Mandelbaum and Stolyar [29]
proved asymptotic optimality of max-weight and generalized cμ-type poli-
cies, respectively. Stolyar’s work was in discrete time and that of Mandel-
baum and Stolyar was in continuous time. Also, the work of Stolyar was for
generalized switches which are somewhat more general than parallel server
systems. Going beyond one-pass systems, Ata and Kumar [1] and Dai and
Lin [13] considered stochastic processing networks with feedback when the
workload is one-dimensional. Ata and Kumar proved asymptotic optimality
of a discrete review policy for unitary networks with linear holding costs. For
more general stochastic processing networks with quadratic holding costs,
Dai and Lin proved asymptotic optimality of so-called maximum pressure
policies. An attractive feature of the works [13, 29, 32] is that they do not re-
quire knowledge of the arrival rates for execution of the policies. The policies
used there do not cover the linear holding cost case. However, as outlined in
[29, 32] and shown in [13], the policies can be used to give asymptotically
ε-optimal policies in the linear holding cost case.

1.3. Beyond one-dimensional workload: Contributions of this paper. In
a sense, this paper is a generalization of the seminal work of Harrison and

32 V. PESIC AND R. J. WILLIAMS

López [18] for parallel server systems with one-dimensional workload to the
situation where the workload dimension is more than one.

Our first result generalizes the graphical result of [18] to prove that the
server-buffer graph introduced in [18] for parallel server systems is for arbi-
trary workload dimension a forest of trees, where the number of trees equals
the workload dimension.

Our second result relates to the linear transformation used to define work-
load from queue-length. In general, the matrix used to define workload from
queue-length in the reduction of the BCP to the EWF is not unique. When
the workload is one-dimensional, it is effectively unique, being unique up
to a scalar multiple. However, for higher dimensional workloads, there are
generally infinitely many choices of workload matrix. The choice of workload
matrix is important as it affects the analytic tractability of the EWF and
hence the BCP. In [17], Harrison proposed a method for choosing the work-
load matrix which reduced the possible choices to a finite set. His choice is
in terms of the extremal optimal solutions of the dual of the linear program
used to define heavy traffic. This choice was very useful in the case of one-
dimensional workload. However, we argue in this paper that, at least for
the parallel server systems considered here, when the workload dimension
exceeds one, there is a better choice of workload matrix, which in a certain
sense uses a localized version of Harrison’s choice.

More precisely, for our second result, we prove that a workload matrix
can be chosen that has a natural block diagonal-like structure (in which
each block is a single row). This choice of workload matrix is naturally sug-
gested by the “forest of trees” structure of the server-buffer graph revealed
in our first result. Indeed, the rows of the workload matrix are obtained
from the solutions of the duals of the linear programs associated with each
of the individual trees. We call this a decoupled workload matrix because
each queue-length component affects just one workload component and the
workload matrix partitions or decouples the queue-length components com-
ing from different trees. We further show that for our choice of workload
matrix, when the BCP has linear holding costs, the cost function for the
EWF is a linear function of the workload (with positive coefficients). This
represents a significant simplification since in general the EWF cost function
is convex and piecewise linear when the BCP has linear holding costs. In
Section 6.4, we use a simple example to illustrate the fact that in general the
EWF has a more straightforward structure under our decoupled workload
matrix than under the choice proposed in [17].

For our third result, assuming linear holding costs for the BCP, we exploit
the simplification of the EWF afforded by our decoupled workload matrix to

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 33

provide sufficient conditions for explicit solvability of the EWF and the BCP.
More precisely, we provide sufficient conditions for a least control to be a
solution of the EWF. We focus on the situation where the trees in the server-
buffer graph are connected in a fairly minimal way by non-basic activities
that are relatively expensive to use. (Non-basic activities are activities that
do not play a role in solving a first order (or fluid) approximation to the
parallel server scheduling problem, but which can play an important role in
solving the second order (BCP) diffusion approximation.) In an operations
management application, an example of this situation would arise when
in each tree there is a single server who is cross-trained to occasionally
serve jobs from a buffer in another tree, although at a higher overall cost
than for its usual activities. We further show how the set of controls in the
EWF can be reduced to yield a Reduced Equivalent Workload Formulation
(REWF) and that a least control process, whose existence is guaranteed
by results of Yang [35], is an optimal control for the REWF. Under our
conditions, we propose a continuous review threshold-type control policy
for the original parallel server system which we conjecture is asymptotically
optimal in the heavy traffic limit. This control policy takes advantage of
pooling of servers within trees, which we call partial pooling. Thus we provide
sufficient conditions for execution of steps (IV)–(V) of Harrison’s scheme,
where this was made possible by use of our decoupled workload matrix. The
resolution of these steps is not known in general using the choice of workload
matrix in [17].

To illustrate our theoretical developments, we consider a three-buffer,
three-server parallel server system with linear holding costs for which the
workload is two-dimensional. The reader curious about the application of
our results may wish to consult this example before reading about the gen-
eral case. For this specific example we solve the REWF (and hence the
EWF and BCP), and we describe the threshold control policy in detail. We
prove asymptotic optimality of this policy for this example in a separate
work [31]. To our knowledge, this example is the first instance of a proved
asymptotically optimal policy for a parallel server system with more than
one-dimensional workload and critical use of non-basic activities in the con-
ventional heavy traffic regime. (We note that Ata and Van Mieghem [3]
propose selective use of a non-basic activity based on a large deviations
analysis of the approximating diffusion control problem in a parallel server
example with two-dimensional queue-length and workload; however, they do
not address the issue of asymptotic optimality. Also, in the different con-
text of the many server or Halfin-Whitt scaling limit, Atar, Mandelbaum
and Shaiket [4] made use of non-basic activities under a complete resource
pooling condition.)

34 V. PESIC AND R. J. WILLIAMS

1.4. Organization of the paper. The paper is organized as follows. In Sec-
tion 2, we describe the model of a parallel server system considered here.
As we will need various elements from steps (II)–(III) of Harrison’s scheme
to provide context for our results, in Sections 3 and 4 we summarize these
steps, as well as the EWF reduction provided in [19]. In Section 3, we intro-
duce a sequence of parallel server systems and describe what it means for
the sequence to approach heavy traffic. In Section 4, we describe the Brow-
nian Control Problem and the Equivalent Workload Formulation associated
with the sequence of parallel server systems. In this section we also intro-
duce a further reduction, showing how to reduce the Equivalent Workload
Formulation to a simpler control problem called the Reduced Equivalent
Workload Formulation (REWF). Apart from the reduction to the REWF,
readers familiar with steps (II)–(III) of Harrison’s scheme may wish to skim
Sections 2–4 and proceed rather quickly to Section 5 where the main results
begin.

In Section 5, we prove our first main result on the “forest of trees” struc-
ture of the server-buffer graph. In Section 6 we prove our second main result.
We prove the existence of a decoupled workload matrix and describe the as-
sociated control matrix. The results up to this point do not depend on the
form of the holding cost function in the BCP. Later in Section 6, when the
BCP has linear holding costs and our decoupled workload matrix is used,
we prove that the cost function for the EWF is a linear function of work-
load. In Section 7, using the simplification of the EWF provided by our
decoupled workload matrix when the BCP has linear holding costs, we give
some sufficient conditions under which the least control process is a solu-
tion of the REWF. Under these conditions, we solve the BCP. In Section 8,
we interpret for the original parallel server system the solution of the BCP
obtained in Section 7 and we propose a control policy which we conjecture
is asymptotically optimal in the heavy traffic limit. In Section 9, we give a
three-buffer, three-server example of a parallel server system. For this ex-
ample we carry out the steps from Sections 2-7 and we describe the control
policy proposed in Section 8. In Section 10, we summarize some directions
for further research.

1.5. Notation and terminology. The set of non-negative integers is de-
noted by N and the value +∞ is denoted by ∞. We let R+ denote [0,∞).
The m-dimensional (m ≥ 1) Euclidean space is denoted by Rm and the m
dimensional positive orthant is denoted by Rm

+ = {x ∈ Rm : xi ≥ 0 for i =

1, . . . ,m}. Let |x| denote the norm on Rm given by |x| =
(∑

i x
2
i

)1/2
. Let

{e1, . . . , em} be the standard basis for Rm. A sum over an empty index set

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 35

is defined to be zero. Vectors in Rm should be treated as column vectors un-
less indicated otherwise, inequalities between vectors should be interpreted
componentwise, the transpose of a vector b will be denoted by b′, the diag-
onal matrix with the entries of a vector b on its diagonal will be denoted by
diag(b), and the dot product of two vectors b and c in Rm will be denoted
by b · c.

For a matrix A, the ith column of A will be denoted by Ai.
For each positive integer m, let Dm be the space of “Skorokhod paths” in

Rm having time domain R+, i.e., D
m is the set of all functions ω : R+ −→

Rm that are right continuous on R+ and have finite left limits on (0,∞).
Let Dm

+ = {ω ∈ Dm : ω(0) ≥ 0}. The member of Dm that stays at the
origin in Rm for all time will be denoted by 0. For ω ∈ Dm,

||ω||t = sup
s∈[0,t]

|ω(s)|, for each t ≥ 0.(1.1)

Consider Dm to be endowed with the usual Skorokhod J1-topology. Let
Mm denote the Borel σ-algebra on Dm associated with the J1-topology.
For a non-negative integer m, given a probability space (Ω,F ,P), a m-
dimensional stochastic process defined on this space is a collection X =
{X(t) : t ∈ R+} of measurable functions X(t) : Ω → Rm where Ω has
the σ-algebra F and Rm has the Borel σ-algebra. Such a process X will be
said to be non-decreasing, if each of its components is non-decreasing P-a.s.
All of the continuous-time stochastic processes in this paper are assumed to
have sample paths in Dm for some m ≥ 1. (We shall frequently use the term
process in place of stochastic process.)

Suppose that {Wn}∞n=1 is a sequence of processes with sample paths in
Dm for some m ≥ 1. Then we say that {Wn}∞n=1 is tight if and only if
the probability measures induced by the Wn on (Dm,Mm) form a tight
sequence, i.e., they form a weakly relatively compact sequence in the space
of probability measures on (Dm,Mm). The notation Wn =⇒ W as n →
∞, where W is a process with sample paths in Dm, will mean that the
probability measures induced by the Wn on (Dm,Mm) converge weakly to
the probability measure on (Dm,Mm) induced by W . If, for each n, Wn and
W are defined on the same probability space, we write Wn → W uniformly
on compact time intervals in probability (u.o.c. in prob.) as n → ∞, if
P(||Wn −W ||t ≥ ε) → 0 as n → ∞ for each ε > 0 and t ≥ 0. In particular,
if W is a continuous deterministic process and Wn =⇒ W , then Wn →
W u.o.c. in probability. This result is implicitly used several times in the
proofs below to combine statements involving convergence in distribution to
deterministic processes.

36 V. PESIC AND R. J. WILLIAMS

A filtered probability space is a quadruple (Ω,F , {Ft},P) where (Ω,F ,P)
is a probability space and {Ft} is a filtration, i.e., a family of sub-σ-algebras
of the σ-algebra F indexed by t ∈ R+ such that Fs ⊂ Ft whenever 0 ≤
s ≤ t < ∞. An m-dimensional process X = {X(t) : t ∈ R+} defined on
such a filtered probability space is said to be adapted if for each t ≥ 0
the function X(t) : Ω → Rm is measurable when Ω has the σ-algebra Ft

and Rm has its Borel σ-algebra. Given a probability space (Ω,F , {Ft},P),
a vector θ ∈ Rm, an m × m symmetric, strictly positive definite matrix
Σ, an {Ft}-Brownian motion with statistics (θ,Σ) starting at the origin, is
an m-dimensional process on (Ω,F , {Ft},P) such that the following hold
under P:

(a) X is anm-dimensional Brownian motion with continuous sample paths
such that X(0) = 0 P-a.s.,

(b) {Xi(t)− θit,Ft, t ≥ 0} is a martingale for i = 1, . . . ,m,
(c) {(Xi(t)− θit)(Xj(t)− θjt) − Σijt,Ft, t ≥ 0} is a martingale for i, j =

1, . . . ,m.

In this definition, the filtration {Ft} may be larger than the one generated
by X; however for each t ≥ 0, under P, the σ-algebra Ft is independent of
the increments of X from t onward. The parameter θ is called the drift of
the Brownian motion X and Σ is called the covariance matrix of X.

2. Parallel server system. In this section we describe our model of a
parallel server system. In the following section, we introduce the notion of
heavy traffic for a sequence of such systems. The setup in this section and
the next one is similar to that used in Bell and Williams [7].

2.1. System structure. We consider a parallel server system (see Fig-
ure 1) consisting of a positive, finite number I of infinite capacity buffers
(job classes) for holding jobs awaiting service, indexed by i = 1, . . . , I, and
a positive, finite number K of (non-identical) servers working in parallel in-
dexed by k = 1, . . . ,K. Customers arrive to each of the buffers from outside
the system. Arrivals to buffer i are called class i jobs. Jobs within each
buffer are ordered according to their arrival times with the job that arrived
the longest time ago being at the head of the line. Each job that enters
the system requires a single service by a server before it leaves the system.
Service of a given job class i by a given server k is called a processing ac-
tivity. A single server k may be capable of processing several different job
classes and a single job class i may be capable of being processed by one of
several servers. To describe the available processing activities, it is assumed
that there are a positive, finite number J of processing activities, indexed by

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 37

Fig 1. Parallel server system.

j = 1, . . . , J, where J ≤ I ·K. Each activity j, serves a single buffer i(j) and
is performed by a single server k(j). The relations between the activities
and buffers, and activities and servers, are specified by two deterministic
matrices C,A where C is an I× J matrix with

(2.1) Cij =

{
1 if activity j processes class i,

0 otherwise,

and A is a K× J matrix with

(2.2) Akj =

{
1 if server k performs activity j,

0 otherwise.

Each activity j has exactly one class i(j) and one server k(j) associated
with it, and so each column of C and each column of A contains the number
one exactly once. We assume that each job class is capable of being served
by at least one processing activity and each server is capable of performing
at least one processing activity, and so each row of C and each row of A
contains the number one at least once. Once a job starts being served at
a server it remains there until its service is complete, even if its service is

38 V. PESIC AND R. J. WILLIAMS

suspended for some time. A server may not start on a new job of class i
until it has finished any class i job that it is working on or that it has in
suspension. When taking a job from a buffer, a server always takes the job
at the head of the line. A server may not work unless it has a job to work
on. It is assumed that the system is initially empty. For later use, we let
I = {1, . . . , I},J = {1, . . . , J} and K = {1, . . . ,K}.

2.2. Stochastic primitives. All random variables and stochastic processes
in our parallel server model are defined on a complete probability space
(Ω,F ,P). The expectation operator underP is denoted by E. For each buffer
i ∈ I, there is a sequence of strictly positive, independent and identically
distributed (i.i.d.) random variables {ui(l), l = 1, 2 . . . }, with mean λ−1

i ∈
(0,∞) and squared coefficient of variation (variance divided by the square of
the mean) a2i ∈ [0,∞). The random variable ui(l) represents the interarrival
time between the (l − 1)th and lth customer to buffer i; by convention, the
“0th arrival” occurs at time zero. Let

ζi(n) =
n∑

l=1

ui(l), n = 1, 2, . . . ,(2.3)

and define

Ei(t) = sup{n ≥ 0 : ζi(n) ≤ t} for all t ≥ 0.(2.4)

Then Ei(t) is the number of arrivals to buffer i that have occurred in [0, t],
and λi is the long run arrival rate to buffer i. For each activity j ∈ J , there
is a sequence of strictly positive i.i.d. random variables {vj(l), l = 1, 2, . . . }
with mean μ−1

j ∈ (0,∞) and squared coefficient of variation b2j ∈ [0,∞).

The random variable vj(l) is the amount of service time required by the lth

job processed by activity j, and μj is the long run rate at which activity
j could process its associated class of job i(j) if the associated server k(j)
worked continuously and exclusively on this class. For j ∈ J , let ηj(0) = 0,

ηj(n) =

n∑
l=1

vj(l), n = 1, 2, . . . ,(2.5)

and

Sj(t) = sup{n ≥ 0 : ηj(n) ≤ t} for all t ≥ 0.(2.6)

Then Sj(t) is the number of jobs that activity j could process up to time
t if the server k(j) worked continuously and exclusively on class i(j) jobs.
The interarrival time sequences {ui(l) : l = 1, 2, . . . }, i ∈ I, and service
time sequences {vj(l), l = 1, 2, . . . }, j ∈ J , are all assumed to be mutually
independent.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 39

2.3. Scheduling control. The system is controlled by specifying how each
server is to allocate its time to its processing activities. The setup described
here is fairly general. It allows for dynamic sequencing and alternate routing
of jobs. For example, if server k performs more than one activity (i.e., Akj 	=
0 for more than one j), then once service of a job is complete, server k can
make a sequencing decision, i.e., which activity to perform next. If a given
job class i can be processed by more than one activity (i.e., Cij 	= 0 for more
than one j), then class i may be serviced by one of a collection of servers
and so simple alternate routing capabilities are encompassed here.

Formally, scheduling control is exerted through specification of a J-dimen-
sional stochastic process, T = {T (t), t ≥ 0} where

T (t) = (T1(t), . . . , TJ
(t))′ for t ≥ 0,(2.7)

and Tj(t) is the cumulative amount of time devoted to activity j by server
k(j) in the time interval [0, t]. The control process T must satisfy certain
natural constraints that go along with its interpretation (see (2.11)–(2.15))
below. For each t ≥ 0, let

I(t) = 1t−AT (t),(2.8)

where 1 is the K-dimensional vector of ones. Then for each k ∈ K, Ik(t)
is the cumulative amount of time that server k has been idle up to time t.
The (cumulative) idle-time process, I(·), is continuous and non-decreasing
in all of its components. This implies that T is Lipschitz continuous with
Lipschitz constant equal to one. For each j, Sj(Tj(t)) is the number of jobs
processed by activity j in the time interval [0, t]. For each i ∈ I, let

Qi(t) = Ei(t)−
J∑

j=1

CijSj(Tj(t)),(2.9)

which we write in the vector form (with a slight abuse of notation for
S(T (t))) as

Q(t) = E(t)− CS(T (t)).(2.10)

Then Qi(t) is interpreted as the number of class i jobs that are either in
queue or in the process of being served at time t. The following properties
are assumed for any scheduling control T with associated queue-length Q
and idle-time process I. For each i ∈ I, j ∈ J , k ∈ K,

Tj(t) ∈ F for each t ≥ 0,(2.11)

40 V. PESIC AND R. J. WILLIAMS

Tj is Lipschitz continuous with a Lipschitz constant of one,(2.12)

Tj is non-decreasing andTj(0) = 0,(2.13)

Ik is continuous, non-decreasing, and Ik(0) = 0,(2.14)

Qi(t) ≥ 0 for all t ≥ 0.(2.15)

For later reference, we collect here the queueing system equations satisfied
by Q and I:

Q(t) = E(t)− CS(T (t)), t ≥ 0,(2.16)

I(t) = 1t−AT (t), t ≥ 0,(2.17)

where T,Q and I satisfy the properties (2.11)–(2.15). In addition to the
properties mentioned above one might expect that T should satisfy some
additional non-anticipating property. Even though this is a reasonable as-
sumption to make, we have not restricted T a priori in this way. However,
the policy that we propose in Section 8 is non-anticipating.

The cost function we shall use involves holding costs associated with the
expense of holding jobs of each class in the system until they have completed
service. We defer the precise description of this cost function to the next sec-
tion, since it is formulated in terms of normalized queue-lengths, where the
normalization is in diffusion scale. Indeed, in the next section, we describe
the sequence of parallel server systems to be used in formulating the notion
of heavy traffic asymptotic optimality.

3. Sequence of systems, heavy traffic and the cost function. For
the parallel server system described in the last section, the problem of find-
ing a control policy that minimizes a cost associated with holding jobs in
the system is notoriously difficult. One possible means for discriminating be-
tween policies is to look for policies that outperform others in some asymp-
totic regime. Here we regard the parallel server system as a member of a
sequence of systems indexed by r that is approaching heavy traffic (this no-
tion is defined below). In this asymptotic regime, the queue-length process
is normalized with diffusive scaling – this corresponds to viewing the system
over long intervals of time of order r2 (where r will tend to infinity in the
asymptotic limit) and regarding a single job as only having a small contribu-
tion to the overall cost of storage, where this is quantified to be of order 1/r.

3.1. Sequence of systems. Consider a sequence of parallel server systems
indexed by r, where r tends to infinity through a sequence of values in [1,∞).
The rth system has the same basic structure as described in Section 2, except
that the arrival and service rates and scheduling control are allowed to vary

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 41

with r. We denote this dependence on r by appending a superscript r to all
of the relevant quantities. We assume that the interarrival and service times
are given for each r ≥ 1, i ∈ I, j ∈ J , by

uri (l) =
1

λr
i

ǔi(l), vrj (l) =
1

μr
j

v̌j(l), for l = 1, 2, . . . ,(3.1)

where ǔi(l), v̌i(l), are independent of r, with mean 1 and squared coefficient
of variation a2i , respectively b2i . The sequences {ǔi(l), l = 1, 2, . . . }, {v̌j(l), l =
1, 2 . . . } are mutually independent sequences of i.i.d. random variables. This
setup is convenient for allowing the sequence of systems to approach the
heavy traffic limit by simply changing arrival and service rates while keep-
ing the underlying sources of variability ǔi(l), v̌j(l) unaffected. We make the
following assumption about the first order parameters for our sequence of
systems.

Assumption 3.1. There are vectors λ ∈ RI
+, μ ∈ RJ

+ such that

(i) λi > 0 for all i ∈ I, μj > 0 for all j ∈ J ,
(ii) λr → λ and μr → μ, as r → ∞.

3.2. Heavy traffic and fluid model. In [17], Harrison proposed a notion
of heavy traffic for stochastic processing networks with scheduling control.
Given the parameters λ, μ from Assumption 3.1, for our sequence of parallel
server systems, his notion is the same as Assumption 3.2 below. Henceforth,
we let R = Cdiag(μ).

Assumption 3.2. There is a unique optimal solution (ρ∗, x∗) of the lin-
ear program:

minimize ρ subject to Rx = λ, Ax ≤ ρ1 and x ≥ 0.(3.2)

Moreover, this solution is such that ρ∗ = 1 and Ax∗ = 1.

A fluid model solution (with zero initial condition) is a triple of continuous
deterministic functions (Q̄, T̄ , Ī) defined on [0,∞), where Q̄ takes values in
RI

+, T̄ takes values in RJ

+ and Ī takes values in RK
+, such that

Q̄(t) = λt−RT̄ (t), t ≥ 0,(3.3)

Ī(t) = 1t−AT̄ (t), t ≥ 0,(3.4)

and for all i, j, k,

T̄j is Lipschitz continuous with a Lipschitz constant of one,(3.5)

42 V. PESIC AND R. J. WILLIAMS

T̄j is non-decreasing, and T̄j(0) = 0,(3.6)

Īk is continuous, non-decreasing, and Īk(0) = 0,(3.7)

Q̄i(t) ≥ 0 for all t ≥ 0.(3.8)

A continuous function T̄ : [0,∞) → RJ

+ such that (3.3)–(3.8) hold is called a
fluid control. The system is said to be balanced under T̄ if the associated Q̄
is constant in time. In this case, since the system starts empty, that means
that Q̄ ≡ 0. The system is said to incur no idleness under T̄ if Ī ≡ 0, i.e.,
AT̄ = 1t for all t ≥ 0.

Definition 3.1. The fluid model is said to be in heavy traffic if the
following two conditions hold:

i) there is a unique fluid control T̄ ∗ under which the fluid system is bal-
anced, and

ii) under T̄ ∗, the fluid system incurs no idleness.

In [34], Williams proved the following.

Proposition 3.1. The fluid model is in heavy traffic if and only if As-
sumption 3.2 holds.

We impose the following heavy traffic assumption on our sequence of
parallel server systems, henceforth.

Assumption 3.3. (Heavy Traffic) For the sequence of parallel server
systems defined in Section 3.1 satisfying Assumption 3.1, assume that As-
sumption 3.2 holds and that there is a vector θ ∈ RI such that

r(λr −Rrx∗) → θ, as r → ∞,(3.9)

where Rr = Cdiag(μr)

Activities j for which x∗j > 0 in Assumption 3.2 are called basic. Activities
j for which x∗j = 0 in Assumption 3.2 are called non-basic. Let B and
N denote the number of basic and non-basic activities, respectively. It is
assumed, without any loss of generality, that the first B activities are basic
and the last N activities are non-basic. We let B = {1, . . . ,B} and N =
{B+ 1, . . . , J}. Let

R = [H, J], A = [B,N],(3.10)

be partitions of R,A according to basic and non-basic activities. Let K be
the (K+ N)× J dimensional matrix

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 43

K =

(
B N
0 −I

)
,(3.11)

where −I is the negative of the N×N identity matrix. Later we will implicitly
use the following property of K.

Lemma 3.1. Let K be given by (3.11), then range(K) = RK+N.

Proof. It is enough to show that for l = 1, . . . ,K + N, el ∈ range(K).
For l ≤ K, since each server serves at least one basic activity, there exists a
j ∈ B such that l = k(j). Then by (2.2), (3.10) and (3.11), Kj = el and so
el ∈ range(K). For K < l ≤ K+ N and j = l −K+ B, j ∈ N and by (2.2),
(3.10) and (3.11), Kj

k(j) = 1 and Kj
l = −1. Since we already showed that

ek(j) ∈ range(K), it follows that ek(j) −Kj = el ∈ range(K).

3.3. Diffusion scaling and cost function. For a fixed r, and a scheduling
control T r, the associated queue-length and idle-time processes are given by
equations (2.16) and (2.17) in Section 2, where the superscript r is appended
to E,S,Q, I, and T there. The diffusion scaled queue-length and idle-time
processes are defined by

Q̂r(t) = r−1Qr(r2t), Îr(t) = r−1Ir(r2t), t ≥ 0.(3.12)

For a control T r, and its associated diffusion scaled queue-length process,
Q̂r, we define the expected cumulative discounted holding cost as follows:

Ĵr(T r) = E

(∫ ∞

0
e−γtf(Q̂r(t))dt

)
,(3.13)

where γ > 0 is a fixed constant (discount factor) and f : RI
+ → R+ is a

continuous function. We shall be especially interested in the case when f is
linear and strictly positive except at the origin, i.e., f(q) = h · q for q ∈ RI

+

where h = (h1, . . . , hI)
′, hi > 0 for all i ∈ I. To write equations for Q̂r, Îr,

it is convenient to consider centered diffusion scaled versions Êr, Ŝr of the
primitive processes Er, Sr:

Êr(t) = r−1(Er(r2t)− λrr2t), t ≥ 0,(3.14)

Ŝr(t) = r−1(Sr(r2t)− μrr2t), t ≥ 0,(3.15)

and a deviation process Ŷ r that measures normalized deviations of server
time allocations from the nominal allocations given by x∗:

Ŷ r(t) = r−1(x∗r2t− T r(r2t)), t ≥ 0.(3.16)

Also, we define the fluid scaled allocation process T̄ r,

44 V. PESIC AND R. J. WILLIAMS

T̄ r(t) = r−2T r(r2t), t ≥ 0.(3.17)

Let

Û r =

(
Îr

−Ŷ r
N

)
,(3.18)

where Ŷ r
N

consists of the components of Ŷ r that are indexed by non-basic
activities. Upon substituting the above into the equations for Qr, Ir, we
obtain for t ≥ 0:

Q̂r(t) = X̂r(t) +RrŶ r(t),(3.19)

Û r(t) = KŶ r(t),(3.20)

X̂r(t) = Êr(t)− CŜr(T̄ r(t)) + r(λr −Rrx∗)t,(3.21)

where Û r
k is continuous, non-decreasing and Û r

k (0) = 0, for k = 1, . . . ,K+N,

and Q̂r
i (t) ≥ 0 for all t ≥ 0 and i = 1, . . . , I. Combining (3.1) and Assump-

tion 3.1 with the mutual independence of the stochastic primitive sequences
of i.i.d. random variables {ǔi(l)}∞l=1, i ∈ I, {v̌j(l)}∞l=1, j ∈ J , we may deduce
from the functional central limit theorem for renewal processes that

(Êr, Ŝr) ⇒ (Ẽ, S̃), as r → ∞,(3.22)

where Ẽ, S̃ are independent, Ẽ is an I-dimensional driftless Brownian mo-
tion that starts from the origin and has a diagonal covariance matrix whose
ith diagonal entry is λia

2
i , and S̃ is a J-dimensional driftless Brownian mo-

tion that starts from the origin and has a diagonal covariance matrix whose
jth diagonal entry is μjb

2
j .

4. Brownian Control Problem and Equivalent Workload Formu-
lation. In this section, following the method proposed by Harrison et al.
[17, 19], we formulate a Brownian Control Problem (BCP) and its Equiva-
lent Workload Formulation (EWF) as formal approximations to the control
problem for the sequence of parallel server systems. We also show that the
EWF can sometimes be further reduced, by the removal of some redun-
dant controls, to a Reduced Equivalent Workload Formulation or REWF.
Henceforth, we let T̄ ∗(t) = x∗t, for all t ≥ 0.

4.1. Brownian Control Problem (BCP).

Definition 4.1. (Admissible control for the BCP) An admissible con-
trol for the BCP is a J-dimensional, adapted process Ỹ = {Ỹ (t), t ≥ 0}

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 45

defined on some filtered probability space (Ω̃, F̃ , {F̃t}, P̃) which supports I-
dimensional adapted processes Q̃ and X̃, such that the following three prop-
erties hold under P̃:

(i) Q̃(t) = X̃(t) +RỸ (t) ∈ RI
+ for all t ≥ 0, P̃-a.s.,

(ii) Ũ ≡ {KỸ (t), t ≥ 0} is non-decreasing and Ũ(0) ≥ 0, P̃-a.s.,
(iii) X̃ is an I-dimensional {F̃t}-Brownian motion starting at the origin,

with drift θ and diagonal covariance matrix Σ whose ith diagonal entry
is equal to λia

2
i +

∑
J

j=1Cijμjb
2
jx

∗
j for i ∈ I.

We call Q̃ the state process, (Q̃, Ũ) the extended state processes and X̃ the
Brownian motion, for the Brownian Control Problem under the control Ỹ .

Remark 4.1. Note that the filtered probability space with Brownian mo-
tion X̃ upon which Ỹ is defined is part of the specification of Ỹ . In other
words, this is a weak formulation of the control problem. In the subsequent
text, when we refer to an admissible control Ỹ , it will be implicit that this
also carries with it a filtered probability space and a Brownian motion. The
first K components of Ũ will sometimes be denoted by Ĩ as they correspond
to diffusion analogues of idle-time.

Definition 4.2. (Brownian Control Problem-BCP) Determine the op-
timal value

J̃∗ = inf
Ỹ

J̃(Ỹ) where J̃(Ỹ) ≡ Ẽ

(∫ ∞

0
e−γtf(Q̃(t))dt

)
,(4.1)

where the infimum is taken over all admissible controls for the BCP and Ẽ
denotes expectation under the probability P̃ associated with Ỹ . An admissible
control Ỹ ∗ that achieves the infimum in (4.1) is called an optimal control
for the BCP.

The Brownian motion X̃ appearing in the BCP is the formal limit in
distribution of X̂r of (3.21). The functional central limit theorems for the
independent renewal processes Er, Sr and a time change theorem (together
with the assumption that T̄ r ⇒ T̄ ∗), are used to derive the covariance
matrix for this Brownian motion. The control process Ỹ in the BCP is a
formal limit of the deviation processes Ŷ r, where convergence of Ŷ r(0) to
Ỹ (0) is not required. The initial condition for Ũ is relaxed from that in the
prelimit to allow for the possibility of an initial jump in the queue-length
process in the BCP. In fact, for the optimal solutions of the BCPs that we
will solve here, such a jump will not occur and then the BCPs are equivalent
to ones in which Ũ(0) = 0.

46 V. PESIC AND R. J. WILLIAMS

4.2. Equivalent Workload Formulation (EWF). Harrison and Van
Mieghem [19] showed that one can reduce the dimensionality of the Brown-
ian Control Problem to that of an Equivalent Workload Formulation (EWF).
We summarize the relevant theory below.

Definition 4.3. (Space of reversible displacements) Let

R = {δ ∈ RI : δ = Rx and Kx = 0, x ∈ RJ}.(4.2)

One can think of the vector space R as follows. Given q̃ ∈ RI
+, q̃ > 0,

for any δ ∈ R such that q̃ + δ > 0, using allowed controls in the BCP
it is possible to instantaneously move the “queue-length” from q̃ to q̃ + δ
without incurring any idleness nor using any non-basic activities. Since R
is a vector space such changes are reversible. The idea of the Equivalent
Workload Formulation is to focus on the non-reversible displacements of the
queue-length, i.e., those in R⊥.

Definition 4.4. (Workload dimension, workload matrix) Let L be the
dimension of R⊥. Then L is called the workload dimension. Let M be any
L× I dimensional matrix whose rows span R⊥. Then M is called a workload
matrix.

A simple formula for the workload dimension was established by Bramson
and Williams [12] for Brownian Control Problems associated with general
stochastic processing networks. When applied to parallel server systems,
that result yields the following.

Proposition 4.1. The workload dimension L = I+K− B.

The following result was proved by Harrison and Van Mieghem [19]. It is
key to the reduction of the BCP to the EWF.

Proposition 4.2. Let M be an arbitrary workload matrix. Then there
exists an L× (K+ N) matrix G such that

MR = GK.(4.3)

The choice of G is usually not unique. We refer to G as a control matrix
associated with M . For the remainder of this subsection and in the next, we
fix a choice for M and an associated G. Let W = MRI

+ and define

g(w) = inf{f(q) : Mq = w, q ∈ RI
+}, w ∈ W .(4.4)

We will focus on the situation where the following assumption holds.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 47

Assumption 4.1. The mapping g given by (4.4) is a well defined, con-
tinuous function from W into R+ and the infimum in (4.4) is attained for
each w ∈ W. Moreover, there exists a continuous mapping φ : W → RI

+

such that for w ∈ W, φ(w) ∈ {q ∈ RI
+ : Mq = w, f(q) = g(w)}.

It is known that Assumption 4.1 is satisfied if f is linear and for each w ∈
W the set {q ∈ RI

+ : Mq = w} is compact, see [9]. Later, in Theorem 6.1,
we show that Assumption 4.1 holds for our choice of decoupled workload
matrix, M . Indeed, we shall prove that for this choice of workload matrix,
g is a linear map when f is linear. This is quite a simplification since in
general one can at most expect g to be a convex, piecewise linear function
when f is linear.

Definition 4.5. (Admissible control for the EWF). An admissible con-
trol for the EWF is a (K+N)-dimensional adapted process Ũ defined on some
probability space (Λ, E , {Et},Q), which supports L-dimensional adapted pro-
cesses W̃ and ξ̃, such that the following properties hold under Q:

(i) W̃ (t) = ξ̃(t) +GŨ(t) ∈ W for all t ≥ 0, Q-a.s.,
(ii) Ũ is non-decreasing, Ũ(0) ≥ 0, Q-a.s.,
(iii) ξ̃ is an L-dimensional {Et}-Brownian motion starting at the origin,

with drift Mθ and covariance matrix MΣM ′.

We call W̃ the state process with Brownian motion ξ̃ for the EWF under
the control Ũ . We let A denote the set of admissible controls for the EWF.
Note that this depends on the (fixed) choices of M and G.

Remark 4.2. Since range(K) = RK+N (see Lemma 3.1), we do not
need to add a constraint on the range of Ũ . Note that the filtered probability
space with Brownian motion ξ̃ upon which the control process Ũ is defined
is part of the specification of Ũ .

Definition 4.6. (Equivalent Workload Formulation-EWF) Determine
the optimal value

J̌∗ = inf
Ũ
J̌(Ũ) where J̌(Ũ) = E

(∫ ∞

0
e−γtg(W̃ (t))dt

)
,(4.5)

where the infimum is taken over all admissible controls for the EWF and E
denotes expectation under the probability Q associated with Ũ . An admissible
control that achieves the infimum in (4.5) is called an optimal control for
the EWF.

48 V. PESIC AND R. J. WILLIAMS

Remark 4.3. Nominally, the values of J̌(Ũ) and J̌∗ depend on the
choice of M and G. However, since M and G are fixed, to lighten the
notation, we have not explicitly indicated them here. Furthermore, as the
following theorem shows, the value of J̌∗ is equal to J̃∗, and so in fact, this
value is the same, regardless of the choice of M and G. Despite this, as we
shall see, for some choices of M and G, it can be easier to see how to solve
the EWF.

The following theorem shows the equivalence of the BCP to the EWF.
For a similar formulation of the BCP and the EWF this equivalence was
proved by Harrison and Van Mieghem in [19]. For the formulation used here
the equivalence can be proved in the same way as in Harrison and Williams
[21].

Theorem 4.1. Suppose that Assumption 4.1 holds. The optimal value
J̃∗ for the BCP is equal to the optimal value J̌∗ for the EWF.

4.3. Reduced EWF (REWF). In this subsection we show how the EWF
may sometimes be further reduced by reducing the matrix G. Let P = K+N.
Given an L×D matrix H for 1 ≤ D ≤ P, the cone generated by the matrix
H is defined as follows,

C(H) =
{
v ∈ RL : v = Hu, u ∈ RD

+

}
=

{
D∑

j=1

ujH
j , uj ∈ [0,∞)

}
= HRD

+,

where Hj denotes the jth column of H.

Lemma 4.1. Suppose Ĝ is an L × D matrix where 1 ≤ D ≤ P and
C(G) = C(Ĝ). Let Ũ be an admissible control for the EWF. Then there exists
a D-dimensional adapted process Û defined on the same filtered probability
space as Ũ such that:

(i) GŨ = ĜÛ ,
(ii) Û is non-decreasing with Û(0) ≥ 0 almost surely.

Proof. Let Gj be the jth column of G. Then, since C(G) = C(Ĝ) there
exists uj ∈ RD

+ such that Gj = Ĝuj . Let

Û = u1Ũ1 + · · ·+ uPŨ
P
.(4.6)

It is straight forward to verify the properties (i), (ii) and that Û is an adapted
process.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 49

Definition 4.7. (Admissible control for the REWF) For some 1 ≤ D ≤
P, let Ĝ be an L× D matrix such that C(Ĝ) = C(G). An admissible control
for the REWF associated with Ĝ is a D-dimensional adapted process Û =
{Û(t), t ≥ 0} defined on some filtered probability space (Λ, E , {Et},Q), which
supports L-dimensional adapted processes Ŵ and ξ̂, such that the following
properties hold under Q:

(i) Ŵ (t) = ξ̂(t) + ĜÛ(t) ∈ W for all t ≥ 0, Q-a.s.,
(ii) Û is non-decreasing with Û(0) ≥ 0, Q-a.s.,
(iii) ξ̂ is an L-dimensional {Et}-Brownian motion starting at the origin,

with drift Mθ and covariance matrix MΣM ′.

We let Â(Ĝ) denote the set of admissible controls for the REWF associated
with Ĝ.

Definition 4.8. (REWF) Suppose that Ĝ is an L×D matrix for some
1 ≤ D ≤ P such that C(G) = C(Ĝ). The REWF associated with Ĝ is to
determine the optimal value

Ĵ∗,Ĝ = inf
Û
Ĵ Ĝ(Û) where Ĵ Ĝ(Û) = E

(∫ ∞

0
e−γtg(Ŵ (t))dt

)
,(4.7)

where the infimum is taken over all Û ∈ Â(Ĝ) and E denotes expectation
under the probability Q associated with Û . An admissible control Û that
achieves the infimum in (4.7) is called an optimal control for the REWF
associated with Ĝ.

Each L× D matrix Ĝ, with the property that C(G) = C(Ĝ), gives rise to
an REWF. The following lemma shows that all REWFs are equivalent to
the EWF.

Theorem 4.2. For some 1 ≤ D ≤ P, let Ĝ be an L×D matrix such that

C(G) = C(Ĝ). Then, the optimal value Ĵ∗,Ĝ of the REWF associated with Ĝ
is the same as the optimal value J̌∗ of the EWF associated with G.

Proof. By Lemma 4.1 for each Ũ ∈ A there exists a Û ∈ Â(Ĝ) defined
on the same filtered probability space as Ũ such that G̃Ũ = ĜÛ . Then with

ξ̃ = ξ̂, W̃ = ξ̃ + GŨ = ξ̂ + ĜÛ = Ŵ , and therefore, J̌(Ũ) = Ĵ Ĝ(Û). Also,
by a similar proof to that for Lemma 4.1 (by switching the roles of G and
Ĝ), for each Û ∈ Â(Ĝ) there exists a Ũ ∈ A defined on the same probability

space as Û such that ĜÛ = GŨ and again Ĵ Ĝ(Û) = J̌(Ũ). It follows that

J̌∗ = Ĵ∗,Ĝ.

50 V. PESIC AND R. J. WILLIAMS

4.4. Harrison’s choice of workload matrix and the dual program. Harri-
son [17] provided an alternative description of R⊥ and proposed a choice for
M and G, as follows.

Definition 4.9. (Dual Program DP)

maximize y · λ subject to y′R ≤ z′A, z · 1 = 1 and z ≥ 0.(4.8)

Proposition 4.3. Let {(y1, z1), . . . , (yL̃ , zL̃)} be the set of extremal op-
timal solutions of the dual program. Let {(y1, z1), . . . , (yL , zL)} be such that
{y1, . . . , yL} is a maximal linearly independent subset of {y1, . . . , yL̃}. Then,

R⊥ = span{y1, . . . , yL}.(4.9)

Proposition 4.3 suggests a choice for a workload matrix M . In particular,
fix {y1, . . . , yL} and let

M =

⎛
⎜⎝

y1

...
yL

⎞
⎟⎠ ,(4.10)

where we abuse notation and we think of y1, . . . , yL as row vectors. Following
Harrison [17], let

G = [Π ΠN −MJ],(4.11)

where

Π =

⎛
⎜⎝

z1

...
zL

⎞
⎟⎠ ,(4.12)

and vectors z1, . . . , zL are viewed as row vectors that accompany y1, . . . , yL as
in Proposition 4.3. Then, the matrix G given by (4.11) satisfies the relation
MR = GK in Proposition 4.2. Moreover, from the dual program it follows
that G ≥ 0.

5. Structure of the server-buffer graph.

5.1. Server-buffer graph.

Definition 5.1. (Server-buffer graph G) The graph G in which servers
and buffers form the nodes, and undirected edges between the nodes are given
by basic activities, is called the server-buffer graph.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 51

The following theorem was established in two stages. In [18], Harrison and
López proved the equivalence of (i)–(iii) below and subsequently Williams
[34] showed that (i)–(iii) are equivalent to (iv).

Theorem 5.1. The following conditions are equivalent:

(i) the dual program (4.8) has a unique solution (y∗, z∗),
(ii) the number of basic activities B = I+K− 1,
(iii) all servers communicate via basic activities,
(iv) the graph G is a tree.

Remark 5.1. It follows from Proposition 2 in [18] that for the solution
in (i), y∗ > 0, z∗ > 0, y∗H = z∗B and y∗J < z∗N .

A parallel server system that satisfies any of the equivalent conditions
(i)–(iv) of Theorem 5.1 is said to satisfy the complete resource pooling
(CRP) condition. From the results of Bramson and Williams [12] embodied
in Proposition 4.1, we know that in general L = I + K − B, and so Theo-
rem 5.1 characterizes the situation when L = 1. In the next subsection, we
state and prove a result that generalizes part (iv) of Theorem 5.1 to L > 1.

5.2. Forest of trees structure. Our first main result is the following.

Theorem 5.2. The workload dimension L is equal to the number of
connected components in the server-buffer graph G. Indeed, the server-buffer
graph G is a forest of L trees.

To prove Theorem 5.2, we introduce the following enumeration scheme,
which we shall use henceforth. Recall that I = {1, ..., I}, K = {1, ...,K} and
B = {1, ...,B}. Let M be the number of connected components in G denoted
by T1, . . . , TM. For each m ∈ M = {1, . . . ,M} let Im be the subset of I that
indexes the buffers in Tm. Similarly, for each m ∈ M let Km, respectively
Bm, be the subset of K, respectively B, that indexes the servers, respectively
the basic activities, in Tm. The cardinalities of Im, Km and Bm are denoted
by Im, Km and Bm, respectively. Note that Bm is the number of edges in
Tm. The set N = {B + 1, ..., J} of non-basic activities, has cardinality N.
For each m ∈ M, let Nm,c be the set of non-basic activities that consume
material from buffers in Tm and let Nm,p be the set of non-basic activities
that are processed by servers in Tm. For each m,m′ ∈ M let Nm

m′ be the set
of non-basic activities that consume material from buffers in Tm and that
are processed by servers in Tm′ . Note that Nm

m′ = Nm,c ∩ Nm′,p. Let Nm,c,

52 V. PESIC AND R. J. WILLIAMS

Nm′,p and Nm
m′ be the cardinalities of Nm,c, Nm′,p, and Nm

m′ , respectively.
Then for any m,m′ ∈ M,

N
m,c =

M∑
l=1

N
m
l and N

m′,p =

M∑
l=1

N
l
m′ .

We can and do choose the enumeration of buffers, servers, basic and non-
basic activities so that the following properties hold.

Convention 5.1.

i) If buffer i ∈ Im and buffer i′ ∈ Im′ where m < m′, then i < i′,
ii) if server k ∈ Km and server k′ ∈ Km′ where m < m′, then k < k′,
iii) if i and i′ are distinct buffers such that i < i′ and if j and j′ are basic

activities such that i = i(j) and i′ = i(j′), then j < j′,
iv) if j ∈ Nm,c and j′ ∈ Nm′,c where m < m′, then j < j′,
v) if j′ ∈ Nm

m′ and j′′ ∈ Nm
m′′ where m′ < m′′, then j′ < j′′.

This convention induces the following partitions of R and A,

R =

⎛
⎜⎜⎜⎜⎝

H1 0 . . . 0 J1 0 . . . 0

0 H2 . . .
... 0 J2 . . .

...
...
. . .

. . . 0
...
. . .

. . . 0
0 . . . 0 HM 0 . . . 0 JM

⎞
⎟⎟⎟⎟⎠ ,(5.1)

A =

⎛
⎜⎜⎜⎜⎝

B1 0 . . . 0 N1
1 0 . . . 0 . . . NM

1 0 . . . 0

0 B2 . . .
... 0 N1

2
. . .

... . . . 0 NM

2

. . .
...

...
. . .

. . . 0
...
. . .

. . . 0 . . .
...

. . .
. . . 0

0 . . . 0 BM 0 . . . 0 N1
M
. . . 0 . . . 0 NM

M

⎞
⎟⎟⎟⎟⎠ ,(5.2)

where Hm is the Im × Bm matrix of rates at which basic activities in Tm
consume material from buffers in Tm. The Im×Nm,c matrix Jm is the matrix
of average processing rates for non-basic activities in Nm,c that consume
material from buffers in Tm. The Km × Bm matrix Bm has a solitary one
in its jth column in the row corresponding to the server that processes the
jth basic activity in Tm. The matrix Nm

m′ is a Km′ × Nm
m′ matrix of zeros

and ones that signals which servers in Tm′ process jobs from buffers in Tm
using non-basic activities, i.e., it has a solitary one in its jth column for the
jth non-basic activity that consumes material from a buffer in Tm and is
processed by a server in Tm′ . The row that contains the one corresponds

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 53

to the server that performs the processing of that activity. For each m, the
enumeration induces a partition of Jm:

Jm =
[
Jm
1 , . . . , Jm

M

]
,

where Jm
m′ is the Im × Nm

m′ matrix of consumption rates for non-basic ac-
tivities in Nm

m′ . In the following proof, depending on the context, a vector
x sometimes denotes a row vector and at other times it denotes a column
vector; whichever is meant will be clear from the context.

Proof of Theorem 5.2. Since each Tm is connected and Im + Km is
the number of nodes in Tm, it follows immediately that

Bm ≥ Im +Km − 1, for m = 1, . . . ,M.(5.3)

Summing over all connected components, we obtain that

B =

M∑
m=1

Bm ≥
M∑

m=1

(Im +Km − 1) = I+K−M.(5.4)

Rearranging the terms in the last equation and using Proposition 4.1 we
obtain that

M ≥ I+K− B = L.(5.5)

Hence the workload dimension L is less than or equal to the number M of
connected components in G. To establish that M = L, it is enough to show
that Bm = Im +Km − 1 for 1 ≤ m ≤ M. For an argument by contradiction,
suppose that for some index m∗,

Bm∗ > Im∗ +Km∗ − 1.(5.6)

From the heavy traffic Assumption 3.2 we have that x∗ = (x∗
B
, 0

N
), where

x∗
B
is a positive B-dimensional vector of nominal rate allocations for basic

activities and 0
N
is an N-dimensional vector of zeros whose entries are nom-

inal allocations for non-basic activities. With a slight abuse of notation, we
write

x∗
B
= (x∗1, ..., x

∗
M
),(5.7)

where x∗m is a Bm-dimensional vector of allocations for the basic activities
in Bm, m = 1, . . . ,M. Similarly, we write

λ = (λ1, . . . , λM
),(5.8)

54 V. PESIC AND R. J. WILLIAMS

where λm is an Im-dimensional vector of average arrival rates for the buffers
in Im and

1
K
= (11, . . . ,1M

),(5.9)

where 1m is a Km-dimensional vector of ones. From the heavy traffic As-
sumption 3.2 and (5.1)–(5.2),

λm = Hmx∗m and 1m = Bmx∗m for m = 1, . . . ,M,(5.10)

and in particular λm∗ = Hm∗
x∗m∗ and 1m∗ = Bm∗

x∗m∗ . There are two cases
to consider.

Case I: Suppose that Im∗ +Km∗ < Bm∗ .
Let

Pm∗
=

(
Hm∗

Bm∗

)
.(5.11)

Then Pm∗
is an (Im∗ +Km∗)×Bm∗ matrix and the null space of Pm∗

is non-
trivial. Thus, there exists a non-zero Bm∗-dimensional vector v such that
Pm∗

v = 0. Since all of the components of x∗m∗ are strictly greater than zero,
there exists a δ > 0 such that all of the components of x∗m∗ + δv are strictly
greater than zero. Define a J-dimensional vector v̂ as follows,

v̂ = (01, . . . , 0m∗−1, v, 0m∗+1, . . . , 0M
, 0

N
)′ ,(5.12)

where 0m is the Bm-dimensional zero vector for m 	= m∗ and 0
N
is the

N-dimensional zero vector. Then(
R
A

)
δv̂ = 0.(5.13)

The first B components of x∗ + δv̂ are strictly greater than zero, the last N
components are identically zero, and

R(x∗ + δv̂) = λ, A(x∗ + δv̂) = 1K.(5.14)

This violates the uniqueness part of the heavy traffic Assumption 3.2.

Case II: Suppose that Im∗ +Km∗ = Bm∗ .
Let Pm∗

be as in Case I. There are two subcases to consider.

(i) The null space of Pm∗
is not {0}. Then we can repeat the argument

from Case I.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 55

Fig 2. Example of a server-buffer graph G where only basic activities are shown. Trees
T1, . . . , TL encircled by dashed lines are enumerated from left to right.

(ii) The null space of Pm∗
is {0}. Then Pm∗

is invertible and there exists
a Bm∗-dimensional vector u such that

Pm∗
u =

(
0m∗

−1m∗

)
,(5.15)

where 0m∗ is the Im∗-dimensional zero vector and 1m∗ is the Km∗-
dimensional vector of ones. As in Case I, there is a δ ∈ (0, 1) such
that all of the components of x∗m∗ + δu are strictly positive and in the
same manner as in (5.12), we can extend u to a J-dimensional vector
û satisfying

R(x∗ + δû) = λ and A(x∗ + δû) = 1− δ1̂m∗ ,(5.16)

where (1̂m∗)k = 1 if k ∈ Km∗ and (1̂m∗)k = 0 otherwise. This violates
the heavy traffic Assumption 3.2. Thus, by contradiction we have that,

Bm = Im +Km − 1, for all m,(5.17)

as desired. Furthermore, as observed by Williams [34], since the con-
nected graph Tm with Im +Km nodes has exactly Im +Km − 1 edges,
it must be a tree (cf. Theorem 3.1 in [8]).

From this point on, the trees in G will be denoted by T1, . . . , TL, and we
let L = {1, . . . ,L}.

56 V. PESIC AND R. J. WILLIAMS

6. Decoupled workload matrix and the cost function in the EWF.
In this section we prove that one can choose the workload matrix M for par-
allel server systems to have a simple block diagonal-like structure related to
the forest of trees structure of the server-buffer graph. We call this a decou-
pled workload matrix because each queue-length component affects just one
workload component and the workload matrix partitions or decouples the
queue-length components coming from different trees. We exploit the struc-
ture of this decoupled workload matrix to prove that when the BCP cost
function f is linear, the cost function g for the EWF is also linear. Indeed,
we give an explicit form for g and for the associated continuous selection
function φ. We end the section by giving an example to illustrate the point
that when the workload dimension is more than one, our decoupled work-
load matrix and the associated EWF typically has a simpler structure than
for the choice of workload matrix proposed by Harrison [17].

6.1. Decoupled workload matrix and associated control matrix. We have
seen in Section 4 that Harrison’s choice for the workload matrix is obtained
by finding the extremal optimal solutions of the dual program for the entire
system. For our choice, for each l ∈ L, let T̃l be the graph obtained by adding
the non-basic activities in N l

l to the tree Tl. Then T̃l consists of servers and
buffers in Tl and all activities that both consume material from buffers in
Tl and are processed by servers in Tl. We treat each graph T̃l, l ∈ L, in
isolation as a parallel server system with a one-dimensional workload. By
collecting these workload vectors, we construct a workload matrix for the
whole system. In contrast to the situation for Harrison’s choice of workload
matrix, the control matrix G that goes with our decoupled workload matrix
is not necessarily non-negative. We now describe our choice in detail. In the
following, depending on the context, a vector x sometimes denotes a row
vector and at other times it denotes a column vector; whichever is meant
will be clear from the context.

For each l ∈ L, let λl be specified as in (5.8), let x∗l denote the (Bl +
Nl
l)-dimensional vector consisting of the components of x∗ indexed by the

activities in T̃l, and let

Rl = [H l, J l
l], Al = [Bl, N l

l].(6.1)

Then (λl, R
l, Al) can be viewed as specifying “first order parameters” for

a parallel server system with network structure given by T̃l. As noted in
[12], the notions of heavy traffic and workload dimension and matrix only
depend on such first order parameters. In particular, we have the following.
For this, recall that we are assuming that Assumption 3.3 holds, which
includes Assumptions 3.1 and 3.2.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 57

Lemma 6.1. For l ∈ L, T̃l is in heavy traffic, i.e., (x∗l , 1) is the unique
solution of the linear program associated with (λl, R

l, Al):

minimize ρ subject to Rlxl = λl, Alxl ≤ ρ1l and xl ≥ 0.(6.2)

Proof. Fix l ∈ L. From the block diagonal structure of (5.1)–(5.2), the
definition of x∗, and the fact that non-basic components of x∗ are zero, it
follows that (x∗l , 1) is a feasible solution of the linear program (6.2) associated

with (λl, R
l, Al) and it satisfies Alx∗l = 1l. Suppose that (x

†
l , ρ

†) is an optimal

solution of the linear program associated with (λl, R
l, Al) and x†l 	= x∗l . Then,

Rlx†l = λl, A
lx†l ≤ ρ†1l ≤ 1l. Let x† be the vector obtained from x∗ by

replacing the components indexed by activities in T̃l by the components of
x†l associated with those activities. Then, by (5.1)–(5.2), Rx† = λ,Ax† ≤ 1
and x† 	= x∗. Thus, (x†, 1) is a feasible solution of the linear program (3.2).
By Assumption 3.2, the optimal value of that program is one, and by the
assumed uniqueness of its optimal solution, we must have x† = x∗ and hence
x†l = x∗l , ρ

† = 1.

By Theorem 5.1, when viewed in isolation, T̃l corresponds to a parallel
server system with a one-dimensional workload, where a workload matrix
(vector) for T̃l can be obtained from the unique solution of the following
dual program.

Definition 6.1.

maximize ỹl · λl subject to ỹlRl ≤ z̃lAl, z̃l · 1l = 1 and z̃l ≥ 0.(6.3)

Let (yl, zl) be the (optimal) solution of the above dual program for T̃l. Then
yl is the choice of workload matrix (vector) for T̃l proposed in [17]. It follows
that yl ∈ R⊥

l where

Rl = {δl ∈ RIl : δl = Rlxl,K
lxl = 0, xl ∈ RBl+Nl

l},(6.4)

is the space of reversible displacements for T̃l,

K l =

(
Bl N l

l

0 −I l

)
,(6.5)

and I l is the Nl
l × Nl

l identity matrix. Recall that by Proposition 2 in [18],
yl > 0 and zl > 0. Let ŷl be the I-dimensional vector:

ŷl = (01, .., 0l−1, y
l, 0l+1, .., 0L

),(6.6)

58 V. PESIC AND R. J. WILLIAMS

which is the augmentation of yl, where 0l′ is the Il′-dimensional vector of
zeros for l′ 	= l. Let M be the L × I matrix with rows given by ŷl, l ∈ L.
Then M has a block diagonal-like structure:

M =

⎛
⎜⎜⎜⎜⎜⎝

ŷ1

ŷ2

...
ŷL−1

ŷL

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y1 0 0

0 y2 0 . . .
...

... 0
. . . 0

...
... . . . 0 yL−1 0
0 0 yL

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.(6.7)

The following lemma shows that M is a valid choice for a workload matrix
for the entire parallel server system.

Lemma 6.2. For each l ∈ L, ŷl ∈ R⊥. Furthermore ŷ1, . . . , ŷL are lin-
early independent and form a basis for R⊥.

Proof. Let w ∈ R be arbitrary. Then w = (w1, ..., wL
), where each wl

is Il-dimensional. We would like to show that ŷl · w = 0. Since w ∈ R
there exists an x ∈ RJ such that w = Rx and Kx = 0. By (5.1)–(5.2) and
the fact that the non-basic entries in x are zero, it follows that wl = Rlxl
and K lxl = 0. Therefore wl ∈ Rl and by the assumption on yl, yl · wl =
0. Hence ŷl · w = 0 and since w ∈ R was arbitrary ŷl ∈ R⊥. By (6.6),
ŷ1, ..., ŷL are orthogonal and hence linearly independent. The result then
follows since L linearly independent vectors in the L-dimensional vector
space R⊥ constitute a basis for R⊥.

For the choice of M in (6.7), Q̃ as in the BCP and W̃ = MQ̃, for each
l ∈ L, W̃l is a sum of diffusion “queue-lengths” associated with buffers in T̃l.
In this sense, W̃l represents the diffusion workload of T̃l. This interpretation
is not generally available for Harrison’s proposal for workload as the lth

component of his diffusion workload often involves diffusion queue-lengths
for buffers from more than one tree in G (see Section 6.4 for an example).

Lemma 6.3. With the above choice of M , W = MRI
+ = RL

+.

Proof. For l ∈ L, by Proposition 2 in [18], yl > 0. The conclusion is
immediate by the form of M in equation (6.7).

For the workload matrix M described above we find a control matrix
G that will satisfy MR = GK. For this, for each l ∈ L, we augment the

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 59

Kl-dimensional vector zl to a K-dimensional vector:

ẑl = (01, .., 0l−1, z
l, 0l+1, .., 0L

),(6.8)

where 0l is the Kl-dimensional zero vector. Let

Π =

⎛
⎜⎜⎜⎜⎜⎝

ẑ1

ẑ2

...
ẑL−1

ẑL

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z1 0 0

0 z2 0 . . .
...

... 0
. . . 0

...
... . . . 0 zL−1 0
0 0 zL

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.9)

Lemma 6.4. Let M,Π be given by (6.7) and (6.9). Define an L × P

matrix G by

G = [Π ΠN −MJ] .(6.10)

Then G is a valid choice for a control matrix, i.e., the relation MR = GK
is satisfied.

Proof. For l ∈ L, since (yl, zl) is a unique extremal optimal solution of
the dual linear program for the subnetwork T̃l, we have that that ylH l =
zlBl. By the form of M , Π, H and B, it follows that ΠB = MH, and
therefore

GK = [Π ΠN −MJ]

(
B N
0 −I

)
= [ΠB ΠN −ΠN +MJ](6.11)

= [MH MJ] = M [H J] = MR.

We proceed to describe G more explicitly. First we compute MJ :

MJ =

⎛
⎜⎜⎜⎜⎝

y1J1 0 . . . 0

0 y2J2 . . .
...

...
. . .

. . . 0
0 . . . 0 yLJL

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

y1J1
1 . . . y1J1

L
0 . . . 0 . . . 0 . . . 0

0 . . . 0 y2J2
1 . . . y2J2

L
. . .

... . . .
...

... . . .
... 0 . . . 0 . . . 0 . . . 0

0 . . . 0
... . . .

... . . . yLJL

1 . . . yLJL

L

⎞
⎟⎟⎟⎟⎟⎠ ,

60 V. PESIC AND R. J. WILLIAMS

where ylJ l is an Nl,c-dimensional vector and ylJ l
m is an Nl

m-dimensional
vector. Then we compute ΠN :

ΠN =

⎛
⎜⎜⎜⎜⎝

z1N1
1 0 . . . 0 . . . z1NL

1 0 . . . 0

0 z2N1
2

. . .
... . . . 0 z2NL

2

. . .
...

...
. . .

. . . 0 . . .
...

. . .
. . . 0

0 . . . 0 zLN1
L

. . . 0 . . . 0 zLNL

L

⎞
⎟⎟⎟⎟⎠ ,

where zlNm
l is an Nm

l -dimensional vector. For the above choices of M and
Π, it is not true in general that ΠN −MJ ≥ 0. More specifically, G has the
following form:

G = [Υ0,Υ1,Υ2, . . . ,ΥL
] ,(6.12)

where

Υ0 = Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z1 0 0

0 z2 0 . . .
...

... 0
. . . 0

...
... . . . 0 zL−1 0
0 0 zL

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,(6.13)

and for l ∈ L, Υl is given by the following⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1N l
1 0 0

0 z2N l
2 0

...
... 0

. . . 0 0 . . . 0
−ylJ l

1 −ylJ l
2 . . . zlN l

l − ylJ l
l −ylJ l

l+1 . . . −ylJ l
L

0 0 0 0 zl+1N l
l+1 0 0

... 0
. . .

...
0 0 zLN l

L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(6.14)

For l,m ∈ L, each column of N l
m and J l

m has one positive entry and all
other entries are equal to zero. Recall that for each l ∈ L, yl > 0, zl > 0 and
ylJ l

l < zlN l
l (see Remark 5.1). It follows that for each l,m ∈ L, zmN l

m > 0,
−ylJ l

m < 0 and zlN l
l − ylJ l

l > 0.
As we will see in Section 9, in practice it may be computationally conve-

nient to choose a slightly different workload and control matrix according
to the following lemma.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 61

Lemma 6.5. For any c ∈ RL
+ such that cl > 0 for l = 1, . . . ,L, let

M c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1y1 0 0

0 c2y2 0 . . .
...

... 0
. . . 0

...
... . . . 0 cL−1yL−1 0
0 0 cLyL

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Πc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1z1 0 0

0 c2z2 0 . . .
...

... 0
. . . 0

...
... . . . 0 cL−1zL−1 0
0 0 cLzL

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and

Gc = [Πc ΠcN −M cJ].(6.15)

Then, M c and Gc are valid choices for a workload and an associated control
matrix.

Proof. Since cl > 0 for each l, the rows of M c constitute a basis for R⊥

by Lemma 6.2. By a straight forward computation as in Lemma 6.4 we see
that M cR = GcK.

Note that, if c is the L-dimensional vector of ones, then M c = M and
Gc = G. In the next two subections the matrices M and G are chosen as
described in this subsection.

6.2. Columns of G and components of the control Ũ . The control process
Ũ in the EWF is P-dimensional. The first K components of Ũ are Brownian
model analogues of server idle-times. The last N components of Ũ are Brow-
nian model analogues of allocations to non-basic activities. An increase in
Ũj moves the system in the direction Gj , where Gj is the jth column of G.
For this, there are three cases to consider:

(i) increasing Ũk for k ∈ K, increases the workload W̃l for T̃l when server
k belongs to T̃l and has no effect on other components of the workload;

(ii) increasing Ũj′ for j
′ = j − B+K where j ∈ N l

l , l ∈ L, corresponds to
using a non-basic activity in T̃l and this increases the workload W̃l for
T̃l and has no effect on other components of the workload;

62 V. PESIC AND R. J. WILLIAMS

(iii) increasing Ũj′ for j′ = j − B + K where j ∈ N l
m, m 	= l, m, l ∈ L,

corresponds to use of a non-basic activity that connects two different
components T̃l and T̃m, and this will decrease the workload W̃l for T̃l
and increase the workload W̃m for T̃m. This has to do with the fact
that j consumes material from a buffer in T̃l and is processed by a
server in T̃m.

6.3. Cost function in the EWF when the BCP has linear holding cost. In
this subsection, we assume that the cost function f in the BCP is linear.
More precisely, we assume the following.

Assumption 6.1. Assume that the cost function f : RI
+ → R+ is given

by

f(q) = h · q for all q ∈ R
I
+,(6.16)

where h = (h1, . . . , hI)
′ satisfies hi > 0 for i = 1, . . . , I.

Recall that for w ∈ RL
+,

g(w) = min{h · q : Mq = w, q ∈ RI
+}.(6.17)

Theorem 6.1. Under Assumption 6.1, the cost function g is linear. In
particular, for w ∈ RL

+,

g(w) = κ · w,(6.18)

where

κl ≡ min
i∈Il

(
hi

ŷli

)
, l ∈ L.(6.19)

Moreover, a continuous selection function φ associated with g is given by
φ(w) = q∗(w) for w ∈ RL

+, where, for each l ∈ L,

q∗i∗l (w) =
wl

ŷli∗l

and q∗i (w) = 0 for i ∈ Il \ {i∗l },(6.20)

and i∗l ∈ Il is chosen such that κl = hi∗l /ŷ
l
i∗l
.

Proof. Fix w ∈ RL
+. Recall the special block diagonal-like structure of

the workload matrix M shown in (6.7). If Mq = w for q ∈ RI
+, then for each

l ∈ {1, . . . ,L},

wl = ŷl · q,(6.21)

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 63

and

h · q =

L∑
l=1

∑
i∈Il

hiqi =

L∑
l=1

∑
i∈Il

(
hi

ŷli

)
ŷliqi(6.22)

≥
L∑

l=1

κl

⎛
⎝∑

i∈Il

ŷliqi

⎞
⎠ =

L∑
l=1

κlwl.(6.23)

If q∗(w) is as in (6.20), then Mq∗(w) = w and h · q∗(w) = κ · w. This
completes the proof.

Remark 6.1. If M c and Gc are used in place of M and G, for each l,
i∗l can be kept the same, but the values of κ and q∗ need to be adjusted for
the fact that yl is replaced by clyl in (6.19) and (6.21).

In view of the form of the cost function g and the observations made
in Section 6.2, we see that increasing Ũk for k ∈ K or increasing Ũj′ for
j′ = j − B + K where j ∈ N l

l , l ∈ L, will cause an increase in the cost
function g(W̃). As a consequence, we will find that for an optimal solution
of the EWF, we do not need to use the non-basic activities j ∈ N l

l within any
T̃l, l ∈ L, and we only need to use the Brownian model analogues Ũk, k ∈ K,
of server idle-time to keep the workloads W̃l, l ∈ L, non-negative, although,
under the cost structure of the next section, we will only do this as a last
resort. Indeed, we will sometimes be able to use a non-basic activity j ∈ N l

m,
m 	= l, m, l ∈ L, connecting two different components T̃l and T̃m, to keep
the workload W̃m for T̃m non-negative while simultaneously reducing the
workload W̃l in T̃l; in this case, we do not need to use Ũk for servers k in T̃m
to keep the workload W̃m non-negative. Because of the above, it will turn out
that to describe an optimal control for the EWF, we only need to focus on
the server-buffer graph, with its basic activities within trees, augmented by
the non-basic activities that connect different trees. Accordingly, henceforth
we will speak of the workload associated with a tree Tl rather than T̃l.

6.4. Our decoupled workload matrix versus Harrison’s choice. In this
subsection, for a simple example, we explicitly compute our decoupled work-
load matrix and associated control matrix, and compare these to Harrison’s
choices proposed in [17]. We consider a parallel server system consisting
of two buffers, two servers and three activities (see Figure 3). First order
parameters are as follows:

λ1 = μ1 > 0, λ2 = μ2 > 0, R =

(
μ1 0 0
0 μ2 μ3

)
, A =

(
1 0 1
0 1 0

)
.

64 V. PESIC AND R. J. WILLIAMS

Assumption 3.2 is satisfied with x∗ = (1, 1, 0). Activities 1 and 2 are basic
and activity 3 is non-basic. The server-buffer graph G consists of two trees,
T1, T2 and by Theorem 5.2 the workload is 2-dimensional. Note that T̃l = Tl
are trees for l = 1, 2. Harrison’s workload matrix is obtained by finding
extremal solutions of the dual program:

maximize y1λ1 + y2λ2

subject to y1λ1 ≤ z1, y2λ2 ≤ z2, y2μ3 ≤ z1,

z1 + z2 = 1, z1, z2 ≥ 0.

It is well known that the value of the above dual program equals the value
of the primal program in Assumption 3.2, which equals one. Using the fact
that λ1 = μ1, λ2 = μ2, the extremal solutions of this dual program are seen
to be (y1, z1) and (y2, z2) where

y1 = (1/λ1, 0) , z1 = (1, 0),

y2 = (μ3/(λ1(μ3 + λ2)), 1/(μ3 + λ2)) ,(6.24)

z2 = (μ3/(μ3 + λ2), λ2/(μ3 + λ2)) ,

The following is the workload matrix in Harrison’s sense given by equation
(4.10):

M =

(
1/λ1 0

μ3/(λ1(μ3 + λ2)) 1/(μ3 + λ2)

)
,(6.25)

with associated matrices,

Π =

(
1 0

μ3/(μ3 + λ2) λ2/(μ3 + λ2)

)
, N =

(
1
0

)
, J =

(
0
μ3

)
,

so that

G = [Π ΠN −MJ] =

(
1 0 1

μ3/(μ3 + λ2) λ2/(μ3 + λ2) 0

)
.

We now proceed to compute our decoupled workload matrix and the as-
sociated control matrix. Each tree is considered as an isolated parallel server
system. We solve systems of inequalities associated with the dual program
(6.3) for each tree:

T1 : y1λ1 = 1, y1μ1 ≤ z1, z1 = 1;

T2 : y2λ2 = 1, y2μ2 ≤ z2, z2 = 1.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 65

Fig 3. Two “trees” connected via a single non-basic activity.

This yields

ŷ1 = (1/λ1, 0) , ẑ1 = (1, 0)

ŷ2 = (0, 1/λ2) , ẑ2 = (0, 1).

Using (6.7), (6.9) and Lemma 6.4 we choose

M =

(
1/λ1 0
0 1/λ2

)
, G =

(
1 0 1
0 1 −μ3/λ2

)
.(6.26)

The third column of the control matrix G has a positive first entry and a
negative second entry. As discussed in Section 6.2, this is because activity 3
is non-basic, it is processed in T1 and it consumes material from buffer 2 in
T2. Intuitively, we expect that use of activity 3 will reduce the workload of
T2 and increase the workload of T1.

In contrast, Harrison’sM matrix is not diagonal and all of the components
of the control directions are non-negative. The second component of Harri-
son’s workload does not represent the workload of tree T2 (i.e., the workload
associated with buffer 2), but it is a sum of scaled workloads for the two
trees. Accordingly, the state space W for Harrison’s workload process will
be a wedge contained within the non-negative quadrant of two-dimensional
space, where the rays defining the wedge are given by the columns of his
choice for the matrix M . Thus, even in this simple example, the state space
for our choice of workload matrix is somewhat more straightforward than
for Harrison’s choice.

7. Solution of the BCP for certain graph and cost structure.
Henceforth, for the remainder of this paper, we assume that Assumption 6.1
holds, i.e., the cost function in the BCP is linear.

66 V. PESIC AND R. J. WILLIAMS

In this section, we prove that under a certain minimal connectedness
assumption on the extended server-buffer graph H defined below, and a
certain monotonicity assumption on the cost function g, a least control is
optimal for the REWF, which enables us to solve the EWF and the BCP.
Henceforth, we let M and G denote a choice of M c and Gc for some c > 0
as in Lemma 6.5; for convenience we suppress the superscript c. When we
mention the EWF, we mean the EWF corresponding to these matrices M
and G.

7.1. Graph structure.

Definition 7.1. (Extended server-buffer graph with external non-basic
activities) Let H be the graph in which servers and buffers form the nodes
and undirected edges between nodes are given by basic activities plus the
non-basic activities that connect distinct trees in G.

The set of non-basic activities connecting distinct trees in G is given by⋃
l �=m

N l
m and we denote it by N ext, where ext is mnemonic for external.

We call the activities in N ext external non-basic activities and we let Next

denote the cardinality of N ext. An edge in H is either a basic activity or a
non-basic activity in N ext that consumes material from a buffer in some tree
Tl and that is processed by a server in some other tree Tm, m 	= l. Note that,
N ext includes all non-basic activities except those that are wholly confined
to individual trees Tl for l ∈ L. We now consider parallel server systems
where the trees in H are connected via external non-basic activities in a
fairly minimal way. We assume the following.

Assumption 7.1.

(i) For each l ∈ L, Nl,p ≤ Nl
l + 1.

(ii) H is connected.

Remark 7.1. Part (i) of Assumption 7.1 means that for each l ∈ L
there is at most one external non-basic activity that is processed by a server
in Tl. Part (i) implies that Next ≤ L. On the other hand, part (ii) implies
that Next ≥ L − 1. Together parts (i) and (ii) imply that Next equals L − 1
or L. If Next = L − 1, the graph H is a tree, otherwise Next = L and H
contains a loop (see [8]). If (i) holds, but not (ii), then H consists of two
or more connected components each of which satisfies parts (i) and (ii) of
Assumption 7.1 and each component can be treated separately by the methods
described below.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 67

For a non-basic activity j ∈ N ext let tc(j), tp(j) be such that j consumes
material from a buffer in Ttc(j) and is processed by a server in Ttp(j). For
each l ∈ L, let ac(l) be the subset of N ext consisting of non-basic activities
that consume material from buffers in Tl, and let ap(l) be the subset of N ext

consisting of non-basic activities that are processed by servers in Tl. By part
(i) of Assumption 7.1, for each l ∈ L, the set ap(l) consists of at most one
element, but it may be empty. If Next = L, then ap(l) is not empty for all
l ∈ L. Otherwise, Next = L − 1 and there is exactly one index l = lp for
which ap(l) is empty. For notational convenience, we henceforth adopt the
following convention about the enumeration of trees.

Convention 7.1. If Next = L−1, then lp = L, i.e., there is no external
non-basic activity that is processed in TL.

Note that Convention 7.1 does not violate our enumeration of servers,
buffers, basic and non-basic activities specified in Convention 5.1; it can be
thought of as a further refinement of that enumeration. When the set ap(l)
is not empty, we refer to ap(l) as the external non-basic activity processed
in Tl. On the other hand, for a fixed l ∈ L, the set ac(l) may include several
non-basic activities or it may be empty. Also, ac(l) may be empty for several
l ∈ L.

7.2. Control matrix G̃ and cost assumption. We will solve the EWF by
solving the REWF associated to a reduced control matrix G̃ chosen as fol-
lows. For this, for each l ∈ L, let i∗l be as in Theorem 6.1 and let k∗l be a
server that can serve buffer i∗l via a basic activity. Also, recall the convention
about the enumeration of trees that we adopted in Section 5.2 and how com-
ponents of Ũ are associated with Brownian analogues of server idle-times
and allocations to non-basic activities as described in Section 6.2.

Definition 7.2. Let G̃ be the L × L matrix defined as follows. There
are two cases.

Case I: Next = L.
For l = 1, . . . ,L, the lth column of G̃, G̃l is given by the column of G that

corresponds to the component of Ũ associated with the non-basic activity
ap(l) ∈ N ext, i.e., the external non-basic activity that is processed in Tl.

Case II: Next = L− 1.
For l = 1, . . . ,L − 1, the lth column of G̃, G̃l is given by the column of

G that corresponds to the component of Ũ associated with the non-basic

68 V. PESIC AND R. J. WILLIAMS

activity ap(l) ∈ N ext, i.e., the non-basic activity that is processed in Tl, and
the Lth column of G̃ is given by the column of G that corresponds to the
component of Ũ associated with the idle-time of server k∗

L
.

Remark 7.2. The matrix G̃ is obtained by deleting some columns of
G and reordering the remaining columns. If Next = L, for each l, since G̃l

corresponds to ap(l), G̃l has a positive lth entry, and since ap(l) consumes
material from a buffer in Ttc(ap(l)), G̃l has a negative entry in the position

with index tc(ap(l)); all other entries of G̃l are zero. If Next = L−1, the first
L−1 columns of G̃ have the form just described, while the Lth column has a
positive Lth entry and all other entries are equal to zero. These observations
follow from (6.13), (6.14) for Υtc(ap(l)), and the fact that z

L
is associated

with the servers in the tree TL. Thus,

G̃ = G̃+ + G̃−,(7.1)

where G̃+ is a diagonal matrix with positive diagonal entries and G̃− is a
matrix whose non-zero entries are off-diagonal and non-positive. Moreover,
each column of G̃ and G̃− has at most one negative entry.

Henceforth we make the following assumption about the cost function g.
Recall the definition of the vector κ > 0 from Theorem 6.1 where it is shown
that g(w) = κ · w.

Assumption 7.2. For each l ∈ L, κ · G̃l > 0.

This assumption corresponds to the situation where the external non-
basic activities are expensive activities that should only be used when other
alternatives are not available to reduce cost. Indeed, when workloads are
positive, an external non-basic activity can be used to reduce workload in
the tree that the activity consumes from, but this will result in an accom-
panying increase in workload in the tree that the activity is processed in,
and under the above assumption, the magnitude of the reduction in cost in
the EWF coming from one tree will be less in magnitude than the accom-
panying increase in cost coming from the other tree. On the other hand, if
the workload in the tree where the non-basic activity is processed is zero,
either server idling or use of the non-basic activity will be needed to counter
negative Brownian excursions so as to keep the workload non-negative in the
EWF; in this case, use of the non-basic activity results in a net reduction
in cost due to consumption from another tree, whereas idling a server will
not result in any cost reduction. Thus, under the above assumption, for an

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 69

optimal control for the EWF, an external non-basic activity will only be
used when the workload in the tree where the server is located is zero, but
then it will be used rather than idling a server, provided there is work to
be done in the tree that it consumes from. In Section 9, we give an explicit
example where this assumption is satisfied.

The proof of the following theorem is postponed until Section 7.4.

Theorem 7.1. Let G̃ be as in Definition 7.2. Then C(G) = C(G̃).

With the choice of matrix Ĝ = G̃ for the REWF, in view of Theorem 4.2,
we can find an optimal control for the EWF from an optimal control for the
REWF by setting components of the control for the EWF that correspond
to columns of G that are not columns of G̃ to be identically zero. This is
more formally described in the following lemma.

Theorem 7.2. Suppose Û∗ is an optimal control for the REWF associ-
ated with G̃, i.e., Ĵ∗,G̃ = Ĵ G̃(Û∗). Then an optimal control Ũ∗ for the EWF
is given by setting

Ũ∗
j = Û∗

l if Gj = G̃l for some l, and Ũ∗
j = 0 if Gj is not a column of G̃.

Proof. By Theorem 4.2, and the optimality of Û∗ for the REWF, J̌∗ =
Ĵ∗,G̃(Û∗). It is easy to check that Ũ is an admissible control for the EWF

and GŨ∗ = G̃Û∗. It follows that, J̌(Ũ∗) = Ĵ G̃(Û∗) = J̌∗.

7.3. Solution of the REWF and BCP. In this subsection, we show that
the REWF has a least control, that the least control is optimal for the REWF
and we give equations characterizing the control. We express a solution of
the BCP in terms of the optimal solution of the REWF. To simplify notation
throughout this subsection we suppress G̃ in ÂG̃ and Ĵ G̃ and we denote them
simply by Â and Ĵ respectively.

Definition 7.3. Let V index the possible filtered probability spaces with
associated Brownian motions on which admissible controls for the REWF
associated to G̃ can be defined. For each υ ∈ V, let (Λυ, Eυ, {Eυ

t },Qυ) de-
note the filtered probability space, ξ̂υ denote the associated {Eυ

t }-Brownian
motion, Âυ denote the set of admissible controls, and

Ĵυ,∗ = inf
Û∈Âυ

Ĵ(Û).(7.2)

Given Âυ, a control process Û∗ ∈ Âυ is called a least control process in Âυ

if for each l ∈ {1, . . . ,L}, Û∗
l ≤ Ûl for all Û ∈ Âυ.

70 V. PESIC AND R. J. WILLIAMS

Remark 7.3. In view of Definition 7.3 we have that Â =
⋃
υ∈V

Âυ and

Ĵ∗ = inf
υ∈V

Ĵυ,∗.

Next we will use results of Yang [35] to show that for each υ ∈ V, there is
a (unique) least control process Ûυ,∗ ∈ Âυ. Then we will show that Ĵυ,∗ =
Ĵ(Ûυ,∗) and that this value does not depend on υ. This then implies that
Ĵ∗ = Ĵυ,∗. To use the results of Yang, we need the following definition and
lemma.

Definition 7.4. (Stiemke matrix) An m × n matrix D is a Stiemke
matrix if there exists an x ∈ Rn

+ such that Dx > 0.

Lemma 7.1. G̃ is a Stiemke matrix with exactly one positive element in
each row.

Proof. Since G has the form (6.10) and Π is a Stiemke matrix, G is a
Stiemke matrix. Thus, since the cone C(G) = C(G̃), G̃ is a Stiemke matrix.
By construction, diagonal elements of G̃ are positive and off-diagonal ele-
ments of G̃ are non-positive, hence each row of G̃ has exactly one positive
element.

Theorem 7.3. For each υ ∈ V, there is a unique least control process,
Ûυ,∗, in Âυ. This satisfies

Ĵ(Ûυ,∗) = Ĵυ,∗ = Ĵ∗.(7.3)

Proof. Fix υ ∈ V. It follows from the results in Theorems 1 and 4 of
Yang [35] that there is a continuous function Φ : Dm

+ �→ Dm
+ such that

Ûυ,∗ = Φ(ξ̂υ)(7.4)

is the unique least control process in Âυ. Indeed, it follows from Lemma 11
in [35] that since ξ̂υ has continuous paths, so does Ûυ,∗. Suppose Û is any
element of Âυ. Let Ŵ be the associated workload:

Ŵ (t) = ξ̂υ(t) + G̃Û(t) for t ≥ 0.

Let Ŵ υ,∗ be the workload process associated to the least control Ûυ,∗. By
the minimality of Ûυ,∗,

Ûl(t) ≥ Ûυ,∗
l (t), for all t ≥ 0 and l ∈ L.(7.5)

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 71

Then, for t ≥ 0,

Ŵ (t) = ξ̂υ(t) + G̃Ûυ,∗(t) + G̃
(
Û(t)− Ûυ,∗(t)

)
= Ŵ υ,∗(t) + G̃(Û(t)− Ûυ,∗(t)),

and by Theorem 6.1,

g(Ŵ (t)) = κ · Ŵ (t)

= κ ·
(
Ŵ υ,∗(t) + G̃(Û(t)− Ûυ.∗(t))

)
(7.6)

≥ κ · Ŵ υ,∗(t)

= g(Ŵ υ,∗(t)),

where we have used Assumption 7.2 and (7.5) for the last inequality. It
follows that,

Ĵ(Û) = E

[∫ ∞

0
e−γtg(Ŵ (t))dt

]
(7.7)

≥ E

[∫ ∞

0
e−γtg(Ŵ υ,∗(t))dt

]
= Ĵ(Ûυ,∗).

Since Û ∈ Âυ was arbitrary, Ĵ(Ûυ,∗) = Ĵυ,∗. Since υ was arbitrary, this
holds for all υ ∈ V.

Now, for each υ ∈ V, Ûυ,∗ = Φ(ξ̂υ) and the corresponding state process
Ŵ υ,∗ = Ψ(ξ̂υ) where Ψ(x) = x + G̃Φ(x) for x ∈ Dm

+ . Thus, the law of

Ŵ υ,∗ is uniquely determined by that of the Brownian motion ξ̂υ, and this
is the same for each υ ∈ V. Since the value of Ĵ(Ûυ,∗) just depends on the
distribution of Ŵ υ,∗, it follows that this is the same for all υ ∈ V, and hence
it is the value of Ĵ∗.

In view of Theorem 7.3, to specify an optimal solution of the EWF, we
may fix υ ∈ V and use the optimal control associated with the setup indexed
by υ. Henceforth we suppress the subscript υ from ξ̂υ, Ûυ,∗ and Ŵ υ,∗. We
now describe Û∗ and Ŵ ∗ more explicitly below; in the case when Next = L−1
this can be used to explicitly construct Û∗ from ξ̂. For l ∈ L, consider the

positive constants βl = G̃l
l and αj

l = −G̃
tp(j)
l for each j ∈ ac(l). With the

convention that the sum over an empty set is zero, we have for each l ∈ L
and t ≥ 0,

Ŵ ∗
l (t) = ξ̂l(t)−

∑
j∈ ac(l)

αj
l Û

∗
tp(j)(t) + βlÛ

∗
l (t),(7.8)

72 V. PESIC AND R. J. WILLIAMS

where by the minimality of Û∗ (see equation (5.3), the remark following it,
and Lemma 9 in [35]),

Û∗
l (t) =

⎛
⎝− 1

βl
inf

0≤s≤t

⎧⎨
⎩ξ̂l(s)−

∑
j∈ ac(l)

αj
l Û

∗
tp(j)(s)

⎫⎬
⎭
⎞
⎠ ∨ 0.(7.9)

Indeed, βlÛ
∗
l is the solution of the one-dimensional Skorokhod problem for

ξ̂l −
∑

j∈ac(l) α
j
l Û

∗
tp(j). This is the minimal process that can be added to

ξ̂l−
∑

j∈ac(l) α
j
l Û

∗
tp(j) to keep Ŵ ∗

l non-negative and accordingly, Û∗
l can only

increase when Ŵ ∗
l is zero. Note that (7.9) provides an endogenous description

of Û∗. In the case when Next = L − 1, this can be solved explicitly. When
Next = L, even though an explicit form is not possible, the result of Yang
[35] provides existence of a solution.

Given the above solution of the REWF (and hence of the EWF by Theo-
rem 7.2), one can specify the Brownian queue-length and idle-time processes
for the BCP that accompany it as follows. We do this for the original M
and G; if one uses M c and Gc in their place, one has to multiply the y’s in
the formulas below by the appropriate components of c. There are two cases
to consider.

Case I: Suppose that Next = L− 1. Then for l ∈ L, k ∈ K, and t ≥ 0,

Q̃∗
i∗l
(t) =

Ŵ ∗
l (t)

yli∗l

, Q̃∗
i ≡ 0 for i ∈ Il \ {i∗l },(7.10)

Ĩ∗k∗
L

(t) = Û∗
L
(t), Ĩ∗k ≡ 0 for k 	= k∗

L
.(7.11)

Case II: Suppose that Next = L. Then for l ∈ L, k ∈ K and t ≥ 0,

Q̃∗
i∗l
(t) =

Ŵ ∗
l (t)

yli∗l

, Q̃∗
i ≡ 0 for i ∈ Il \ {i∗l }, Ĩ∗k ≡ 0 for k ∈ K.(7.12)

We note in particular that in Case II, there is no Brownian idle-time. An
associated control process Ỹ ∗ can be defined by following the proof of The-
orem 4.1 (see Theorem 5.2 of [21]).

7.4. Proof of Theorem 7.1. We shall use the following in the proof of
Theorem 7.1.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 73

Definition 7.5. For l ∈ L fixed, let π1 = l. We inductively define
π2, . . . , πι, where ι ≤ L, as follows. If Next = L, then πj+1 = tc(ap(πj)) for
j = 1, . . . , ι − 1 and ι is the first index such that tc(ap(πι)) = πj for some
j ≤ ι−1. If Next = L−1, then assuming that π1, . . . , πj have been defined, if
ap(πj) is defined, let πj+1 = tc(ap(πj)), or if ap(πj) is not defined, set ι = j
and the induction procedure stops.

Remark 7.4. If Next = L, then ap(πj) exists for all j ≤ ι and ι is well
defined since H contains a loop. For example, if ι = L and tc(ap(πι)) = π1,
then H is a “circle of trees” connected via non-basic activities. If Next =
L − 1, then by Convention 7.1, πι = L. The sequence π1, . . . , πι consists
of distinct entries and depends on the choice of l ∈ L and the original
enumeration of trees.

Proof of Theorem 7.1. We need to show that each column of G is in C(G̃).
The matrix G̃ includes all of the columns of G which correspond to non-
basic activities in N ext. By (6.12)–(6.14), each column of G that does not
correspond to a non-basic activity in N ext is a positive constant times el, for
some l, where el is the lth vector in the standard basis for RL

+. Therefore,

we need to show that for each l, el ∈ C(G̃). It is enough to show that some
positive constant times el is in C(G̃). There are two cases to consider.

Case I: Next = L − 1. Fix l ∈ L. Let π1, . . . , πι be as in Definition 7.5.
For each j = 1, . . . , ι − 1. G̃πj corresponds to the external non-basic activ-
ity ap(πj) which is processed in Tπj and consumes from Tπj+1 ; accordingly

G̃
πj
πj > 0, G̃

πj
πj+1 < 0 and all other entries of G̃πj are zero (see Remark 7.2).

Furthermore, since πι = L, G̃πι
πι

> 0 and all other entries of G̃πι are zero. It
follows by successive cancellation that there are positive constants d1, . . . , dι
such that

d1G̃
π1 + d2G̃

π2 + · · ·+ dιG̃
πι ,

has a positive lth entry and all other entries are zero. Hence, this vector is a
positive constant times el and is in C(G̃).

Case II: Next = L. Fix l ∈ L and let π1, . . . , πι be as in Definition 7.5. As
in Case I, for j = 1, . . . , ι, G̃

πj
πj > 0, G̃

πj
πj+1 < 0, and all other entries of G̃πj

are zero, where we define πι+1 = tc(ap(πι)). Let 1 ≤ ι′ ≤ ι− 1 be such that
πι′ = tc(ap(πι)). It follows that there are positive constants dι′ , . . . , dι such
that the entry of

u = dι′G̃
πι′ + dι′+1G̃

πι′+1 + · · ·+ dιG̃
πι

74 V. PESIC AND R. J. WILLIAMS

with index πι′ is dι′G̃
πι′
πι′ + dιG̃

πι
πι′

and all other entries are zero. Then,

ι∑
j=ι′

κ · G̃πjdj = κ · u = κπι′

(
dι′G̃

πι′
πι′ + dιG̃

πι
πι′

)
,

where the left side is (strictly) positive by Assumption 7.2 and the positivity
of the dj ’s. Since κπι′ > 0, it follows that so too is dι′G̃

πι′
πι′ + dιG̃

ι
πι′

and the
vector u is a positive constant times eπι′ . Then, in a similar manner to that in
Case I, it follows by successive cancellation that there are positive constants
c1, . . . , cι′ such that

c1G̃
π1 + c2G̃

π2 + · · ·+ cι′−1G̃
πι′−1 + cι′u,

has a positive lth entry and all other entries are zero. Hence, this vector is a
positive constant times el and is in C(G̃).

8. Proposed interpretation of the optimal solution of the BCP.
In this section we describe a proposed interpretation of the solution obtained
in the last section for the REWF, EWF and the BCP. Recall that we assume
that Assumption 6.1 holds, i.e., the cost function in the BCP is linear.

As in Section 3, here we consider a sequence of parallel server systems in-
dexed by r ∈ [1,∞), where in particular as r → ∞ the first order parameters
in the rth system satisfy the heavy traffic Assumption 3.1; we also assume
that Assumptions 7.1 and 7.2 are satisfied. Here M and G are fixed as in
Section 7 (as before, if M c, Gc are used with c 	= 1, one has to replace yl by
clyl in the following). As shown in Section 7, under these assumptions, one
can solve the REWF exactly and hence the EWF and BCP. Nevertheless,
interpreting this solution for the original parallel server system is a chal-
lenging problem. In Section 8.1 we outline a proposed interpretation and in
Section 8.2 we expand on some details of this.

8.1. Overall description of the control policy. We introduce a notion of
(nominal) workload for the rth parallel server system: W r = MQr. The
solution of the (R)EWF and of the associated BCP suggest that the bulk of
the work in each tree Tl should be kept in the cheapest buffer i∗l . Each tree
Tl can be viewed as a parallel server system with one-dimensional workload
W r

l . When the workload of each tree in the rth system is significantly greater
than zero, each tree should be controlled using only basic activities in the
tree and operating under a dynamic threshold-type policy as described in [7]
for the case of one-dimensional workload. This should achieve a pooling of
servers in each tree to approximately minimize the workload in each tree and

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 75

to push the bulk of the work in the tree into the cheapest buffer, which is
buffer i∗l for tree Tl. When the workload for a tree is below a small threshold,
there are two cases to consider: (i) for Next = L, when the workload W r

l of Tl
in the rth system is close to zero, it should be kept non-negative by switching
the server s∗l that can process the external non-basic activity ap(l) over to
processing that activity; (ii) for Next = L− 1, for l = 1, . . . ,L− 1, when the
workload W r

l of Tl in the rth system is close to zero, it should be kept non-
negative in a similar manner to when Next = L, except that for the workload
W r

L
of T

L
, this should be kept non-negative by allowing the server k∗

L
to idle

only when there are no jobs for that server to process. We elaborate on this
control policy, which is a dynamic threshold-type policy, in greater detail
below.

8.2. Threshold policy. We first consider the case where Next = L. For
each l ∈ {1, . . . ,L}, let s∗l be the server in Tl that performs the external
non-basic activity ap(l) and let b∗l be the buffer in Ttc(l) that activity ap(l)
consumes from. Recall that ac(l) is the set of external non-basic activities
that consume from buffers in Tl. Let b†(ac(l)) be the set of buffers that have
material consumed by activities in ac(l). Each buffer will have a threshold
placed on it. Let Lr

i ≥ 0 denote the size of the threshold placed on buffer i
in the rth system. For each l, define

Dl,r = {q ∈ RI
+ : qi ≤ Lr

i for all i ∈ Il}.

When Qr ∈ Dl,r, the workload in tree Tl is considered to be small and
service of the external non-basic activity ap(l) will be initiated. The dynamic
control policy is described as follows; it depends on the the current value of
the queue-length Qr.

Fix l ∈ L. For the servers in tree Tl, there are two cases to consider.

Case I: Qr 	∈ Dl,r. The workload W r
l ≥ min(yliL

r
i : i ∈ Il). The servers in

Tl use a threshold-type control policy that only involves the use of basic
activities. This policy was outlined in [34] and elaborated on in [7]. We
summarize it for our context below. A key to the description of this policy is
a hierarchical structure of the server-buffer tree Tl and an associated protocol
for the dynamic allocation of buffer priorities at each server. Visualizing the
tree as growing downwards from its root, this protocol is described in an
iterative manner, working from the bottom of the tree up towards the root
where the root of Tl is the server k∗l that serves buffer i∗l via a basic activity.
For the following description, buffers that link one level of servers to the next
highest level of servers are called transition buffers. Buffers that are served

76 V. PESIC AND R. J. WILLIAMS

by a single server are called terminal buffers. Note that since Tl is a tree,
with the exception of k∗l , there is exactly one transition buffer immediately
above each server. However, unless a given server is at the lowest level, there
may be one or more transition buffers immediately below this server.

Consider a server at the lowest level. This server gives the lowest prior-
ity to the buffer that is immediately above it in Tl (there will always be
such a buffer unless the server is at the root of the tree). This buffer is also
served by a server in the next level of servers up in the tree and is there-
fore a transition buffer. At this lowest level, the highest priority is given to
terminal buffers. The priority ranking for these buffers is not so important.
For concreteness we rank them in such a way that the lower numbered ones
have higher priority over the higher numbered ones, see [7] for details. Next,
we look at a server in the next level of servers in the tree. This server may
serve several transition buffers immediately below it and unless it is the root
of the tree it also serves a transition buffer immediately above it. Also, it
may serve several terminal buffers. The highest priority is given to transi-
tion buffers immediately below the server. If there are several such buffers,
they are ranked in such a way that the lower numbered ones receive higher
priority over the higher numbered ones. However, if the number of jobs for a
transition buffer associated with such an activity is at or below the thresh-
old for this buffer, service of that activity is suspended. The next priority
is given to terminal buffers immediately below the server. Again the lower
numbered ones receive higher priority over the higher numbered ones. The
lowest priority is given to the transition buffer immediately above the server
in Tl. This procedure is repeated until the root of the tree is reached. The
server at the root behaves as do other servers except that it gives the lowest
priority to the cheapest buffer i∗l . If the number of jobs in the cheapest buffer
i∗l and in terminal buffers for server k∗l equals zero, server k∗l starts serving
its transition buffers. If two or more servers simultaneously attempt to serve
a particular transition buffer, a tie breaking rule is used to determine which
server takes a job first, see [7]. A server will idle if it has no more jobs to
serve.

There is one exception to the above protocol. This relates to when buffers
in b†(ac(l)) are being served. These are the buffers in Tl that can be processed
by external non-basic activities. If such a buffer is a terminal buffer that is
not the cheapest buffer i∗l in Tl, then it needs special treatment to ensure
that any non-basic activity serving it will have enough jobs to serve. When
the number of jobs in such a buffer i is at or below the level Lr

i , any service
of this buffer by any server in Tl is suspended until the queue-length of this
buffer is strictly greater than Lr

i .

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 77

Case II: Qr ∈ Dl,r. As long as Qr ∈ Dl,r, server s∗l tries to perform activity
ap(l), which processes jobs from b∗l in tree Ttc(l). If there are no jobs in the
buffer b∗l for server s∗l to serve, then s∗l idles until there is a job in buffer b∗l
for it to serve, or until Qr exits Dl,r. All other servers in Tl operate under
the protocol described in Case I.

The policy when Next = L − 1 is the same as that described above with
one exception. In this case, there is no external non-basic activity that is
processed in TL and so all servers in TL operate as in Case I.

Remark 8.1. Readers may wonder why we allow the server s∗l to idle in
Case II, when there still might be a small amount of work for it to process in
the tree Tl. We do this because of experience we gathered from our proof of
asymptotic optimality of our policy for the example given in Section 9 and
our exploration of other examples. Our idling convention facilitates our proof
of the heavy traffic limit for the queue-lengths of buffers in Tl. In particular,
it makes it feasible to track the deviations of transition buffers from their
thresholds. In fact, this forced idling of server s∗l will only occur when both
the workload in Tl is small and there are no jobs in buffer b∗l . We expect this
event to occur so rarely that the amount of unnecessary idletime incurred by
server s∗l due to this rule will be negligible in the diffusion limit. (For the
example in Section 9, we prove this in [31].) Indeed, we conjecture that the
policy described above has the same heavy traffic behavior as the policy in
which Case II is amended to allow server s∗l to revert to serving jobs in Tl
when Qr ∈ Dl,r and there are no jobs in buffer b∗l for s∗l to serve. However,
it will be more difficult to prove the asymptotic optimality of this amended
policy in general, as it is difficult to obtain a detailed (excursion level) apriori
estimate of how much time is spent in this modified activity. Nevertheless,
practitioners wishing to use the general form of our policy may consider
making this amendment as it may lead to slightly enhanced performance in
the prelimit.

For the case Next = L, we anticipate that for asymptotic optimality of
our control policy, the thresholds should be such that for each i, as r →
∞, Lr

i /r → 0 and Lr
i → ∞. The precise size of the thresholds should be

suitably chosen depending on higher order moment assumptions placed on
the primitive arrival and service processes. In particular, we conjecture that
as in [7], these thresholds can be chosen to be of the order of log r as r → ∞
under the following exponential moment assumptions. With finiteness of
fewer moments, the thresholds would likely need to be bigger (up to o(r)).
Thresholds for the case Next = L− 1 should be set similarly, except that for
buffers in TL that are terminal buffers that are either not served by external

78 V. PESIC AND R. J. WILLIAMS

non-basic activites or that correspond to the cheapest buffer in the tree, a
threshold of zero can be set. This is because thresholds on these buffers are
only used to define DL,r and this set is not used to specify the policy in this
case when there is no external non-basic activity processed in TL.

Assumption 8.1. For i ∈ I, j ∈ J , for all m ≥ 1, let ui(m) = 1
λi
ǔi(m)

and vj(m) = 1
μj
v̌i(m). Assume that there is an open neighborhood O of 0 ∈ R

such that for all � ∈ O,

Λa
i (�) ≡ logE

[
e�ui(1)

]
< ∞ for i ∈ I,(8.1)

and

Λs
j(�) ≡ logE

[
e�vj(1)

]
< ∞ for j ∈ J .(8.2)

Assuming this, we conjecture that the above policy is asymptotically op-
timal in the following sense.

Conjecture 8.1. Let {T r} be any sequence of scheduling controls (one
for each member of the sequence of parallel server systems) and let {T r,∗} de-
note the sequence of controls associated with our threshold policy for suitable
thresholds Lr

i , i ∈ I, chosen to be of order log r as r → ∞. Then

lim inf
r→∞

Ĵr(T r) ≥ J∗ = lim
r→∞

Ĵr(T r,∗)(8.3)

and J∗ < ∞ is the optimal value of the BCP.

In the next section, we illustrate our proposed policy for a specific exam-
ple. In a separate work [31], we prove asymptotic optimality of the policy
for this example.

Our proposed policy provides a simple, threshold-based, feedback control
interpretation of the solution of the Brownian Control Problem. However,
this policy is only one possible asymptotically optimal policy. There are
likely many other policies that are asymptotically optimal. In particular,
asymptotically optimal discrete review policies likely can be constructed
along the lines of the general BIGSTEP scheme proposed by Harrison [15],
which was shown to be asymptotically optimal under a complete resource
pooling assumption in [1, 16]. Indeed, under discrete review, the transition
between Cases I and II could be approximately detected and our policy for
Case I could likely be replaced by a discrete review scheme similar to that
used by Ata and Kumar [1], and our policy for Case II could be approximated
by a discrete review policy in which the appropriate non-basic activity is
used.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 79

Fig 4. Graph H for the example in Section 9. Here Tl stands for the tree Tl, l = 1, 2.

9. Illustrative example.

9.1. Description and first order data. We consider a sequence of parallel
server systems indexed by r ∈ [1,∞) whereeach system has 3 buffers, 3
servers and 5 activities (see Figure 4). The first order parameters for the rth

member of the sequence has

C =

⎛
⎝ 1 1 0 0 0

0 0 1 0 0
0 0 0 1 1

⎞
⎠ , A =

⎛
⎝ 1 0 0 0 1

0 1 1 0 0
0 0 0 1 0

⎞
⎠ ,

(9.1)

λr = (λr
1, λ

r
2, λ

r
3), μr = (μr

1, μ
r
2, μ

r
3, μ

r
4, μ

r
5),

such that the following holds.

Assumption 9.1. There are constant vectors λ = (λ1, λ2, λ3), μ =
(μ1, μ2, μ3, μ4, μ5), (θ1, θ2, θ3) such that as r → ∞,

(i) λr
i → λi > 0 for i = 1, 2, 3,

(ii) μr
j → μj > 0 for j = 1, . . . , 5,

where λ1 > μ1, λ2 < μ3, λ3 = μ4,
λ1−μ1

μ2
= 1− λ2

μ3
,

(iii) rμr
2

(
λr
1−μr

1
μr
2

− λ1−μ1

μ2

)
→ θ1,

80 V. PESIC AND R. J. WILLIAMS

(iv) rμr
3

(
λr
2

μr
3
− λ2

μ3

)
→ θ2,

(v) r(λr
3 − μr

4) → θ3.

Assumptions 3.2, 3.3 are satisfied with

x∗ =

(
1,

λ1 − μ1

μ2
,
λ2

μ3
, 1, 0

)
.(9.2)

9.2. Brownian Control Problem. Assuming linear holding costs as in As-
sumption 6.1, the Brownian Control Problem associated with the above pa-
rameters is as follows.

Definition 9.1. (Brownian Control Problem).

minimize E

(∫ ∞

0
e−γth · Q̃(t)dt

)
(9.3)

using a 5-dimensional adapted control process Ỹ = (Ỹ1, Ỹ2, Ỹ3, Ỹ4, Ỹ5) defined
on some filtered probability space (Ω̃, F̃ , {̃F t}, P̃) that supports 3-dimensional
adapted processes Q̃ and X̃ such that P̃-a.s. for all t ≥ 0:

Q̃1(t) = X̃1(t) + μ1Ỹ1(t) + μ2Ỹ2(t) ≥ 0,(9.4)

Q̃2(t) = X̃2(t) + μ3Ỹ3(t) ≥ 0,(9.5)

Q̃3(t) = X̃3(t) + μ4Ỹ4(t) + μ5Ỹ5(t) ≥ 0,(9.6)

Ĩ1 = Ỹ1 + Ỹ5 is non-decreasing, Ĩ1(0) ≥ 0,(9.7)

Ĩ2 = Ỹ2 + Ỹ3 is non-decreasing, Ĩ2(0) ≥ 0,(9.8)

Ĩ3 = Ỹ4 is non-decreasing, Ĩ3(0) ≥ 0,(9.9)

Ỹ5 is non-increasing, Ỹ4(0) ≤ 0,(9.10)

where X̃ is a 3-dimensional {F̃t}-Brownian motion starting at the origin
with drift θ = (θ1, θ2, θ3) and with diagonal covariance matrix Σ whose ith

diagonal entry is equal to λia
2
i +

5∑
j=1

Cijμjb
2
jx

∗
j for i = 1, 2, 3.

9.3. Solution of the REWF and BCP. According to Theorem 5.2, since
the server-buffer graph G consists of two trees T1 and T2, the workload is
two-dimensional. There are four basic activities and a single (external) non-
basic activity. The extended server-buffer graph H (see Figure 4) satisfies
Assumption 7.1. Following the steps outlined in Sections 4–6, we proceed to
compute a workload matrix M and control matrix G that goes with it. For

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 81

this, we solve the dual programs for T1 and T2. The unique solution of the
dual program for T1 is given by

(
y11, y

1
2

)
=

(
1

μ1 + μ2
,

μ2

μ3(μ1 + μ2)

)
,

(
z11 , z

1
2

)
=

(
μ1

μ1 + μ2
,

μ2

μ1 + μ2

)
,

and the unique solution of the dual program for T2 is given by

y21 =
1

μ4
, z21 = 1.(9.11)

By Lemma 6.5 we can multiply (y1, z1) by μ1 + μ2 to obtain a workload
matrix

M =

(
1 μ2/μ3 0
0 0 1/μ4

)
,(9.12)

with corresponding control matrix

G =

(
μ1 μ2 0 μ1

0 0 1 −μ5/μ4

)
,(9.13)

and (κ1, κ2) is such that κ1 = min(h1, h2μ3/μ2), κ2 = h3μ4. By Defini-
tion 7.2 the control matrix G̃ that goes with the REWF (see Definitions 4.7-
4.8) is

G̃ =

(
μ1 0

−μ5/μ4 1

)
.(9.14)

Given X̃ as in Definition 9.1, let ξ̂ = MX̃. Then, ξ̂ is a 2-dimensional
Brownian motion with drift Mθ and covariance matrix MΣM ′. In terms of
ξ̂ the workload Ŵ in the REWF is given by

Ŵ1(t) = ξ̂1(t) + μ1Û1(t),

Ŵ2(t) = ξ̂2(t) + Û2(t)− (μ5/μ4)Û1(t).

The correspondence with controls in the BCP is

Û1 = −Ỹ5, Û2 = Ĩ3.

Henceforth, we assume that the parameters satisfy the following.

Assumption 9.2.

(i) h1μ2 > h2μ3,
(ii) h2μ1μ3 > h3μ2μ5.

82 V. PESIC AND R. J. WILLIAMS

The first assumption (i) assumes that buffer 2 is the “cheapest” in the
tree T1. Part (ii) of Assumption 9.2 corresponds to Assumption 7.2, which
implies that activity 5 is an expensive activity in the sense that in the
optimal solution of the BCP, it will only be used to reduce workload in tree
T2 when there is no work in T1.

The assumptions of Section 7.2 are satisfied and therefore by Section 7.3,
the solution of the REWF and BCP are given by the following. For all t ≥ 0,

Ŵ ∗
1 (t) = ξ̂1(t) + μ1Ũ

∗
1 (t), Û∗

1 (t) =

(
− 1

μ1
inf

0≤s≤t
{ξ̂1(s)}

)
∨ 0,(9.15)

Ŵ ∗
2 (t) = ξ̂2(t) + Û∗

2 (t)− (μ5/μ4)Û
∗
1 (t),(9.16)

Û∗
2 (t) =

(
− inf

0≤s≤t
{ξ̂2(s)− (μ5/μ4)Û

∗
1 (s)}

)
∨ 0,(9.17)

Q̃∗
1(t) = 0, Q̃∗

2(t) = (μ3/μ2)Ŵ
∗
1 (t), Q̃∗

3(t) = μ4Ŵ
∗
2 (t),(9.18)

Ĩ∗1 (t) = Ỹ ∗
1 (t) + Ỹ ∗

5 (t) = 0, Ĩ∗2 (t) = Ỹ ∗
2 (t) + Ỹ ∗

3 (t) = 0,(9.19)

Ỹ ∗
4 (t) = Ĩ∗3 (t) = Û∗

2 (t), Ỹ ∗
5 (t) = −Û∗

1 (t),(9.20)

Ỹ ∗
1 (t) = −Ỹ ∗

5 (t) = Û∗
1 (t),(9.21)

Ỹ ∗
2 (t) = −μ−1

2 (X̃1(t) + μ1Ỹ
∗
1 (t)),(9.22)

Ỹ ∗
3 (t) = μ−1

3 (Q̃∗
2(t)− X̃2(t)),(9.23)

and the associated minimum cost is

J̃∗ = E

(∫ ∞

0
e−γt

(
(h2μ3/μ2)Ŵ

∗
1 (t) + h3μ4Ŵ

∗
2 (t)

)
dt

)
.(9.24)

In this instance, the optimal control Ỹ ∗ for the BCP is uniquely determined
by the optimal control Û∗ for the REWF. In general, this need not be the
case (see [19]). In the example treated here, when Ŵ ∗

1 hits zero, Û∗
1 increases

by a minimal amount in order to keep Ŵ ∗
1 non-negative. When Ŵ ∗

2 hits zero,
Û∗
2 increases by a minimal amount in order to keep Ŵ ∗

2 non-negative (see
Figure 5 for a depiction of the optimal control directions).

In contrast to the simple structure of the REWF obtained using our de-
coupled workload matrix, the workload and control matrices proposed by
Harrison for this example are given by the following (after premultiplication
by a diagonal matrix with positive diagonal entries):

M =

(
1 μ2/μ3 0
1 μ2/μ3 μ1/μ5

)
,(9.25)

G =

(
μ1 μ2 0 μ1

μ1 μ2 μ4μ1/μ5 0

)
.(9.26)

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 83

Fig 5. For the optimal control Û∗ for the REWF, Û∗
1 is the amount of pushing done in

the direction G̃1 and Û∗
2 is the amount of pushing done in the direction G̃2.

With this choice for M and G, the state space for the workload in the EWF
will be a wedge in the non-negative quadrant of two-dimensional space and
all of the control directions have non-negative components. The results of
Yang [35] do not apply directly here as that paper requires the state space
to be the non-negative orthant, not a subset of it. Furthermore, the cost
function for the EWF is not so simple to derive with the above choice of M
and G. This is to be compared with the linear function of workload (with
positive coefficients) resulting from our decoupled workload matrix.

9.4. Threshold policy. The policy which follows is a special instance of
the policy proposed in Section 8 for Next = L − 1. Recall that the terms
class and buffer are interchangeable. The root of the first tree is server 2 and
the root of the second tree is server 3. The policy is described using three
regions in the two-dimensional state space for (Qr

1, Q
r
2) that are induced by

thresholds on buffers 1 and 2 (see Figure 6).
For each r, let

Lr
1 = �C̃ log r�+ 1, Lr

2 = �(8μ3L
r
1)/λ1�+ 1 and Lr

3 = 0

where C̃ is a sufficiently large positive constant. The policy for servers in
tree T1 when Qr ∈ D1,r, is similar to that used in [6]. Indeed, the threshold
Lr
1, on the transition buffer 1 in T1, is of the same form as that in [7]. Here

we need an additional threshold Lr
2 on buffer 2, which combined with the

threshold on buffer 1 helps us to detect when the workload in T1 is small (of

84 V. PESIC AND R. J. WILLIAMS

Fig 6. Depiction of thresholds and related transition rates for (Qr
1, Q

r
2) under the threshold

policy.

order log r). Note that both thresholds are of order log r. The threshold Lr
3

can be chosen to be zero because it is a terminal buffer that is the cheapest
buffer in T2, where Next = 2− 1 = 1.

In the rth system, the dynamic threshold policy operates as follows:

(i) Server 3 operates whenever possible. In other words server 3 is never
idle when there are jobs in buffer 3 or at server 3.

(ii) When the number of class 1 jobs is above the threshold Lr
1, server 1 and

server 2 both process class 1 jobs. In particular, as soon as the number
of class 1 jobs reaches level Lr

1 + 1 from below, server 2 suspends any
work on class 2 jobs and shifts service to class 1 jobs. As soon as the
number of class 1 jobs reaches level Lr

1 from above, server 2 suspends
any work on class 1 jobs and shifts service to class 2 jobs provided
that buffer 2 is non-empty; if there are no class 2 jobs to be served,
server 2 continues serving class 1 jobs until a new arrival of a class 2
job occurs.

(iii) When the number of class 1 jobs is at or below the threshold Lr
1 and

the number of class 2 jobs is above the threshold Lr
2, server 1 works

on class 1 jobs and server 2 works on class 2 jobs.
(iv) When the number of class 1 jobs is at or below the threshold Lr

1 and
the number of class 2 jobs is at or below the threshold Lr

2, server 1
works on class 3 jobs provided that there are jobs in buffer 3 for it
to serve and server 2 works on class 2 jobs provided that buffer 2 is

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 85

not empty. In this regime, if there are no jobs in buffer 3 that server 1
can serve, then server 1 idles and, if buffer 2 becomes empty, server 2
works on class 1 jobs.

In [31], it is proved under Assumption 8.1 that this policy is asymptot-
ically optimal in the heavy traffic limit for this example for all sufficiently
large constants C̃. As pointed out in Section 8, the size (in terms of order
relative to r) of the non-zero thresholds depends on the moment assumptions
imposed on the interarrival and service times. A relaxation of the exponen-
tial moment assumptions would require larger thresholds, which must still
be o(r) as r → ∞.

As we remarked in Section 8, the forced idling of server 1 in case (iv),
when there are no jobs in buffer 3 for it to serve, is done to facilitate our
proof of asymptotic optimality. Indeed, our proof shows that this amount of
idling is negligible in diffusion scale in the heavy traffic limit. It is reason-
able to conjecture that, if instead of idling in this case, server 1 serves jobs
from buffer 1, then the resulting policy will also be asymptotically optimal.
However, proving this would require considerably more delicate estimates
than are used in our current proof in [31].

The previous paragraph reminds us that the policy we have proposed is
only one asymptotically optimal policy. It is likely that there are many other
policies that are asymptotically optimal. However, as in the case of complete
resource pooling [13], the maximum pressure policy is not asymptotically
optimal for this example with linear holding costs. This can be seen from
an analysis due to Ata and Lin [2] who studied the heavy traffic behavior of
certain stochastic processing networks operating under a maximum pressure
policy. When specialized to the example treated in this section, their results
show that under a maximum pressure policy, the diffusion limit of the queue-
length process has no degenerate components. This can be used to show that
the maximum pressure policy is not asymptotically optimal.

The reader may wonder what happens if some of the parameters in the
example of this section are changed. We give a brief discussion of some
possibilities (a)–(c) here.

(a) If the inequality in Assumption 9.2(i) is reversed, then buffer 1 will be
the cheapest (or equal cheapest) buffer in the tree T1. We expect that
the policy outlined in Section 8 will again be asymptotically optimal
in this case. The main change in the policy from that described above
is that the buffer priorities for server 2 are reversed: server 2 gives
highest priority to buffer 2 and only serves buffer 1 when buffer 2 is
empty.

86 V. PESIC AND R. J. WILLIAMS

(b) If the inequality in Assumption 9.2(ii) is reversed, then the non-basic
activity is no longer “expensive”. In this case, it may be expedient to
use the non-basic activity even when the workload in T1 is not small.
We do not know how to solve the EWF in this case, as the solution
may involve a free boundary on which the non-basic activity is used.

(c) If λ1 = μ1 and λ2 = μ3, then the graph H will have three trees (with
one buffer and one server per tree) connected by two non-basic activi-
ties, activities 2 and 5. Assumption 7.1 on the graphical structure will
hold with Next = L − 1. Provided that Assumption 7.2 on the cost is
satisfied, i.e., it is expensive to use the non-basic activities, then the
EWF can be solved and our proposed policy from Section 8 can be
applied. In a sense, this example is easier to treat than the example in
Section 9 because there is no pooling within trees, and the workload
and queue-length processes have the same dimension.

10. Further research. There are several directions for further research
that are suggested by the simplified structure for the EWF revealed through
use of our decoupled workload matrix. We describe three of these below.

The first direction relates to relaxing the assumptions about the cost and
graph structure assumptions in Section 7. The cost assumption ensures that
the optimal control process Û∗ will only increase when some component
of the workload process reaches zero. It would be very interesting to relax
this cost assumption. However, it is expected that in general the solution
of the EWF will involve a (challenging) free boundary problem in this case.
The graph structure assumption ensures that for each workload component,
there is just one control direction (i.e., column of G̃) for the REWF that
can be used to increase the workload component (and so prevent it from
becoming negative when it is zero). The latter ensures that there is just one
control direction associated with each boundary face of the orthant and that
there exists a least control. If one generalized to allow more than one control
direction on each boundary face, a more complex control problem results.
It would be interesting to find good sufficient conditions for solvability of
such problems which would allow for a more general structure of non-basic
activities between trees.

It is natural to consider other cost functions besides linear holding costs.
In particular, it is natural to consider convex cost functions of the form
f(q) =

∑
I

i=1 ciq
α
i for some α > 1, ci > 0, i = 1, . . . , I. It seems likely that

some sufficient conditions for solvability of the EWF can be obtained in
this case and that judicious use could be made of the maxweight, general-
ized cμ or maximum pressure policies of [13, 29, 32] within trees for some
asymptotically optimal policies.

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 87

In this paper, we have seen that for parallel server systems with more
than one-dimensional workload, there can be advantages to choosing a dif-
ferent workload matrix from that proposed by [17]. It would be interesting to
explore whether a simplified structure of the EWF (and REWF) can be ob-
tained for more general stochastic processing networks with flexible servers
and feedback, by choosing a workload matrix distinct from that proposed
in [17].

REFERENCES

[1] B. Ata and S. Kumar. Heavy traffic analysis of open processing networks with com-
plete resource pooling: Asymptotic optimality of discrete review policies. Annals of
Applied Probability, 15 (2005), 331–391. MR2115046

[2] B. Ata and W. Lin. Heavy traffic analysis of maximum pressure policies for stochas-
tic processing with multiple bottlenecks, Queueing Systems, 59 (2008), 191–235.
MR2439295

[3] B. Ata and J. A. Van Mieghem. The value of dynamic resource pooling: Should a
service network be integrated or product-focused? Management Science, 55 (2009),
115–131.

[4] R. Atar, A. Mandelbaum and G. Shaikhet. Queueing systems with many servers: Null
controllability in heavy traffic. Annals of Applied Probability, 16 (2006), 1764–1804.
MR2288704

[5] R. Atar and I. Gurvich, Scheduling parallel servers in the nondegenerate slowdown
diffusion regime: Asymptotic optimality results, Annals of Applied Probability, 24
(2014), 760–810. MR3178497

[6] S. L. Bell and R. J. Williams. Dynamic scheduling of a system with two parallel
servers in heavy traffic with resource pooling: Asymptotic optimality of a threshold
policy. Annals of Applied Probability, 11 (2001), 608–649. MR1865018

[7] S. L. Bell and R. J. Williams. Dynamic scheduling of a parallel server system in heavy
traffic with complete resource pooling: Asymptotic optimality of a threshold policy.
Electronic J. of Probability, 10 (2005), 1044–1115. MR2164040

[8] C. Berge. Graphs, North Hollans, Amsterdam, 1985. MR0809587
[9] V. Bohm. On the continuity of the optimal policy set for linear programs. SIAM J.

Appl. Math., 28 (1975), 303–306. MR0371390
[10] A. Budhiraja and A. P. Ghosh. A large deviations approach to asymptotically optimal

control of crisscross network in heavy traffic. Annals of Applied Probability, 15 (2005),
1887–1935. MR2152248

[11] A. Budhiraja and A. Ghosh, Controlled stochastic networks in heavy traffic: Con-
vergence of value functions, Annals of Applied Probability, 22 (2012), 734–791.
MR2953568

[12] M. Bramson and R. J. Williams. Two workload properties for Brownian networks.
Queueing Systems, 45 (2003), 191–221. MR2024178

[13] J. G. Dai and W. Lin. Asymptotic optimality of maximum pressure policies in
stochastic processing networks, Annals of Applied Probability, 18 (2008), 2239–2299.
MR2473656

[14] J. M. Harrison. Brownian models of queueing networks with heterogeneous customer
population. In Stochastic Differential Systems, Stochastic Control Theory and Their
Applications, IMA Volume 10, W. Fleming and P. L. Lions (eds.), Springer Verlag,
New York, 1988, 147–186. MR0934722

http://www.ams.org/mathscinet-getitem?mr=2115046
http://www.ams.org/mathscinet-getitem?mr=2439295
http://www.ams.org/mathscinet-getitem?mr=2288704
http://www.ams.org/mathscinet-getitem?mr=3178497
http://www.ams.org/mathscinet-getitem?mr=1865018
http://www.ams.org/mathscinet-getitem?mr=2164040
http://www.ams.org/mathscinet-getitem?mr=0809587
http://www.ams.org/mathscinet-getitem?mr=0371390
http://www.ams.org/mathscinet-getitem?mr=2152248
http://www.ams.org/mathscinet-getitem?mr=2953568
http://www.ams.org/mathscinet-getitem?mr=2024178
http://www.ams.org/mathscinet-getitem?mr=2473656
http://www.ams.org/mathscinet-getitem?mr=0934722

88 V. PESIC AND R. J. WILLIAMS

[15] J. M. Harrison. The BIGSTEP approach to flow management in stochastic processing
networks. In Stochastic Networks: Theory and Applications, F. P. Kelly, S. Zachary
and I. Ziedins (eds.), Oxford University Press, 1996, 57–90.

[16] J. M. Harrison. Heavy traffic analysis of a system with parallel servers: Asymptotic
optimality of discrete review policies. Annals of Applied Probability, 8 (1998), 822–
848. MR1627791

[17] J. M. Harrison. Brownian models of open processing networks: Canonical represen-
tation of workload. Annals of Applied Probability, 10 (2000), 75–103. Correction: 13
(2003), 390–393. MR1765204

[18] J. M. Harrison and M. J. López. Heavy traffic resource pooling in parallel server
systems. Queueing Systems, 33 (1999), 339–368. MR1742575

[19] J. M. Harrison and J. A. Van Mieghem. Dynamic control of Brownian networks: State
space collapse and Equivalent Workload Formulations. Annals of Applied Probability,
7 (1997), 747–771. MR1459269

[20] J. M. Harrison and L. M. Wein. Scheduling networks of queues: Heavy traffic analysis
of a simple open network. Queueing Systems, 5 (1989), 265–280. MR1030470

[21] J. M. Harrison and R. J. Williams. Workload reduction of a generalized Brownian
network. Annals of Applied Probability, 15 (2005), 2255–2295. MR2187295

[22] F. P. Kelly and C. N. Laws. Dynamic routing in open queueing networks: Brownian
models, cut constraints and resource pooling. Queueing Systems, 13 (1993), 47–86.
MR1218844

[23] H. J. Kushner and Y. N. Chen, Optimal control of assignment of jobs to proces-
sors under heavy traffic, Stochastics and Stochastics Reports, 68 (2000), 177–228.
MR1746180

[24] H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in
Continuous Time, Springer-Verlag, New York, 1992. MR1217486

[25] H. J. Kushner and L. F. Martins, Numerical methods for stochastic singular control
problems, SIAM J. Control and Optimization, 29 (1991), 1443–1475. MR1132190

[26] C. N. Laws. Resource pooling in queueing networks with dynamic routing. Advances
in Applied Probability, 24 (1992), 699–726. MR1174386

[27] C. N. Laws and G. M. Louth. Dynamic sequencing of a four station queueing network.
Probab. Engrg. Inform. Sci., 4 (1990), 131–156.

[28] C. Maglaras. Continuous-review tracking policies for dynamic control of stochastic
networks. Queueing Systems, 43 (2003), 43–80. MR1957806

[29] A. Mandelbaum and A. L. Stolyar. Scheduling flexible servers with convex delay costs:
Heavy-traffic optimality of the generalized cμ-rule. Operations Research 52 (2004),
836–855. MR2104141

[30] L. F. Martins, S. E. Shreve and H. M. Soner. Heavy traffic convergence of a con-
trolled, multiclass queueing system. SIAM J. Control Optim. 34 (1996), 2133–2171.
MR1416504

[31] V. Pesic and R. J. Williams, Dynamic scheduling of a parallel server system with
partial pooling: Heavy traffic analysis of a three-buffer, three-server system, in prepa-
ration.

[32] A. L. Stolyar. MaxWeight scheduling in a generalized switch: State space collapse and
workload minimization in heavy traffic. Annals of Applied Probability, 14 (2004), 1–
53. MR2023015

[33] L. Wein. Scheduling networks of queues: Heavy traffic analysis of a multistation
network with controlable inputs. Operations Research, 40 (1992), 312–334.

[34] R. J. Williams. On dynamic scheduling of a parallel server system with complete
resource pooling. In Analysis of Communication Networks: Call Centers, Traffic and

http://www.ams.org/mathscinet-getitem?mr=1627791
http://www.ams.org/mathscinet-getitem?mr=1765204
http://www.ams.org/mathscinet-getitem?mr=1742575
http://www.ams.org/mathscinet-getitem?mr=1459269
http://www.ams.org/mathscinet-getitem?mr=1030470
http://www.ams.org/mathscinet-getitem?mr=2187295
http://www.ams.org/mathscinet-getitem?mr=1218844
http://www.ams.org/mathscinet-getitem?mr=1746180
http://www.ams.org/mathscinet-getitem?mr=1217486
http://www.ams.org/mathscinet-getitem?mr=1132190
http://www.ams.org/mathscinet-getitem?mr=1174386
http://www.ams.org/mathscinet-getitem?mr=1957806
http://www.ams.org/mathscinet-getitem?mr=2104141
http://www.ams.org/mathscinet-getitem?mr=1416504
http://www.ams.org/mathscinet-getitem?mr=2023015

DYNAMIC SCHEDULING FOR PARALLEL SERVERS 89

Performance, D. R. McDonald and S. R. E. Turner (eds.), American Mathematical
Society, Providence, RI, 2000, 49–71. MR1788708

[35] P. Yang. Least controls for a class of constrained linear stochastic systems. Mathe-
matics of Operations Research, 10 (1993), 275–291. MR1250119

V. Pesic

XR Trading

550 West Jackson Blvd, Suite 1000

Chicago, IL 60661, USA

E-mail: vlad.pesic@xrtrading.com

R. J. Williams

Department of Mathematics

University of California, San Diego

9500 Gilman Drive

La Jolla, CA 92093-0112, USA

E-mail: williams@math.ucsd.edu
URL: http://www.math.ucsd.edu/∼williams

http://www.ams.org/mathscinet-getitem?mr=1788708
http://www.ams.org/mathscinet-getitem?mr=1250119
mailto:vlad.pesic@xrtrading.com
mailto:williams@math.ucsd.edu
http://www.math.ucsd.edu/$\sim $williams

	Introduction
	Heavy traffic approach
	Prior work for one-dimensional workload
	Beyond one-dimensional workload: Contributions of this paper
	Organization of the paper
	Notation and terminology

	Parallel server system
	System structure
	Stochastic primitives
	Scheduling control

	Sequence of systems, heavy traffic and the cost function
	Sequence of systems
	Heavy traffic and fluid model
	Diffusion scaling and cost function

	Brownian Control Problem and Equivalent Workload Formulation
	Brownian Control Problem (BCP)
	Equivalent Workload Formulation (EWF)
	Reduced EWF (REWF)
	Harrison's choice of workload matrix and the dual program

	Structure of the server-buffer graph
	Server-buffer graph
	Forest of trees structure

	Decoupled workload matrix and the cost function in the EWF
	Decoupled workload matrix and associated control matrix
	Columns of G and components of the control
	Cost function in the EWF when the BCP has linear holding cost
	Our decoupled workload matrix versus Harrison's choice

	Solution of the BCP for certain graph and cost structure
	Graph structure
	Control matrix and cost assumption
	Solution of the REWF and BCP
	Proof of Theorem 7.1

	Proposed interpretation of the optimal solution of the BCP
	Overall description of the control policy
	Threshold policy

	Illustrative example
	Description and first order data
	Brownian Control Problem
	Solution of the REWF and BCP
	Threshold policy

	Further research
	References
	Author's addresses

