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We consider a queueing system composed of a dispatcher that
routes jobs to a set of non-observable queues working in parallel. In
this setting, the fundamental problem is which policy should the dis-
patcher implement to minimize the stationary mean waiting time of
the incoming jobs. We present a structural property that holds in the
classic scaling of the system where the network demand (arrival rate
of jobs) grows proportionally with the number of queues. Assuming
that each queue of type r is replicated k times, we consider a set of
policies that are periodic with period k)" p, and such that exactly
pr jobs are sent in a period to each queue of type r. When k — oo,
our main result shows that all the policies in this set are equivalent,
in the sense that they yield the same mean stationary waiting time,
and optimal, in the sense that no other policy having the same ag-
gregate arrival rate to all queues of a given type can do better in
minimizing the stationary mean waiting time. This property holds in
a strong probabilistic sense. Furthermore, the limiting mean waiting
time achieved by our policies is a convex function of the arrival rate
in each queue, which facilitates the development of a further opti-
mization aimed at solving the fundamental problem above for large
systems.

1. Introduction. In computer and communication networks, the ac-
cess of jobs to resources (web servers, network links, etc.) is usually regu-
lated by a dispatcher. A fundamental problem is which algorithm should
the dispatcher implement to minimize the mean delay experienced by jobs.
There is a vast literature on this subject and the structure of the optimal al-
gorithm strongly depends on i) the information available to the dispatcher,
i1) the topology of the network and i) how jobs are processed by resources.
We are interested in a scenario where:

e The dispatcher has static information of the system;
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e The network topology is parallel;
e Resources process jobs according to the first-come-first-served disci-
pline.

Static information means that the dispatcher knows the probability distri-
butions of job sizes and inter-arrival times but cannot observe the dynamic
state of resources such as the current number of jobs in their queues. This
scenario can be of interest in the context of volunteer computing, cloud
computing, web server farms, etc.; see, e.g., [24, 25, 20| respectively.

In this framework, the problems of finding an algorithm, or policy, that
minimizes the mean stationary delay and of determining the minimum mean
stationary delay are both considered difficult; see, e.g., [2, 1] for an overview.
A policy can be defined as a function that maps a natural number n, cor-
responding to the n-th job arriving to the dispatcher, to a probability mass
function P, over the set of resources. When the n-th job arrives, the dis-
patcher sends it to resource i with probability P,(i). Unfortunately, the
problem of finding an optimal policy is intractable and for this reason two ex-
treme families of policies have received particular attention in the literature:
probabilistic policies, obtained when P, is constant (in n), and deterministic
policies, obtained when P, puts the whole mass on a single resource.

When dealing with probabilistic policies, the difficulty of the problem is
simplified by the fact that the arrival process at each resource is a renewal
process, provided that the same holds for the arrival process at the dis-
patcher. This allows one to decompose the problem and, using the theory
of the mean waiting time of the single GI/GI/1 queue, to immediately re-
duce it to a relatively simple optimization problem. This problem is usually
convex and there exist efficient numerical procedures for their solution; e.g.,
[30, 34, 32, 13, 14, 8.

Contrariwise, when dealing with deterministic policies, one of the main
difficulties is that the arrival process at each resource is hardly ever a re-
newal process. This prevents one from decomposing the problem and directly
using the classic theory of the single queue as it has been done for proba-
bilistic policies. Given this difficulty, researchers divided this problem in two
subproblems:

i) In the first subproblem, the optimal deterministic policy is searched
among all the deterministic policies ensuring that the long-term frac-
tions of jobs to be sent to each resource is kept fixed (denote such
fractions by vector p);

ii) In the second subproblem, the output of the first subproblem is em-
ployed to develop a further optimization over p.
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In this paper, we focus on the first subproblem and, under some system
scaling, we identify a set of policies that are optimal. This result is used to
reduce the second subproblem to the solution of a convex optimization.

One of the folk theorem of queueing theory says that determinism in the
inter-arrival times minimizes the waiting time of the single queue [18, 23].
In view of this classic insight and fixing fractions p, it is not surprising
that an optimal policy tries to make the arrival process at each resource as
regular (or less variable) as possible. Thus, our stochastic scheduling problem
can be essentially converted into a problem in word combinatorics. If the
dispatcher must ensure fractions p, the main result known in the literature
is that balanced sequences are optimal admission sequences [19, 1]. However,
balanced sequences of given rates p are known to exist in very few particular
cases. These cases are captured by Fraenkel’s conjecture, which is still open
to the best of our knowledge [36]; see also [2, Chapter 2|, which contains an
overview of which rates p are balanceable.

Matter of fact, the problem of finding an optimal deterministic policy is
still considered difficult [10, 3, 38, 22, 2, 7, 21]. The only exceptions are when
resources are stochastically equivalent, where round-robin'! is known to be
optimal in a strong sense [27], or when the dispatcher routes jobs to two
resources, where balanced sequences can be always constructed no matter
the value of rates p [19]. In presence of more than two queues, we stress that
balanced sequences with given rates p do not exist in general. This non-
existence makes the problem difficult and one still wonders which structure
should an optimal policy have when p is not balanceable. When the routing
is performed to two resources, jobs join the dispatcher following a Poisson
process and service times have an exponential distribution, the optimal rates
p as function of the inter-arrival and service times have a fractal structure,
see [16, Figure 8]. This puts further light on the complexity of the problem
even in a simple scenario.

While deterministic policies are believed to be more difficult to study than
probabilistic policies (deterministic and probabilistic in the sense described
above), they can achieve a significantly better performance [3]. This holds
also for the variance of the waiting time because, as discussed above, the ar-
rival process at each resource is much more regular in the deterministic case,
especially if there are several resources as we show in this paper. A particular
class of deterministic policies, namely billiard policies, have been recently
implemented in the context of large volunteer and cloud computing to im-
prove the performance of real applications such as SETI@home [24, 25].

'Round-robin sends the n-th job to resource (n mod R)+1, where R is the total number
of resources.
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1.1. Contribution. In the framework described above, we are interested
in deriving structural properties of deterministic policies when the system
size is large. We study a scaling of the system where the arrival rate of jobs,
Ak, grows to infinity proportionally with the number of resources (queues
in the following), Rk, while keeping the network load (or utilization) fixed.
This scaling is often used in the queueing community. Specifically, there are
R types of queues, and k is the number of queues in each type, i.e., the
parameter that we will let grow to infinity. Beyond issues related to the
tractability of the problem, this type of scaling is motivated by the fact that
the size of real systems is large and that replication of resources is commonly
used to increase system reliability.

First, with respect to a class of periodic policies, we define the random
variable of the waiting time of each incoming job. This is done using Lindley’s
equation [26] and a suitable initial randomization. Using such randomiza-
tion, we can adapt the framework developed by Loynes in [28] to our setting
where jobs are sent to a set of parallel queues. In particular, Theorem 1
shows the monotone convergence in distribution of the waiting time of each
incoming job. Then, with respect to a given vector p € N, we define a cer-
tain subset of policies that are periodic with period k) p, and such that
exactly p, jobs are sent in a period to each queue of type r. While further de-
tails will be developed in Section 3.1, this set is meant to imply that queues
of a given type are visited in a round-robin manner and that arrivals are
“well distributed” among the different queue types. When k — oo, our main
result states that all the policies in this set are equivalent, in the sense that
they yield the same mean stationary waiting time, and optimal, in the sense
that no other policy having the same aggregate arrival rate to all queues of
a given type can do better in minimizing the mean stationary waiting time.
In particular, we show that the stationary waiting time converges both in
distribution and in expectation to the stationary waiting time of a system
of independent D/GI/1 queues whose parameters only depend on p, A\ and
the distribution of the service times. This is shown in Theorems 2 and 3,
respectively.

The main idea underlying our proof stands in analyzing the sequence of
stationary waiting times along appropriate subsequences. Along these sub-
sequences, it is possible to extract a pattern for the arrival process of each
queue that is common to all members of the subsequence. Such pattern is
exploited to establish monotonicity properties in the language of stochas-
tic orderings. These properties hold for the considered subsequences only:
they do not hold true along any arbitrary subsequence and counterexamples
can be given. These properties will imply the uniform integrability of the
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sequence of stationary waiting times and will allow us to work on expected
values.

Summarizing, fixing the proportions p of jobs to send to each queue type
and given k large, our results state that all the policies belonging to the
set that we identify in Section 3.1 yield the same asymptotic performance
and are asymptotically optimal. Furthermore, using known properties of the
D/GI/1 queue, we obtain that the stationary mean waiting time obtained in
our limit is a convex function of p. This reduces the complexity of subproblem
ii) above because it boils down to the solution of a convex optimization
problem.

This paper is organized as follows. Section 2 introduces the model under
investigation and provides a characterization of the stationary waiting time
(Theorem 1); Section 3 introduces a class of policies and presents our main
results (Theorems 2 and 3); Section 4 is devoted to proofs; finally, Section 5
draws the conclusions of this paper.

2. Parallel queueing model. We consider a queueing system com-
posed of R types of queues (or resources, servers) working in parallel. Each
queue of type r is replicated k times, for all » = 1,..., R, so there are kR
queues in total. Parameter k is a scaling factor and we will let it grow to in-
finity. The service discipline of each queue is first-come-first-served (FCFS)
and the buffer size of each queue is infinite. A stream of jobs (or customers)
joins the queues through a dispatcher. The dispatcher routes each incom-
ing job to a queue according to some policy and instantaneously. Figure 1
illustrates the structure of the queueing model under investigation. In the
following, indices r, k, n will be implicitely assumed to range from 1 to R,
from 1 to k, in N, respectively.

All the random variables that follow will be considered belonging to a
fixed underlying probability triple (€2, F, Pr).

Let (T,(Lk))neN and (S,(f,l,r)neN be given sequences of i.i.d. random variables
in R;2. These sequences are all assumed to be independent each other.
Quantity TT(Lk) is interpreted as the inter-arrival time between the n-th and
the (n + 1)-th jobs arriving to the dispatcher. Quantity ST(LI,C,)w is interpreted
as the service times of the n-th job arriving at the x-th queue of type r. We
assume that S (k) =" ngl),r and that Esy(f,){,r = My L. For the arrival process

1Lk, —
at the dispatcher, we will refer to the following cases.

CASE 1. The process (Tr(lk))neN is a renewal process with rate Ak and
such that Var T\") = o(1/k).

2F0ranyE§]R7weletE+d:Cf{m€E::c>0}.
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F1G 1. Structure of the parallel queueing model under investigation.

CASE 2. The process (T,gk))neN is a Poisson process with rate \k.
CastE 3. The process (Tygk))neN is constant with rate Ak, i.e., Ty(Lk) =
(M)~

It is clear that Cases 2 and 3 are both more restrictive than Case 1.

Let || - || denote the Lq-norm.

Let ¢ o (grr) € QF x Q% Dbe such that ||g|| = 1. Quantity g, , will be

interpreted as the proportion of jobs sent to queue (r, k).

Let n* & n*(q) ey min{n € Zy : nq € Z& x Zk}. Since ¢ is a vector of

rational numbers, n* < co.

Let V be a discrete random variable with values in {1,...,n*} such that
Pr(V =14) =1/n*, for all i = 1,...,n*. We assume that V is independent
of any other random variable.

Let A, (k) be the set of all functions 7 : N — {1,..., R} x {1,...,k} such
that for all r and &

n*+V-1

(2.1) s = % Z Lir(n)=(r)y and m(n) = m(n+n")
n=V

for all n, where 1 denotes the indicator function of event E. Thus, these
functions are periodic with period n* and n*g, , is the number of jobs sent
in a period to queue (r, k). We refer to each element 7 € A, (k) as a policy
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(or a g-policy) operated by the dispatcher, and it is interpreted as follows:
m(n) = (r, k) means that the n-th job arriving to the dispatcher is sent to
the k-th queue of type r if n > V, otherwise it means that the n-th job is
discarded. Thus, the outcome of random variable V' gives the index of the
first job that is actually served by some queue. In other words, 7w(V') is the
first queue that serves some job.

Let (T, ,gﬁz,,«(ﬂ))neN be the sequence of inter-arrival times that are induced
by policy m at the k-th queue of type r (under any of the cases above).
k)

By construction, T, T(L () is the sum of a deterministic number of inter-

arrival times seen at the dispatcher. The arrival process (T,(L{C,z,r(ﬂ))neN can be
made stationary if it is allowed a shift in time and a suitable randomization
(independent of V' and of any other random variable) for the inter-arrival
time of the first arrival of each queue. We assume for now that this has been
done (details will be given at the beginning of Section 4). As done in [28§]
and according to [15, p. 456], this implies that we can extend the stationary

process (TT(LQ,T(W))%N to form a stationary process (T,ﬁf“g,T(w))nez (clearly,

the same holds for the process (Sﬁllf,)i7r)neN).

The waiting time of the n-th job arriving to the k-th queue of type r
induced by a policy m € A(k) is denoted by W,(Lkg,{(ﬂ) It is the time between
its arrival at the dispatcher (or equivalently at the queue) and the start of
its service, and it is defined as follows: for n = 0, W,(Lkg,{(w) = 0 and for
n > 0,

o +
(2.2) Wi () < (W) + S8, = T8 ()

—1,rk

where 2+ & max{z,0}. Equation (2.2) is known as Lindley’s recursion

(k)

[26]. The assumption that W,/ (m) = 0 serves to avoid technicalities®. Tt

is known that the sequence of random variables (Wr(zlfr?,/i(ﬂ'))neN converges in
distribution to the random variable

n +
(2.3) m%m@GwZ&2m4ﬁwm)

n=0 n'=0

and that WY(L]?R(F) <st Wk

ntlrrx(m), where <y denote the usual stochastic

order; see [28]. We refer to WTQ}? () as the stationary waiting time of jobs
at the k-th queue of type r.

3Using a standard coupling argument and that each queue will empty in finite time
almost surely, what follows can be generalized easily to the case where Wo(,li«),m(ﬁ) > 0.
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Given 7, let f: N = N x {1,...,R} x {1,...,k} be a mapping with the
following meaning: f(n) = (n/,r, k) means that the n-th job arriving to the
dispatcher is the n’-th customer joining queue (r, k). If n < V', no job is sent
to any queue and thus we assume f(n) = 0. Note that f(n) is a deterministic

function of random variable V. Since V' is uniform over {1,...,n*}, for all
n > n* we have
(2.4) Pr(fa(n) =r, f3(n) = K) = ¢z,

where f; refers to the j-th component of f. With this notation, quantity
WJEI(?L) () is the waiting time of the n-th job arriving to the dispatcher in-
duced by a policy m € A,(k), for all n > n*.

Now, let (Qyx)vr denote a partition of set {1,...,n*}. The subsets Q. ,
for all » and k, are thus disjoint and we further require that the number of
points in Q. is n* g, . Let

Rk
(2.5) W) () & ZZ veQu Wi ().

Since V is independent of the W(k)( )’s, the distribution of W) (7) is

the finite mixture of the W,«U,? (m)’s with weights ¢. Next theorem says that
W®)(7) can be interpreted as the right random variable describing the sta-
tionary waiting time of jobs achieved with policy m € A, (k). It is proven
by adapting the framework developed by Loynes in [28]. In the remainder

of the paper, convergence in distribution (in probability) is denoted by 4,
(respectively, i)

THEOREM 1. Let Case 1 hold. Let q be such that g, .\ < p, for all v,k
and m € Ay(k). Then,

(k) (k)
and
d
(2.7) Wi () — s W),

By using the monotone convergence theorem, Theorem 1 implies that also
the moments of W]E())( ) converge to the moments of W) (), provided that
they are finite.

Finally, for a given p € R , we define the auxiliary random variable
W, (p), which corresponds to the stationary waiting time of a D/GI/1 queue
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with inter-arrival times (7}, »(p))nen where 1), »(p) = ||p||/(prA) and service

times (Sp.1.,)nen, for all r. Let also V o V(p) be a random variable with
values in {1, ..., R} independent of any other random variable and such that

Pr(V =r) =p,/||p||, for all r, and let

R
def

(2.8) W(p) S D 1y Welp).

r=1
Note that EW (p) = >, ﬁEWT(p) can be interpreted as the mean waiting
time of R independent D/GI/1 queues averaged over weights p/||p||.

We will be interested in establishing convergence results for W®*) when

k — oo. With respect to some policies to be defined, we will show forms of

convergence to W(p).

2.1. Discussion. Some remarks about the model above and Theorem 1
follow:

e To agree on a definition for EW®*) or other moments of W) one
does not necessarily need to know the distribution of W), e.g., one
can achieve that using Cesaro sums [2]. Matter of fact, existing works
agree on the structure of EW®) without constructing the distribution
of W) On the other hand, our approach needs to know the distribu-
tion of W®*) (and thus Theorem 1) because we can prove convergence
results for EW®) only through a distributional convergence argument,
that is [11, Theorem 3.5, pp. 31]. In particular, to prove EW®*) con-
verges to EW (p), we will prove convergence in distribution of W) to
W (p) and then the uniform integrability of the sequence of the W k),
This is the reason why we need the characterization of the distribution
of the stationary waiting time W ®*), which we give in Theorem 1 and
prove through classical arguments.

e Though several works focused on finding policies that minimize the
expected value EW®*) (see the introduction), the analysis of EW *) in
our scaling where k — oo seems new.

e We assume that ¢ is a vector of rational numbers. From a practi-
cal standpoint, this is not a loss of generality for obvious reasons.
As an additional remark to support this assumption, we note that
it has been proven that in several cases the ¢-vector that minimize
minge 4, (x) EW *) () is indeed rational [2, Theorem 32, p. 136]; see
also [37].

Our approach needs this assumption to prove (2.7). In the case where
m(n) is not periodic, a case that we do not consider here, and the limit
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limy, 00 % oy 1ir(n/)=(rr)} does not exist, it would be interesting
k)

to know whether some convergence in distribution of W]S(n

A totally different argument will be needed here.

e The fact that in Case 1 we require that Var TT(Lk) = o(k) is not a loss of
generality for Theorem 1, as we do not let k — oo there. Case 1 covers
the case where T, T(Lk) has a (Gk, a)-phase-type distribution where both
G and « are not functions of k.

e We may have assumed that each queue of type r was replicated kz, +
o(k) times instead of just k times. This is essentially equivalent to our
setting and our proofs can be easily adapted to this case though we
do not do it for simplicity.

)(77) occurs.

3. Main results. For p € Zf, let

k
(3.1) Py(k) def {q e Qff x Qf : Z_:l = ol W}
and
o 3,0 U A0
qE’Pp(k)

The set .,Tlp(k;) is interpreted as the set of all periodic policies for which A ||11)TT||

is the aggregate mean arrival rate of jobs to all type-r queues. We consider
the following problem.

PROBLEM 1. Let p € Zf be given. Determine the optimizers and the
optimal objective function value of

(3.3) min  EW®) (7).
rEA, (k)

As discussed in the introduction, this is considered as a difficult problem.
We are interested in establishing structural properties of Problem 1 when
k is large. In the following, we define a certain class of policies and then
present our main results.

3.1. A class of periodic policies. For p € ZE we define C,()k) as the subset
of all policies 7 € A, (k) that satisfy the following properties:

e The sequence (m1(n))nen has period ||p|| and p, is the number of jobs
sent to type-r queues per period, for 1 <r < R.
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e Let nq,n9,... be the subsequence of all jobs that are sent to queues of
type r. Then, ma(ny) = 1, and 7(nj41) = 7(n;) + (0,1) if m(n;) < k
and 7(n;41) = (r, 1) otherwise.

The first property specifies the periodicity of m with respect the types of
queues, while the second with respect to queues. Thus, the second property
says that queues of type r are accessed by jobs in a round-robin (or cyclic)
order starting from queue 1, and we need it to ensure that the cardinality

of C},’f’, Le., |C1(,k)|, does not vary with k. One can verify that

&) _ _lpll!
(3.4) ICy| 71_[7«(1’7“!).

These policies can be implemented in a distributed manner. More pre-
cisely, one can think that there are two tiers of dispatchers: the dispatcher
in the first tier schedules jobs inter-group, while the dispatchers in the sec-
ond tier, R in total, schedule jobs intra-group and implement round-robin.

With respect to a sequence of policies (W(k))keN, where (%) ¢ C,S’”, we
will show (Lemma 2)

(k) (pR)y _Pr o el
(35) Tn,ﬁ,r(ﬂ- ) m DrN? vn.

This means that the finite dimensional distributions of the arrival process
at each queue will be ‘close’ to the deterministic process, when k is large,
which implies that some form of convergence to W (p) should occur in view
of the continuity of the stationary waiting time [12].

3.2. Asymptotic equivalence and optimality. Next theorem proves a first
form of convergence of W) (7)) to W (p).

THEOREM 2. Let Case 1 hold. Let p € Zf be such that )\ﬁ%“ < py for

all r. Let also an arbitrary sequence (F(k))keN be given where ©F) e CI(,k) for
all k. Then
(3.6) w® (7 ®)) Ly (p).
k—o0

Theorem 2 is not enough to claim that EW *) (ﬂ'(k)) converges as well.
Convergence of the first moment is important from an operational stand-
point, as in practice one desires to optimize over EW®) or Var W), Under
some additional assumptions, next theorem states that also the expected
value and the variance of W %) converge. Furthermore, it states that all the
policies in set Cl(,k) are both asymptotically equivalent and asymptotically
optimal, with respect to the criterion in Problem 1.
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THEOREM 3. Let Case 2 or 8 hold. Let p € Zf be such that )\ﬁ%“ < Uy

for all r. Let also an arbitrary sequence (W(k))keN be given where (k) ¢ C,()k)

for all k. If E[(S(k) )3] < o0, then

1,k,r
(3.7) liminf min EW®) (7)) = lim EW® (z(*))
k—o0 mE€Ap (k) k—o0
(3.8) Jim EW®) (zF)) = EW (p).
—00

Furthermore, if E[(S(k) )%] < oo, then

1,k,r

(3:9)  lim Var W (x®) = 37 £ (Var W, (p) + (EW; () — EW(3))°)

Provided that k is large, thus, no other policy in A,(k) \Cl(,k) can do

better than any 7(F) ¢ C;,(,k) to minimize EW ¥ It also explicits the limiting
value of EW®) (7(®) which is EW (p). It is known that EW (p) is a convex
function in p (e.g., [30]).

To prove Theorem 3, we use the well-known fact that [5]

(3.10) Wi (p) <ico W ()

K

for any m € A,(k), where <;., denotes the increasing-convex order (see, e.g.,
[33, 35] for their definition). Using this lower bound first and then that the
waiting time of the D/GI/1 queue is convex increasing in its arrival rate, it
is not difficult to show that

(3.11) EW (p) < EW®)(r).

Then, we prove that the sequence EW(k)(ﬂ'(k)) is upper bounded by a se-
quence that converges to the lower bound in (3.11). An observation here is
that the lower bound (3.10) holds under conditions that are weaker than
those assumed in this paper; see [23]. For instance, it is possible to ex-
tend (3.11) (and thus Theorem 3) to the case where i) policies are not
periodic, ii) the fractions of jobs to send in each queue are not necessar-
ily rational numbers, and iii) policies are randomized [31], that is the case
where 7(n) is any probability mass function over the set of queues. We do
not investigate these extensions in further detail.

4. Proofs. In this section, we develop proofs for Theorems 1, 2 and 3.
Before doing this, we fix some additional notation and show how it is possible
to make the arrival process at each queue stationary with respect to any
policy in 7% € A,(k), ¢ € Q% such that ||g|| = 1 (as assumed in Section 2).
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Let us consider the x-th queue of type r and its arrival process (7 ,S{g,g,,«)neN.
Each inter-arrival time clearly depends on the policy 7(*) implemented by the
dispatcher, i.e., Tr(f,zw = T,(L{C,.z,r(ﬂ(k)), though in the following we drop such
dependence for notational simplicity. Since 7(*) is periodic by construction

with period n* and n*g, . jobs have to be sent within a cycle to the queue

identified by the couple (7, k), the sequence (T,ﬁf“,%,r)neN is composed of a
repeated pattern of n*g, , inter-arrival times, that we can write as

(4.1) AR A® 4w

1,k “2,k,1 1 EINFqr g kT

where each quantity Agkg . J =1,...,n"q x, is the sum of a deterministic

number (that depends on 7(¥)) of inter-arrival times to the dispatcher. We
(%)

denote such number by Q5 e Thus,

o®

JyTs K

(4.2) A = YT,
n=1

where =4 denotes equality in distribution.
If 70 ¢ Cl(,k) for some p € Zf, then we notice that a'®) does not vary

-]7"‘714/
with x because by symmetry the arrival processes of all queues of a given
type are equal, in distribution, up to a shift in time. In this case, the arrival
process at any queue of type r becomes a sequence composed of a repeated
pattern of p, inter-arrival times that we can write as
(4.3) AR Ak (k)

17577‘7 NON A A TS N

(%)

j?r

Therefore, when ©(%) € Cz(,k), we will just write a; . instead of agkr) .. and it is

also clear that

Pr
k

(4.4) S al) = klp|

j=1
and that

B NS Wk 1 =a )
(4.5) BT, = oo D a, BT = 003 35 = 1%
j=1 j=1

Now, we want to make (Tr(f,zm)neN stationary. This can be done as follows
by randomizing over the first inter-arrival time of queue (r,x). Now, let
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us consider the auxiliary random variables U, ., for all » and &, which we
assume independent each other and of any other random variable and having
a uniform distribution in [0, 1]. Then, we take

n*qrn* qar,K

(46) Tl(]:“ﬁdﬁf Z A]T’Ii ,@6[;1 J ]}

Therefore, if T1( ) — Aﬁ)n, for some j < n*q,x, then Té?ﬁ = Ag?l s and so

forth according to the pattern (4.1). Defined in this manner, one can see that
(TT(L{?,K)”GN is stationary as desired. At this point, the issue is the following.
Consider two queues, say (r, k) and (1, k'), and suppose that 7k — Ak

1,r,k = ‘MK
and Tl(kr), = AEk)T, .- We should check whether policy 7(F) is actually able to
induce arrival processes at the queues equal (samplepath-wise) to the ones
built above through (4.6). One can easily see that this can be done with
a possible shift of time for the arrival process at the queues and possibly
discarding a finite number of jobs. This is allowed because these operations
do not change the stationary behavior.

In the remainder, we will use stochastic orderings. We will denote by <,
<er and <oy, the usual stochastic order, the convexr order and the increasing
convex order, respectively; we point to, e.g., [33, 35] for their definition.

We will also refer to the following lemma, which can be easily proven.

LEMMA 1. Let N be a finite positive integer and suppose
(frn) (kn)eNx{1,...N} 8 a semi-infinite array of numbers such that for some
constant ¢, limy_o0 fon = ¢, for n € {1,...,N}. Then, for any sequence
(ng)ken with values in {1,..., N}, limg_ o frn, = C.

We now give proofs for our results, i.e., Theorems 1, 2 and 3.

4.1. Proof of Theorem 1. Let random variables V; and V5 be given such

that Vi1 =g V and Vo = Vi3 — 1 if V; > 1 otherwise V5 = n*. We prove
(2.6) through Strassen’s theorem building a coupling (W}?T)L)( ) W}S](?L +1) (7))
of W}SI(?L) () and W( ) )( m) through Vi and Vs ensuring that W(I(?L) (m) <

fn+1
W;I(?L +1)(7r). This is done as follows. First, let VT/JE’&) (m) and % be

(n-i-l)( )
the Loynes waiting times (see [28, p. 501]) obtained when the first queue to

serve a job is given by the outcome of V; and Va, respectively; thus, W}SI(?L) ()

is the waiting time at time 0 with n’ jobs in the past at queue (r, k), provided
that f(n) = (n/,r, k). Then, we let the (Loynes) waiting times be driven by
the same realizations of the random inter-arrival and service times.
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We now prove (2.7). Since 7 is periodic with period n*, we first observe
that 7 returns the same queue along subsequence (nn* + i),en, for all i =
1,...,n*. Similarly, also the second and third component of f(nn* + i) do
not change along these subsequences, though they are not known in advance
because they depend on the outcome of random variable V', see (2.4). Thus,
for all i =n*+1,...,2n*, by construction we have

(4.7) Pr(fa(nn*+1i) =r, fs(nn*+1i) = k) = Pr(fa(i) = r, f3(i) = K) = Gy,

and we get

(4.82) Py Pr(Wie) oy (7) < 1)

(4.8b) znlgngOqunPr (W () < t1(f2(0), f3(0) = (r, )
(4.8¢) = quPr (Wh(m) < t)

(4.8d) = Pr(W( ) () < t).

In (4.8b), we have conditioned on f(7). In (4.8¢c), we have used that W,gkg,{(w)
converges in distribution to Wr(j,z)(ﬂ'); see [28]. In (4.8d), we have used the
definition of W®*) (7). Now, since the limit in (4.8d) does not depend on i,
the proof is concluded by applying Lemma 1 once noted that n* is a finite

positive integer.

4.2. Proof of Theorem 2. We first observe that we can prove this theorem
under some assumption on the sequence (7% cy. Given 71 ¢ CI(,l), we
require that for all k:

(4.9) M) =rPm), v

One may refer to these sequences as the ‘natural’ scaling of policy 7(1: in
the two-tier interpretation of our policies, (4.9) means that the dispatcher
at the first tier implements the same policy, to queue types, when k grows.
These sequences will be assumed along this proof. If this theorem holds for
these sequences, then it also holds for all the sequences in view of Lemma 1
and of the fact that the cardinality of C,()k) does not vary with k.
For m € N, let

(4.10) e, & mlem(p),
where lem(p) denotes the least common multiple of py,...,pr. The subse-
quences (kn, +1)men, for all i = 1,... lem(p), play a key role in our proof of

Theorem 3. Along these subsequences, next fact holds true and follows by
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TABLE 1
Lllustrative example for the decomposition in Fact 1

(meJrz)
A5y

prmi (L1) (12) (2.1) (13) (22) (14) (15) (2.3) (16) (24) (1L7) (L1) ...
121
po(m — 1)+ i (1,1) (1,2) (2,1) (1,3) (2,2) (1,4) (L,1) (2,3) (1,2) (2,4) (1,3) (1,4) ...

qPrm=1+7)
] T

(k)

construction of the policies in set C, ’: it is a direct consequence of the fact
that queues of the same type are visited in a round-robin manner.

(prm-+i) _ a(il’r(m 1)+4)

Fact1l. Form>1,j=1,...,prandi€N, a;; i

+lpll-

PROOF. By construction, we have ﬂéprm“)(V) = 1 and 7P+ (V) =
7 (Pr(m=1)+1) (V'), which in some sense couples the arrival processes at queues
of the (p,m + i)-th and (p,.(m — 1) + 7)-th systems.

Without loss of generality, let us assume that (r,1) is the queue that
receives the first job.

Now, Fact 1 holds true because (p,m + i) — (p,(m — 1) + i) = p, jobs
must be sent to some queues of type r of the (p,m+1i)-th system in the time
interval [V + a(p r(m=1)+i) ,V+a (p rmt) _ 1], for j = 1, and the number of
arrivals at the dlspatcher in that mterval is exactly HpH by construction of

(k)

the policies in Cp’ for any k (see subsection 3.1)
This argument applies to all the other queues because we have considered
periodic policies. O

We show Fact 1 in the following example, to help understanding its mean-
ing and proof.

EXAMPLE 1. Assume R =2, p=(3,2),r=1,i=1,m=2,j =1
Assume also that = € C,(,l) is such that (m1(V + n))p=0,..4 = (1,1,2,1,2).
Then, the sequence of queues to be visited for both systems p,.m + i and

pr(m — 1) 44 is given in Table 1, where we can see that the decomposition
in Fact 1 holds.

Since Fact 1 holds for any m > 1, we can make the replacement m —

mlcnp1# for which we obtain
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km km_ T
(4.11) alim D = =Pt ).
Unfolding this recursion, for m € N, i = 1,... lem(p), we get
(4.12)
km k'm_2 T ] km 1
alfmtD) = g =200 Lo = = ) 1@y )y ol )

and therefore

() 0l o 2lem (p) ]
(413) Js _ = ) Pr ' )
k41 m-lem(p) +i  m—oo  p,

As a technical observation, in (4.12) we note why we require index i to
range in {1,...,lem(p)}: it ‘closes’ the recursion.

Since (4.13) holds for all i = 1,...,lem(p), by using Lemma 1 we obtain

im % — Ll

(4.14) lim - = 21

k—o00

As a comment, we note here that (4.14) could be proven without Fact 1
and what has followed. However, we stress that we will need Fact 1 later
anyhow, as it will play a crucial role in the proof of our main result Theorem 3
(see Lemma 3.iii).

LEMMA 2. Under the hypotheses of Theorem 2, TT(L{C,?,K — % in proba-
bility, as k — oo.

PrRoOOF. For all € > 0,

(4.15a)

Pr (I8, — ) > ) = Pr (118),, — BT, | = )

1 k
(4.15b) < - Var "
1
(4.15¢) =3 (E(Var T,(L v ilUrs) + Var E(T,(LI;,’H]UN@))
1 k
(4.15d) -5 | Z Var A%+ (EAV, —ETH), )2
1 a®) 2
(4.15e) ] Za VarT (ﬁ — %)
(4.15f) —0
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n (4.15b), (4.15¢) and (4.15¢), we have used Chebyshev’s inequality, the
law of total variance and that the 7T}, *s are i.i.d. , respectively. In (4.15f),
we have used (4.14) and that a( )Var T(k) — 0 because Var T( ) = o(k) and

(k
a;. < kpl- 0

Since T, ,(Lkr),.@ converges in probability for each n, also the finite dimensional

distributions of the process (TT(LkT) «)neN converge to the one of the constant
process with rate 2 i ” ( ) ET) r)n =
[lpll

Ap,» We can use the continuity of the stationary waiting time (see [12, The-
orem 22]) to establish that

(4.16) Wk (7 ®)) — W, (p).

k—00

Using (4.16) and that Cesaro sums converge if each addend converges, we
obtain

R k
4.17a) lim Pr(Ww®) (z*) = lim Pr(W®) (z(B)) < ¢
(417a) Jim POV <0 = i 302 S prn () <0
- p
(4.17b) = WPr(Wr(p)ét)zPr(W(p)St)
r=1
as desired.

4.3. Proof of Theorem 3. Proof of (3.7) and (3.8). Given that C,(,k) -
A,(k), (3.7) and (3.8) hold true if

(4.18) EW (p) < EW® (7)
for all 7 € A, (k) and

(4.19) lim EW®) (7)) < EW (p).
k—00
Let EW,. .(x) be the mean waiting time of a D/GI/1 queue with arrival
rate Az and i.i.d. service times having the same distribution of S, .. Inequal-
ity (4.18) is a fairly direct application of known results: for all T € A, (k),

(4.20a) EW® (r) =3 ¢, EWHE) ()
(4.20b) > Z QT,REWr,n(kQT,H)

K



138 J. ANSELMI ET AL.

(4.20c) = an [ (o)
(4.20d) = Z [ B () =EW ().

In (4.20b), we have used the lower bound in [23]. In (4.20c), we have used
Karamata’s inequality once noticing that i) EW,. .(x) = EW, 1(x), ii) the ma-
jorization (ﬁ’;%”, . ”p”) (kGr1,...,kqr) holds, and iii) the mean waiting
time of a D/GI/1 queue is convex increasing in the arrival rate (see, e.g.,
[30, Theorem 5], [17]), which means that g, .EW, .(kq, ) is convex in g, .

We now prove (4.19). As in the proof of Theorem 2, this can be done
assuming that (4.9) holds. Thus, the sequences (4.9) will be assumed along
this proof.

The remainder of the proof basically works as follows. First, we bound the
waiting times of our G/GI/1 queues through the waiting times of suitable
GI/GI/1 queues. Second, we show that the sequence of such waiting times
converges in distribution to W(p). Then, we show that the waiting times
of such GI/GI/1 queues are non-increasing in the <;.,-sense along the se-
quences ky, +1, for alli = 1,...,lem(p), which allows us to conclude that the
sequence is uniformly integrable; this is the point where we will use Fact 1.
Finally, we use [11, Theorem 3.5, pp. 31] to conclude that also the sequence
of the expected values converges to EW (p).

Associated to each queue of type r, we define an auxiliary random variable,

Tik) , such that

Jj=1,
(4.21) ™=, Y 1.

(k)

Next lemma provides properties satisfied by T,
We recall that k,, = mlcm(p), see (4.10).

that will be used later.

LEMMA 3.  Under the hypotheses of Theorem 3, the following properties
hold:

i) We have

‘Sv

ol
% lpll

(4.22) lim BT\ = lim min % =120,

k—o00 k—o0 j=1,...,pr

i) Tﬁ«k) — % in probability, as k — oo.
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i11) For alli=1,...,lcm(p),

(km=+1)
N .

(423) _Tf«km+1+i) Sicx _T

PROOF. Proof of i). This is an immediate consequence of (4.14).
Q]
Proof of ii). For all i = 1,...,lem(p), let j* € argminj—y . ajf. Then,
from (4.13), we get

(kem+1)

(4.24) Ji € arg min I

-, VYm > 1.
.7:17"'7177‘ km + 1

In view of Lemma 1, the convergence in ii) holds if we can show that

Tﬁkm”) LN ﬂ\p L for all 4 = 1,. .,lem(p). Given (4.24), this amounts to
m—ro0
show that
(km‘f’l)
(km+i) _Pr_, |lpl L
(4.25) Z T — 7 Vi=1,...,lem(p).

We prove the former by showing (the stronger statement) that
)
Z o T( ) k—) ”p” , for all j. Now, using that {|X —c¢| > 2¢} C {|X —
%

EX| > e} U{|EX — c[ > ¢} for a random variable X, we have

(k) (k) (k)

<|ZT(k I )<Pr<|ZT(k EZT(k|>e)

(k)
+Pr (112 - EZT |2 e).

The second term in the right-hand side of former inequality tends to zero as
k — oo by (4.14). The following shows that also the first term goes to zero:

o9 o9 o9
1T 1T 1 7,7
(k) (k) el (k)
(4.27a)  Pr <\n§:1Tn En§:1Tn | > e) <5 n§:1Var T
1
4.27b < 1/k
(4.27b) _Egﬂ(/)k_)oo

In (4.27a), we have used Chebyshev’s inequality and that the Tr(Lk)’S are
independent. In (4.27b), we have used that a( < Elp||.
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Proof of iii). We use that X <;., Y if and only if there exists an other
random variable Z such that X <y Z and Z <., Y [29].

a(.im“)
Using (4.12) and that (;fi'n;r‘i‘i) < %” for all m (by (4.13)), the first obser-
vation is that
g Fm+0)
(km+1+i) (k)m-i-l) jf,?”
(428) aj?’r Z aj;‘ﬂ" + lcm(p)m,

where j* is defined above in point i). Thus, we have

k +1
a( m+1 )

i
(429&) _Tgk‘m+1+’l) =g — Z T/r(Lkarl—i_i)
n=1
a(_’im‘”)
ag,i:f’;*Z)Jrlcm(p) e
(4.20b) - 3 Tt 2y
n=1
Now, it remains to show that —Z <., —Tﬁk’"”), which is equivalent to show
that
(4.30) 7 <op T+,
see [33, Theorem 3.A.12]. Since
(km+1) agn (km+i)
m=1 .?"’4 m+i
(4.31) By — 1 G, T+ lem(p) Lmﬂ- 19 e
) ANk i+ lem(p) S Nkp i T ’

(4.30) holds trivially under Case 3. Now, let Case 2 hold. Noticing that both

T&kmﬂ) and Z have Erlang distributions with the same mean, to prove (4.30)

is enough to show that Var Z < Var Tﬁ'f’"”); see [35, p. 14]. We have
(km+1)
(km+l) jr»”"
(4.32a) N Var z = i lcm@) LR
(km—i-l + 1)2
o kmt) . .
' (km +19)%2  (km +1+lcm(p))?
alEm+) (e -+3)
4.32 < I = N Var T,
(4.32c) = o +9)° Var T,
as desired. U

We now present an argument that allows us to uniformly bound the second

)

moment of Wrgk .
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=

Let 5, %(m”

er ) and

k
(433 K E mln{k‘ >0:0< 2 min P <o,, WK > k}

LEMMA 4. k* < 0.

ProOF. This is immediate because d, 0 by hypothesis,
(k") (k)
. . a;r _ p . a;
limp oo minj—y, 5 5 = H (see (4.22)), and ” ” > minj—1,. . p, 45 for

all . -

Let W&k) denote the stationary waiting time of a GI/GI/1 queue with
(ii.d.) interarrival times (T(k))neN where T( ) =gt Tﬁk) (see (4.21)) and
Z s and the Tr(Lk,zm’s in the ob-
vious manner, one can easily see that (_g’?, . T,(fZ) < (Tl(lz)r, . ,T,(L{C,z,r)‘l
and therefore we have (T gr), e ,Tgf)) (TI(IQT, . ,T,(h,g,r). Using, e.g., [6,
pp. 217, 220], this implies

service times (Sy(f,l,r)neN. By coupling the T,&

(4.34) W <, W,
. _(km+1+7') (km+l)
Furthermore, given that —7',7 <icx =1, foralli =1,...,lcm(p)

(by Lemma 3) and that the (Tﬁfﬂ)neN are independent, we can use [5, p. 337]
to establish that
(435) W{E‘kafl'f‘i) Sicx W(km"l‘i)7

for all ¢ = 1,...,lem(p). Therefore, given E(( T(IZ))2) < oo for all k£ and

Lemma 4, we can uniformly bound the second moment of Wﬁlf{) as follows

(4.36a) sup E((WT('Z))2) < sup E((ng))z)
k>k* k>k*
(4.36D) =  max sup E((Wﬁkm“))z)
i=1,... lem(p) m:ky,+i>k*
(ke i
(4.36¢) =  max E((Wi i ))2)
i=1,..., lem(p)
(4.36) < 00,

where m dof min{m : k,, +¢ > k*}. In (4.36a) and (4.36c), we have used
(4.34) and (4.35), respectively. In (4.36d), we have used that

1Given x,y € R? here < y means z; < y; foralli =1,...,d.
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()
e s bl g

—(k .
(4.37) ETV) = min % |

el ¢ 1L 5 L0 yg > g,
j:17"'7p7‘ ) 2 Hr Hr

i.e. the ergodicity condition, and that the third moment of service times is
finite, which imply that the second moment of ng) is finite [5, pg. 270].

Now, using the continuity of the stationary waiting time of GI/GI/1
queues [5, Corollary X.6.4] and part i) and ii) of Lemma 3, we have Wﬁk) — d
—00

W, (p), and given the uniform integrability (4.36) we have that also the ex-
pected values converge [11, Theorem 3.5, pp. 31], i.e

(4.38) lim EWY = EW, (p).

k—o00

With the above relations, we can conclude the proof of (4.19)

4.39a hm EW ®)( T (x ()

(4:3%) = S " )
. pr (k)

4.39b < lim Ew,

(4390) 5 Z o]

(4.39¢) =3 IIIZH EW, (p).

Proof of (3.9). Let @ be a discrete random variable with values in {1,.

R} x {1,...,k} such that Pr(Q = (r,k)) = ” - We assume that thls
random variable is independent of any other random variable. By definition
of W®*) (z(})) and using the law of total variance, we obtain

(4.40a)
Var W® (z#)) = E(Var W (z*))|Q) + Var E(W ®) (z))|Q)
(4.40b) = > e (Var iR () 4 (B (4) — Ew D) ().

When k — oo, we have already established that EW *) (7)) — EW (p) and
that EW,.(p) < EWT(fZ)(W(k)) < EW( ) EW,(p). Therefore, it only remains
to show that the second moment of Wrg,,i)( (k)) converge to E[W,(p)?]. This
is done by using the same argument above for the convergence of the first

moment. Hence, using the continuity of the waiting time and of the square
function [5, Corollary X.6.4] and part i) and ii) of Lemma 3, we obtain

(Wﬁk))2 5w, (p)?, as k — oo. Furthermore, the second moment of (ng))2
is finite because the fifth moment of the service times is finite [5, pg. 270] and

(4.35) ensures that the sequence (Wﬁk))2 is uniformly integrable because it
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is non-increasing along subsequences (ky, + ©)men, for all i = 1,...,lem(p).
Thus, E[(W&k))z] — E[W,(p)?]. Together with (3.10), as desired we obtain
(4.41) Jim E[(W) (x"))*] = E[W,(p)’].

—00 ’

5. Conclusions. We have derived structural properties concerning a
known problem in the literature of stochastic scheduling, that is Problem 1.
Fixing the proportion of jobs to send on each queue, p, we have identified a
class of periodic policies and have proven that all the policies in this class
are asymptotically equivalent and optimal. The limiting mean waiting time
achieved by these policies, EW (p) (see (2.8)), is expressed in terms of a
linear combination of independent D/GI/1 queues and has the convenient
property of being convex in p. We believe that these structural properties
provide researchers and practitioners with new means about the considered
problem. For instance, one consequence of these results is that the prob-
lem of computing the optimal proportions of jobs to send to each queue,
which is considered a difficult problem (see the introduction), boils down,
asymptotically, to the solution of an optimization problem of the form:

minEW(p) st pesS,

for § compact and convex, and we stress that EW (p) is a convex function
of p. Using a classic result in convex optimization, this means that a poly-
nomial number of evaluations of the objective function EW (p) are sufficient
to converge to an optimizer of the problem. Given that each objective eval-
uation is efficient [30, 34, 32, 13, 14, 8], this lets us conclude that we have
significantly reduced much of the difficulty of Problem 1. In the case where
service times have an exponential distribution, EW (p) admits a very simple
characterization because it is the weighted mean waiting time of R D/M/1
queues [9, 4].
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