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In this paper we consider iterative methods for stochastic vari-

ational inequalities (s.v.i.) with monotone operators. Our basic as-
sumption is that the operator possesses both smooth and nonsmooth
components. Further, only noisy observations of the problem data
are available. We develop a novel Stochastic Mirror-Prox (SMP) al-
gorithm for solving s.v.i. and show that with the convenient stepsize
strategy it attains the optimal rates of convergence with respect to
the problem parameters. We apply the SMP algorithm to Stochas-
tic composite minimization and describe particular applications to
Stochastic Semidefinite Feasibility problem and deterministic Eigen-
value minimization.

1. Introduction. Variational inequalities with monotone operators
form a convenient framework for unified treatment (including algorithmic de-
sign) of problems with “convex structure”, like convex minimization, convex-
concave saddle point problems and convex Nash equilibrium problems. In
this paper we utilize this framework to develop first order algorithms for
stochastic versions of the outlined problems, where the precise first order
information is replaced with its unbiased stochastic estimates. This situa-
tion arises naturally in convex Stochastic Programming, where the precise
first order information is unavailable (see examples in section 4). In some
situations, e.g. those considered in [4, Section 3.3] and in Section 4.4, where
passing from available, but relatively computationally expensive precise first
order information to its cheap stochastic estimates allows to accelerate the
solution process, with the gain from randomization growing progressively
with problem’s sizes.

Our “unifying framework” is as follows. Let Z be a convex compact set
in Euclidean space E with inner product 〈·, ·〉, ‖ · ‖ be a norm on E (not
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necessarily the one associated with the inner product), and F : Z → E be a
monotone mapping:

∀(z, z′ ∈ Z) : 〈F (z)− F (z′), z − z′〉 ≥ 0(1)

We are interested to approximate a solution to the variational inequality
(v.i.)

(2) find z∗ ∈ Z : 〈F (z), z∗ − z〉 ≤ 0 ∀z ∈ Z

associated with Z,F . Note that since F is monotone on Z, the condition in
(2) is implied by 〈F (z∗), z − z∗〉 ≥ 0 for all z ∈ Z, which is the standard
definition of a (strong) solution to the v.i. associated with Z,F . The inverse
– a solution to v.i. as defined by (2) (a “weak” solution) is a strong solution
as well – also is true, provided, e.g., that F is continuous. An advantage of
the concept of weak solution is that such a solution always exists under our
assumptions (F is well defined and monotone on a convex compact set Z).

We quantify the inaccuracy of a candidate solution z ∈ Z by the error

Errvi(z) := max
u∈Z

〈F (u), z − u〉;(3)

note that this error is always ≥ 0 and equals zero iff z is a solution to (2).
In what follows we impose on F , aside of the monotonicity, the require-

ment

∀(z, z′ ∈ Z) : ‖F (z)− F (z′)‖∗ ≤ L‖z − z′‖+M(4)

with some known constants L ≥ 0,M ≥ 0. From now on,

‖ξ‖∗ = max
z:‖z‖≤1

〈ξ, z〉(5)

is the norm conjugate to ‖ · ‖.
We are interested in the case where (2) is solved by an iterative algorithm

based on a stochastic oracle representation of the operator F (·). Specifically,
when solving the problem, the algorithm acquires information on F via
subsequent calls to a black box (“stochastic oracle”, SO). At the ith call,
i = 0, 1, . . . , the oracle gets as input a search point zi ∈ Z (this point is
generated by the algorithm on the basis of the information accumulated so
far) and returns the vector Ξ(zi, ζi), where {ζi ∈ RN}∞i=1 is a sequence of
i.i.d. (and independent of the queries of the algorithm) random variables.
We suppose that the Borel function Ξ(z, ζ) is such that

∀z ∈ Z : E {Ξ(z, ζ1)} = F (z), E
{
‖Ξ(z, ζi)− F (z)‖2∗

}
≤ σ2.(6)
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We call a monotone v.i. (1), augmented by a stochastic oracle (SO), a
stochastic monotone v.i. (s.v.i.).

To motivate our goal, let us start with known results [8] on the limits of
performance of iterative algorithms for solving large-scale stochastic mono-
tone v.i.’s. To “normalize” the situation, assume that Z is the unit Euclidean
ball in E = Rn and that n is large. In this case, the accuracy after t steps
of any algorithm for solving v.i.’s cannot be better than O(1)

[
L
t + M+σ√

t

]
.

In other words, for a properly chosen positive absolute constant C, for ev-
ery number of steps t, all large enough values of n and any algorithm B
for solving s.v.i.’s on the unit ball of Rn, one can point out a monotone
s.v.i. satisfying (4), (6) and such that the expected error of the approximate
solution z̃t generated by B after t steps, applied to such s.v.i., is at least
c
[L
t +

M+σ√
t

]
for some c > 0. To the best of our knowledge, no existing algo-

rithm allows to achieve, uniformly in the dimension, this convergence rate.
In fact, the “best approximations” available are given by Robust Stochastic
Approximation (see [4] and references therein) with the guaranteed rate of
convergence O(1)L+M+σ√

t
and extra-gradient-type algorithms for solving de-

terministic monotone v.i.’s with Lipschitz continuous operators (see [9, 12–
14]), which attain the accuracy O(1)Lt in the case of M = σ = 0 or O(1)M√

t
when L = σ = 0.

The goal of this paper is to demonstrate that a specific Mirror-Prox algo-
rithm [9] for solving monotone v.i.’s with Lipschitz continuous operators can
be extended onto monotone s.v.i.’s to yield, uniformly in the dimension, the
optimal rate of convergence O(1)

[L
t +

M+σ√
t

]
. We present the corresponding

extension and investigate it in detail: we show how the algorithm can be
“tuned” to the geometry of the s.v.i. in question and derive bounds for the
probability of large deviations of the resulting error. We also present a num-
ber of applications where the specific structure of the rate of convergence
indeed “makes a difference.”

The main body of the paper is organized as follows: in Section 2, we de-
scribe several special cases of monotone v.i.’s we are especially interested
in (convex Nash equilibria, convex-concave saddle point problems, convex
minimization). We single out these special cases since here one can define
a useful “functional” counterpart ErrN(·) of the just defined error Errvi(·);
both ErrN and Errvi will participate in our subsequent efficiency estimates.
Our main development – the Stochastic Mirror Prox (SMP) algorithm – is
presented in Section 3. where we also provide some general results about its
performance. Then in Section 4 we present SMP for Stochastic composite
minimization and discuss its applications to Stochastic Semidefinite Feasibil-
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ity problem and Eigenvalue minimization. All technical proofs are collected
in the appendix.

We do not include any numerical results into this paper, some supporting
results can be found in [6]. In that manuscript the proposed approach is
applied to bilinear saddle point problems arising in sparse ℓ1 recovery, i.e. to
variational inequalities with affine monotone operators F , and the goal is to
accelerate the solution process by replacing “computationally expensive” in
the large-scale case precise values of F by computationally cheap unbiased
random estimates of these values (cf. section 4.4 below).

Notations. In the sequel, lowercase Latin letters denote vectors (and some-
times matrices). Script capital letters, like E , Y, denote Euclidean spaces;
the inner product in such a space, say, E , is denoted by 〈·, ·〉E (or merely
〈·, ·〉, when the corresponding space is clear from the context). Linear map-
pings from one Euclidean space to another, say, from E to F , are denoted
by boldface capitals like A (there are also some reserved boldface capitals,
like E for expectation, Rk for the k-dimensional coordinate space, and Sk

for the space of k × k symmetric matrices). A∗ stands for the conjugate
to mapping A: if A : E → F , then A∗ : F → E is given by the identity
〈f,Ae〉F = 〈A∗f, e〉E for f ∈ F , e ∈ E . When both the origin and the des-
tination space of a linear map, like A, are the standard coordinate spaces,
the map is identified with its matrix A, and A∗ is identified with AT . For a
norm ‖ · ‖ on E , ‖ · ‖∗ stands for the conjugate norm, see (5).

For Euclidean spaces E1, . . . , Em, E = E1×· · ·×Em denotes their Euclidean
direct product, so that a vector from E is a collection u = [u1; . . . ;um]
(“MATLAB notation”) of vectors uℓ ∈ Eℓ, and 〈u, v〉E =

∑
ℓ〈uℓ, vℓ〉Eℓ . Some-

times we allow ourselves to write (u1, . . . , um) instead of [u1; . . . ;um].

2. Preliminaries and problem of interest.

2.1. Nash v.i.’s and functional error. In the sequel, we shall be especially
interested in a special case of v.i. (2) – in a Nash v.i. coming from a convex
Nash Equilibrium problem, and in the associated functional error measure.
The Nash Equilibrium problem can be described as follows: there are m
players, the ith of them choosing a point zi from a given set Zi. The loss of
the ith player is a given function φi(z) of the collection z = (z1, . . . , zm) ∈
Z = Z1 × · · · × Zm of players’ choices. With slight abuse of notation, we
use for φi(z) also the notation φi(zi, z

i), where zi is the collection of choices
of all but the ith players. Players are interested to minimize their losses,
and Nash equilibrium ẑ is a point from Z such that for every i the function
φi(zi, ẑ

i) attains its minimum in zi ∈ Zi at zi = ẑi (so that in the state ẑ no
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player has an incentive to change his choice, provided that the other players
stick to their choices).

We call a Nash equilibrium problem convex, if for every i, Zi is a compact
convex set, φi(zi, z

i) is a Lipschitz continuous function convex in zi and
concave in zi, and the function Φ(z) =

∑m
i=1 φi(z) is convex. It is well known

(see, e.g., [11]) that setting

F (z) =
[
F 1(z); . . . ;Fm(z)

]
, F i(z) ∈ ∂ziφi(zi, z

i), i = 1, . . . ,m

where ∂ziφi(zi, z
i) is the subdifferential of the convex function φi(·, zi) at a

point zi, we get a monotone operator such that the solutions to the corre-
sponding v.i. (2) are exactly the Nash equilibria. Note that since φi are Lip-
schitz continuous, the associated operator F can be chosen to be bounded.
For this v.i. one can consider, along with the v.i.-accuracy measure Errvi(z),
the functional error measure

ErrN(z) =
m∑

i=1

[
φi(z)− min

wi∈Zi

φi(wi, z
i)

]

This accuracy measure admits a transparent justification: this is the sum,
over the players, of the incentives for a player to change his choice given
that other players stick to their choices.

2.1.1. Special case: Saddle points. An important by its own right partic-
ular case of Nash Equilibrium problem is a zero sum game, where m = 2
and Φ(z) ≡ 0 (i.e., φ2(z) ≡ −φ1(z)). The convex case of this problem corre-
sponds to the situation when φ(z1, z2) ≡ φ1(z1, z2) is a Lipschitz continuous
function which is convex in z1 ∈ Z1 and concave in z2 ∈ Z2, the Nash equi-
libria are exactly the saddle points (min in z1, max in z2) of φ on Z1 × Z2,
and the functional error becomes

ErrN(z1, z2) = max
(u1,u2)∈Z

[φ(z1, u1)− φ(u2, z2)] .

Recall that the convex-concave saddle point problemminz1∈Z1 maxz2∈Z2 φ(z1,
z2) gives rise to the “primal-dual” pair of convex optimization problems

(P ) : min
z1∈Z1

φ(z1), (D) : max
z2∈Z2

φ(z2),

where
φ(z1) = max

z2∈Z2

φ(z1, z2), φ(z2) = min
z1∈Z1

φ(z1, z2).
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The optimal values Opt(P ) and Opt(D) in these problems are equal, the set
of saddle points of φ (i.e., the set of Nash equilibria of the underlying convex
Nash problem) is exactly the direct product of the optimal sets of (P ) and
(D), and ErrN(z1, z2) is nothing but the sum of non-optimalities of z1, z2
considered as approximate solutions to respective optimization problems:

ErrN(z1, z2) =
[
φ(z1)−Opt(P )

]
+
[
Opt(D)− φ(z2)

]
.

In the sequel, we refer to the v.i. (2) coming from a convex Nash Equi-
librium problem as Nash v.i., and to the just outlined particular case as
the Saddle Point v.i. It is easy to verify that in the Saddle Point case the
functional error ErrN(z) is ≤ Errvi(z); this is not necessary so for a general
Nash v.i.

2.2. Composite optimization problem and its saddle point reformulation.
While the algorithm we intend to develop is applicable to a general-type
stochastic v.i. with monotone operator, the applications to be considered
in this paper deal with (saddle point reformulation of) convex composite
optimization problem (cf. [8]).

As the simplest motivating example, one can keep in mind the minimax
problem

(7) min
x∈X

max
1≤i≤m

φℓ(x),

where X ⊂ Rn is a convex compact set and φℓ(x) are Lipschitz continuous
convex functions on X. This problem can be rewritten as the saddle point
problem

(8) min
x∈X

max
y∈Y

φ(x, y) :=
m∑

ℓ=1

yℓφℓ(x),

where Y = {y ∈ Rm
+ :

∑m
ℓ=1 yℓ = 1} is the standard simplex. The advantages

of the saddle point reformulation are twofold. First, when all φℓ are smooth,
so is φ, in contrast to the objective in (7) which typically is nonsmooth; this
makes the saddle point reformulation better suited for processing by first
order algorithms. Starting with the breakthrough paper of Nesterov [12], this
phenomenon, in its general form, is utilized in the fastest known so far first
order algorithms for “well-structured” nonsmooth convex programs. Second,
in the stochastic case, stochastic oracles providing unbiased estimates of the
first order information on φi oracles, while not induce a similar oracle for
the objective of (7), do induce such an oracle for the v.i. associated with (8)
and thus make the problem amenable to first order algorithms.
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2.2.1. Composite minimization problem. In this paper, we focus on a
substantial extension of the minimax problem (7), namely, on a Composite
minimization problem

(9) min
x∈X

φ(x) := Φ(φ1(x), . . . , φm(x)),

where the inner functions φℓ(·) are vector-valued, and the outer function Φ
is real-valued. We are about to impose structural restrictions which allow to
reformulate the problem as a “good” convex-concave saddle point problem,
specifically, as follows:

A. X ⊂ X is a convex compact;
B. φℓ(x) : X → Eℓ, 1 ≤ ℓ ≤ m, are Lipschitz continuous mappings taking

values in Euclidean spaces Eℓ equipped with closed convex cones Kℓ.
We assume φℓ to be Kℓ-convex, meaning that for any x, x′ ∈ X, λ ∈
[0, 1],

φℓ(λx+ (1− λ)x′) ≤Kℓ
λφℓ(x) + (1− λ)φℓ(x

′),

where the notation a ≤K b⇔ b ≥K a means that b− a ∈ K.
C. Φ(·) is a convex function on E = E1×· · ·×Em given by the Fenchel-type

representation

(10) Φ(u1, . . . , um) = max
y∈Y

{
m∑

ℓ=1

〈uℓ,Aℓy + bℓ〉Eℓ − Φ∗(y)

}
,

for uℓ ∈ Eℓ, 1 ≤ ℓ ≤ m. Here
— Y ⊂ Y is a convex compact set,
— the affine mappings y 7→ Aℓy+bℓ : Y → Eℓ are such that Aℓy+bℓ ∈
K∗
ℓ for all y ∈ Y and all ℓ, K∗

ℓ being the cone dual to Kℓ,
— Φ∗(y) is a given Lipschitz continuous convex function on Y .

Under these assumptions, the optimization problem (9) is nothing but the
primal problem associated with the saddle point problem

(11) min
x∈X

max
y∈Y

[
φ(x, y) =

m∑

ℓ=1

〈φℓ(x),Aℓy + bℓ〉Eℓ − Φ∗(y)

]

and the cost function in the latter problem is Lipschitz continuous and
convex-concave due to the convexity of Φ∗, Kℓ-convexity of φℓ(·) and the
condition Aℓy + bℓ ∈ K∗

ℓ whenever y ∈ Y . The associated Nash v.i. is given
by the domain Z = X × Y and the monotone mapping

(12) F (z) ≡ F (x, y) =

[
m∑

ℓ=1

[φ′ℓ(x)]
∗[Aℓy + bℓ]; −

m∑

ℓ=1

A∗
ℓφℓ(x) + Φ′

∗(y)

]
.



24 A. JUDITSKY, A. NEMIROVSKI AND C. TAUVEL

Same as in the case of minimax problem (7), the advantage of the saddle
point reformulation (11) of (9) is that, independently of whether Φ is smooth,
φ is smooth whenever all φℓ are so. Another advantage, instrumental in
the stochastic case, is that F is linear in φℓ(·), so that stochastic oracles
providing unbiased estimates of the first order information on φℓ induce
straightforwardly an unbiased SO for F .

2.2.2. Example: Matrix Minimax problem. For 1 ≤ ℓ ≤ m, let Eℓ = Spℓ

be the space of symmetric pℓ × pℓ matrices equipped with the Frobenius
inner product 〈A,B〉F = Tr(AB), and let Kℓ be the cone Spℓ+ of symmetric
positive semidefinite pℓ× pℓ matrices. Now let X ⊂ X be a convex compact
set, and φℓ : X → Eℓ be Spℓ+ -convex Lipschitz continuous mappings. These
data induce the Matrix Minimax problem

min
x∈X

max
1≤j≤k

λmax

(
m∑

ℓ=1

P Tjℓφℓ(x)Pjℓ

)
, (P )

where Pjℓ are given pℓ× qj matrices, and λmax(A) is the maximal eigenvalue
of a symmetric matrix A. Observing that for a symmetric q × q matrix A
one has

λmax(A) = max
S∈Sq

Tr(AS)

where Sq = {S ∈ Sq+ : Tr(S) = 1}. When denoting by Y the set of all sym-
metric positive semidefinite block-diagonal matrices y = Diag{y1, . . . , yk}
with unit trace and diagonal blocks yj of sizes qj × qj , we can represent (P )
in the form of (9), (10) with

Φ(u) := max
1≤j≤k

λmax

(
m∑

ℓ=1

PjℓuℓP
T
jℓ

)
= max

y∈Y

k∑

j=1

Tr

(
m∑

ℓ=1

P TjℓuℓPjℓyj

)

= max
y∈Y

m∑

ℓ=1

Tr


uℓ




k∑

j=1

P TjℓyjPjℓ




 = max

y∈Y

m∑

ℓ=1

〈uℓ,Aℓy〉F ,

Aℓy =
k∑

j=1

PjℓyjP
T
jℓ

Observe that in the simplest case of k = m, pj = qj, 1 ≤ j ≤ m and Pjℓ
equal to Ip for j = ℓ and to 0 otherwise, the problem becomes

(13) min
x∈X

[
max

1≤ℓ≤m
λmax(φℓ(x))

]
.

If, in addition, pj = qj = 1 for all j, we arrive at the convex minimax
problem (7).
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Illustration: Semidefinite Feasibility problem. With X and φℓ as above,
consider the Semidefinite Feasibility problem

find x ∈ X : ψℓ(x) � 0, 1 ≤ ℓ ≤ m. (S)

Choosing somehow scaling factors βℓ > 0 and setting φℓ(x) = βℓψℓ(x), we
can pose (S) as the Matrix Minimax problemminx∈X max1≤ℓ≤m λmax(φℓ(x));
(S) is solvable if and only if the optimal value in the Matrix Minimax prob-
lem is ≤ 0.

3. Stochastic Mirror-Prox algorithm. We are about to present the
stochastic version of the deterministic Mirror-Prox algorithm proposed in [9].
The method is aimed at solving v.i. (2) associated with a convex compact
set Z ⊂ E and a bounded monotone operator F : Z → E . In contrast to the
original version of the method, below we allow for errors when computing
the values of F – we assume that given a point z ∈ Z, we can compute an
approximation (perhaps random) F̂ (z) ∈ E of F (z).

3.1. Algorithm’s setup.

The setup. for SMP (Stochastic Mirror Prox algorithm) is given by

1. a norm ‖ · ‖ on E ; ‖ · ‖∗ stands for the conjugate norm, see (5);
2. a distance-generating function (d.-g.f.) for Z, that is, a continuous

convex function ω(·) : Z → R such that

(a) with Zo being the set of all points z ∈ Z such that the subdiffer-
ential ∂ω(z) of ω(·) at z is nonempty, ∂ω(·) admits a continuous
selection on Zo: there exists a continuous on Zo vector-valued
function ω′(z) such that ω′(z) ∈ ∂ω(z) for all z ∈ Zo;

(b) ω(·) is strongly convex, modulus 1, w.r.t. the norm ‖ · ‖:

(14) ∀(z, z′ ∈ Zo) : 〈ω′(z)− ω′(z′), z − z′〉 ≥ ‖z − z′‖2.

In order for the SMP associated with the outlined setup to be practical, ω(·)
and Z should “fit” each other, meaning that one can easily solve problems
of the form

(15) min
z∈Z

[ω(z) + 〈e, z〉] , e ∈ E .

The prox-function. associated with a setup for SMP is defined as

V (z, u) = ω(u)− ω(z)− 〈ω′(z), u − z〉 : Zo × Z → R+.
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We set

(16)

(a) Θ(z) = maxu∈Z V (z, u) [z ∈ Zo];

(b) zc = argminZ ω(z);

(c) Ω =
√
2Θ(zc).

Note that zc is well defined (since Z is a convex compact set and ω(·) is
continuous and strongly convex on Z) and belongs to Zo (since 0 ∈ ∂ω(zc)).
Note also that due to the strong convexity of ω and the origin of zc we have

(17) ∀(u ∈ Z) :
1

2
‖u− zc‖2 ≤ Θ(zc) ≤ max

z∈Z
ω(z)− ω(zc);

in particular we see that

(18) Z ⊂ {z : ‖z − zc‖ ≤ Ω}.

Prox-mapping. Given a setup for SMP and a point z ∈ Zo, we define the
associated prox-mapping as

Pz(ξ) = argmin
u∈Z

{
ω(u)+ 〈ξ−ω′(z), u〉

}
≡ argmin

u∈Z
{V (z, u)+ 〈ξ, u〉} : E → Zo.

Since S is compact and ω(·) is continuous and strongly convex on ZThis
mapping is clearly well defined.

3.2. Basic SMP setups. We illustrate the just-defined notions with three
basic examples.

Example 1: Euclidean setup. Here E isRN with the standard inner product,
‖ · ‖2 is the standard Euclidean norm on RN (so that ‖ · ‖∗ = ‖ · ‖) and
ω(z) = 1

2z
T z (i.e., Zo = Z). Assume for the sake of simplicity that 0 ∈ Z.

Then zc = 0 and Ω = maxz∈Z ‖z‖22. The prox-function and the prox-mapping
are given by V (z, u) = 1

2‖z − u‖22, Pz(ξ) = argminu∈Z ‖(z − ξ)− u‖2.
Example 2: Simplex setup. Here E is RN , N > 1, with the standard inner
product, ‖z‖ = ‖z‖1 :=

∑N
j=1 |zj | (so that ‖ξ‖∗ = maxj |ξj |), Z is a closed

convex subset of the standard simplex

DN =



z ∈ RN : z ≥ 0,

N∑

j=1

zj = 1





containing its barycenter, and ω(z) =
∑N
j=1 zj ln zj is the entropy. Then

Zo = {z ∈ Z : z > 0} and ω′(z) = [1 + ln z1; . . . ; 1 + ln zN ], z ∈ Zo.
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It is easily seen (see, e.g., [4]) that here

zc = [1/N ; . . . ; 1/N ], Ω ≤
√
2 ln(N)

(the latter inequality becomes equality when Z contains a vertex of DN ).
The prox-function is

V (z, u) =
N∑

j=1

uj ln(uj/zj),

and the prox-mapping is easy to compute when Z = DN :

(Pz(ξ))j =

(
N∑

i=1

zi exp{−ξi}
)−1

zj exp{−ξj}.

Example 3: Spectahedron setup. This is the “matrix analogy” of the Sim-
plex setup. Specifically, now E is the space of N × N block-diagonal sym-
metric matrices, N > 1, of a given block-diagonal structure equipped with
the Frobenius inner product 〈a, b〉F = Tr(ab) and the trace norm |a|1 =∑N
i=1 |λi(a)|, where λ1(a) ≥ · · · ≥ λN (a) are the eigenvalues of a symmetric

N × N matrix a; the conjugate norm |a|∞ is the usual spectral norm (the
largest singular value) of a. Z is assumed to be a closed convex subset of the
spectahedron S = {z ∈ E : z � 0, Tr(z) = 1} containing the matrix N−1IN .
The d.-g.f. is twice the matrix entropy

ω(z) = 2
N∑

j=1

λj(z) ln λj(z),

so that Zo = {z ∈ Z : z ≻ 0} and ω′(z) = 2 ln(z) + 2IN . This setup,
similarly to the Simplex one, results in zc = N−1IN and Ω ≤ 2

√
lnN [2].

When Z = S, it is relatively easy to compute the prox-mapping (see [2, 9]);
this task reduces to the singular value decomposition of a matrix from E . It
should be added that the matrices from S are exactly the matrices of the
form

a = H(b) ≡ (Tr(exp{b}))−1 exp{b}
with b ∈ E . Note also that when Z = S, the prox-mapping becomes “linear
in matrix logarithm”: if z = H(a), then Pz(ξ) = H(a− ξ/2).

3.3. Algorithm: The construction. The t-step SMP algorithm is applied
to the v.i. (2), works as follows:
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Algorithm 1.

1. Initialization: Choose r0 ∈ Zo and stepsizes γτ > 0, 1 ≤ τ ≤ t.
2. Step τ , τ = 1, 2, . . . , t: Given rτ−1 ∈ Zo, set

{
wτ = Prτ−1(γτ F̂ (rτ−1)),

rτ = Prτ−1(γτ F̂ (wτ ))
(19)

When τ < t, loop to step t+ 1.
3. At step t, output

(20) ẑt =

[
t∑

τ=1

γτ

]−1 t∑

τ=1

γτwτ .

Here F̂ is the approximation of F (·) available to the algorithm, so that
F̂ (z) ∈ E is the output of the “black box” – the oracle – representing F ,
the input to the oracle being z ∈ Z. In what follows we assume that F is a
bounded monotone operator represented by a Stochastic Oracle.

Stochastic Oracle (SO). At the ith call to the SO, the input being z ∈ Z,
the oracle returns the vector F̂ = Ξ(z, ζi), where {ζi ∈ RN}∞i=1 is a sequence
of i.i.d. random variables, and Ξ(z, ζ) : Z × RN → E is a Borel function
satisfying the following

Assumption I: With some µ ∈ [0,∞), for all z ∈ Z we have

(21)
(a) ‖E {Ξ(z, ζi)− F (z)} ‖∗ ≤ µ

(b) E
{
‖Ξ(z, ζi)− F (z)‖2∗

}
≤ σ2.

which is slightly milder than (6). The associated version of Algorithm 1 will
be referred to as Stochastic Mirror Prox (SMP) algorithm.

In some cases, we augment Assumption I by the following

Assumption II: For all z ∈ Z and all i we have

(22) E
{
exp{‖Ξ(z, ζi)− F (z)‖2∗/σ2}

}
≤ exp{1}.

Note that Assumption II implies (21.b), since

exp{E
{
‖Ξ(z, ζi)− F (z)‖2∗/σ2

}
} ≤ E

{
exp{‖Ξ(z, ζi)− F (z)‖2∗/σ2}

}

by the Jensen inequality.
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3.4. Algorithm: Main result. From now on, assume that the starting
point r0 in Algorithm 1 is the minimizer zc of ω(·) on Z. Further, to avoid
unnecessarily complicated formulas (and with no harm to the efficiency es-
timates) we stick to the constant stepsize policy γτ ≡ γ, 1 ≤ τ ≤ t, where t
is a fixed in advance number of iterations of the algorithm. Our main result
is as follows:

Theorem 1. Let v.i. (2) with monotone operator F satisfying (4) be
solved by t-step Algorithm 1 using a SO, and let the stepsizes γτ ≡ γ, 1 ≤
τ ≤ t, satisfy 0 < γ ≤ 1√

3L
. Then

(i) Under Assumption I, one has

(23) E
{
Errvi(ẑt)

}
≤ K0(t) ≡

[
Ω2

tγ
+

7γ

2
[M2 + 2σ2]

]
+ 2µΩ,

where M is the constant from (4) and Ω is given by (16).
(ii) Under Assumptions I, II, one has, in addition to (23), for any Λ > 0,

(24) Prob
{
Errvi(ẑt) > K0(t) + ΛK1(t)

}
≤ exp{−Λ2/3}+ exp{−Λt},

where

K1(t) =
7σ2γ

2
+

2σΩ√
t
.

In the case of a Nash v.i., Errvi(·) in (23), (24) can be replaced with ErrN(·).

When optimizing the bound (23) in γ, we get the following

Corollary 1. In the situation of Theorem 1, let the stepsizes γτ ≡ γ
be chosen according to

(25) γ = min

[
1√
3L
,Ω

√
2

7t(M2 + 2σ2)

]
.

Then under Assumption I one has

(26) E
{
Errvi(ẑt)

}
≤ K∗

0 (t) ≡ max


7
4

Ω2L

t
, 7Ω

√
M2 + 2σ2

3t


+ 2µΩ,

(see (16)). Under Assumptions I, II, one has, in addition to (26), for any
Λ > 0,

(27) Prob
{
Errvi(ẑt) > K∗

0 (t) + ΛK∗
1 (t)

}
≤ exp{−Λ2/3}+ exp{−Λt}
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with

K∗
1 (t) =

7

2

Ωσ√
t
.(28)

In the case of a Nash v.i., Errvi(·) in (26), (27) can be replaced with ErrN(·).

Remark 1. Observe that the upper bound (26) for the error of Algo-
rithm 1 with stepsize strategy (25), in agreement with the lower bound of [8],
depends in the same way on the “size” σ of the perturbation Ξ(z, ζi)−F (z)
and on the bound M for the non-Lipschitz component of F . From now on
to simplify the presentation, with slight abuse of notation, we denote M the
maximum of these quantities. Clearly, the latter implies that the bounds
(21.b) and (22), and thus the bounds (26)–(24) of Corollary 1 hold with M
substituted for σ.

3.5. Comparison with Robust Mirror SA Algorithm. Consider the case
of a Nash s.v.i. with operator F satisfying (4) with L = 0, and let the SO
be unbiased (i.e., µ = 0). In this case, the bound (26) reads

(29) E {ErrN(ẑt)} ≤ 7ΩM√
t
,

where

M2 = max

[
sup
z,z′∈Z

‖F (z) − F (z′)‖2∗, sup
z∈Z

E
{
‖Ξ(z, ζi)− F (z)‖2∗

}]

The bound (29) looks very much like the efficiency estimate

(30) E {ErrN(z̃t)} ≤ O(1)
ΩM√
t

(from now on, all O(1)’s are appropriate absolute positive constants) for the
approximate solution z̃t of the t-step Robust Mirror SA (RMSA) algorithm
[4]1). In the latter estimate, Ω is exactly the same as in (29), andM is given
by

M
2
= max

[
sup
z

‖F (z)‖2∗; sup
z∈Z

E
{
‖Ξ(z, ζi)− F (z)‖2∗

}]
.

Note that we always have M ≤ 2M , and typically M andM are of the same
order of magnitude; it may happen, however (think of the case when F is

1) In this reference, only the Minimization and the Saddle Point problems are consid-
ered. However, the results of [4] can be easily extended to s.v.i.’s.
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“almost constant”), thatM ≪M . Thus, the bound (29) never is worse, and
sometimes can be much better than the SA bound (30). It should be added
that as far as implementation is concerned, the SMP algorithm is not more
complicated than the RMSA (cf. the description of Algorithm 1 with the
description

rt = Prt−1(F̂ (rt−1)),

ẑt =

[
t∑

τ=1

γτ

]−1 t∑

τ=1

γτrτ ,

of the RMSA).
The just outlined advantage of SMP as compared to the usual Stochastic

Approximation is not that important, since “typically” M and M are of
the same order. We believe that the most interesting feature of the SMP
algorithm is its ability to take advantage of a specific structure of a stochastic
optimization problem, namely, insensitivity to the presence in the objective
of large, but smooth and well-observable components.

We are about to consider several less straightforward applications of the
outlined insensitivity of the SMP algorithm to smooth well-observed com-
ponents in the objective.

4. Application to Stochastic Composite minimization. Our pres-
ent goal is to apply the SMP algorithm to the Composite minimization
problem (9) in the case when the associated monotone operator (12) is given
by a Stochastic Oracle.

Throughout this section, the structural assumptions A – C from Sec-
tion 2.2 are in force.

4.1. Assumptions. We start with augmenting the description of the prob-
lem of interest (9), see Section 2.2, with additional assumptions specifying
the SO and the SMP setup for the v.i. reformulation

(31) find z∗ ∈ Z := X × Y : 〈F (z), z − z∗〉 ≥ 0 ∀z ∈ Z

of (9); here F is the monotone operator (12). Specifically, we assume that

D. The embedding space X of X is equipped with a norm ‖ · ‖x, and X
itself – with a d.-g.f. ωx(x), the associated parameter (16.c) being some
Ωx;

E. The spaces Eℓ, 1 ≤ ℓ ≤ m, where the functions φℓ take their values,
are equipped with norms (not necessarily the Euclidean ones) ‖ · ‖(ℓ)
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with conjugates ‖ · ‖(ℓ,∗) such that
(32)

∀v, v′ ∈ X :





(a) ‖[φ′ℓ(v)− φ′ℓ(v
′)]h‖(ℓ) ≤ [Lx‖v − v′‖x +Mx]‖h‖x

(b) ‖[φ′ℓ(v)]h‖(ℓ) ≤ ΩxLx‖h‖x

for certain selections φ′ℓ(v) ∈ ∂Kℓφℓ(v), v ∈ X2) and certain nonnega-
tive constants Lx,Mx.

F. Functions φℓ(·) are represented by an unbiased SO. At the ith call to
the oracle, x ∈ X being the input, the oracle returns vectors fℓ(x, ζi) ∈
Eℓ and linear mappings Gℓ(x, ζi) from X to Eℓ, 1 ≤ ℓ ≤ m ({ζi} are
i.i.d. random “oracle noises”) such that for any x ∈ X and i = 1, 2, . . . ,

(33)

(a) E {fℓ(x, ζi)} = φℓ(x), 1 ≤ ℓ ≤ m

(b) E

{
max

1≤ℓ≤m
‖fℓ(x, ζi)− φℓ(x)‖2(ℓ)

}
≤M2

xΩ
2
x;

(c) E {Gℓ(x, ζi)} = φ′ℓ(x), 1 ≤ ℓ ≤ m,

(d) E



 max

h∈X
‖h‖x≤1

‖[Gℓ(x, ζi)− φ′ℓ(x)]h‖2(ℓ)



 ≤M2

x , 1 ≤ ℓ ≤ m.

G. The data participating in the Fenchel-type representation (10) of Φ
are such that

(a) the embedding space Y of Y is equipped with a norm ‖ · ‖y, and
Y itself - — with a d.-g.f. ωy(y), the associated parameter (16.c)
being some Ωy;

(b) we have ‖y‖y ≤ 2Ωy for all y ∈ Y ;3

(c) The convex function Φ∗(y) is given by the precise deterministic
first order oracle, and

(34) ‖Φ′
∗(y)− Φ′

∗(y
′)‖y,∗ ≤ Ly‖y − y′‖y +My

for certain selection Φ′
∗(y) ∈ ∂Φ∗(y), y ∈ Y , and some nonnega-

tive Ly,My.

2) For a K-convex function φ : X → E (X ⊂ X is convex, K ⊂ E is a closed convex
cone) and x ∈ X, the K-subdifferential ∂Kφ(x) is comprised of all linear mappings h 7→
Ph : X → E such that φ(u) ≥K φ(x) + P(u − x) for all u ∈ X. When φ is Lipschitz
continuous on X, ∂Kφ(x) 6= ∅ for all x ∈ X; if φ is differentiable at x ∈ intX (as it is the

case almost everywhere on intX), one has ∂φ(x)
∂x

∈ ∂Kφ(x).
3This requirement can be ensured by shifting Y to include the origin and the associated

shift in ωy(·), see (18).
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Stochastic Oracle for (31). The assumptions E – G induce an unbiased SO
for the operator F in (31), specifically, the oracle

(35) Ξ(x, y, ζi) =

[
m∑

ℓ=1

G∗
ℓ (x, ζi)[Aℓy + bℓ]; −

m∑

ℓ=1

A∗
ℓfℓ(x, ζi) + Φ′

∗(y)

]
,

and this is the oracle we will use when solving (9) by the SMP algorithm.

4.2. Setup for the SMP as applied to (31), (12). In retrospect, the setup
for SMP we are about to present is kind of the best – resulting in the best
possible efficiency estimate (26) – we can build from the entities participating
in the description of the problem (9) as given by the assumptions A – G.
Specifically, we equip the space E = X × Y with the norm

‖(x, y)‖ ≡
√
‖x‖2x/Ω2

x + ‖y‖2y/Ω2
y

[
⇒ ‖(ξ, η)‖∗ =

√
Ω2
x‖ξ‖2x,∗ +Ω2

y‖η‖2y,∗
]

and equip Z = X × Y with the d.-g.f.

ω(x, y) =
1

Ω2
x

ωx(x) +
1

Ω2
y

ωy(y)

(it is immediately seen that ω(·) indeed is a d.-g.f. w.r.t. X, ‖ · ‖). The
SMP-related properties of our setup are summarized in the following

Lemma 1. Let

(36) A = max
y∈Y :‖y‖y≤1

m∑

ℓ=1

‖Aℓy‖(ℓ,∗), B =
m∑

ℓ=1

‖bℓ‖(ℓ,∗).

(i) The parameter Ω associated with ω(·), ‖ · ‖, Z by (16), is ≤
√
2.

(ii) One has

(37) ∀(z, z′ ∈ Z) : ‖F (z)− F (z′)‖∗ ≤ L‖z − z′‖+M,

where

L = 4AΩ2
xΩyLx +ΩxB +Ω2

yLy,

M = [3AΩy + B] ΩxMx +ΩyMy.

Besides this,

(38) ∀(z ∈ Z, i) : E {Ξ(z, ζi)} = F (z); E
{
‖Ξ(z, ζi)− F (z)‖2∗

}
≤M2.
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Finally, when relations (33.b,d) are strengthened to
(39)

E

{
exp

{
max
1≤ℓ≤m

‖fℓ(x, ζi)− φℓ(x)‖2(ℓ)/(ΩxM)2
}}

≤ exp{1},

E



exp



 max

h∈X ,
‖h‖x≤1

‖[Gℓ(x)− φ′ℓ(x)]h‖2(ℓ)/M2







 ≤ exp{1}, 1 ≤ ℓ ≤ m,

then

(40) E
{
exp{‖Ξ(z, ζi)− F (z)‖2∗/M2}

}
≤ exp{1}.

Combining Lemma 1 with Corollary 1, we get explicit efficiency estimates
for the SMP algorithm as applied to the Stochastic composite minimization
problem (9); these are nothing than estimates (26) with σ, Ω replaced with
M ,

√
2, respectively.

4.3. Application to Matrix Minimax problem. Consider Matrix Minimax
problem from Section 2.2.2, that is, the problem

(41) min
x∈X

max
1≤j≤k

λmax

(
m∑

ℓ=1

P Tjℓφℓ(x)Pjℓ

)
,

where φℓ(·) : X → Spℓ are �-convex Lipschitz continuous mappings and
Pjℓ ∈ Rpℓ×qj . As it was shown in Section 2.2.2, (41) admits saddle point
representation

(42)

min
x∈X

max
y=Diag{y1,...,yk}∈Y

m∑

ℓ=1

〈φℓ(x),Aℓy〉F ,

Aℓy =
k∑

j=1

PjℓyjP
T
jℓ,

where Y is the spectahedron in the space Y of block-diagonal symmetric
matrices y = Diag{y1, . . . , yk} with k diagonal blocks of sizes q1, . . . , qk. Note
that we are in the situation described by assumptions A – C from Section
2.2, with Φ∗(·) ≡ 0, and Kℓ := Spℓ+ ⊂ Eℓ := Spℓ . Using the spectahedron
setup for Y and setting My = Ly = 0, Ωy = 2

√
ln(q1 + · · ·+ qk), we meet

all assumptions in G. Let us specify the norms ‖ · ‖(ℓ) on the spaces Eℓ =
Spℓ as the standard matrix norms | · |∞ (maximal singular value), and let
assumptions D – F from Section 4.1 take place. Note that in the case in
question (36) reads

A = max
1≤j≤k

max
ξ∈Rqj :‖ξ‖2=1

m∑

ℓ=1

‖Pjℓξ‖22 = max
1≤j≤k

|
m∑

ℓ=1

P TjℓPjℓ|∞, B = 0.
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(look what are the extreme points of Y ), so that the quantities L, M as
given by Lemma 1 become

(43)
L = O(1)A

√
ln(q1 + · · ·+ qk)Ω

2
xLx,

M = O(1)A
√
ln(q1 + · · ·+ qk)ΩxMx.

Note that in the case of problem (13) one has A = 1.

4.3.1. Application to Stochastic Semidefinite Feasibility problem. Now
consider the stochastic version of the Semidefinite Feasibility problem (S):

(44) find x ∈ X : ψℓ(x) � 0, 1 ≤ ℓ ≤ m.

Assuming form now on that the latter problem is feasible, we can rewrite it
as the Matrix Minimax problem

(45) Opt = min
x∈X

max
1≤ℓ≤m

λmax(φℓ(x)), φℓ(x) = βℓψℓ(x),

where βℓ > 0 are “scale factors” we are free to choose. We are about to show
how to use this freedom in order to improve the SMP efficiency estimates.

Assuming, same as in the case of a general-type Matrix Minimax problem,
that D takes place, let us modify assumptions E, F as follows:

E′: the �-convex Lipschitz functions ψℓ : X → Spℓ are such that

(46)
max

h∈X , ‖h‖x≤1
|[ψ′

ℓ(x)− ψ′
ℓ(x

′)]h|∞ ≤ Lℓ‖x− x′‖x +Mℓ,

max
h∈X , ‖h‖x≤1

|ψ′
ℓ(x)h|∞ ≤ ΩxLℓ

for certain selections ψ′
ℓ(x) ∈ ∂Kℓψℓ(x), x ∈ X, with some known nonnega-

tive constants Lℓ, Mℓ.
F′: ψℓ(·) are represented by an SO which at the ith call, the input being

x ∈ X, returns the matrices f̂ℓ(x, ζi) ∈ Spℓ and the linear maps Ĝℓ(x, ζi)
from X to Spℓ ({ζi} are i.i.d. random “oracle noises”) such that for any
x ∈ X it holds

(47)

(a) E
{
f̂ℓ(x, ζi)

}
= ψℓ(x), E

{
Ĝℓ(x, ζi)

}
= ψ′

ℓ(x), 1 ≤ ℓ ≤ m

(b) E

{
max
1≤ℓ≤m

|f̂ℓ(x, ζi)− ψℓ(x)|2∞/(ΩxMℓ)
2

}
≤ 1

(c) E



 max

h∈X ,
‖h‖x≤1

|[Ĝℓ(x, ζi)− ψ′
ℓ(x)]h|2∞/M2

ℓ



 ≤ 1, 1 ≤ ℓ ≤ m.
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Given a number t of steps of the SMP algorithm, let us act as follows.
(I): We compute the m quantities µℓ =

ΩxLℓ√
t

+Mℓ, ℓ = 1, . . . ,m, and set

(48) µ = max
1≤ℓ≤m

µℓ, βℓ =
µ

µℓ
, φℓ(·) = βℓψℓ(·), Lx = Ω−1

x µ
√
t, Mx = µ.

Note that by construction βℓ ≥ 1 and Lx/Lℓ ≥ βℓ, Mx/Mℓ ≥ βℓ for all ℓ, so
that the functions φℓ satisfy (32) with the just defined Lx, Mx. Further, the
SO for ψℓ(·)’s can be converted into an SO for φℓ(·)’s by setting

fℓ(x, ζ) = βℓf̂ℓ(x, ζ), Gℓ(x, ζ) = βℓĜℓ(x, ζ).

By (47) and due to Lx/Lℓ ≥ βℓ, Mx/Mℓ ≥ βℓ, this oracle satisfies (33).
(II): We then build the Stochastic Matrix Minimax problem

(49) Opt = min
x∈X

max
1≤ℓ≤m

λmax(φℓ(x)),

associated with the just defined φ1, . . . , φm and solve this Stochastic com-
posite problem by t-step SMP algorithm. Combining Lemma 1, Corollary 1
and taking into account the origin of the quantities Lx, Mx, and the fact
that A = 1, B = 0, we arrive at the following result:

Proposition 1. With the outlined construction, the t-step SMP algo-
rithm with the setup presented in Section 4.2 (where one uses A = 1,B =
Ly = My = 0 and the just defined Lx,Mx) and constant stepsizes γτ ≡ γ
defined by (25), yields an approximate solution ẑt = (x̂t, ŷt) such that
(50)

E

{
max
1≤ℓ≤m

max[βℓλmax(ψℓ(x̂t), 0]

}
≤ E

{
max

1≤ℓ≤m
βℓλmax(ψℓ(x̂t))−Opt

}

≤ K0(t) ≡ 80
Ωxµ

√
ln(
∑m
ℓ=1 pℓ)√

t
,

(cf. (26) and take into account that we are in the case of Ω =
√
2, while the

optimal value in (49) is nonpositive, since (44) is feasible).
Furthermore, if assumptions (47.b,c) are strengthened to

E

{
max
1≤ℓ≤m

exp{|f̂ℓ(x, ζi)− ψℓ(x)|2∞/(ΩxMℓ)
2}
}

≤ exp{1},

E

{
exp{ max

h∈X , ‖h‖x≤1
|[Ĝℓ(x, ζi)− ψ′

ℓ(x)]h|2∞/M2
ℓ }
}

≤ exp{1}, 1 ≤ ℓ ≤ m,
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then, in addition to (50), we have for any Λ > 0:

Prob

{
max
1≤ℓ≤m

max[βℓλmax(ψℓ(x̂t)), 0] > K0(t) + ΛK1(t)

}

≤ exp{−Λ2/3}+ exp{−Λt},

where

K1(t) =
15Ωxµ

√
ln(
∑m
ℓ=1 pℓ)√

t
.

Discussion. Imagine that instead of solving the system of matrix inequali-
ties (44), we were interested to solve just a single matrix inequality ψℓ(x) �
0, x ∈ X. When solving this inequality by the SMP algorithm as explained
above, the efficiency estimate would be

E
{
max[λmax(ψℓ(x̂

ℓ
t)), 0]

}
≤ O(1)

√
ln(pℓ + 1)Ωx

[
ΩxLℓ
t

+
Mℓ√
t

]

= O(1)
√
ln(pℓ + 1)β−1

ℓ

Ωxµ√
t
,

(recall that the matrix inequality in question is feasible), where x̂ℓt is the
resulting approximate solution. Looking at (50), we see that the expected
accuracy of the SMP as applied, in the aforementioned manner, to (44) is
only by a logarithmic in

∑
ℓ pℓ factor worse:

(51)

E {max[λmax(ψℓ(x̂t), 0]} ≤ O(1)

√√√√ln

(
m∑

ℓ=1

pℓ

)
β−1
ℓ

Ωxµ√
t

= O(1)

√√√√ln

(
m∑

ℓ=1

pℓ

)
Ωxµℓ√

t
.

Thus, as far as the quality of the SPM-generated solution is concerned,
passing from solving a single matrix inequality to solving a system of m
inequalities is “nearly costless”. As an illustration, consider the case where
some of ψℓ are “easy” – smooth and easy-to-observe (Mℓ = 0), while the
remaining ψℓ are “difficult”, i.e., might be non-smooth and/or difficult-to-
observe (ΩxLℓ/

√
t ≤Mℓ). In this case, (51) reads

E {ψℓ(x̂t)} ≤ O(1)

√√√√ln

(
m∑

ℓ=1

pℓ

)
·





Ω2
xLℓ

t , ψℓ is easy,

ΩxMℓ√
t
, ψℓ is difficult.

In other words, the violations of the easy and the difficult constraints in (44)
converge to 0 as t → ∞ with the rates O(1/t) and O(1/

√
t), respectively.
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It should be added that when X is the unit Euclidean ball in X = Rn

and X, X are equipped with the Euclidean setup, the rates of convergence
O(1/t) and O(1/

√
t) are the best rates one can achieve without imposing

bounds on n and/or imposing additional restrictions on ψℓ’s.

4.4. Eigenvalue optimization via SMP. The problem we are interested
in now is

(52)

Opt = min
x∈X

f(x) := λmax(A0 + x1A1 + · · ·+ xnAn),

X =

{
x ∈ Rn : x ≥ 0,

n∑

i=1

xi = 1

}
,

where A0, A1, . . . , An, n > 1, belong to the space S of symmetric matrices
with block-diagonal structure (p1, . . . , pm) (i.e., a matrix A ∈ S is block-
diagonal with pℓ × pℓ diagonal blocks A

ℓ, 1 ≤ ℓ ≤ m). We set

p(κ) =
m∑

ℓ=1

pκℓ , κ = 1, 2, . . . ; pmax = max
ℓ
pℓ; A∞ = max

1≤j≤n
|Aj |∞.

Setting

φℓ : X 7→ Eℓ = Spℓ , φℓ(x) = Aℓ0 +
n∑

j=1

xjA
ℓ
j , 1 ≤ ℓ ≤ m,

we represent (52) as a particular case of the Matrix Minimax problem (13),
with all functions φℓ(x) being affine and X being the standard simplex in
X = Rn.

Now, since Aj are known in advance, there is nothing stochastic in our
problem, and it can be solved either by interior point methods, or by “com-
putationally cheap” gradient-type methods which are preferable when the
problem is large-scale and medium accuracy solutions are sought. For in-
stance, one can apply the t-step (deterministic) Mirror Prox algorithm DMP
from [9] to the saddle point reformulation (11) of our specific Matrix Mini-
max problem, i.e., to the saddle point problem

(53)
min
x∈X

max
y∈Y

〈
y,A0 +

n∑

j=1

xjAj

〉

F

,

Y =
{
y = Diag{y1, . . . , ym} : yℓ ∈ Spℓ+ , 1 ≤ ℓ ≤ m, Tr(y) = 1

}
.

The accuracy of the approximate solution x̃t of the DMP algorithm is [9,
Example 2]

(54) f(x̃t)−Opt ≤ O(1)

√
ln(n) ln(p(1))A∞

t
.
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This efficiency estimate is the best known so far among those attainable
with “computationally cheap” deterministic methods. On the other hand,
the complexity of one step of the algorithm is dominated, up to an absolute
constant factor, by the necessity, given x ∈ X and y ∈ Y ,

1. to compute A0 +
∑n
j=1 xjAj and [Tr(Y A1); . . . ; Tr(Y An)];

2. to compute the eigenvalue decomposition of an y ∈ S.

When using the standard Linear Algebra, the computational effort per step
is

(55) Cdet = O(1)[np(2) + p(3)]

arithmetic operations.
We are about to demonstrate that one can equip the deterministic prob-

lem in question by an “artificial” SO in such a way that the associated SMP
algorithm, under certain circumstances, exhibits better performance than
deterministic algorithms. Let us consider the following construction of the
SO for F (different from the SO (35)!). Observe that the monotone operator
associated with the saddle point problem (53) is

(56) F (x, y) =

[
[Tr(yA1); . . . ; Tr(yAn)]︸ ︷︷ ︸

Fx(x,y)

; −A0 −
∑n

j=1
xjAj

︸ ︷︷ ︸
F y(x,y)

]
.

Given x ∈ X, y = Diag{y1, . . . , ym} ∈ Y , we build a random estimate
Ξ = [Ξx; Ξy] of F (x, y) = [F x(x, y);F y(x, y)] as follows:

1. we generate a realization  of a random variable taking values 1, . . . , n
with probabilities x1, . . . , xn (recall that x ∈ X, the standard simplex,
so that x indeed can be seen as a probability distribution), and set

(57) Ξy = A0 +A;

2. we compute the quantities νℓ = Tr(yℓ), 1 ≤ ℓ ≤ m. Since y ∈ Y , we
have νℓ ≥ 0 and

∑m
ℓ=1 νℓ = 1. We further generate a realization ı of

random variable taking values 1, . . . ,m with probabilities ν1, . . . , νm,
and set

(58) Ξx = [Tr(Aı1ȳı); . . . ; Tr(A
ı
nȳı)], ȳı = (Tr(yı))

−1yı.

The just defined random estimate Ξ of F (x, y) can be expressed as a deter-
ministic function Ξ(x, y, η) of (x, y) and random variable η uniformly dis-
tributed on [0, 1]. Assuming all matrices Aj directly available (so that it takes
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O(1) arithmetic operations to extract a particular entry of Aj given j and
indexes of the entry) and given x, y and η, the value Ξ(x, y, ξ) can be com-
puted with the arithmetic cost O(1)(n(pmax)2+p(2)) (indeed, O(1)(n+p(1))
operations are needed to convert η into ı and , O(1)p(2) operations are used
to write down the y-component −A0 − A of Ξ, and O(1)n(pmax)2 opera-
tions are needed to compute Ξx). Now consider the SO’s Ξk (k is a positive
integer) obtained by averaging the outputs of k calls to our basic oracle Ξ.
Specifically, at the ith call to the oracle Ξk, z = (x, y) ∈ Z = X × Y being
the input, the oracle returns the vector

Ξk(z, ζi) =
1

k

k∑

s=1

Ξ(z, ηis),

where ζi = [ηi1; . . . ; ηik] and {ηis}1≤i, 1≤s≤k are independent random vari-
ables uniformly distributed on [0, 1]. Note that the arithmetic cost of a single
call to Ξk is

Ck = O(1)k(n(pmax)2 + p(2)).

The Nash v.i. associated with (53) and the stochastic oracle Ξk (k is the
first parameter of our construction) specify a Nash s.v.i. on the domain
Z = X × Y . We equip the standard simplex X and its embedding space
X = Rn with the Simplex setup, and the spectahedron Y and its embedding
space S with the Spectahedron setup (see Section 3.2). Let us next combine
the x- and the y-setups, exactly as explained in the beginning of Section 4.2,
into an SMP setup for the domain Z = X × Y – a d.-g.f. ω(·) and a norm
‖ · ‖ on the embedding space Rn × (Sp1 × · · · × Spℓ) of Z. The SMP-related
properties of the resulting setup are summarized in the following statement.

Lemma 2. Let n ≥ 3, p(1) ≥ 3. Then
(i) The parameter of the just defined d.-g.f. ω w.r.t. the just defined norm

‖ · ‖ is Ω =
√
2.

(ii) For any z, z′ ∈ Z one has

(59) ‖F (z)− F (z′)‖∗ ≤ L‖z − z′‖, L =
√
2
[
ln(n) + ln(p(1))

]
A∞.

Besides this, for any (z ∈ Z, i = 1, 2, . . . ,

(60)

(a) E {Ξk(z, ζi)} = F (z);

(b) E
{
exp{‖Ξ(z, ζi)− F (z)‖2∗/M2}

}
≤ exp{1},

M = 27[ln(n) + ln(p(1))]A∞/
√
k.
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Combining Lemma 2 and Corollary 1, we arrive at the following

Proposition 2. With properly chosen positive absolute constants O(1),
the t-step SMP algorithm with constant stepsizes

γτ = O(1)
min[1,

√
k/t]

ln(np(1))A∞
, 1 ≤ τ ≤ t [A∞ = max

1≤j≤n
|Aj |∞]

as applied to the saddle point reformulation of problem (52), the stochastic
oracle being Ξk, produces a random feasible approximate solution x̂t to the
problem with the error

ǫ(x̂t) = λmax


A0 +

n∑

j=1

[x̂t]jAj


−Opt

satisfying

(61) E {ǫ(x̂t)} ≤ O(1) ln(np(1))A∞

[
1

t
+

1√
kt

]
,

and for any Λ > 0:

Prob

{
ǫ(x̂t) > O(1) ln(np(1))A∞

[
1

t
+

1 + Λ√
kt

]}
≤ exp{−Λ2/3}+ exp{−Λt}.

Further, assuming that all matrices Aj are directly available, the overall
computational effort to compute x̂t is

C = O(1)t
[
k(n(pmax)2 + p(2)) + p(3)

]
(62)

arithmetic operations.

To justify the bound (62) it suffices to note that O(1)k(n(pmax)2 + p(2))
operations per step is the price of two calls to the stochastic oracle Ξk
and O(1)(n + p(3)) operations per step is the price of computing two prox
mappings.

Discussion. Let us find out whether randomization can help when solving
a large-scale problem (52), that is, whether, given quality of the result-
ing approximate solution, the computational effort to build such a solution
with the Stochastic Mirror Prox algorithm SMP can be essentially less than
the one for the deterministic Mirror Prox algorithm DMP. To simplify our
considerations, assume from now on that pℓ = p, 1 ≤ ℓ ≤ m, and that
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ln(n) = O(1) ln(mp). Assume also that we are interested in a (perhaps, ran-
dom) solution x̂t which with probability ≥ 1− δ satisfies ǫ(x̂t) ≤ ǫ. We fix a
tolerance δ ≪ 1 and the relative accuracy ν = ǫ

ln(mnp)A∞
≤ 1 and look what

happens when (some of) the sizes m,n, p of the problem become large.
Observe first of all that the overall computational effort to solve (52)

within relative accuracy ν with the DMP algorithm is

CDMP(ν) = O(1)m(n + p)p2ν−1

operations (see (54), (55)). As for the SMP algorithm, let us choose k
which balances the per step computational effort O(1)k(n(pmax)2 + p(2)) =
O(1)k(n+m)p2 to produce the answers of the stochastic oracle and the per
step cost of prox mappings O(1)(n+mp3), that is, let us set k = Ceil

( mp
m+n

)
4.

With this choice of k, Proposition 2 says that to get a solution of the required
quality, it suffices to carry out

(63) t = O(1)
[
ν−1 + ln(1/δ)k−1ν−2

]

steps of the method, provided that this number of steps is ≥
√
ln(2/δ).

The latter assumption is automatically satisfied when the absolute constant
factor in (63) is ≥ 1 and ν

√
ln(2/δ) ≤ 1, which we assume from now on.

Combining (63) and the upper bounds on the arithmetic cost of an SMP
step stated in Proposition 2, we conclude that the overall computational
effort to produce a solution of the required quality with the SMP algorithm
is

CSMP(ν, δ) = O(1)k(n +m)p2
[
ν−1 + ln(1/δ)k−1ν−2

]

operations, so that

R :=
CDMP(ν)

CSMP(ν, δ)
= O(1)

m(n+ p)

(m+ n)(k + ln(1/δ)ν−1)
[k = Ceil

(
mp
m+n

)
]

We see that when ν, δ are fixed, m ≥ n/p and n/p is large, then R is
large as well, that is, the randomized algorithm significantly outperforms its
deterministic counterpart.

Another interesting observation is as follows. In order to produce, with
probability ≥ 1− δ, an approximate solution to (52) with relative accuracy
ν, the just defined SMP algorithm requires t steps, with t given by (63),
and at every one of these steps it “visits” O(1)k(m+ n)p2 randomly chosen

4The rationale behind balancing is clear: with the just defined k, the arithmetic cost
of an iteration still is of the same order as when k = 1, while the left hand side in the
efficiency estimate (61) becomes better than for k = 1.
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entries in the data matrices A0, A1, . . . , An. The overall number of data
entries visited by the algorithm is therefore NSMP = O(1)tk(m + n)p2 =
O(1)

[
kν−1 + ln(1/δ)ν−2

]
(m+ n)p2. At the same time, the total number of

data entries is N tot = m(n+ 1)p2. Therefore

ϑ :=
NSMP

N tot
= O(1)

[
kν−1 + ln(1/δ)ν−2

] [ 1
m

+
1

n

]
[k = Ceil

(
mp
m+n

)
]

We see that when δ, ν are fixed, m ≥ n/p and n/p is large, ϑ is small,
i.e., the approximate solution of the required quality is built when inspecting
a tiny fraction of the data. This sublinear time behavior [15] was already
observed in [4] for the Robust Mirror Descent Stochastic Approximation as
applied to a matrix game (the latter problem is the particular case of (52)
with p1 = · · · = pm = 1 and A0 = 0). Note also that an “ad hoc” sublinear
time algorithm for a matrix game, in retrospect close to the one from [4],
was discovered in [3] as early as in 1995.

Acknowledgment. We are very grateful to the Associated Editor and
Referees for their suggestions which allowed us to improve significantly the
paper’s readability.

5. Appendix.

5.1. Preliminaries. We need the following technical result about the al-
gorithm (19), (20):

Theorem 2. Consider t-step algorithm 1 as applied to a v.i. (2) with a
monotone operator F satisfying (4). For τ = 1, 2, . . . , let us set

∆τ = F (wτ )− F̂ (wτ );

for z belonging to the trajectory {r0, w1, r1, . . . , wt, rt} of the algorithm, let

ǫz = ‖F̂ (z)− F (z)‖∗,

and let {yτ ∈ Zo}tτ=0 be the sequence given by the recurrence

(64) yτ = Pyτ−1(γτ∆τ ), y0 = r0.

Assume that

γτ ≤
1√
3L
,(65)
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Then

Errvi(ẑt) ≤
(

t∑

τ=1

γτ

)−1

Γ(t),(66)

where Errvi(ẑt) is defined in (3),

Γ(t) = 2Θ(r0) +
t∑

τ=1

3γ2τ
2

[
M2 + (ǫrτ−1 + ǫwτ )

2 +
ǫ2wτ

3

]
(67)

+
t∑

τ=1

〈γτ∆τ , wτ − yτ−1〉

and Θ(·) is defined by (16).
Finally, when (2) is a Nash v.i., one can replace Errvi(ẑt) in (66) with

ErrN(ẑt).

Proof of Theorem 2. 10.We start with the following simple observation:
if re is a solution to (15), then ∂Zω(re) contains −e and thus is nonempty,
so that re ∈ Zo. Moreover, one has

(68) 〈ω′(re) + e, u− re〉 ≥ 0 ∀u ∈ Z.

Indeed, by continuity argument, it suffices to verify the inequality in the
case when u ∈ rint(Z) ⊂ Zo. For such an u, the convex function

f(t) = ω(re + t(u− re)) + 〈re + t(u− re), e〉, t ∈ [0, 1]

is continuous on [0, 1] and has a continuous on [0, 1] field of subgradients

g(t) = 〈ω′(re + t(u− re)) + e, u− re〉.
It follows that f is continuously differentiable on [0, 1] with the derivative
g(t). Since the function attains its minimum on [0, 1] at t = 0, we have
g(0) ≥ 0, which is exactly (68).

20. At least the first statement of the following Lemma is well-known:

Lemma 3. For every z ∈ Zo, the mapping ξ 7→ Pz(ξ) is a single-valued
mapping of E onto Zo, and this mapping is Lipschitz continuous, specifically,

‖Pz(ζ)− Pz(η)‖ ≤ ‖ζ − η‖∗ ∀ζ, η ∈ E .(69)

Besides this, for all u ∈ Z,

(a) V (Pz(ζ), u) ≤ V (z, u) + 〈ζ, u− Pz(ζ)〉 − Vz(z, Pz(ζ))

(b) ≤ V (z, u) + 〈ζ, u− z〉+ ‖ζ‖2∗
2

.
(70)
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Proof. Let v ∈ Pz(ζ), w ∈ Pz(η). As V
′
u(z, u) = ω′(u)− ω′(z), invoking

(68), we have v,w ∈ Zo and

〈ω′(v) − ω′(z) + ζ, v − u〉 ≤ 0 ∀u ∈ Z.(71)

〈ω′(w) − ω′(z) + η,w − u〉 ≤ 0 ∀u ∈ Z.(72)

Setting u = w in (71) and u = v in (72), we get

〈ω′(v) − ω′(z) + ζ, v − w〉 ≤ 0, 〈ω′(w)− ω′(z) + η, v − w〉 ≥ 0,

whence 〈ω′(w)− ω′(v) + [η − ζ], v − w〉 ≥ 0, or

‖η − ζ‖∗‖v − w‖ ≥ 〈η − ζ, v − w〉 ≥ 〈ω′(v)− ω′(w), v − w〉 ≥ ‖v − w‖2,

and (69) follows. This relation, as a byproduct, implies that Pz(·) is single-
valued.

To prove (70), let v = Pz(ζ). We have

V (v, u) − V (z, u)

= [ω(u)− 〈ω′(v), u− v〉 − ω(v)]− [ω(u)− 〈ω′(z), u− z〉 − ω(z)]

= 〈ω′(v)− ω′(z) + ζ, v − u〉+ 〈ζ, u− v〉 − [ω(v)− 〈ω′(z), v − z〉 − ω(z)]

≤ 〈ζ, u− v〉 − V (z, v) (due to (71)),

as required in (70.a). The bound (70.b) is obtained from (70.a) using the
Young inequality:

〈ζ, z − v〉 ≤ ‖ζ‖2∗
2

+
1

2
‖z − v‖2.

Indeed, observe that by definition, V (z, ·) is strongly convex modulus 1 w.r.t.
‖ · ‖, and V (z, v) ≥ 1

2‖z − v‖2, so that

〈ζ, u− v〉 − V (z, v) = 〈ζ, u− z〉+ 〈ζ, z − v〉 − V (z, v) ≤ 〈ζ, u− z〉+ ‖ζ‖2∗
2

.

30. We have the following simple corollary of Lemma 3:

Corollary 2. Let ξ1, ξ2, . . . be a sequence of elements of E. Define the
sequence {yτ}∞τ=0 in Zo as follows:

yτ = Pyτ−1(ξτ ), y0 ∈ Zo.
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Then yτ is a measurable function of y0 and ξ1, . . . , ξτ such that

(73) (∀u ∈ Z) :

〈
−

t∑

τ=1

ξτ , u

〉
≤ V (y0, u) +

t∑

τ=1

ζτ ,

with |ζτ | ≤ r‖ξτ‖∗ (here r = maxu∈Z ‖u‖). Further,

(74)
t∑

τ=1

ζτ ≤ −
t∑

τ=1

〈ξτ , yτ−1〉+
1

2

t∑

τ=1

‖ξτ‖2∗.

Proof. Using the bound (70.a) with ζ = ξτ and z = yτ−1, so that
yτ = Pyτ−1(ξτ ), we obtain for any u ∈ Z:

(75) V (yτ , u)− V (yτ−1, u)− 〈ξτ , u〉 ≤ −〈ξτ , yτ 〉 − V (yτ−1, yτ ) ≡ ζτ ;

summing up these inequalities over τ we get (73). Further, by definition of
Pz(ξ) we have

ζτ = max
v∈Z

[−〈ξτ , v〉 − V (yτ−1, v)],

so that ζτ ≤ r‖ξτ‖∗ due to V ≥ 0, and

−r‖ξτ‖∗ ≤ −〈ξτ , yτ−1〉 = [−〈ξτ , yτ−1〉 − V (yτ−1, yτ−1)] ≤ ζτ

due to V (yτ−1, yτ−1) = 0. Thus, |ζτ | ≤ r‖ξτ‖∗, as claimed. Further, by
(70.b), where one should set ζ = ξτ , z = yτ−1, u = yτ , we have

ζτ ≤ −〈ξτ , yτ−1〉+
‖ξτ‖2∗
2

.

Summing up these inequalities over τ , we get (74).

40. We also need the following result.

Lemma 4. Let z ∈ Zo, let ζ, η be two points from E, and let

w = Pz(ζ), r+ = Pz(η)

Then for all u ∈ Z one has

(a) ‖w − r+‖ ≤ ‖ζ − η‖∗
(b) V (r+, u)− V (z, u) ≤ 〈η, u − w〉+ [〈η,w − r+〉 − V (z, r+)]

≤ 〈η, u− w〉+ 1

2
‖ζ − η‖2∗ −

1

2
‖w − z‖2.

(76)
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Proof. (a): this is nothing but (69).
(b): Using (70.a) in Lemma 3 we can write for u = r+:

V (w, r+) ≤ V (z, r+) + 〈ζ, r+ − w〉 − V (z, w).

This results in

V (z, r+) ≥ V (w, r+) + V (z, w) + 〈ζ, w − r+〉.(77)

Now using (70.a) with η substituted for ζ we get

V (r+, u) ≤ V (z, u) + 〈η, u − r+〉 − V (z, r+)

= V (z, u) + 〈η, u− w〉+ 〈η,w − r+〉 − V (z, r+)

≤ V (z, u) + 〈η, u− w〉+ 〈η − ζ, w − r+〉 − V (z, w) − V (w, r+) [by (77)]

≤ V (z, u) + 〈η, u− w〉+ 〈η − ζ, w − r+〉 −
1

2
[‖w − z‖2 + ‖w − r+‖2],

where the concluding inequalities are due to the strong convexity of ω(·).
To conclude the bound (b) of (76) it suffices to note that by the Young
inequality,

〈η − ζ, w − r+〉 ≤
‖η − ζ‖2∗

2
+

1

2
‖w − r+‖2.

50. We are able now to prove Theorem 2. By (4) we have

‖F̂ (wτ )− F̂ (rτ−1)‖2∗ ≤ (L‖rτ−1 − wτ‖+M + ǫrτ−1 + ǫwτ )
2

≤ 3L2‖wτ − rτ−1‖2 + 3M2 + 3(ǫrτ−1 + ǫwτ )
2.(78)

Applying Lemma 4 with z = rτ−1, ζ = γτ F̂ (rτ−1), η = γτ F̂ (wτ ) (so that
w = wτ and r+ = rτ ), we have for any u ∈ Z

〈γτ F̂ (wτ ), wτ − u〉+ V (rτ , u)− V (rτ−1, u)

≤ γ2τ
2
‖F̂ (wτ )− F̂ (rτ−1)‖2 −

1

2
‖wτ − rτ−1‖2

≤ 3γ2τ
2

[
L2‖wτ − rτ−1‖2 +M2 + (ǫrτ−1 + ǫwτ )

2
]
− 1

2
‖wτ − rτ−1‖2 [by (78)]

≤ 3γ2τ
2

[
M2 + (ǫrτ−1 + ǫwτ )

2
]
[by (65)]
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When summing up from τ = 1 to τ = t we obtain

t∑

τ=1

〈γτ F̂ (wτ ), wτ − u〉

≤ V (r0, u)− V (rt, u) +
t∑

τ=1

3γ2τ
2

[
M2 + (ǫrτ−1 + ǫwτ )

2
]

≤ Θ(r0) +
t∑

τ=1

3γ2τ
2

[
M2 + (ǫrτ−1 + ǫwτ )

2
]
.

Hence, for all u ∈ Z,

(79)

t∑

τ=1

〈γτF (wτ ), wτ − u〉

≤ Θ(r0) +
t∑

τ=1

3γ2τ
2

[
M2 + (ǫrτ−1 + ǫwτ )

2
]
+

t∑

τ=1

〈γτ∆τ , wτ − u〉

= Θ(r0) +
t∑

τ=1

3γ2τ
2

[
M2 + (ǫrτ−1 + ǫwτ )

2
]
+

t∑

τ=1

〈γτ∆τ , wτ − yτ−1〉

+
t∑

τ=1

〈γτ∆τ , yτ−1 − u〉

where yτ are given by (64). Since the sequences {yτ}, {ξτ = γτ∆τ} satisfy
the premise of Corollary 2, we have

(∀u ∈ Z) :
t∑

τ=1

〈γτ∆τ , yτ−1 − u〉 ≤ V (r0, u) +
t∑

τ=1

γ2τ
2
‖∆τ‖2∗

≤ Θ(r0) +
t∑

τ=1

γ2τ
2
ǫ2wτ

,

and thus (79) implies that for any u ∈ Z

(80)
t∑

τ=1

〈γτF (wτ ), wτ − u〉 ≤ Γ(t)

with Γ(t) defined in (67). To complete the proof of (66) in the general case,
note that since F is monotone, (80) implies that for all u ∈ Z,

t∑

τ=1

γτ 〈F (u), wτ − u〉 ≤ Γ(t),
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whence

∀(u ∈ Z) : 〈F (u), ẑt − u〉 ≤
[

t∑

τ=1

γτ

]−1

Γ(t).

When taking the supremum over u ∈ Z, we arrive at (66).
In the case of a Nash v.i., setting wτ = (wτ,1, . . . , wτ,m) and u = (u1, . . . , um)

and recalling the origin of F , due to the convexity of φi(zi, z
i) in zi, for all

u ∈ Z we get from (80):

t∑

τ=1

γτ

m∑

i=1

[φi(wτ )− φi(ui, (wτ )
i)] ≤

t∑

τ=1

γτ

m∑

i=1

〈F i(wτ ), (wτ )i − ui〉 ≤ Γ(t).

Setting φ(z) =
∑m
i=1 φi(z), we get

t∑

τ=1

γτ

[
φ(wτ )−

m∑

i=1

φi(ui, (wτ )
i)

]
≤ Γ(t).

Recalling that φ(·) is convex and φi(ui, ·) are concave, i = 1, . . . ,m, the
latter inequality implies that

[
t∑

τ=1

γτ

] [
φ(ẑt)−

m∑

i=1

φi(ui, (ẑt)
i)

]
≤ Γ(t),

or, which is the same,

m∑

i=1

[
φi(ẑt)−

m∑

i=1

φi(ui, (ẑt)
i)

]
≤
[

t∑

τ=1

γτ

]−1

Γ(t).

This relation holds true for all u = (u1, . . . , um) ∈ Z; taking maximum of
both sides in u, we get

ErrN(ẑt) ≤
[

t∑

τ=1

γτ

]−1

Γ(t).

5.2. Proof of Theorem 1. In what follows, we use the notation from The-
orem 2. By this theorem, in the case of constant stepsizes γτ ≡ γ we have

Errvi(ẑt) ≤ [tγ]−1 Γ(t),(81)

where

Γ(t) = Ω2 +
3γ2

2

t∑

τ=1

[
M2 + (ǫrτ−1 + ǫwτ )

2 +
ǫ2wτ

3

]
+ γ

t∑

τ=1

〈∆τ , wτ − yτ−1〉

≤ Ω2 +
7γ2

2

t∑

τ=1

[
M2 + ǫ2rτ−1

+ ǫ2wτ

]
+ γ

t∑

τ=1

〈∆τ , wτ − yτ−1〉.(82)
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For a Nash v.i., Errvi in this relation can be replaced with ErrN.
Let us suppose that the random vectors ζi are defined on the probability

space (Ω,F ,P). We define two nested families of σ-fields Fi = σ(r0, ζ1, ζ2,
. . . , ζ2i−1) and Gi = σ(r0, ζ1, ζ2, . . . , ζ2i), i = 1, 2, . . . , so that F1 ⊂ · · · Gi−1 ⊂
Fi ⊂ Gi ⊂ · · · . Then by description of the algorithm rτ−1 is Gτ−1-measurable
and wτ is Fτ -measurable. Therefore ǫrτ−1 is Fτ -measurable, and ǫwτ and ∆τ

are Gτ -measurable. We conclude that under Assumption I we have

(83) E
{
ǫ2rτ−1

|Gτ−1

}
≤ σ2, E

{
ǫ2wτ

|Fτ
}
≤ σ2, ‖E {∆τ |Fτ} ‖∗ ≤ µ,

and under Assumption II, in addition,

(84)
E
{
exp{ǫ2rτ−1

σ−2}
∣∣Gτ−1

}
≤ exp{1},

E
{
exp{ǫ2wτ

σ−2}
∣∣Fτ

}
≤ exp{1}.

Now, let

Γ0(t) =
7γ2

2

t∑

τ=1

[
M2 + ǫ2rτ−1

+ ǫ2wτ

]
.

We conclude by (83) that

(85) E {Γ0(t)} ≤ 7γ2t

2
[M2 + 2σ2].

Further, yτ−1 clearly is Fτ−1-measurable, whence wτ−yτ−1 is Fτ -measurable.
Therefore

E
{
〈∆τ , wτ − yτ−1〉

∣∣Fτ
}

= 〈E {∆τ |Fτ} , wτ − yτ−1〉
≤ µ‖wτ − yτ−1‖ ≤ 2µΩ,(86)

where the concluding inequality follows from the fact that Z is contained in
the ‖ · ‖-ball of radius Ω centered at zc, see (18). From (86) it follows that

E

{
γ

t∑

τ=1

〈∆τ , wτ − yτ−1〉
}

≤ 2µγtΩ.

Combining the latter relation, (81), (82) and (85), we arrive at (23). (i) is
proved.

To prove (ii), observe, first, that setting

Jt =
t∑

τ=1

[
σ−2ǫ2rτ−1

+ σ−2ǫ2wτ

]
,
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we get

(87) Γ0(t) =
7γ2M2t

2
+

7γ2σ2

2
Jt.

At the same time, setting Hj = σ(r0, ξ1, . . . , ξj}, we can write

Jt =
2t∑

j=1

ξj ,

where ξj ≥ 0 is Hj-measurable, and

E {exp{ξj}|Hj−1} ≤ exp{1},

see (84). It follows that
(88)

E



exp





k+1∑

j=1

ξj







 = E



E



exp





k∑

j=1

ξj



 exp{ξk+1}




∣∣Hk





= E



exp





k∑

j=1

ξj



E

{
exp{ξk+1}

∣∣Hk

}


 ≤ exp{1}E



exp





k∑

j=1

ξj







 .

Whence E[exp{J}] ≤ exp{2t}, and applying the Tchebychev inequality, we
get

∀Λ > 0 : Prob {J > 2t+ Λt} ≤ exp{−Λt}.
Along with (87) it implies that

(89) ∀Λ ≥ 0 : Prob

{
Γ0(t) >

7γ2t

2
[M2 + 2σ2] + Λ

7γ2σ2t

2

}
≤ exp{−Λt}.

Let now ξτ = 〈∆τ , wτ − yτ−1〉. Recall that wτ − yτ−1 is Fτ -measurable.
Besides this, we have seen that ‖wτ − yτ−1‖ ≤ D ≡ 2Ω. Taking into account
(84) and (86), we get

(90)
(a) E {ξτ |Fτ} ≤ ρ ≡ µD,

(b) E
{
exp{ξ2τR−2}|Fτ

}
≤ exp{1}, with R = σD.

Observe that exp{x} ≤ x + exp{9x2/16} for all x. Thus (90.b) implies for
0 ≤ s ≤ 4

3R

E {exp{sξτ}|Fτ} ≤ E{sξτ |Fτ}+E

{
exp

{
9s2ξ2τ
16

}
|Fτ

}

≤ sρ+ exp

{
9s2R2

16

}
≤ exp

{
sρ+

9s2R2

16

}
.(91)
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Further, we have sξτ ≤ 3
8s

2R2 + 2
3ξ

2
τR

−2, hence for all s ≥ 0,

E {exp{sξτ}|Fτ } ≤ exp{3s2R2/8}E
{
exp

{
2ξ2τ
3R2

}
|Fτ

}
≤ exp

{
3s2R2

8
+

2

3

}
.

When s ≥ 4
3R , the latter quantity is ≤ exp{3s2R2/4}, which combines with

(91) to imply that for s ≥ 0,

(92) E {exp{sξτ}|Fτ} ≤ exp{sρ+ 3s2R2/4}.

Acting as in (88), we derive from (92) that

s ≥ 0 ⇒ E

{
exp

{
s

t∑

τ=1

ξτ

}}
≤ exp{stρ+ 3s2tR2/4},

and by the Tchebychev inequality, for all Λ > 0,

Prob

{
t∑

τ=1

ξτ > tρ+ ΛR
√
t

}
≤ inf

s≥0
exp{3s2tR2/4−sΛR

√
t} = exp{−Λ2/3}.

Finally, we arrive at
(93)

Prob

{
γ

t∑

τ=1

〈∆τ , wτ − yτ−1〉 > 2γ
[
µt+ Λσ

√
t
]
Ω

}
≤ exp{−Λ2/3}.

for all Λ > 0. Combining (81), (82), (89) and (93), we get (24).

5.3. Proof of Lemma 1.

Proof of (i). We clearly have Zo = Xo×Y o, and ω(·) is indeed continuously
differentiable on this set. Let z = (x, y) and z′ = (x′, y′), z, z′ ∈ Z. Then

〈ω′(z)− ω′(z′), z − z′〉

=
1

Ω2
x

〈ω′
x(x)− ω′

x(x
′), x− x′〉+ 1

Ω2
y

〈ω′
y(y)− ω′

y(y
′), y − y′〉

≥ 1

Ω2
x

‖x− x′‖2x +
1

Ω2
y

‖y − y′‖2y ≥ ‖[x′ − x; y′ − y]‖2.

Thus, ω(·) is strongly convex on Z, modulus 1, w.r.t. the norm ‖·‖. Further,
the minimizer of ω(·) on Z clearly is zc = (xc, yc), and it is immediately seen
that maxz∈Z V (zc, z) = 1, whence Ω =

√
2.
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Proof of (ii). 10. Let z = (x, y) and z′ = (x′, y′) with z, z′ ∈ Z. Note that
by assumption G in Section 4.1 we have

(94) ‖y′‖y ≤ 2Ωy.

Further, we have from (12) F (z′)− F (z) = [∆x;∆y], where

∆x =
m∑

ℓ=1

[φ′ℓ(x
′)− φ′ℓ(x)]

∗[Aℓy
′ + bℓ] +

m∑

ℓ=1

[φ′ℓ(x)]
∗Aℓ[y

′ − y],

∆y = −
m∑

ℓ=1

A∗
ℓ [φℓ(x)− φℓ(x

′)] + Φ′
∗(y

′)− Φ′
∗(y).

We have

‖∆x‖x,∗

= max
h∈X ‖h‖x≤1

〈h,
m∑

ℓ=1

[[φ′ℓ(x
′)− φ′ℓ(x)]

∗[Aℓy
′ + bℓ] + [φ′ℓ(x)]

∗Aℓ[y
′ − y]]〉X

≤
m∑

ℓ=1

[
max
h∈X

‖h‖x≤1

〈h, [φ′ℓ(x′)− φ′ℓ(x)]
∗[Aℓy

′ + bℓ]〉X + max
h∈X,

‖h‖x≤1

〈h, [φ′ℓ(x)]∗Aℓ[y
′ − y]〉X

]

=

m∑

ℓ=1

[
max
h∈X

‖h‖x≤1

〈[φ′ℓ(x′)− φ′ℓ(x)]h,Aℓy
′ + bℓ〉X + max

h∈X ,‖h‖x≤1
〈[φ′ℓ(x)]h,Aℓ[y

′ − y]〉X
]

≤
m∑

ℓ=1

[
max

h∈X ‖h‖x≤1
‖[φ′ℓ(x′)− φ′ℓ(x)]h‖(ℓ)‖Aℓy

′ + bℓ‖(ℓ,∗)

+ max
h∈X ‖h‖x≤1

‖φ′ℓ(x)h‖(ℓ)‖Aℓ[y
′ − y]‖(ℓ,∗)

]
.

Then by (32),

‖∆x‖x,∗

≤
m∑

ℓ=1

[
[Lx‖x− x′‖x +Mx][‖Aℓy

′‖(ℓ,∗) + ‖bℓ‖(ℓ,∗)] + ΩxLx‖Aℓ[y − y′]‖(ℓ,∗)
]

= [Lx‖x− x′‖x +Mx]
m∑

ℓ=1

[‖Aℓy
′‖(ℓ,∗) + ‖bℓ‖(ℓ,∗)] + ΩxLx

m∑

ℓ=1

‖Aℓ[y − y′]‖(ℓ,∗)

≤ [Lx‖x− x′‖x +Mx][A‖y′‖y + B] + ΩxLxA‖y − y′‖y,

by definition of A and B. Next, due to (94) we get by definition of ‖ · ‖

‖∆x‖x,∗ ≤ [Lx‖x− x′‖x +Mx][2AΩy + B] + ΩxLxA‖y − y′‖y
≤ [ΩxLx‖z − z′‖+Mx][2AΩy + B] + ΩxLxAΩy‖z − z′‖,
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which implies

(95) ‖∆x‖x,∗ ≤ [3AΩxLxΩy + B] ‖z − z′‖+ [2AΩy + B]Mx.

Further,

‖∆y‖y,∗ = max
η∈Y ,‖η‖y≤1

〈
η,−

m∑

ℓ=1

A∗
ℓ [φℓ(x)− φℓ(x

′)] + Φ′
∗(y

′)−Φ′
∗(y)

〉

Y

≤ max
η∈Y ,‖η‖y≤1

m∑

ℓ=1

〈η,A∗
ℓ [φℓ(x)− φℓ(x

′)]〉Y + ‖Φ′
∗(y

′)− Φ′
∗(y)‖y,∗

= max
η∈Y ,‖η‖y≤1

m∑

ℓ=1

〈Aℓη, φℓ(x)− φℓ(x
′)〉Eℓ + ‖Φ′

∗(y
′)− Φ′

∗(y)‖y,∗

≤ max
η∈Y ,‖η‖y≤1

m∑

ℓ=1

‖Aℓη‖(ℓ,∗)‖φℓ(x)− φℓ(x
′)‖(ℓ) + ‖Φ′

∗(y
′)− Φ′

∗(y)‖y,∗

≤ max
η∈Y ,‖η‖y≤1

m∑

ℓ=1

‖Aℓη‖(ℓ,∗)ΩxLx‖x− x′‖x + [Ly‖y − y′‖y +My],

by (32.b) and (34). Therefore

‖∆y‖y,∗ ≤ AΩxLx‖x− x′‖x + Ly‖y − y′‖y +My,

whence

(96) ‖∆y‖y,∗ ≤ [AΩ2
xLx +ΩyLy]‖z − z′‖+My.

From (95), (96) it follows that

‖F (z)− F (z′)‖∗ ≤ Ωx‖∆x‖x,∗ +Ωy‖∆y‖y,∗
≤
[
4ALxΩ2

xΩy +ΩxB +Ω2
yLy

]
‖z − z′‖+ [2AΩxΩy +ΩxB]Mx +ΩyMy.

We have justified (37)
20. Let us verify (38). The first relation in (38) is readily given by (33.a,c).

Let us fix z = (x, y) ∈ Z and i, and let
(97)
∆ = F (z) − Ξ(z, ζi)

= [
∑m

ℓ=1
[φ′ℓ(x)−Gℓ(x, ζi)]

∗
ψℓ︷ ︸︸ ︷

[Aℓy + bℓ]
︸ ︷︷ ︸

∆x

;−
∑m

ℓ=1
A∗
ℓ [φℓ(x)− fℓ(x, ζi)]

︸ ︷︷ ︸
∆y

.
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As we have seen,

(98)
m∑

ℓ=1

‖ψℓ‖(ℓ,∗) ≤ 2AΩy + B.

Besides this, for uℓ ∈ Eℓ we have
(99)∥∥∥∥∥

m∑

ℓ=1

A∗
ℓuℓ

∥∥∥∥∥
y,∗

= max
η∈Y , ‖η‖y≤1

〈
m∑

ℓ=1

A∗
ℓuℓ, η

〉

Y
= max

η∈Y , ‖η‖y≤1

〈
m∑

ℓ=1

uℓ,Aℓη

〉

Y

≤ max
η∈Y , ‖η‖y≤1


 ∑

1≤ℓ≤m
‖uℓ‖(ℓ)‖Aℓη‖(ℓ,∗)




≤ max
η∈Y , ‖η‖y≤1

[
max

1≤ℓ≤m
‖uℓ‖(ℓ)

] ∑

1≤ℓ≤m
‖Aℓη‖(ℓ,∗) = A max

1≤ℓ≤m
‖uℓ‖(ℓ).

Hence, setting uℓ = φℓ(x)− fℓ(x, ζi) we obtain
(100)

‖∆y‖y,∗ =
∥∥∥∥∥

m∑

ℓ=1

A∗
ℓ [φℓ(x)− fℓ(x, ζi)]

∥∥∥∥∥
y,∗

≤ A max
1≤ℓ≤m

‖φℓ(x)− fℓ(x, ζi)‖(ℓ)
︸ ︷︷ ︸

ξ=ξ(ζi)

.

Further,

‖∆x‖x,∗ = max
h∈X , ‖h‖x≤1

〈
h,

m∑

ℓ=1

[φ′ℓ(x)−Gℓ(x, ζi)]
∗ψℓ

〉

X

= max
h∈X , ‖h‖x≤1

m∑

ℓ=1

〈[φ′ℓ(x)−Gℓ(x, ζi)]h, ψℓ〉X

≤ max
h∈X , ‖h‖x≤1

m∑

ℓ=1

‖[φ′ℓ(x)−Gℓ(x, ζi)]h‖(ℓ)‖ψℓ‖(ℓ,∗)

≤
m∑

ℓ=1

max
h∈X , ‖h‖x≤1

‖[φ′ℓ(x)−Gℓ(x, ζi)]h‖(ℓ)
︸ ︷︷ ︸

ξℓ=ξℓ(ζi)

‖ψℓ‖(ℓ,∗)︸ ︷︷ ︸
ρℓ

Invoking (98), we conclude that

(101) ‖∆x‖x,∗ ≤
m∑

ℓ=1

ρℓξℓ,

where all ρℓ ≥ 0,
∑
ℓ ρℓ ≤ 2AΩy + B and

ξℓ = ξℓ(ζi) = max
h∈X , ‖h‖x≤1

‖[φ′ℓ(x)−Gℓ(x, ζi)]h‖(ℓ)
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Denoting by p2(η) the second moment of a scalar random variable η, ob-
serve that p(·) is a norm on the space of square summable random variables
representable as deterministic functions of ζi, and that

p(ξ) ≤ ΩxMx, p(ξℓ) ≤Mx

by (33.b,d). Now by (100), (101),

[
E
{
‖∆‖2∗

}] 1
2

=
[
E
{
Ω2
x‖∆x‖2x,∗ +Ω2

y‖∆y‖2y,∗
}] 1

2

≤ p (Ωx‖∆x‖x,∗ +Ωy‖∆y‖y,∗) ≤ p

(
Ωx

m∑

ℓ=1

ρℓξℓ +ΩyAξ
)

≤ Ωx
∑

ℓ

ρℓmax
ℓ
p(ξℓ) + ΩyAp(ξ)

≤ Ωx[2AΩy + B]Mx +ΩyAΩxMx,

and the latter quantity is ≤ M , see (37). We have established the second
relation in (38).

30. It remains to prove that in the case of (39), relation (40) takes place.
To this end, one can repeat word by word the reasoning from item 20 with the
function pe(η) = inf

{
t > 0 : E

{
exp{η2/t2}

}
≤ exp{1}

}
in the role of p(η).

Note that similarly to p(·), pe(·) is a norm on the space of random variables
η which are deterministic functions of ζi and are such that pe(η) <∞.

5.4. Proof of Lemma 2. Item (i) can be verified exactly as in the case of
Lemma 1; the facts expressed in (i) depend solely on the construction from
Section 4.2 preceding the latter Lemma, and are independent of what are
the setups for X,X and Y,Y.

Let us verify item (ii). Note that we are in the situation

(102)
‖(x, y)‖ =

√
‖x‖21/(2 ln(n)) + |y|21/(4 ln(p(1))),

‖(ξ, η)‖∗ =
√
2 ln(n)‖ξ‖2∞ + 4 ln(p(1))|η|2∞.

For z = (x, y), z′ = (x′, y′) ∈ Z we have

F (z)− F (z′) =
[
[Tr((y − y′)A1); . . . ; Tr((y − y′)An)]︸ ︷︷ ︸

∆x

;−
∑n

j=1
(xj − x′j)Aj

︸ ︷︷ ︸
∆y

]
.

whence

‖∆x‖∞ ≤ |y − y′|1 max
1≤j≤n

|Aj |∞ ≤ 2
√
ln(p(1))A∞‖z − z′‖,

|∆y|∞ ≤ ‖x− x′‖∞ max
1≤j≤n

|Aj |∞ ≤
√
2 ln(n)A∞‖z − z′‖,
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and

‖(∆x, ∆y)‖∗ ≤ 2
√
2 ln(n) ln(p(1))A∞‖z − z′‖,

as required in (59). Further, relation (60.a) is clear from the construction of
Ξk. To prove (60.b), observe that when (x, y) ∈ Z, we have ‖Ξx(x, y, η)‖∞ ≤≤
A∞, |Ξy(x, y, η)|∞ ≤ A∞ (see (57), (58)), whence

‖Ξx(x, y, η) − F x(x, y)‖∞ ≤ 2A∞,

|Ξy(x, y, η) − F y(x, y)|∞ ≤ 2A∞
(103)

due to F (x, y) = Eη {Ξ(x, y, η)}, Applying [5, Theorem 2.1(iii), Example
3.2, Lemma 1], we derive from (103) that for every (x, y) ∈ Z and every
i = 1, 2, . . . it holds

E
{
exp{‖Ξxk(x, y, ζi)− F x(x, y)‖2∞/N2

k,x}
}
≤ exp{1},

Nk,x = 2A∞

(
2 exp{1/2}

√
ln(n) + 3

)
k−1/2

and

E
{
exp{‖Ξyk(x, y, ζi)− F y(x, y)‖2∞/N2

k,y}
}
≤ exp{1},

Nk,y = 2A∞

(
2 exp{1/2}

√
ln(p(1)) + 3

)
k−1/2.

Combining the latter bounds with (102) we get (60.b).
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