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ON THE DYNAMIC CONTROL OF MATCHING QUEUES
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We consider the optimal control of matching queues with ran-
dom arrivals. In this model, items arrive to dedicated queues, and
wait to be matched with items from other (possibly multiple) queues.
A match type corresponds to the set of item classes required for
a match. Once a decision has been made to perform a match, the
matching itself is instantaneous and the matched items depart from
the system. We consider the problem of minimizing finite-horizon cu-
mulative holding costs. The controller must decide which matchings
to execute given multiple options. In principle, the controller may
choose to wait until some “inventory” of items builds up to facilitate
more profitable matches in the future.

We introduce a multi-dimensional imbalance process, that at each
time t, is given by a linear function of the cumulative arrivals to
each of the item classes. A non-zero value of the imbalance at time t

means that no control could have matched all the items that arrived
by time t. A lower bound based on the imbalance process can be
specified, at each time point, by a solution to an optimization prob-
lem with linear constraints. While not achievable in general, this lower
bound can be asymptotically approached under a dedicated item con-
dition (an analogue of the local traffic condition in bandwidth shar-
ing networks). We devise a myopic discrete-review matching control
that asymptotically–as the arrival rates become large–achieves the
imbalance-based lower bound.

1. Introduction. We consider the matching of items that arrive ran-
domly over time. Items of different classes arrive sequentially and wait in
their respective queues – a queue for each class. Items can leave the system
only after being matched to items of other (possibly multiple) classes. Once
matched, the items leave the system together. We refer to such systems as
matching queues and are concerned with their optimal control. The items
may be thought of as people with relevant needs and/or skills (such as in an
online market setting) or as inanimate components that must be combined
to form completed products (such as in a manufacturing setting).

In the example depicted in Figure 1, there are 4 classes of items, and
items of class i arrive according to a time-varying Poisson process Ai having
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Fig 1. A queueing network view of a system with four input streams and two matchings.

instantaneous rate λi(t), i = 1, 2, 3, 4. Items of class 1 can be matched to
items of class 2. Items of class 2 can be also matched with items of classes
3 and 4. This structure is reflected in the graph in Figure 1 where each
rectangle corresponds to an item class and each of the circles A and B to
matching types. When a class 1 item is matched with a class 2 item they
both leave the system: matchings are instantaneous. An item of class 4must

be matched to both a class 3 and a class 2 item to depart. The matching-to-
queue adjacency matrix (henceforth, the matching matrix) is given in this
case by

M =




1 0
1 1
0 1
0 1


 .

The controller must decide when to perform a matching and which match-
ing to perform given multiple options. If the decision is to perform dA match-
ings of type A and dB matchings of type B, (Md)i units are depleted from
the class i queue, where d = (dA, dB). The controller may choose to wait
even if items are available. In Figure 1, suppose that there is a single item
available in each of the class 1, class 2 and class 4 queues but none in the
class 3 queue. The controller may be greedy and match the available class 1
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Fig 2. The simplest matching network – one matching type and two item classes.

item with the available class 2 item, which would result in two items depart-
ing the system. It may be, however, preferable to “inventory” this class 2
item until a class 3 item arrives at which point it can be matched with one
class 2 and one class 4 items – depleting three items.

A first (and central) step in optimizing these networks is to identify a good
state descriptor. This choice is simple if one were to consider the simplest of
matching networks – one with two item classes and one possible matching;
see Figure 2. Assuming one performs matchings whenever there are items to
be matched, either queue 1 or queue 2 must be empty. In turn, the imbalance
between the arrivals

S(t) = A1(t)−A2(t),

is a sufficient state descriptor: the size of each of the queues at time t is
determined by the value of the imbalance. In particular,
(1.1)
Q1(t) = [A1(t)−A2(t)]

+ = [S(t)]+ and Q2(t) = [A1(t)−A2(t)]
− = [S(t)]−.

Given a strictly increasing non-negative cost function C : R2
+ → R+, it is

trivial now that under any control

(1.2) C(Q1(t)), Q2(t)) ≥ C([S(t)]+, [S(t)]−), t ≥ 0.

If the imbalance at time t is non-zero, then matching all arriving items is
infeasible and the instantaneous cost must be strictly positive.
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More generally the definition of the imbalance process is not as simple.
The conceptual implications, however, remain valid in great generality:

• If the imbalance process is non-zero at time t, then there is no control
that could have matched all items that arrived by time t > 0.

• A lower bound on the holding costs under any matching control is given
by a simple function of the imbalance process, as in (1.2).

In this paper, we show how to explicitly construct such an imbalance process.
The imbalance S is constructed as a linear mapping of the arrival processes.
If q0 is the vector of queues at time t = 0, then

(1.3) S(t) = Y T (q0 +A(t)),

where the imbalance matrix Y has dimension I×J, with I being the number
of classes and J the number of possible matchings; see Section 3. In the
simple example of Figure 2, Y is the column vector (1,−1)T .

Our objective is to propose a matching control that minimizes the finite
horizon cumulative cost,

∫ u
0 C(Q(t))dt, where u > 0 is the time horizon and

C : RI
+ → R+ is the instantaneous cost function. Finite horizon (rather

than long-run average) objectives are natural because the matching queues
we consider here are inherently unstable: for the simple example in Figure 2,
either the queue sizes blow up to ∞ (if λ1 6= λ2) or the imbalance process
is null recurrent (if λ1 = λ2).

A lower bound on the instantaneous holding cost based on the imbalance
process in (1.3) is given by

min C(q)(1.4a)

s.t. Y T q = S(t)(1.4b)

q ≥ 0,(1.4c)

at every time t > 0. That is, one optimizes the queue sizes q subject to the
constraint that the appropriately weighted (by Y T ) sum of the queues must
equal the imbalance process. Obviously, there is no reason to expect that
the lower bound in (1.4) is achievable as it ignores past actions; namely, the
fact that once an item is matched, it can not be “unmatched”. In Figure 1, if
the controller matches a class 2 item with a class 1 item when a class 4 item
was waiting but a class 3 item arrives shortly after, the controller cannot
“unmatch” the class 1 and 2 items in order to match instead the class 2, 3,
and 4 items.

In this paper, we show that a simple discrete review matching control
achieves the imbalance based lower bound for a large class of networks
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(specifically, those that satisfy a dedicated item condition – see Assump-
tion 1), when the arrival rates become large. In brief, our proposed control
minimizes the costs given the backlog of items at specified decision epochs
t1, . . . , tm: at time tm, we determine the number of matches of each type dm
and the resulting queues qm by solving:

min C(qm)(1.5a)

s.t. qm = Q(tm−)−Mdm,(1.5b)

qm, dm ≥ 0,(1.5c)

whereM is the matching matrix. The algorithm is fleshed out in detail in §4.
The discrete-review matching control (1.5) is (partly) greedy—in the case

of Figure 1, our control will not “inventory” items of class 2 in anticipation
of arrivals of classes 3 and 4. However, the term “greedy” must be used with
care. Discrete review means that we do nothing between review periods, so
that items accumulate. The inventory accumulated between review periods
provides the flexibility to achieve the lower bound in (1.4) at each decision
epoch. Decision epochs must be close enough so as not incur significant hold-
ing cost, but sufficiently spaced out so that enough items have accumulated
between review periods to provide matching flexibility.

In summary, the main contribution of this paper is to introduce a model
for matching queues, identify the imbalance process as a key concept, and
prove that a simple control is asymptotically optimal for holding cost mini-
mization.

Organization of the paper. We conclude this section with a literature re-
view. We specify our model in §2, and explicitly construct the imbalance
matrix Y and the imbalance process S(t) in §3. We fully describe our pro-
posed control in §4. We state our first asymptotic optimality result in §5.
That first result assumes that, in fluid scale, all items can be matched. When
there is no such fluid balance, our asymptotic optimality result requires ad-
ditional conditions, and that setting is studied in §6. Proof essentials appear
in §7 and numerical examples in §8. We make concluding remarks in §9. The
proofs of propositions and theorems appear in the main body of the paper,
and there is an appendix for the proofs of lemmas.

Literature review. There are two streams of literature that are relevant to
our work: that on stochastic processing networks and that on assemble-to-
order systems.

The stochastic processing networks (SPNs) literature. In Harrison’s SPN
framework [6], a matching network can be viewed as a SPN with I classes of
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items that are processed via J activities. For the matching network drawn
in Figure 1, there are I = 4 classes and J = 2 activities that can be used to
process these classes. Each of the J activities is undertaken by a resource and
all processing is instantaneous (so that each resource has infinite capacity).

Our model can thus be viewed as an extension of assembly-queues. One
early example is the model studied in [4], which has I classes, a single activity
served by a finite capacity resource, and positive processing times. Although
the matching requirement is similar, there are two important distinctions.
The first is the fact that we have instantaneous processing. A consequence of
this is that the imbalance process can be approximated by an unregulated
diffusion. With positive processing times, the appropriate approximation
is a regulated diffusion. The second important distinction is that with a
single activity there is no question of control. In contrast, our focus is on
networks with multiple matching types, in which the network performance
is determined by decisions concerning which activities to undertake when –
that is, by the matching decisions. This question of matching control has
not been fully explored in the SPN literature.

Studies of SPNs typically follow a hierarchy in which one first consid-
ers a static planning problem, and subsequently a waiting- or holding-cost
minimization problem. The second step is often facilitated by use of the
“standard Brownian machinery” proposed in [5]; namely, by introducing a
heavy-traffic asymptotic regime in which resources are almost fully utilized
and queue-lengths can be approximated by a function of a Brownian motion.
An equivalent problem of lower dimension, that can be more easily solved,
is constructed based on the workload process (see [8]) whose construction,
in turn, relies on the dual of a static planning problem. A class of SPNs that
is closely related to matching networks is that of parallel-server networks
(Figure 1 serves to visualize this similarity). That class is studied using the
standard Brownian machinery in, for example, [2, 7, 11], and those papers
identify resource-pooling conditions under which the workload process is
one-dimensional. The solution to the one-dimensional equivalent workload
formulation is used to construct a control for the original SPN that is proved
to be asymptotically optimal in heavy-traffic.

In spirit, our analysis of matching networks follows this same hierarchy.
The construction of the imbalance process is based on the dual to an appro-
priate static planning problem, and we perform an asymptotic analysis to
motivate a dynamic control and prove that the proposed control is asymp-
totically optimal. The conventional notion of heavy traffic does not, however,
apply in our setting because there is no obvious notion of resource capacity.
The appropriate analogue to the heavy-traffic asymptotic regime involves
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balance among the various input flows, which effectively “serve” one an-
other. The network in Figure 2 is balanced when λ1(t) = λ2(t) for all t ≥ 0,
and that of Figure 1 is balanced when λ1(t) + 0.5(λ3(t) + λ4(t)) = λ2(t)
and λ3(t) = λ4(t) for all t ≥ 0. Instead of the resource pooling condition,
a reduction in problem dimensionality is achieved here by a dedicated-item
condition which is an analogue of the local traffic condition developed in [10]
for a bandwidth sharing model. The control problem does not, however, col-
lapse here to a single dimension.

The assemble-to-order system literature. Our interpretation of the imbal-
ance process is closely connected to the interpretation of the inventory po-
sition in an assemble-to-order (ATO) system. In such a system, stochastic
demand for a set of end products is met by assembling components. Dif-
ferent end-products use different (possibly overlapping) subsets of compo-
nents and the controller must decide dynamically which end products to
assemble given the backlogged demand for products and the inventory of
components; see, e.g., the survey paper [15]. The components may either be
arriving stochastically, if the capacitated component production is explicitly
modeled, or they may be ordered, in which case they arrive after a lead time.
Regardless of the component delivery method, the relevant state descriptor
is the inventory position which tracks the number of components required
to satisfy product demand, and is positive (negative) if the system has extra
(is short of) components. Our imbalance process is similar in that it tracks
which items are plentiful and which items are in short supply.

In the assemble-to-order setting with component production, as in [12],
the notion of heavy-traffic equates the rate at which products are demanded
to the rate at which components are produced. When those rates are in
balance, the standard Brownian machinery can be used to construct an
asymptotically optimal control that specifies dynamically which products to
assemble. An important similarity (and a departure from traditional queue-
ing networks) is that, in both the ATO context and in our matching setting,
capacity – be it the queue of components in the ATO setting or the queues
of items in our setting (that serve as “resources” for other items) – can
be “banked” and is not perishable. Yet this is where the connection to the
matching setting partly breaks down. In the matching setting there is no
natural notion of physical capacity as items play the dual role of “products”
needing components and “components” that are used in other products.
This duality requires a different notion of “heavy-traffic”.

The standard Brownian machinery is applied also in the study of ATO
systems where components are ordered; see [3] and [13]. These papers uses
functional central limit theorems to show that, as the lead times grow large
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(and so does, in particular, the demand for products during the lead time)
a certain lower bound stochastic program is attained. This is also the spirit
of the analysis in this paper: to use functional central limit theorem method-
ology to show that when the arrival rates become large, the lower bound in
(1.4) can be attained. In our setting, the absence of capacitated resources
allows us to cover, within a single asymptotic framework, balanced and non-
balanced networks.

Notation. We let R denote the real numbers and R+ denote the positive real
numbers. The set of integers is Z and N denotes the non-negative integers.
For a set S, |S| denotes its cardinality. All vectors are assumed to be column
vectors. The transpose of a vector v is denoted by vT . The notation |v|
denotes the Euclidean norm of v. We let e be the vector of all 1’s, and ej be
the vector of all 0’s except with a 1 in the jth place. All processes considered
in what follows are assumed to be right continuous with left limits, and
Dd[0,∞) denotes the space of such functions from [0,∞) to Rd. For a process
x ∈ Dd[0,∞) and a constant u > 0 we let ‖x‖s,u = sups≤t≤u |x(t)| (we
abbreviate to ‖x‖u if s = 0) and define ∆x(t) = x(t)− x(t−).

For asymptotic optimality we consider a sequence of systems indexed by
n ∈ R+. We use the notation ⇒ to denote convergence in distribution as n →
∞ in the space Dd[0,∞). We use the same notation for weak convergence
of random variables and the correct interpretation will be clear from the
context. For a sequence of random variables {Xn} and a sequence of non-
negative numbers an we say that Xn = oP (a

n) if |Xn|/an → 0 in probability,
as n → ∞.

2. The matching model. The model consists of a set I of input
streams, or item classes, and a set of matchings J . A matching corresponds
to a subset of I that contains at least two item classes. We let I(j) be the set
of item classes participating in matching j ∈ J and J (i) be the set of match-
ings which involve item class i ∈ I. The matching matrix M ∈ {0, 1}I×J,
where I = |I| and J = |J |, has Mij = 1 if i ∈ I(j) and 0 otherwise. We
assume that for each i, there exists at least one j such that Mij = 1; that
is, each item class is connected to at least one matching. In Figure 1,

(2.1) M =




1 0
1 1
0 1
0 1


 ,

and

I = {1, 2, 3, 4} and J = {A,B}, for A = {1, 2} and B = {2, 3, 4},
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I(A) = {1, 2},I(B) = {2, 3, 4},J (1) = {A},J (2) = {A,B},
and J (3) = J (4) = {B}.

Class i items arrive according to a (possibly time varying) Poisson process
Ai = (Ai(t), t ≥ 0) with instantaneous rate λi(t), so that Λi(t) =

∫ t
0 λi(s)ds

is a first order approximation for the cumulative arrivals up to time t.1 We
assume that

0 < λmin ≤ λi(t) ≤ λmax < ∞, t ≥ 0, i ∈ I.

The control is the vector of processes Dj = (Dj(t), t ≥ 0), j ∈ J , where
Dj(t) tracks the cumulative number of times matching j has been performed
in [0, t], and has

(2.2) D(0) = 0, ∆D(t) ∈ NJ.

Let q0,i be the number of items in queue i at time 0. The number of class i
items waiting at time t ≥ 0 is then

Qi(t;D) = q0,i +Ai(t)−
∑

j∈J (i)

Dj(t),

or, in vector notation

(2.3) Q(t;D) = q0 +A(t)−MD(t).

Naturally, we only consider controls under which

(2.4) Q(t;D) ≥ 0 for all t ≥ 0.

Also, since matching j ∈ J is only feasible at times t ≥ 0 in which at least
one item is waiting in each of the queues i ∈ I(j), we require that for all
j ∈ J , i ∈ I(j) and t > 0,

(2.5) ∆Dj(t) > 0 implies Qi(t−;D) + ∆Ai(t) > 0 for all i ∈ I(j),

where we define Q(0−;D) = q0. A control D is admissible if (2.2)–(2.5) hold.
Given a non-negative and convex function C : RI

+ → R+ that has C(0) =
0 and is strictly increasing with respect to the natural partial order on RI

+,
we seek to solve the problem

(2.6) minimize

∫ u

0
C (Q(t;D)) dt over all admissible controls D,
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Fig 3. (LHS) DI violated (RHS) DI satisfied.

for any given u > 0, where the minimization should be interpreted in a
stochastic sense. In words, we wish to minimize the finite horizon costs of
having items waiting (holding costs).

Our proposed solution will be pathwise (asymptotically) optimal under
our assumptions. As a corollary, if one considers q0 = 0 and the particular
cost function

(2.7) C(q) =
∑

i∈I
qi for q ∈ RI

+,

the solution minimizes
∑

i∈I Qi(t) for each t ≥ 0 and, consequently, maxi-
mizes the total number of items matched in [0, u].

Dedicated item condition. The following condition is the analogue of the
local traffic condition in [10, Assumption 5.1], defined there for a bandwidth
sharing network. In words, the condition requires that each matching has
at least one class that is used by that matching and that matching only.
In Figure 1, class 1 is served only by matching A and classes 3 and 4 are
served only by matching B. The dedicated item condition is not satisfied,
for example, in Figure 3(LHS) where matching B has no such item class,
but it is satisfied in Figure 3(RHS).

Definition 1 (dedicated item (DI)). For each j ∈ J there exists i ∈ I
such that Mij = 1 but Mik = 0 for all k 6= j.

1Imposing a Poisson structure simplifies discussing non-stationary arrivals but is not
necessary for some of our results; see Remark 3.
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Assumption 1. The network satisfies the DI condition.

Since a matching must have at least two classes, the dedicated item con-
dition implies that I > J. It also implies that the matrix M (after possibly
re-arranging indices) has the form MT = (I,M2) where I is the J× J iden-
tity matrix and M2 is some J× (I− J) matrix. In particular, the matrix M
has rank J. A useful implication of the structure of the matrix M is that
Mx ≥ 0 if and only if x ≥ 0. In the algebraic literature this property is re-
ferred to as inverse monotonicity and it is this implication of the dedicated
item condition that is central to our proofs.

We say that a network is fluid-balanced if for each t ≥ 0, there exists
z = z(t) ≥ 0 such that Mz = Λ(t): starting with empty queues one can
(in first order) match all arrivals by time t and make the “fluid” queues
empty.

Conversely, we say that a network is not balanced if there exists t such
that Mz 6= Λ(t) for all z ≥ 0. In this case, no control can empty the queues
completely in fluid scale – there must be some positive queues some of the
time.

This separation according to fluid balance is not central to the develop-
ment of our proposed control in Sections 3 and 4. However, the conditions for
asymptotic optimality are stronger for non-balanced networks; see Section 6.

3. The imbalance matrix and process. Our proposed control is
based on the imbalance process (1.3). The imbalance process is used to iden-
tify the lower bound on the achievable cost given in (1.4). In this section, we
provide one possible construction of the matrix Y in (1.3), and relate this
construction to the duality of item classes as customers and servers.

To motivate the imbalance process, suppose that no action is taken until
time t. At this time, it is feasible to match all items if there exists d ≥ 0
that solves

(3.1) Md = q0 +A(t), d ∈ RJ

+.

The dual to (3.1) is given by the linear program

maxy∈RI yT (q0 +A(t))
(3.2)

s.t. yTM ≤ 0.

By strong duality (3.1) has a feasible solution d∗ if and only if (3.2) has a
finite optimal solution y∗ (any such solution must have (y∗)T (q0+A(t)) = 0).
Suppose that q0+A(t) ≫ 0, i.e., that all components of the vector q0+A(t)
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are strictly positive. Then, by the dedicated item condition it must be that
d∗ ≫ 0 and, by complementary slackness, that (y∗)TM = 0. Thus, for
q0 + A(t) ≫ 0, the primal has a feasible solution d∗ if and only if the dual
has an optimal solution y∗ with (y∗)T (q0 + A(t)) = 0 and (y∗)TM = 0. If,
on the other hand, there exists y such that yTM = 0 but yT (q0 +A(t)) > 0
there is no solution d ≥ 0 to Md = q0 + A(t) so that, regardless of our
actions, some queues must be positive at time t.

We construct a process S = (S(t), t ≥ 0) having S(t) = 0 if there exists
d ≥ 0 such that Md = q0 +A(t) and S(t) 6= 0 otherwise. We fix a matrix Y
whose columns span

(3.3) Y = {y ∈ RI : yTM = 0},

and define

(3.4) S(t) = Y T (q0 +A(t)) for all t ≥ 0.

The process S(t) obtains values in the subspace

(3.5) M = {s ∈ RI−J : Y Tx = s, for some x ≥ 0}.

The following formalizes our heuristic motivation of the imbalance process.

Lemma 1. Suppose that Assumption 1 holds. For each x ≥ 0 such that
Y Tx = 0 there exists a unique solution d to the system of equations Md = x,
and this solution is non-negative.

As a corollary of this lemma we observe that the network is fluid balanced
if, for all t ≥ 0, Y TΛ(t) = 0 as this guarantees the existence of z(t) ≥ 0 such
that Mz = Λ(t).

Example 1. Consider the network in Figure 1 and assume that q0 = 0.
Then, yT = (−1, 1,−a,−(1−a)) (with arbitrary a ∈ (0, 1)) satisfies yTM =
0. One possible choice for Y is

Y T =

(
−1 1 −1/2 −1/2
0 0 −1 1

)
,

so that when q0 = 0

S(t) =

(
−A1(t) +A2(t)− 1

2 (A3(t) +A4(t))
−A3(t) +A4(t)

)
.
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Then, S2(t) = 0 only if A3(t) = A4(t), which is consistent with the fact
that—assuming no matchings are performed by time t—all class 3 and 4
items can be matched at that time only if the exact same number of each
class is present. If S2(t) = 0, then S1(t) = 0 only if

A2(t) = A1(t) +
1

2
(A3(t) +A4(t))

= A1(t) +A3(t),

so that there are enough class 2 items to match all items of classes 1, 3, and
4 that are present in the queues at time t.

In general, there may be multiple choices for the matrix Y . The choice of
Y does not affect our results so we do not make this dependence explicit in
our notation. Regardless of how Y is chosen, its rank is I − J (recall that
rank(M) = J < I).

There are standard (algebraic ways) to construct such a matrix Y . The
following is a construction of Y that has an intuitive physical interpreta-
tion and is rooted in the greater relative importance of some item classes.
In Figure 1, for example, class 2 is such a class. It is the only class that is
used in more than one matching so that, by allocating items of this class
between the two distinct matchings A and B, the system manager can con-
trol item departures. In this sense, class 2 is a “resource” for class 1, 3,
and 4 “items”. Formalizing this idea is conceptually useful and facilitates an
explicit construction of the matrix Y .

Definition 2. We say that a class i ∈ I is a resource class if |J (i)| > 1
(it participates in more than one matching). We let S ⊂ I be the set of
resource classes and let C = I \ S be the remaining classes, which we refer
to as the customer classes.

The algorithm shown below can be used to construct an appropriate ma-
trix Y (that is, one whose rows span (3.3)). In the presentation of this
algorithm, we use the notation r to refer to a resource class and c to refer
to a customer class. Then, for a row vector y in the matrix Y T (which has I
entries), the notation yr (yc) refers to the position in the vector y associated
with that resource (customer) class. For easier understanding, we illustrate
each step by applying it to Example 1.

(0) Start with an “empty” matrix Y T that has I− J rows and I columns.

Y T =

(
x x x x
x x x x

)
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(1) For each resource class r ∈ S:

(i) Add a row vector y that has a 1 in the entry associated with that
resource class.

r = 2 and y = (x, 1, x, x)

(ii) For each matching j ∈ J (r):
For each customer class c ∈ C ∩ I(j):

yc =
−1

|C∩I(j)| .

J (r) = {A,B}
C ∩ I(A) = {1} and so y = (−1, 1, x, x)

C ∩ I(B) = {3, 4}, |C ∩ I(B)| = 2,

and so y = (−1, 1,−1/2,−1/2)

(2) For each matching j ∈ J having |C∩I(j)| ≥ 2, fill one of the remaining
rows in the matrix Y with the vector y constructed as follows:

(i) Arbitrarily designate a customer class c(j) ∈ C ∩ I(j).
(ii) Let yc(j) = −1, yc′ = 1 for all c′ ∈ C ∩ I(j), c′ 6= c(j), and set all

remaining entries to 0.

j = B, c(B) = 3, c′ = 4, and y = (0, 0,−1, 1).

In the application of the last step to the network in Example 1, note that
matching A has a single customer class so that this step applies only to
matching B. Overall, we generate exactly I − J rows, each of size I. To
see this, note that step (1) creates |S| rows. Then, step (2) creates |C| − J

rows, because each matching j yields |C(j)|− 1 rows and there is no overlap
between local inputs. Finally, the independence of the columns of Y (rows
of Y T ) follows immediately by construction as does the fact that Y TM = 0.

4. The proposed discrete-review control. Consider first the case
that q0 = 0: the initial queues are empty. A modification of the algorithm to
account for general initial conditions is provided at the end of this section.

At each decision epoch 0 < t1 ≤ t2 ≤ · · · ≤ tm ≤ u, we solve for the num-
ber of matches of each type dm and the resulting queues qm that minimize
the instantaneous holding cost; that is, we solve for (dm, qm) in

min C(qm)(4.1a)

s.t. qm = Q(tm−1) +A(tm)−A(tm−1)−Mdm,(4.1b)

qm, dm ≥ 0.(4.1c)
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The proposed control D⋆ and queue-length processes are

D⋆(tm) = D⋆(tm−1) + dm and Q(tm,D⋆) = qm.

From (4.1), it is straightforward to see that the constructed D⋆ is piecewise
constant, satisfies (2.2)–(2.5) and is thus admissible.

The optimization (4.1) is exactly (1.5) in the Introduction because
∆A(tm) = 0 for all m almost surely when arrivals are Poisson, so that

Q(tm−1) +A(tm)−A(tm−1) = Q(tm−1) +A(t−m)−A(tm−1) = Q(t−m).

In particular, substitution shows that the constraints in (4.1) and (1.5) are
identical. This is important because the formulation (1.5) does not require
tracking the arrival increments A(tm)−A(tm−1).

To see the connection of our proposed control with the imbalance process
introduced in §3, we multiply by Y T in (4.1b). Then, recalling that Y TM = 0
and the imbalance process definition in (3.4), we find

Y T qm = Y T (Q(tm−1) +A(tm)−A(tm−1))

= Y TQ(tm−1) + S(tm)− S(tm−1).

If Y TQ(tm−1) = S(tm−1), then Y T qm = S(tm). This is true at time t0 = 0
and will subsequently hold for all m by the definition of the algorithm. Then,
(4.1) can be equivalently written as

min C(qm)(4.2a)

s.t. Y T qm = S(tm),(4.2b)

qm = Q(tm−1) +A(tm)−A(tm−1)−Mdm,(4.2c)

qm, dm ≥ 0.(4.2d)

For each m the problem (4.2) has the lower bound given in (1.4) of the
introduction (set t = tm):

min C(q)(4.3a)

s.t. Y T q = S(t)(4.3b)

q ≥ 0.(4.3c)

The source of the potential higher cost under the proposed discrete-review
matching control in (4.2) and the lower bound in (4.3) comes from the
constraint (4.2c), that prevents previously matched items from being “re-
matched” more advantageously.
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In particular, a lower bound on what the algorithm can achieve (or, in
fact, on what any algorithm can achieve) is given by

min

∫ u

0
C(q(s))ds,(4.4a)

s.t. Y T q = S(t), for all 0 ≤ t ≤ u,(4.4b)

q(t) ≥ 0, for all 0 ≤ t ≤ u,(4.4c)

Obviously, given a function Q : M → RI
+ defined as

(4.5) Q(s) ∈ argmin
q≥0

{C(q) : Y T q = s},

Q(S(t)) is optimal for (4.3) and, given a sample path (S(t), t ≥ 0), the
sample path (Q(S(t)), t ≥ 0) is optimal for (4.4).

Thus, the imbalance-based process Q(S(t)) generates a lower bound on
the original finite horizon cumulative cost objective (2.6). To understand
how our algorithm overcomes the gap between the original formulation and
this lower bound it is useful to formalize an equivalence between (4.4) and
the original cumulative finite horizon cost formulation (2.6).

Eliminate first the requirement in (2.6) that only integer numbers of items
can be matched. The original problem formulation then becomes:

min

∫ u

0
C (Q(t;D)) dt

s.t. Q(t) = q0 +A(t)−MD(t), for all 0 ≤ t ≤ u,

D(0) = 0,D is increasing ,
∫ ∞

0
1{Qi (t−) + ∆Ai(t) = 0 for any i ∈ I(j)}dDj(t) = 0,

Q(t) ≥ 0, for all 0 ≤ t ≤ u.

(4.6)

The imbalance-based problem formulation is:

min

∫ u

0
C(q(s))ds,

s.t. Y T q(t) = S(t), for all 0 ≤ t ≤ u,

A(t)−A(s) ≥ q(t)− q(s), for all 0 ≤ s ≤ t ≤ u,

q(t) ≥ 0, for all 0 ≤ t ≤ u.

(4.7)

A function (q(t), t ≥ 0) is said to be admissible for (4.7) if it is RCLL
and satisfies all the constraints. The following establishes that, under the
dedicated item condition (Assumption 1), these problems are equivalent.
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Theorem 1. Suppose that Assumption 1 holds. If (Q,D) is an admissi-
ble solution for (4.6), then, Q is admissible for (4.7). Conversely, if Q is an
admissible solution for (4.7), then there exists a process D such that (Q,D)
is admissible for (4.6).

The simple proof appears at the end of this section. Theorem 1 tells
us that, to study the original problem formulation, it suffices to study the
imbalance formulation (4.7). Note that the formulation (4.7) is the lower-
bound problem (4.4) with the added constraint A(t) − A(s) ≥ q(t) − q(s);
in other words, that constraint is the source of any potential cost gap. For
the solution Q(S(t)) to be feasible for (4.7) we need that

A(t)−A(s) ≥ Q(S(t)) −Q(S(s)), 0 ≤ s ≤ t ≤ u.

This is the key observation underlying our proposed control. By spacing out
the decision epochs far enough we can guarantee that, with high probability,

A(tm+1)−A(tm) ≥ Q(S(tm+1))−Q(S(tm)).

Our control will then be able to track the trajectory of queues Q(S(t)) at
decision epochs; that is, the solutions to (4.2) and (4.3) will be the same.
Assuming that the decision epochs can still be spaced close enough so that
the cost build-up during a review period is negligible, our proposed discrete
review matching control (4.2) will achieve a near minimum cumulative finite
horizon cost.

In summary, the essential element is that there are sufficiently many ar-
rivals during sufficiently short review periods.

Remark 1. It is important that if (Q,D) is a feasible solution to (4.6),
then the feasibility ofQ for (4.7) does not require the DI condition. It follows,
in particular, that regardless of any assumptions the optimal value in (4.7)
serves as a lower bound for (4.6) and, in turn, for (2.6).

Remark 2 (when Q is not unique). If, for each x ≥ 0, the solution Q(x)
in (4.5) is guaranteed to be unique (say, if C(·) is strictly convex), the explicit
form of Q is not required in order to use our algorithm and generate the
optimality results that follow. In the absence of such uniqueness we modify
the algorithm and use the explicit Q.

At review epoch tm, if there exists dm ≥ 0 such that (dm,Q(S(tm)))
satisfies (4.1c) (and, in turn, is optimal for (4.1a)–(4.1c)) choose this
solution, i.e, set Q(tm,D⋆) = Q(S(tm)) and D⋆(tm) = D⋆(tm−1)+ dm.

In words, at review epoch tm the algorithm chooses Q(S(tm)) whenever
feasible.
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Proof of Theorem 1. Let (Q,D) be an admissible solution for (4.6).
Then, the first equation in (4.6) together with the fact thatD is an increasing
process guarantee that A(t) − A(s) ≥ Q(t) − Q(s) for all 0 ≤ s ≤ t ≤ u.
Also, since Y TM = 0 by construction, we have that Y TQ(t) = Y T (q0 +
A(t)) − Y TMD(t) = Y T (q0 + A(t)) = S(t). Hence, Q is feasible for (4.7).
Next, we will show that if Q is a solution to (4.7) then there exists a process
D such that (Q,D) is a solution to (4.6). We construct the process D(t) as
follows: Let x(t) = q0 +A(t)−Q(t), where q0 is defined to equal Q(0). Note
that since Q is a solution to (4.7) we have, in particular, that x(t) ≥ 0 and
Y Tx(t) = 0. Using Lemma 1 let D(t) be the unique non-negative solution
to MD(t) = x(t). We claim that the process D(t) constructed this way is,
in fact, increasing. Indeed, by construction M(D(t) −D(s)) = x(t) − x(s).
Since x(t)−x(s) ≥ 0 (by the second constraint in (4.7)) and since Y Tx(t) =
Y Tx(s) = 0, we have by Lemma 1 that D(t) − D(s) must be the unique
(non-negative solution) to this system. Thus, D(t) is increasing. Finally,
since A(t) is RCLL and so is, by definition Q(t), they both have a finite
number of discontinuity points on any finite interval. Thus, to show that the
third constraint in (4.6) holds, it suffices to show that if (s, t] is an interval
such that Qi(u−)+∆Ai(u) = 0 for all u ∈ (s, t] thenDj(t)−Dj(s) = 0 for all
j ∈ J (i). Since Q ≥ 0 and A is an increasing pure jump process we have on
this interval that Q(s) = 0 for all s < t and ∆Ai(u) = 0 for all u ∈ (s, t]. In
particular Ai(t)−Ai(s) = 0. Suppose to reach a contradiction that there exist
j ∈ J (i) with Dj(t)−Dj(s) > 0. In this case (M(D(t)−D(s)))i > 0 and, by
our construction of D, Qi(t)−Qi(s) = Ai(t)−Ai(s)−(M(D(t)−D(s)))i < 0
which, since Q(s) = 0 for all s < t is a contradiction to the non-negativity
of Q.

General initial conditions. We end this section with a modification of the
algorithm to accommodate general initial conditions. Such a modification is
needed only if at time 0 q0 6= Q(Y T q0). Otherwise, if q0 = Q(Y T q0), then
the algorithm can be used as presented.

Let

(4.8) t0 = min
{
t > 0 : q0 +A(t)−Q

(
Y T (q0 +A(t))

)
> 0
}

At time t0, x = q0 + A(t) − Q(Y T (q0 + A(t))) ≥ 0 and Y Tx = 0 so that,
applying Lemma 1, there exists d ≥ 0 that solves

Md = q0 +A(t0)−Q(Y T (q0 +A(t0))),

and we can set D⋆(t0) = d to obtain Q(t0) = Q(Y T (q0+A(t0))). From here,
we can proceed as in our original algorithm.
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5. Asymptotic optimality for balanced networks. We consider a
sequence of systems, indexed by n, in which the arrivals are accelerated:
λn
i (t) = nλi(t) is the instantaneous arrival rate of class i items at time t, and

Λn
i (t) = nΛi(t) is the mean cumulative number of class i item arrivals. We

assume, without loss of generality, that λmax = 1, so that n is interpreted as
the maximal aggregate arrival rate over the time horizon. The review epochs
are

(5.1) tnm = tn0 +m

(
1

n

)2/3

for m = 1, 2, . . . ,

and we have at most ⌊un2/3⌋ review epochs on [0, u]. If tn0 = 0, then tnm =
m(1/n)2/3. Our convention is to superscript with n any process or quantity
associated with the nth network. Thus, for example, qn0 is the initial queue-
length vector in the nth network. It is standard to construct non-stationary
Poisson processes from unit-rate Poisson processes (Ai, i ∈ I) as follows

An
i (t) = Ai(nΛi(t)), for i ∈ I.

Given a control Dn, the queue process Qn is constructed as in (2.2)–(2.5).
With some abuse of terminology we henceforth say that a sequence {Dn}
is an admissible control if Dn is admissible for each n (i.e., Dn satisfies
(2.2)–(2.5)).

From the functional central limit theorem for renewal processes and the
random time change theorem it follows, when the underlying Poisson pro-
cesses are independent, that

(5.2) Ân =
An − Λn

√
n

⇒ Â = B ◦ Λ, as n → ∞,

where B is a standard I-dimensional Brownian motion. In turn,

(5.3) Ŝn =
Sn − Y T qn0 − Y TΛn

√
n

⇒ Ŝ = Y T Â, as n → ∞.

When the system is fluid balanced, Y TΛn = 0. Then, for continuous Q,
and assuming qn0 /

√
n → q̂0, as n → ∞,

1√
n
Q(Sn) = Q(Y T qn0 /

√
n+ Ŝn) ⇒ Q(Y T q̂0 + Ŝ).

In particular, the lower-bound cost is of the order of
√
n. The fluid queues

would be 0 in this case, so that
√
n is the cost of stochasticity. Following the

standard notion of asymptotic optimality, we say that a control is asymp-
totically optimal if its optimality gap is negligible relative to

√
n.
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Fig 4. An example with one resource class and a one dimensional matrix Y .

Definition 3. The control {Dn
⋆ } is asymptotically optimal if

(5.4)
1√
n

∣∣∣∣
∫ u

0
C(Qn(t,Dn

⋆ ))dt−
∫ u

0
C(Q(Sn(t)))dt

∣∣∣∣⇒ 0, as n → ∞.

The informal weak-convergence argument in the previous paragraph sug-
gests that our proof of asymptotic optimality hinges on the following conti-
nuity assumption. Below, M is as in (3.5) and, recall, |v| is the Euclidean
norm of a vector v.

Assumption 2 (Lipschitz selection). There exists a function Q(·) and
a constant κ, such that, for each s ∈ M, Q(s) is a minimizer in (4.5) and

|Q(s1)−Q(s2)| ≤ κ|s1 − s2|, s1, s2 ∈ M.

Example 2. The matching network in Figure 4 has the matching matrix

M =




1 0
1 1
0 1


 ,

and it clearly satisfies the DI assumption. The unique (up to multiplicative
constant) vector that spans Y is y = (−1, 1,−1)T . Consider the cost function

C(q) =
∑

i∈I
ciq

m
i



MATCHING QUEUES 499

for m ≥ 2. The function C is convex and strictly increasing if ci > 0, i =
1, 2, 3. Next, the solution to

argmin
q≥0

{C(q) : −q1 + q2 − q3 = s}

for s ∈ M, is

Qi(s) = [−s]+

(
(2ci)

− 1
m−1

(2c1)
− 1

m−1 + (2c3)
− 1

m−1

)
, i = 1, 3,

and
Q2(s) = [s]+,

so that Q is, in particular, Lipschitz continuous in s (regardless of m).

Theorem 2. Fix u > 0 and suppose that Assumptions 1 and 2 hold,
that C(·) is Lipschitz continuous, and that the network is fluid-balanced. If
qn0 /

√
n → q̂0, then,

(i) For any admissible control {Dn} and all n,

(5.5) C(Qn(t,Dn)) ≥ C(Q(Sn(t))), for all t ≥ 0 almost surely.

(ii) For the proposed control {Dn
⋆ }, as n → ∞,

1√
n
‖Qn −Q(Sn)‖tn0 ,u ⇒ 0,

(5.6)
1√
n
‖C(Qn(·,Dn

⋆ ))− C(Q(Sn(·)))‖tn0 ,u ⇒ 0,

and {Dn
⋆ } is asymptotically optimal.

Remark 3 (General arrival processes). We restricted Theorem 2 to
Poisson arrivals as this facilitates covering stationary and non-stationary ar-
rivals in one result by having the weak convergence (5.2). However, neither
the Poisson assumption nor independence between the I components of An is
required. The key requirement in the proof of Theorem 2 is that the bounds
in Lemma A.2 in our appendix hold. This would be the case, for example, if
An

1 , . . . , A
n
I are renewal processes with finite 5th moment for the inter-arrival

time (see the proof of Lemma A.2 and the references therein).

We postpone the proof of Theorem 2 to Section 7, after we have considered
the case of non-balanced networks.
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6. Asymptotic optimality for non-balanced networks. The fluid
optimization problem is

(6.1)

min

∫ u

0
C (qn(s)) ds

s.t. qn(t) = qn0 + Λn(t)−Mzn(t), for all 0 ≤ t ≤ u,

zn(0) = 0, zn is increasing,

qn(t) ≥ 0, for all 0 ≤ t ≤ u.

When the network is balanced there exists a solution (zn(t), t ≥ 0) to
Mzn(t) = Λn(t) so that if qn0 = o(n), the queues can be kept small in
fluid scale. For networks that are not fluid-balanced, the optimal queue-
length fluid trajectory is non zero and is, specifically, constructed using Q
as follows: multiplying the first constraint by Y T on both sides and using
Y TM = 0, results in the equation Y T qn(t) = Y T (qn0 + Λn(t)). With

(6.2) q̄n(t) = Q(Y T (qn0 + Λn(t))),

∫ u
0 C(q̄n(s))ds provides then a lower bound on the optimal cost for (6.1).
Further, if q̄n is such that

(6.3) q̄n(t)− q̄n(s) ≤ Λn(t)− Λn(s), s ≤ t ≤ u,

then xs,t = Λn(t) − Λn(s) − (q̄n(t) − q̄n(s)) ≥ 0 satisfies Y Txs,t = 0 so
that by Lemma 1, there exists a non-negative solution ds,t to Md = xs,t.
Constructing zn by setting zn(0) = 0 and zn(t) − zn(s) = ds,t ≥ 0, we have
that (q̄n, zn) is feasible and optimal for (6.1).

What we seek to achieve with our control is to track the stochastic fluc-
tuations of the optimal trajectory around the fluid

Q(Sn(t))−Q(E[Sn(t)]) = Q(Sn(t))−Q(Y T (qn0 + Λn(t))).

To that end, we impose conditions that guarantee that Q is well behaved
in the vicinity of Y T (qn0 + Λn(t)). For simplicity of exposition, we focus for
the remainder of this section on stationary arrivals, i.e, on the case

that λ(t) ≡ λ > 0, so that Λn(t) = nλt. The proofs apply to non-stationary
arrivals but the conditions in that case are less transparent and we relegate
them to the appendix.

Assumption 3 (Contraction). There exists a function Q that satisfies
Assumption 2 and a constant η < 1 such that

Q(Y Tλ) ≤ ηλ.
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Assumption 4 (Homogeneous cost function). The function C(·) is ho-
mogeneous; that is, there exists δ such that for all x ∈ R+ and all κ > 0
C(κx) = κδC(x).

Notice that, if the network is fluid balanced, Y Tλ = 0 and Q(Y Tλ) = 0, so
that Assumption 3 is trivially satisfied. In general, whether Assumption 3
holds or not is a property of both the cost function C(·) and the rate λ.
Verifying this condition merely requires solving the optimization problem
(4.5) at the single point s = Y Tλ. Consider, for example, the network Fig-
ure 4 with linear holding costs C(x) = hTx with h1 = 0 and h2 = h3 > 0.
Suppose that arrivals are stationary with instantaneous rate λ = (2, 1, 1).
Then, Q(Y Tλ) = (2, 0, 0) ≮ (2, 1, 1) so that Assumption 3 is violated. In
this same example, if there exists ǫ ∈ (0, 1) such that λ2 = (1 + ǫ) and
λ1 = 2, λ3 = 1 < λ2 then Q(Y Tλ) = (2 − ǫ, 0, 0) < (2, 1 + ǫ, 1) and the
assumption is satisfied.

The intuition behind this requirement is as follows: to keep the queue of
class 3 small, the “capacity” of resource class 2, λ2, must be strictly greater
than the input of class 3. The reason the inequality is strict is that the con-
troller must have enough flexibility to guard against stochastic fluctuations
in the arrival process that result in no class 2 jobs being present when class 3
jobs need them.

Note that with q̄n0 = 0, Assumption 3 implies that

q̄n(t)− q̄n(s) = Q(Y Tnλt)−Q(Y Tnλs) = n(t− s)Q(Y Tλ)

< ηn(t− s)λ = Λn(t)− Λn(s).

The fact that

(6.4) |q̄ni (t)− q̄ni (s)| ≤ η(Λn
i (t)− Λn

i (s)),

which, in words, means that optimal fluid queue of each item class increases
slower than the arrivals, is the only consequence of Assumption 3 that we
use in our proofs. If (6.4) can be verified directly by computing Q, then
the requirement that arrivals are time-homogeneous is not needed. In fact,

homogeneity of the cost function, as in Assumption 4, is not nec-

essary. More general (but less transparent) conditions are specified in the
appendix; see Remark 5.

Theorem 3. Suppose that the network is not balanced. If, in addition
to the Assumptions of Theorem 2, λ(t) ≡ λ and Assumptions 3 and 4 hold,
then the conclusions of Theorem 2 continue to hold.

Non-Lipschitz cost functions. The assumption that C is Lipschitz con-
tinuous in Theorems 2 and 3 can be relaxed. But that relaxation does not
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come for free. The difference between the minimum achievable cost and the
lower bound cost may be larger than

√
n, and the definition of asymptotic

optimality must be modified accordingly. Assuming that Q is Lipschitz con-
tinuous,

Q(Sn(t))− q̄n(t) = Q(Sn(t))−Q(Y T (qn0 +An(t)))

= Q(qn0 + Λn(t) +
√
nŜn(t))−Q(Y T (qn0 + Λn(t)))

≈
√
nŜn(t) ≈

√
n.

In turn, the lower bound cost should satisfy, in order of magnitude, that

C(Q(Sn(t)))− C(q̄n(t)) ≈ L (q̄n(t)) (Q(Sn(t))− q̄n(t)) ≈
√
nL(q̄n(t)),

where

L(κ) = sup
q,q̃:|q|∨|q̃|≤κ

|C(q̃)− C(q)|
|q̃ − q| ,

is the local Lipschitz constant of the convex function C. A control is asymp-
totically optimal if its distance from the optimum is negligible compared to
the “cost of stochasticity”

√
nL(q̄n(t)).

Definition 4. The control {Dn
⋆ } is asymptotically optimal if, given

ǫ > 0, there exists K such that, for all δ > 0,
(6.5)

lim sup
n→∞

P

{
1√
n

∣∣∣∣
∫ u

0
C(Qn(t,Dn

⋆ ))dt−
∫ u

0
C(Q(Sn(t)))dt

∣∣∣∣ > δL̄n
u(K)

}
≤ ǫ,

where
L̄n
u(K) = L

(
K
√
n+ ‖q̄n‖u

)
.

Remark 4 (Lipschitz C). When the cost function C is Lipschitz con-
tinuous, L̄n

u(K) ≤ β for all n and K, where β is the Lipschitz constant of C.
In this case, asymptotic optimality reduces to the simpler requirement that,
for all ǫ, δ > 0,

lim sup
n→∞

P

{
1√
n

∣∣∣∣
∫ u

0
C(Qn(t,Dn

⋆ ))dt−
∫ u

0
C(Q(Sn(t)))dt

∣∣∣∣ > δ

}
≤ ǫ,

which is consistent with Definition 3.

Theorem 4. Theorems 2 and 3 hold for non-Lipschitz cost functions
with (ii) in Theorem 2 replaced by

(ii) For the proposed control {Dn
⋆ }, as n → ∞,

(6.6)
1√
n
‖Qn −Q(Sn)‖tn0 ,u ⇒ 0 as n → 0.
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Furthermore, given ǫ > 0, there exists K such that for all δ > 0
(6.7)

lim sup
n→∞

P

{
1√
n
‖C(Qn(·,Dn

⋆ ))− C(Q(Sn(·)))‖tn0 ,u > δL̄n
u(K)

}
≤ ǫ,

and Dn
⋆ is asymptotically optimal is in the sense of Definition 4.

To make the connection between the bound in (6.7) in Theorem 4 and
that in Theorems 2 and 3 more concrete, recall that for Lipschitz con-
tinuous C lim supn→∞ L̄n

u(K) < ∞ and the optimality gap is oP (
√
n). If,

alternatively, one has separable costs of the form C(q) =
∑

i ciq
m
i then,

L̄n
u(0) = m(‖q̄n‖u)m−1. Here, if ‖q̄n‖u = 0, we have a gap that is oP (

√
n
m
),

but if ‖q̄n‖u ≈ n (as one expects, e.g., in the non-balanced case), the opti-
mality gap is oP (n

m−1√n).

7. Proof essentials. We prove Theorem 4, which is the most general
statement of Theorems 2 and 3. The key to its proof is the following lemma
showing that the queue length under the proposed control tracks the path
of Q(S(t)). Let rn(u) be the number of review epochs by time u. That
is, rn(u) = max{m ∈ N : tnm < u}. Then rn(u) ≤ rn = ⌊un2/3⌋ and
rn = ⌊un2/3⌋ if tn0 = 0.

Lemma 2. Fix u ≥ 0 and suppose that the conditions of Theorem 4 hold.
Then, under the proposed control {Dn

⋆ },

(7.1) lim inf
n→∞

P {Qn (tnm) = Q (Sn(tnm)) for all m = 1, . . . , rn(u)} = 1,

and for any ǫ > 0 there exists K(ǫ) and t0(ǫ) such that

lim supn→∞ P {tn0 ≥ t0(ǫ)/
√
n} ≤ ǫ,(7.2)

lim supn→∞ P
{
‖Qn −Q(Sn)‖tn0 ≥ K(ǫ)

√
n
}
≤ ǫ,(7.3)

and

(7.4) lim sup
n→∞

P
{
‖Qn‖u ∨ ‖Q(Sn)‖u ≥ K(ǫ)

√
n+ ‖q̄n‖u

}
≤ ǫ.

The proof of Lemma 2 requires Assumptions 3 and 4, and this is the only
place those assumptions are used in the proof of Theorem 4.

Proof of Theorem 4. From Remark 1, the further lower bound (4.4)
and its solution (4.5) it follows that for all n and all t ≥ 0,

C (Qn(t,Dn)) ≥ C(Q(Sn(t)),

which immediately proves (5.5).
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In what follows we writeQn(·) instead ofQn(·,Dn
⋆ ). We first prove that (6.6)

implies (6.7) and the asymptotic optimality. Fix ǫ > 0 and define the event

An(ǫ) =
{
‖Qn‖u ∨ ‖Q(Sn)‖u ≤ K(ǫ/16)

√
n+ ‖q̄n‖u,

‖Qn −Q(Sn)‖tn0 ≤ K(ǫ/16)
√
n, tn0 ≤ t0(ǫ/16)/

√
n
}
,

with K(·) and t0(·) as in Lemma 2. Then, P{An(ǫ)} ≥ 1 − 3ǫ/16 ≥ 1− ǫ/4
for all sufficiently large n and, on An(ǫ),

‖C(Qn)− C(Q(Sn))‖tn0 ,u ≤ L̄n
u(K(ǫ/16)) ‖Qn −Q(Sn)‖tn0 ,u ,

so that for all δ > 0

P

{
1√
n
‖C(Qn)− C(Q(Sn))‖tn0 ,u >

δ

2
L̄n
u(K(ǫ/16))

}

≤ P{(An(ǫ))c}+ P

{
1√
n
‖Qn −Q(Sn)‖tn0 ,u >

δ

2

}
,

and from (6.6) it follows that

lim sup
n→∞

P

{
1√
n
‖C(Qn)− C(Q(Sn))‖tn0 ,u >

δ

2
L̄n
u(K(ǫ/16))

}
≤ ǫ

2
,

which establishes (6.7). In turn,

lim sup
n→∞

P

{
1√
n

∣∣∣∣∣

∫ u

tn0

C(Qn(t,Dn
⋆ ))dt−

∫ u

tn0

C(Q(Sn(t)))dt

∣∣∣∣∣

>
δ

2
uL̄n

u(K(ǫ/16))

}
≤ ǫ

2
.

Since this is true for all δ > 0, it is also true (replacing δu without δ) that

lim sup
n→∞

P

{
1√
n

∣∣∣∣∣

∫ u

tn0

C(Qn(t,Dn
⋆ ))dt−

∫ u

tn0

C(Q(Sn(t)))dt

∣∣∣∣∣

(7.5)

>
δ

2
L̄n
u(K(ǫ/16))

}
≤ ǫ

2
,

for all δ > 0. For asymptotic optimality it remains to prove that, for all δ > 0,

lim sup
n→∞

P

{
1√
n

∣∣∣∣
∫ tn0

0
C(Qn(t,Dn

⋆ ))dt−
∫ tn0

0
C(Q(Sn(t)))dt

∣∣∣∣

(7.6)

>
δ

2
L̄n
u(K(ǫ/16))

}
≤ ǫ

2
.
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On An(ǫ), however,

1√
n

∫ tn0

0
|C(Qn(t,Dn

⋆ ))− C(Q(Sn(t)))| dt

≤ 1√
n
t0(ǫ/16)K(ǫ/16)L̄n

u(K(ǫ/16))

≤ δ

2
L̄n
u(K(ǫ/16)),

where n is taken sufficiently large so that 1√
n
t0(ǫ/16)K(ǫ/16) ≤ δ/2. This

proves (7.6) and, together with (7.5), establishes asymptotic optimality.
It only remains to prove (6.6). To that end, note that

‖Qn −Q (Sn)‖tn0 ,u = max
m=0,1,2,...,rn(u)

sup
tnm≤t≤tnm+1

|Qn(t)−Q (Sn(t))| .

Since matches are only made at review epochs we have that

Qn(t) = Qn(tnm) +An(t)−An(tnm),

for t ∈ [tnm, tnm+1). Thus,

1√
n
‖Qn −Q (Sn)‖tn0 ,u

= max
m=0,1,2,...,rn(u)

sup
tnm≤t≤tnm+1

1√
n

∣∣∣Qn(tnm)−Q (Sn(tnm)) +An(t)−An(tnm)

+Q (Sn(tnm))−Q (Sn(t))
∣∣∣.

We note that An(t)−An(s) = Λn(t)−Λn(s)+
√
n(Ân(t)− Ân(s)). Recalling

that λmax = 1, we have |Λn(t) − Λn(s)| ≤ nλmax(t − s) = n(t − s). Since
|t− tnm| ≤ tnm+1 − tnm < n−2/3 for t ∈ [tnm, tnm+1] it follows that

1√
n
|An(t)−An(tnm)| ≤

∣∣∣Ân(tnm+1)− Ân(tnm)
∣∣∣+ n1/2(tm+1 − tnm)

=
∣∣∣Ân(tnm+1)− Ân(tnm)

∣∣∣+ n−1/6.

This results in the upper bound

1√
n
‖Qn −Q (Sn)‖tn0 ,u

≤ max
m=0,1,2,...,rn(u)

1√
n
|Qn(tnm)−Q (Sn(tnm))|(7.7)
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+ max
m=0,1,2,...,rn(u)

∣∣∣Ân(tnm+1)− Â(tnm)
∣∣∣+ n−1/6(7.8)

+ max
m=0,1,2,...,rn(u)

sup
tnm≤t≤tnm+1

1√
n
|Q (Sn(tnm))−Q (Sn(t))| .(7.9)

To complete the proof, we argue that each of the terms (7.7)–(7.9) con-
verges weakly to zero. The term (7.7) converges in probability to 0 by (7.1) in
Lemma 2. The weak convergence of Ân to a continuous limit process in (5.2)
implies that the term (7.8) converges weakly to 0. Finally, to prove that (7.9)
converges weakly to 0, note that for t ∈ [tnm, tnm+1), letting ȳ = maxkl |Ykl|

|Sn(tnm)− Sn(t)| =
∣∣Sn(tnm)− Sn(t)− nY T (Λ(tnm)− Λ(t))

∣∣

+ |Y Tn(Λ(t)− Λ(tnm))|
≤
∣∣Sn(tnm)− Sn(t)− nY T (Λ(tnm)− Λ(t))

∣∣ + 2ȳn1/3

≤
√
n
∣∣∣Ŝn (tnm)− Ŝn (t)

∣∣∣+ 2ȳn1/3,

and we used again the fact Λ(t) − Λ(tnm) ≤ (t − tnm) ≤ n−2/3 for all t ∈
[tnm, tnm+1). The Lipschitz continuity of Q (Assumption 2) then implies

1√
n
|Q (Sn(tnm))−Q (Sn(t))| ≤ κ

(∣∣∣Ŝn (tnm)− Ŝn (t)
∣∣∣+ 2ȳn−1/6

)
,

so that

max
m=0,1,2,...,rn(u)

sup
tnm≤t≤tnm+1

1√
n
|Q (Sn(tnm))−Q (Sn(t))|

≤ max
m=0,1,2,...,rn(u)

sup
tnm≤t≤tnm+1

κ
(∣∣∣Ŝn (tnm)− Ŝn (t)

∣∣∣+ 2ȳn−1/6
)

The right-hand side converges to 0 by the weak convergence of Ŝn to a
continuous limit (5.3), and we conclude that (7.9) converges weakly to 0
and, in turn, that (6.6) holds.

8. Numerical experiments. For our experiments, we use the net-
works in Figures 1 and 3(ii). We refer to these as network I and network
II respectively. The DI condition holds for both networks. We consider
separable quadratic cost of the form C(q) =

∑
i ciq

2
i with the coefficients

cT = (2, 1, 5, 7) for network I and cT = (3, 1, 5, 7, 0) for network II.
We fix the horizon to be [0, 1]. Given a sample path of the arrivals

(A(t), 0 ≤ t ≤ 1) we generate the corresponding sample paths of (Q(S(t)),
0 ≤ t ≤ 1) and of (Q(t,D⋆), 0 ≤ t ≤ 1). In the figures, qLi = (Qi(S(t), t ≥ 0),
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is the trajectory of the lower bound queue trajectory and qai = (Qi(t,D⋆),
t ≥ 0) is the trajectory of queue i under the proposed algorithm. We also
compute the associated costs

∫ 1
0 C(Q(S(t))dt and

∫ 1
0 C(Q(t,D⋆))dt. The fact

that the gap between qLi and qai and the gap between the costs are all small
is the numerical manifestation of our mathematical result in Theorem 4.
Our experiments show an impressive precision when the proposed solution
is applied to a concrete network.

Figures 5 and 6 depict the sample paths for the stationary balanced and
non-balanced networks. Assumption 4 holds for this example since C is a
homogenous function. It is also checked (by solving numerically for Q(Y Tλ))
that Assumption 3 holds for Network I but is violated for Network II. Nev-
ertheless, the algorithm performs well in both settings. The costs appear in
a box in the top-left corner. Each figure lists also the arrival-rates that are
used.

Finally, we consider a non-stationary setting with sinusoidal arrival-rate
functions of the form λi(t) = ai + bisin(cit). The arrival rates are specified
by three vectors aT = (a1, . . . , aI), b

T = (b1, . . . , bI) and cT = (c1, . . . , cI).
All sample paths are initialized with empty queues at time t = 0. The result
is displayed in Figure 7. While verifying the conditions for non-stationary
non-balanced networks (as in the appendix) is complex, it is evident that
the algorithm performs extremely well in the test settings.

9. Concluding remarks. We have introduced a matching queue model.
The control question of interest is how to match items in order to minimize
holding costs. We established that a simple myopic discrete review matching
control performs well, both analytically (by proving asymptotic optimality)
and numerically (through simulation), for the broad class of networks that
satisfy the dedicated item condition. The central idea of this work is the
identification of an imbalance process that facilitates the construction of a
lower bound and the design of a policy that asymptotically achieves this
bound.

The analogue in parallel-server networks to the imbalance process is the
workload process. In that setting, the workload process and workload for-
mulations have played a central role in solving a variety of queueing control
problems. A natural question is, then, whether the imbalance process can
play a similar role in solving a variety of matching control problems. In what
follows, we hint to how it could.

Imbalance-based control problems. The purpose of the discussion here is to
illustrate how the results of this paper may be leveraged towards the control
of more elaborate matching models. We do not pursue the construction of
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Fig 5. Balanced (TOP) Network I: λT = (300, 600, 300, 300), (BOTTOM) Network II:
λT = (300, 600, 600, 300, 300).

a formal framework or the proof of asymptotic optimality. Our derivation
is purely formal and intended to illustrate how the imbalance process can
potentially be used to construct a lower dimension control problem in other
matching models.



MATCHING QUEUES 509

0

10

20

30

40

50

60

70

80

90

Q
u
e
u
e

 l
e
n
g
th

q1
L

q2
L

q3
L

q4
L

q1
a

q2
a

q3
a

q4
a

Lower bound cost = 15517.5

Algorithm cost = 15615.45

0

50

100

150

200

250

300

350

Q
u
e
u
e

 l
e
n
g
th

q1
L

q2
L

q3
L

q4
L

q5
L

q1
a

q2
a

q3
a

q4
a

q5
a

Lower bound cost  = 70926.87

Algorithm  cost = 70929.18

Fig 6. Non-balanced (TOP) Network I: λT = (450, 600, 200, 250), (BOTTOM) Net-
work II: λT = (350, 750, 500, 230, 270).

A problem of input regulation/admission control serves this illustration
purpose. Suppose that arrivals of class i follow a (possibly non-stationary)
Poisson process Ei = (Ei(t), t ≥ 0) with instantaneous rate λi(t). In contrast
to our original model assume here that the controller may accept some of
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Fig 7. Non-stationary (TOP) Network I: aT = (300, 600, 300, 300), bT = (75, 150, 50, 25),
cT = (15, 10, 5, 10) (BOTTOM) Network II: aT = (300, 600, 600, 300, 300), bT =
(75, 100, 75, 25, 0), cT = (12.5, 15, 10, 5, 0).

the arriving items and reject others upon arrival. Let Ri = (Ri(t), t ≥ 0) be
a process that counts the number of class i items rejected by time t. This is
a control process.
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Suppose there is a penalty pi for rejecting a class i item. The relevant
control problem is to minimize

∫ u

0
C(Q(t, R,D))dt + p′R(u),

where we now have two controls – an admission control R and a matching
control D. Let

Ai(t) = Ei(t)−Ri(t)

be the cumulative class i items that enter the system by time t. The con-
straints (2.2)–(2.5) remain valid, and the constraint that Ri can increase
only in points of increase of Ei must be added.

In the same spirit, the definition of the imbalance process remains

SR(t) = Y T (q0 +A(t)).

It is then natural to consider the following analogue of the imbalance for-
mulation (4.7)

min

∫ u

0
C(q(s))ds + p′R(u),

s.t. Y T q(t) = SR(t), for all 0 ≤ t ≤ u,

A(t)−A(s) ≥ q(t)− q(s), for all 0 ≤ s ≤ t ≤ u,

E(t)− E(s) ≥ R(t)−R(s) for all 0 ≤ s ≤ t ≤ u,

q(t) ≥ 0, for all 0 ≤ t ≤ u,

Using, instead of SR(t), the control invariant process S(t) = q0 + E(t), we
re-write the above as

min

∫ u

0
C(q(s))ds + p′R(u),

s.t. Y T (q(t) +R(t)) = S(t), for all 0 ≤ t ≤ u,

A(t)−A(s) ≥ q(t)− q(s), for all 0 ≤ s ≤ t ≤ u,

E(t)− E(s) ≥ R(t)−R(s), for all 0 ≤ s ≤ t ≤ u,

q(t) ≥ 0, for all 0 ≤ t ≤ u,

which leads to the lower bound

min

∫ u

0
C(q(s))ds+ p′R(u),

s.t. Y T (q(t) +R(t)) = S(t), for all 0 ≤ t ≤ u,

q(t) ≥ 0, for all 0 ≤ t ≤ u,

R(t) ≤ E(t), for all 0 ≤ t ≤ u.
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Despite the addition of the constraint on R(t), a useful re-shuffling inter-
pretation is maintained. Our lower bound, recall, had the interpretation of
allowing the controller to take corrective actions by “unmatching” items
that were already matched. Here, we are allowing to “un-reject” items that
were previously rejected. The solution to this lower bound may not be as
simple as (4.4). Nevertheless, it is a significant simplification relative to the
original formulation.

From a solution point of view, it stands to reason that the following
modification of the action in the review epochs will generate near optimal
solutions:

min C(qm) + p′rm

s.t. Y T (qm +

m∑

k=1

rk) = S(tm),

qm = Q(tm−1) + E(tm)− E(tm−1)− rm −Mdm,

rm ≤ E(tm)− E(tm−1),

dm, qm, rm ≥ 0.

A formal study of this heuristic derivation and, more broadly, of a va-
riety of control problems for matching networks seems a promising (and
challenging) direction for future research.

APPENDIX

Proof of Lemma 1. First note that every x ≥ 0 that satisfies Y Tx = 0
(as in the statement of the lemma) is in the image ofM . This follows from the
fact that Y spans the orthogonal space to M and thus x (being orthogonal
to Y ) must be in the column space of M : there must exist d such that
Md = x. The result is now immediate from the DI condition. As noted in
the paragraph following Assumption 1, with the DI condition Md = x ≥ 0
implies d ≥ 0.

Proof of Lemma 2. For x ∈ Mn
t = {y ∈ RI−J : Y T (qn0 + Λn(t)) +

y ∈ M}, define

Qn
t (x) = Q(Y T (qn0 +Λn(t))+x), and Q̂n

t (x) = Qn
t (x)− q̄n(t), and x ∈ Mn

t .

Recall that q̄n(t) = Q(Y T (qn0 + Λn(t)), so that Q̂n
t (x) captures the effect of

second order perturbations around the optimal fluid trajectory; see (A.11)
below.
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Lemma A.1. Suppose that there exists a function c(t), t ≥ 0 such that
λ(t) = λc(t) for some vector λ > 0 and 0 < c̄min < c(t) < c̄max < ∞. Under
Assumption 4, there exists γ > 0 so that

(A.2) |Q̂n
t (x)− Q̂n

s (y)| ≤ γ|x− y|+ g(s, t)(|x| + |y|),

for all x ∈ Mn
t , y ∈ Mn

s and 0 < s ≤ t ≤ u where g(·, ·) is such that,

(A.3) ḡ = sup
s≤t≤u

g(s, t) < ∞,

and for any function h(ǫ) > 0 satisfying ǫ−3/4h(ǫ) → ∞ as ǫ → 0,

(A.4) lim
ǫ→0

sup
t∈[h(ǫ),u)]

ǫ−1/4g(t− ǫ, t) = 0.

Note that, by setting c(t) = t, Lemma A.1 applies in particular to sta-
tionary arrivals as assumed in §6.

Remark 5 (Beyond the stated assumptions). In all that follows, the
only properties of the primitives C(·) and λ(·) that we use are (A.2)–(A.4)
and (6.4). If the network is balanced, (A.2) (with g ≡ 0) follows trivially from
the Lipschitz continuity of Q in Assumption 2 and recalling that q̄n(t) = 0 in
that case. The latter also guarantees (6.4). Consequently, Lemma 2 applies,
in particular, to the setting of Theorem 2 which is, in turn, a corollary of
the proof of Theorem 4.

More broadly, If Q is given in closed form and (A.2)–(A.4) and (6.4) can
be verified directly, Lemma A.1 and the proof of Theorem 4 apply.

We also require the following auxiliary lemma.

Lemma A.2. For any finite constant α > 0,

lim inf
n→∞

P

{
max

m=1,...,rn(u)
|An(tnm+1)−An(tnm)− n(Λ(tnm+1)− Λ(tnm))| ≤ αn1/3

}

= 1,

and
(A.5)

lim inf
n→∞

P

{
max

m=1,...,rn(u)
g(tnm, tnm+1)

√
n
(
|Ŝn(tnm+1)|+ |Ŝn(tnm)|

)
≤ αn1/3

}
= 1.

The proofs of Lemmas A.1–A.2 are found at the end of this appendix.
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Let η be as in Assumption 3 and choose α so that

α <
λmin(1− η)

2 + γȳI
,

where γ is the Lipschitz constant in Lemma A.1 and ȳ = maxkl |Ykl|. For
each n, define the events

An
1 =

{
max

m=1,...,rn(u)
|An(tnm+1)−An(tnm)− n(Λ(tnm+1)− Λ(tnm))| ≤ αn1/3

}
.

An
2 =

{
max

m=1,...,rn(u)
g(tnm, tnm+1)

√
n
(
|Ŝn(tnm+1)|+ |Ŝn(tnm)|

)
≤ αn1/3

}
.

Let
An = An

1

⋂
An

2 .

It then follows from Lemma A.2 that, given ǫ > 0,

P(An) ≥ 1− ǫ.

for all sufficiently large n.
We claim, and will establish shortly, that on An,

An
i (t

n
m+1)−Ai(t

n
m)−

(
Qi

(
Sn(tnm+1

)
−Qi (S

n(tnm))
)
≥ 0,(A.6)

i ∈ I, n ∈ N, m = 1, . . . , rn(u).

Assuming that (A.6) holds, equation (7.1) is argued now by induction on the
review epochs starting with m = 1. Recall the optimization problem (4.2)

min C(qm)(A.7)

s.t. Y T qm = Sn(tnm)(A.8)

qm = Qn(tnm−1) +An(tnm)−An(tnm−1)−Mdm,(A.9)

qm, dm ≥ 0.(A.10)

At time tn0 we have by construction (recall (4.8)) that Qn(tn0 ) = Q(Sn(tn0 )).
At tn1 we choose (q1, d1) that satisfy

q1 = Q (Sn(tn1 )) and Md1 = An(tn1 )−An(tn0 )− (Q (Sn(tn1 ))−Q (Sn(tn0 ))).

The vector q1 is, by definition, optimal for (A.7)–(A.10) (recall (4.5)). Fur-
ther, setting x = An(tn1 )−An(tn0 )−(Q(Sn(tn1 ))−Q(Sn(0))) we have by (A.6)
that x ≥ 0 and Y Tx = 0 so that by Lemma 1, d1 as above exists. Thus,
(q1, d1) is feasible and optimal for (A.7)–(A.9).
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Assuming next that

Qn(tnm−1) = Q(Sn(tnm−1)).

for all m = 0, . . . , k−1 (and, in particular for m = k−1), we choose (qk, dk)
so that

qk = Q (Sn(tnk))

Mdk = An(tnk)−An(tnk−1)−
(
Q (Sn(tnk))−Q

(
Sn(tnk−1)

))
.

Such a choice is feasible building again on (A.6) and Lemma 1. This con-
cludes the induction argument.

It remains to prove (A.6). By definition

Q(Sn(t)) = Q(Y T (qn0 + Λn(t)) +
√
nŜn(t))

= Qn
t (
√
nŜn(t))

= Q̂n
t (
√
nŜn(t)) + q̄n(t),

for all t ≥ 0, where Qn
t and Q̂n

t are as defined prior to Lemma A.1. By (A.2)
we have

∣∣Q
(
Sn(tnm+1)

)
−Q (Sn(tnm))− (q̄n(tnm+1)− q̄n(tnm))

∣∣

= |Q̂n
t (
√
nŜn(tnm+1))− Q̂n

t (
√
nŜn(tnm))|

≤ γ
√
n
∣∣∣Ŝn(tnm+1))− Ŝn(tnm)

∣∣∣+ g(tnm, tnm+1)
√
n
(
|Ŝn(tnm)|+ |Ŝn(tnm+1)|

)
.

(A.11)

The second element on the right hand side is bounded by αn1/3 on An.
Furthermore, on An,

√
n
∣∣∣Ŝn(tnm+1)− Ŝn(tnm)

∣∣∣ =
∣∣Sn(tnm+1)− Sn(tnm)− nY T (Λ(tnm+1)− Λ(tnm))

∣∣

≤ ȳ
∣∣An(tnm+1)−An(tnm)− n(Λ(tnm+1)− Λ(tnm))

∣∣

≤ Iαȳn1/3,

We conclude that, on An,
(A.12)∣∣Q

(
Sn(tnm+1)

)
−Q (Sn(tnm))− (q̄n(tnm+1)− q̄n(tnm))

∣∣ ≤ αn1/3(1 + γȳI),

and, in turn,

An
i (t

n
m+1)−Ai(t

n
m)−

(
Qi

(
Sn(tnm+1)

)
−Qi (S

n(tnm))
)

≥ n(Λi(t
n
m+1)− Λi(t

n
m)))− (q̄n(tnm+1)− q̄n(tnm))− αn1/3(2 + γȳI)
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≥ (1− η)n(Λi(t
n
m+1)− Λi(t

n
m)))− αn1/3(2 + γȳI)

≥ ((1 − η)λmin − α(2 + γȳI))n1/3.

on An where η < 1 in the second inequality is as in (6.4). We conclude that
(A.6) holds and, in turn, so does (7.1).

We next prove (7.2). Recall the definition of tn0 in (4.8). By subtracting
and adding terms we have, for all t ≥ 0,

qn0 +An(t)−Q(Sn(t)) ≥ q̄n(0) + Λn(t)− q̄n(t)

− |An(t)− Λn(t)| − |qn0 − q̄n(0)|
− |Q(Sn(t))− q̄n(t)|

(A.13)

Recalling that Sn(t) = Y T (qn0 + An(t)) and q̄n(t) = Q(Y T (qn0 + Λn(t))) we
have, by Assumption 2, that

|Q(Sn(t))− q̄n(t)| = |Q(Y T (qn0 +An(t))) −Q(Y T (qn0 +Λn(t)))|
≤ κȳ|An(t)− Λn(t)|,

for all t ≥ 0. By the FCLT for the Poisson process it then holds that, given
ǫ > 0, there exists K(ǫ) such that

P
{
‖An − Λn‖u ≥ K(ǫ)

√
n
}
≤ ǫ.

By the conditions of the theorem |qn0 − q̄n(0)| ≤ c
√
n for some constant c

and we conclude that, given ǫ > 0, there exists a (re-defined) constant K(ǫ)
such that

P
{
qn0 +An(t)−Q(Sn(t)) ≥ q̄n(0) + Λn(t)− q̄n(t)−K(ǫ)

√
n, for all t ≤ u

}

≥ 1− ǫ.

Next, by (6.4), |q̄n(t)− q̄n(0)| ≤ ηΛn(t). Thus, for all t ≥ 0,

q̄n(0) + Λn(t/
√
n)− q̄n(t/

√
n) ≥ q̄n(0) + Λn(t/

√
n)(1 − η)

≥ nλmint(1− η)/
√
n,

and we can choose t0(ǫ) such that q̄n(0) + Λn(t + 0/
√
n) − q̄n(t0/

√
n) >

K(ǫ)
√
n. In turn,

(A.14) P{tn0 ≥ t0(ǫ)/
√
n} ≤ ǫ

which proves (7.2). We turn to (7.3).
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As no actions are taken on [0, tn0 ), we have that sups≤tn0
|Qn(s) − qn0 | ≤

|An(tn0 )|. In turn, for each K > 0,

P{sup
s≤tn0

|Qn(s)− qn0 | > K
√
n} ≤ P{|An(tn0 )| ≥ K

√
n}.

Using (7.2), it follows from the functional strong law for An that, given
ǫ > 0, there exists K1(ǫ) satisfying

P{|An(tn0 )| ≥ K(ǫ)
√
n} ≤ P{tn0 > t0(ǫ/2)/

√
n}

+ P
{
‖An‖t0(ǫ/2)/√n ≥ K1(ǫ)

√
n
}
≤ ǫ/2.

Since |qn0−q̄n(0)| = |qn0−Q(Y T qn0 )| ≤ c
√
n by the assumption of the theorem,

we then have the existence of a (re-defined) constant K1(ǫ) such that

P{‖Qn − q̄n(0)‖tn0 > K1(ǫ)
√
n} ≤ ǫ/2.

Recall that q̄n(0) = Q(Y T (qn0 + Λn(t))) so that by Assumption 2

‖Q(Sn)− q̄n(0)‖tn0 ≤ ‖Q(Sn)−Q(Y T (qn0 + Λn))‖u ≤ κ
√
n‖Ŝn‖u,

and it follows from the FCLT for Ŝn that for each ǫ there exists K2(ǫ) such
that

P{‖Q(Sn)− q̄n(0)‖tn0 ≥ K2(ǫ)} ≤ ǫ/2.

Taking K(ǫ) = 2max{K1(ǫ),K2(ǫ)} we have that

P{‖Qn −Q(Sn)‖tn0 > K(ǫ)
√
n} ≤ P{‖Qn − q̄n(0)‖tn0 > K1(ǫ)

√
n}

+ P{‖Q(Sn)− q̄n(0)‖tn0 > K2(ǫ)
√
n} ≤ ǫ,

which proves (7.3).
Finally, to prove equation (7.4) recall that (6.6) in Theorem 4 does not

build on (7.4) so we may use it here without having a circular argument.
Note that

‖Q(Sn)‖u ∨ ‖Qn‖u ≤ ‖Q(Sn)‖u + ‖Q(Sn)−Qn‖u
(A.15) ≤ ‖Q(Sn)‖u + ‖Q(Sn)−Qn‖tn0 + ‖Q(Sn)−Qn‖tn0 ,u

By (6.6), for each ǫ there exists K̄1(ǫ) such that

(A.16) P{‖Q(Sn)−Qn‖tn0 ,u > K̄1(ǫ)
√
n} ≤ ǫ/3.

By (7.3), there exists K2(ǫ) such that

(A.17) P{‖Q(Sn)−Qn‖tn0 > K̄2(ǫ)
√
n} ≤ ǫ/3.
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Using, as before, the fact that

‖Q(Sn)−Q(Y T (qn0 + Λn))‖u ≤ κ
√
n‖Ŝn‖u,

we have, by the FCLT for Ŝn, the existence of a constant K3(ǫ) such that

(A.18) P{‖Q(Sn)‖u ≥ K̄3(ǫ) + ‖q̄n‖u} ≤ ǫ/3.

Combining (A.15)–(A.16) and letting K(ǫ) = 3max{K̄1(ǫ), K̄2(ǫ), K̄3(ǫ)}
we conclude that

P{‖Q(Sn)‖u ∨ ‖Qn‖u > K(ǫ)
√
n+ ‖q̄n‖u} ≤ ǫ.

This proves (7.4) and completes the proof of the lemma.

Proof of Lemma A.1. Assume that q0 = 0, C(·) is homogeneous and
there exists a function c : R+ → R+ such that λi(t) = λic(t), and 0 < c̄min <
c(t) < c̄max < ∞ for all t ≥ 0. Let ̟(t) =

∫ t
0 c(s)ds. Then, Λi(t) = ai̟(t).

Fix s, t > 0 and consider the optimization problem min{C(q) : Y T q =
Y TΛ(t)+x}, for x ∈ R. Due to the assumed homogeneity of C this problem,
for t > 0, is equivalent in terms of its optimal-solution set, to the problem
min{C(q) : Y T q = Y Tλ+ x/̟(t)}, where λ = (λ1, . . . , λI) is as in the defi-
nition of λi(t). To see this, replace q with q/̟(t) and apply the homogeneity
of C(·). In particular, for all t > 0,

q̄(t) = Q(Y Tλ)̟(t), Q(Y TΛ(t) + x) = ̟(t)Q(Y Ta+ x/̟(t)),

and

Q̂t(x) = Q(Y TΛ(t) + x)− q̄(t) = ̟(t)
(
Q(Y Ta+ x/̟(t))−Q(Y Tλ)

)
,

for all such t. Then, for s, t > 0,

Q̂t(x)− Q̂s(y) = ̟(t)
(
Q(Y Tλ+ x/̟(t))−Q(Y Ta)

)

−̟(s)
(
Q(Y Tλ+ y/̟(s))−Q(Y Tλ)

)

= ̟(s)
(
Q(Y Tλ+ x/̟(t))−Q(Y Tλ)

)

−̟(s)
(
Q(Y Tλ+ y/̟(s))−Q(Y Tλ)

)

+ (̟(t)−̟(s))
(
Q(Y Tλ+ x/̟(t))−Q(Y Tλ)

)

Since by Assumption 2,

∣∣Q(Y Tλ+ x/̟(t)) −Q(Y Tλ+ y/̟(s))
∣∣ ≤ κ |x/̟(t)− y/̟(s)|
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and ∣∣Q(Y Tλ+ x/̟(t))−Q(Y Tλ)
∣∣ ≤ κ|x|/̟(t),

it follows that
∣∣∣Q̂t(x)− Q̂s(y)

∣∣∣ ≤ ̟(s)κ |x/̟(t)− y/̟(s)|+ (̟(t)−̟(s)) κ|x|/̟(t).

Furthermore, since

̟(s) |x/̟(t)− y/̟(s)| = |̟(s)x/̟(t)− x+ x− y|

≤ |̟(s)−̟(t)|
|̟(t)| |x|+ |x− y|,

we find that
∣∣∣Q̂t(x)− Q̂s(y)

∣∣∣ ≤ κ|x− y|+ 2κ
|̟(s)−̟(t)|

|̟(t)| |x|.

Next, |̟(s)−̟(t)|/|̟(t)| ≤ cmax|t− s|/cmint implies

∣∣∣Q̂t(x)− Q̂s(y)
∣∣∣ ≤ κ|x− y|+ 2κ

cmax

cmin

|t− s|
t

(|x|+ |y|) .

Finally, letting γ = κ and defining for 0 < s ≤ t

g(s, t) = 2κ
cmax

cmin

|t− s|
t

,

we see that

ǫ−1/4g(t− ǫ, t) = 2κ
cmax

cmin

ǫ3/4

t
≤ ǫ3/4

h(ǫ)
for all t ∈ [h(ǫ), u].

so that the result follows recalling that, by assumption, h(ǫ) satisfies that
ǫ−3/4h(ǫ) → ∞ as ǫ → 0.

Proof of Lemma A.2. The first part follows from [1] (see the explana-
tion in the proof of Lemma 4.1 in [12]). We do not repeat the proof. For the
second part, from strong approximation theorems follows the existence of a
I-dimensional Brownian motion B and a constant c (depending on u) such
that

lim sup
n→∞

P{‖A(n·) − n · −B(n·)‖u > cn1/4(log n)} = 0.

Recalling that Ân(t) = (A(nΛ(t))−nΛ(t))/
√
n and that Λ(t) ≤ t (λmax = 1),

we have
∥∥∥∥Â

n(·)− B(nΛ(·))√
n

∥∥∥∥
u

≤ 1√
n
‖A(n·) − n · −B(n·)‖λmaxu,
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so that

lim sup
n→∞

P

{
sup

0≤t≤u

√
n|Ân(t)−B(nΛ(t))/

√
n| > cn1/4(log n)

}
= 0;

see e.g. [9, Theorem 2.1]. Since Ŝn = Y T Ân (5.3), we have

lim sup
n→∞

P
{√

n‖Ŝn(·)− Y TB(nΛ(·))/
√
n‖u > cn1/4(log n)

}
= 0.

For simplicity of notation we let Bn(t) = B(nΛ(t))/
√
n. Then, for each

m = 1, . . . , rn(u),

√
n
(
|Ŝn(tnm+1)|+ |Ŝn(tnm)|

)
≤

√
n|Y TBn(tnm)|+

√
n|Y TBn(tnm+1)|

+
√
n|Y TBn(tnm+1)− Ŝn(tnm+1)|

+
√
n|Y TBn(tnm)− Ŝn(tnm)|

≤
√
nȳ
(∣∣Bn(tnm+1)

∣∣+ |Bn(tnm)|
)

+ 2
√
n‖Ŝn − Y TBn‖u.

where, as before, ȳ = maxkl |Ykl|.
For all sufficiently large n, cn1/4 log n < (α/2)n1/3 so that, since by (A.3)

ḡ = sups≤t≤u g(s, t) < ∞,

lim inf
n→∞

P

{
max

m=1,...,rn(u)
g(tnm, tnm+1)2

√
n‖Ŝn − Y TBn‖u ≤ αn1/3

}
= 1,

and to establish (A.5) it remains to prove that

lim sup
n→∞

P

{
max

m=1,...,rn(u)
g(tnm, tnm+1)

√
nȳ
(
|Bn(tnm+1)|+ |Bn(tnm)|

)
>

α

2
n1/3

}

= 0.

Fix 0 < η < 1/6 and let mn = ⌈n1/6+η⌉. Let

xnm = g(tnm, tnm+1)
√
nȳ
(
|Bn(tnm+1)|+ |Bn(tnm)|

)
.

Then,

P

{
max

m=1,...,rn(u)
xnm >

α

2
n1/3

}
≤ P

{
max

m=1,...,mn
xnm >

α

2
n1/3

}(A.19)
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+ P

{
max

m=mn+1,...,rn(u)
xnm >

α

2
n1/3

}
.

We will argue that each of the elements on the right-hand side converges to
0 as n → ∞ starting with the second element.

Define h(ǫ) = ǫ
3
4
− 3

2
η. we observe that ǫ−3/4h(ǫ) → ∞ as ǫ → 0 and for

all n ∈ N and m ≥ mn, tnm = ⌈n1/6+η⌉/n2/3 ≥ n−1/2+η = h(n−2/3). Since,
by construction, tnm+1 − tnm = n−2/3, we have by (A.4) (replacing ǫ = n−2/3)
that

(A.20) max
m=mn+1,...,rn(u)

n1/6g(tnm, tnm+1) → 0

as n → ∞. Also, Bn(t) = B(nΛ(t))/
√
n has the same law as B(Λ(t)) and,

in particular, since λmax = 1, ‖Bn‖u has the same law as ‖B‖u. Then,

P

{
max

m=mn+1,...,rn(u)
xnm >

α

2
n1/3

}

≤ P

{
max

m=mn+1,...,rn(u)
g(tnm, tnm+1)

√
n2ȳ‖B‖u >

α

2
n1/3

}

= P

{
max

m=mn+1...,rn(u)
g(tnm, tnm+1)n

1/62ȳ‖B‖u >
α

2

}
→ 0

where the convergence follows from (A.20) and the well known fact that,
limK→∞ P{‖B‖u ≥ K} = 0 for any u ≥ 0; see e.g. [14, Excercise II.1.23].

We turn to treat the first element on the right-hand side of (A.19). Pro-
vided that tn0 ≤ 1

2n
−(1/2−η), tnm ≤ 2nη−1/2 for all m = 1, . . . ,mn and all

sufficiently large n. In turn, for all sufficiently large n and on the event that
tn0 ≤ t0/

√
n, it holds that |Bn(tnm)| + |Bn(tnm+1)| ≤ 2‖Bn‖2nη−1/2 , so that,

by (A.3),

P

{
max

m=1,...,mn
g(tnm, tnm+1)

√
nȳ
(
|Bn(tnm+1)|+ |Bn(tnm)|

)
> αn1/3

}

≤ P
{
2ḡȳ

√
n‖B‖2/√n > αn1/3

}
+ P

{
tn0 ≥ 1

2
n−(1/2−η)

}

= P
{
2
√
2n1/4ḡȳ‖B‖1 > αn1/3

}
+ P

{
tn0 ≥ 1

2
n−(1/2−η)

}

= P

{
‖B‖1 >

α

2
√
2ḡȳ

n1/12

}
+ P

{
tn0 ≥ 1

2
n−(1/2−η)

}
→ 0,

as n → ∞. In the second line of the display we use the fact that n1/4√
2
B(2t/

√
n)

is equal in law to B(t). The convergence to 0 of the first item on the last line
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follows, as before, from the fact limK→∞ P{‖B‖u > K} = 0 for any u ≥ 0.
The fact that P{tn0 ≥ 1

2n
1/2−η} → 0 follows from (7.2) in Lemma (2). Note

that (7.2) does not rely on Lemma (A.2) and hence can be used here.

Acknowledgements. We thank Rakesh Vohra for suggestions that mo-
tivated this work as well as the SAMSI working group on patient flow for
valuable discussions on the ideas in this paper. We are extremely grateful
to Kibaek Kim for writing the simulation and optimization code for our nu-
merical experiments. Finally, we are grateful to anonymous referees whose
observations and suggestions led to significant improvements to the original
manuscript.

REFERENCES

[1] Ata, B. and Kumar, S., Heavy traffic analysis of open processing networks with
complete resource pooling: Asymptotic optimality of discrete review policies. Ann.
Appl. Prob., 2005. MR2115046

[2] Bell, S. L. and Williams, R. J., Dynamic scheduling of a parallel server system in
heavy traffic with complete resource pooling: Asymptotic optimality of a threshold
policy. Electronic Journal of Probability, 10(33):1044–1115, 2005. MR2164040

[3] Dogru, M. K., Reiman, M. I., and Wang, Q., A stochastic programming based
inventory policy for assemble-to-order systems with application to the W model.
Operations Research, 58(4):849–864, 2010. MR2683480

[4] Harrison, J. M., Assembly-like queues. Journal of Appl. Prob., 10:354–367, 1973.
MR0356276

[5] Harrison, J. M., The BIGSTEP approach to flow management in stochastic pro-
cessing networks. In F. Kelly, S. Zachary, and I. Ziedins, editors, Stochastic Networks:
Theory and Applications, pages 57–90. Oxford University Press, 1996.

[6] Harrison, J. M., Correction: Brownian models of open processing networks:
Canonical representation of workload. Ann. Appl. Prob., 16(3):1703–1732, 2006.
MR2260079

[7] Harrison, J. M. and Lopez, M. J., Heavy traffic resource pooling in parallel-server
systems. Queueing Systems, 33:339–368, 1999. MR1742575

[8] Harrison, J. M. and Van Mieghem, J. A., Dynamic control of brownian networks:
State space collapse and equivalent workload formulations. Ann. Appl. Prob., 7:747–
771, 1996. MR1459269

[9] Horvath, L., Strong approximation of renewal processes. Stochastic Processes and
Their Applications, 18(1):127–138, 1984. MR0757352

[10] Kang, W. N., Kelly, F. P., Lee, N. H., and Williams, R. J., State space collapse
and diffusion approximation for a network operating under a fair bandwidth sharing
policy. Ann. Appl. Prob., 19(5):1719–1780, 2009. MR2569806

[11] Mandelbaum, A. and Stolyar, S., Scheduling flexible servers with convex de-
lay costs: Heavy-traffic optimality of the generalized cµ-rule. Operations Research,
52:836–855, 2004. MR2104141

[12] Plambeck, E. L. and Ward, A. R., Optimal control of a high-volume assemble-to-
order system. Mathematics of Operations Research, 31(3):453–477, 2006. MR2254418

http://www.ams.org/mathscinet-getitem?mr=2115046
http://www.ams.org/mathscinet-getitem?mr=2164040
http://www.ams.org/mathscinet-getitem?mr=2683480
http://www.ams.org/mathscinet-getitem?mr=0356276
http://www.ams.org/mathscinet-getitem?mr=2260079
http://www.ams.org/mathscinet-getitem?mr=1742575
http://www.ams.org/mathscinet-getitem?mr=1459269
http://www.ams.org/mathscinet-getitem?mr=0757352
http://www.ams.org/mathscinet-getitem?mr=2569806
http://www.ams.org/mathscinet-getitem?mr=2104141
http://www.ams.org/mathscinet-getitem?mr=2254418


MATCHING QUEUES 523

[13] Reiman, M. I. and Wang, Q., Asymptotically optimal inventory control for
assemble-to-order systems with identical lead times, 2013. Working Paper.

[14] Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, volume
293. Springer Verlag, 1999. MR1725357

[15] Song, J. S. and Zipkin, P., Supply chain operations: Assemble-to-order and
configure-to-order systems. In Handbooks in Operations Research and Management
Science, volume XXX, pages 561–593, 2003.

http://www.ams.org/mathscinet-getitem?mr=1725357

	Introduction
	The matching model
	The imbalance matrix and process
	The proposed discrete-review control
	Asymptotic optimality for balanced networks
	Asymptotic optimality for non-balanced networks
	Proof essentials
	Numerical experiments
	Concluding remarks
	Appendix
	Acknowledgements
	References

