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Abstract: Data on how many scientific findings are reproducible are gen-
erally bleak and a wealth of papers have warned against misuses of the
p-value and resulting false findings in recent years. This paper discusses
the question of what we can(not) learn from the p-value, which is still
widely considered as the gold standard of statistical validity. We aim to
provide a non-technical and easily accessible resource for statistical prac-
titioners who wish to spot and avoid misinterpretations and misuses of
statistical significance tests. For this purpose, we first classify and describe
the most widely discussed (“classical”) pitfalls of significance testing, and
review published work on these misuses with a focus on regression-based
“confirmatory” study. This includes a description of the single-study bias
and a simulation-based illustration of how proper meta-analysis compares
to misleading significance counts (“vote counting”). Going beyond the clas-
sical pitfalls, we also use simulation to provide intuition that relying on the
statistical estimate “p-value” as a measure of evidence without consider-
ing its sample-to-sample variability falls short of the mark even within an
otherwise appropriate interpretation. We conclude with a discussion of the
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exigencies of informed approaches to statistical inference and corresponding
institutional reforms.
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1. Introduction

Data on how many scientific findings are reproducible are generally bleak and a
wealth of papers have warned against false findings in recent years. The reasons
for false discoveries are manifold, but misuses and misinterpretations of sta-
tistical significance testing based on p-values are the most prominently decried
ones. In the light of prevalent and persistent misunderstandings, even the Amer-
ican Statistical Association (ASA) felt compelled to issue a warning that the
p-value can neither be used to determine whether a scientific hypothesis is true
nor whether a finding is important (Wasserstein and Lazar 2016). In a Nature
paper, Baker (2016: 151) comments: “This is the first time that the 177-year-
old ASA has made explicit recommendations on such a foundational matter in
statistics, says executive director Ron Wasserstein. The society’s members had
become increasingly concerned that the P value was being misapplied in ways
that cast doubt on statistics generally, he adds.” The ASA apparently considers
inappropriate interpretations and uses of significance tests so serious a threat
to statistics and science in general that, as a follow-up to its statement, it orga-
nized a symposium under the heading Scientific Method for the 21st Century:
A World beyond p < 0.05 in fall 2017.

While a great variety of misuses and misinterpretations of the p-value are
addressed in the literature concerned with the “reproducibility crisis,” we believe
that they can be best systematized using a typology of four categories:

(1) One group of papers focus on multiple testing that is left uncor-
rected for in many studies. This leads to inflated claims of statistical signifi-
cance. While the problem is well known in experimental research, it also arises
in the regression-based analysis of observational data that is widely used in
the economic and social sciences.1 Even though multiple testing is evident in
multiple regression analysis whenever researchers independently perform and in-
terpret more than one test on one data set, many scientists ignore the problem

1 In designed experiments, multiple hypothesis testing arises when we test several “con-
trasts of interest” (multiple treatments, multiple subgroups, multiple response variables, etc.).
It also arises in non-experimental confirmatory analysis using multiple regression when, follow-
ing widespread but often debatable practice, several hypotheses are subjected to “significance
testing” one by one as if they were independent. Romano et al. (2010) note that it is quite
common in empirical economic research to fit a multiple regression model and test several
coefficients against the null. While there would be no multiple testing problem if one focused
a priori on one hypothesis, the multiple testing problem (inflation of evidence) arises if one
searches the list of p-values for significant results a posteriori. Romano et al. (2010) deplore
that the latter case is much more common.
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due to the “conventionality” of the model. Imagine a set of 10 hypotheses that
are subjected one by one to significance testing. Assume the 10 corresponding
regressors to be independent and completely non-predictive. Despite the com-
pletely random probabilistic structure, there is a 40% chance (= 1 − 0.9510)
of finding at least one statistically significant coefficient at the conventional
threshold of p∗ = 0.05 (Altman and Krzywinski 2017). Even more disastrous
is covert multiple testing in conjunction with selective reporting. Testing al-
ternative data, hypotheses, or analytical variants, and reporting only what has
produced low p-values has been coined “p-hacking.” Simmons et al. (2011: 1359)
note that it is common “to explore various analytic alternatives, to search for a
combination that yields ‘statistical significance’, and to then report only what
‘worked’. The problem, of course, is that the likelihood of at least one (of many)
analyses producing a falsely positive finding at the 5% level is necessarily greater
than 5%.”

(2) A second class of papers tackle the semantically induced misunder-
standings (cognitive biases) that the delusive language of frequentist statis-
tics causes even among scientists. This group of papers stress the limitations
of statistical significance testing that are present even if there are no multi-
ple testing problems. They emphasize that the frequentist p-value concept can
do much less to inform us about the reliability of scientific findings than what
the persistently recurring colloquial associations with statistical terms such as
significance, error probability, confidence interval, and inference suggest. This
was also highlighted in the ASA-statement by Wasserstein and Lazar (2016)
who stated that the p-value is neither the probability of a hypothesis nor a
good measure of the evidence regarding a model or hypothesis. In the words of
Greenland et al. (2016: 337), the departure point of these papers can be char-
acterized as follows: “Misinterpretation and abuse of statistical tests, [. . . ] have
been decried for decades, yet remain rampant. A key problem is that there are
no interpretations of these concepts that are at once simple, intuitive, correct,
and foolproof. Instead, correct use and interpretation of these statistics requires
an attention to detail which seems to tax the patience of working scientists.
This high cognitive demand has led to an epidemic of shortcut definitions and
interpretations that are simply wrong, sometimes disastrously so – and yet these
misinterpretations dominate much of the scientific literature.”

(3) A third class of papers is concerned with the exaggerated focus on
one-shot studies (single-study bias) and the question of how to summarize
the findings of individual studies to obtain an appropriate picture of the state
of knowledge in a given field (meta-analysis). Borenstein et al. (2009: xxi) state
that “rather than looking at any study in isolation, we need to look at the body
of evidence.” The essence of meta-analysis is best explained by comparing it
to narrative reviews that simply count the studies that were declared statis-
tically significant, or not, at the arbitrary threshold of p∗ = 0.05. Contrasting
the tallies (“vote counting”), together with the mistaken belief that studies with
p-values on opposite sides of the conventional level of 0.05 are conflicting (Good-
man 2008), leads to a wrong picture of the body of evidence. Borenstein et al.
(2009: 14) claim that doing narrative reviews boils down to “doing arithmetic
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with words” and that “when the words are based on p-values the words are the
wrong words.” They contend that this problem practically “gallops” through
many research fields. In contrast, meta-analysis addresses the question of how
to arithmetically synthetize meta summary statistics (usually the meta effect
size and its p-value and confidence interval) based on the statistics provided in
individual studies.

(4) Looking at the publication bias (Smith 1980) or file drawer problem, a
fourth class of papers focus on researchers’ incentives and the perverse effects
of the scientific publishing system with its pressure to “publish [statistically
significant results] or perish.” Even if there were no inflation from multiple
testing and no misinterpretation of statistical significance tests, the file drawer
effect would distort the body of evidence towards results that can be declared
“statistically significant.” Starting with Sterling (1959) as an early precursor,
researchers have increasingly realized this bias in recent years. Even back in the
1970s, Rosenthal (1979: 638) vividly described the harmful consequences that
result from the preferences of researchers, reviewers and publishers for “signifi-
cant” novelties: “The extreme view of this problem, the ‘file drawer problem,’ is
that the journals are filled with the 5% of the studies that show Type I errors,
while the file drawers back at the lab are filled with the 95% of the studies that
show nonsignificant (e.g., p > .05) results.” The file drawer effect does not only
lead to the publication of unsubstantiated claims that are too rarely subjected
to independent scrutiny. It may also lead to wrong medical treatment or policy
recommendations with dire practical consequences.

Table 1 provides a summary of the pitfalls marked up above. While we will
describe them one by one, it should be noted that they are intimately linked:
first, misuses and misinterpretations often occur consecutively and may reinforce
each other and accumulate. Second, mistakes and distortions in the research pro-
cess may render subsequent procedures useless even if they are appropriate as
such. For example, even the most elaborate meta-analysis aimed at consolidat-
ing the available evidence from prior studies will yield nonsense results in the
presence of serious publication bias since it simply consolidates the distortion
(Kline 2013: chapter 9).

We have attached the label “classical” to the pitfalls in Table 1 because
they have already been widely discussed in the past. Despite the large body
of literature that has accumulated over the last decades on these issues (Oakes
1986; Cohen 1994; Nickerson 2000; Ioannidis 2005; Armstrong 2007; Simmons
et al. 2011; Motulsky 2014; Hirschauer et al. 2016; Wasserstein and Lazar 2016,
and many others), misapplications of statistical significance testing continue to
be an alarmingly “normal” practice for many scientists. With few exceptions
(e.g., Krämer 2011; Ziliak and McCloskey 2008), the acknowledgement of the
critical issues in statistical significance testing seems to be particularly low in
economics. This can be partly ascribed to the fact that papers concerned with
the pitfalls of significance declarations are not only scattered over disciplines
often remote from economics but also focused on experimental approaches aimed
at analyzing differences between treatment groups. Hence, an easily accessible
informational resource for economists, who heavily rely on the regression-based
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Table 1

Classical pitfalls of significance testing

Flaws when performing
significance tests

Mistakes when interpreting
significance tests

Within
study

(1) Uncorrected multiple
testing(= inflated claims of
statistical significance)

(2) Semantically induced
misinterpretations

• Unintentional disregard of evi-
dent multiple testing

• p-hacking : covert testing of mul-
tiple analytical variants and se-
lective reporting of those that
yielded “statistical significance”

• Inverse probability error (inter-
preting the p-value as the prob-
ability of the null)

• Sizeless stare or even equation
of significant effects with large
or important effects

• False dichotomy (interpreting
not statistically significant re-
sults as confirmation of the null)

Across
studies

(3) Exaggerated focus on
one-shot studies (= disregard of
prior knowledge)

(4) Publication bias/file
drawer effect (= distortion
towards positive results)

• Lacking meta-analysis

• Improper meta-analysis

(vote counting)

• Lacking Bayesian analysis

• Selective preparation and sub-
mission

• Selective reporting

(p-hacking)

• Selective publishing

study of observational data, is lacking. Furthermore, the p-value’s sample-to-
sample variability, even though it is a fundamental feature that severely limits
its suitability to indicate the strength of evidence, has been underexposed in the
economic literature so far (Berry 2016; Halsey et al. 2015).2

While some disciplines have adopted substantial reforms to abate inferen-
tial errors over the last decades, institutionalized reform efforts are at rather
moderate levels in the social sciences. In clinical drug trials, for example, pre-
registration and replication studies have by and large become a disciplinary stan-
dard (http://www.who.int/ictrp/network/primary/en/). Pre-registration
precludes the confusion of “confirmatory”3 and exploratory analysis because
researchers are prevented from inflating statistical significance claims through

2 A p-value is a summary statistic of the data. If the process that produced the data
justifies using probability theory to interpret a p-value (e.g., in the case of random sampling
or randomized assignment of treatments to units), then the p-value itself has a sampling
distribution. We cannot tell from a single sample where our observed p-value falls in its
distribution. It may come from the middle of the distribution or from one of the tails.

3 The established term “confirmatory analysis” might itself be misleading because it is
logically impossible to “confirm” a hypothesis and infer from the p-value whether the null
hypothesis or an alternative hypothesis is true. Rather than introduce new methodological
terminology, we nonetheless retain this term because it is widely used to describe the antipode
of “exploratory analysis.”

http://www.who.int/ictrp/network/primary/en/
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p-hacking. The low level of institutionalized reforms in the social sciences is not
only due to a limited problem awareness but also the fact that the regression-
based analysis of non-experimental data exhibits many characteristics (e.g., pre-
existing data, specification search, predominance of bottom-up research and
resulting model heterogeneity) that pose practical challenges for the effective
adoption of approaches from other fields such as pre-registration, systematic
replication, and meta-analysis.

When discussing the pitfalls of statistical significance testing, we should re-
member that the “p-value approach” was originally developed for experimental
research with randomized assignment of treatments to units and the subsequent
interpretation of differences between (small) treatment groups based on the anal-
ysis of variance (Fisher 1925; 1935). At present, however, it is broadly applied
across many scientific fields and research contexts. It is important to concep-
tually distinguish the different research contexts: besides hypothesis testing in
experiments, where the intended inference is about the causal effects of treat-
ments, it is also used for testing hypotheses in the regression-based study of
observational data, where the target of inference is about generalizing from a
random sample to its population;4 and besides hypothesis testing (confirmatory
study), the p-value is also used as flagging device in the exploratory search for
new hypotheses (hypothesis generation).

Against this background, we aim to provide a non-technical and easily ac-
cessible resource for statistical practitioners (with a focus on social scientists
including economists) who wish to spot and avoid misinterpretations and mis-
uses of statistical significance tests. Our paper focuses on misuses and misin-
terpretations of the p-value in regression-based confirmatory studies with
a focus on statistical significance testing (“hypothesis testing”) in the analysis
of (non-experimental) observational data. We touch upon exploratory study
(“hypothesis generation”) only to the extent to which it is necessary to show how
dangerous it is to blur the dividing line between exploratory and confirmatory
study, and to point out what the latter must refrain from. Furthermore, despite
the different types of inference, and despite our focus on the regression-based
analysis of observational data, we address experimental approaches to the extent
to which inferential errors (e.g., poor understanding of the summary statistic
“p-value” itself, disregard of multiplicities, single-study bias, publication bias)
arise in both research contexts.

A better understanding of inferential errors associated with the p-value will
not only foster the logical consistency of inferential arguments in individual fu-
ture studies but also help identify remedies in terms of organized approaches
aimed at increasing the quality of published research. We therefore first pro-
vide a systematic overview of the “classical” pitfalls of statistical significance
testing in section 2. This includes a simulation-based numerical illustration of

4 The justification for using the p-value includes measurement error: in experiments, the
error term and thus the standard error in the statistical model can reflect the fluctuations
due to random assignment or measurement error. Similarly, in the random sampling case,
the error term can be due to sampling error or measurement error. Conventional statistical
significance testing does not distinguish between these two but addresses them jointly.
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how meta-analysis could counteract the single-study bias. To complete the un-
derstanding that the p-value is a descriptive summary of a given data set but a
poor tool for making direct inductive inferences in terms of obtaining an epis-
temic probability that a hypothesis is true (Goodman 2008), section 3 focuses on
the p-value’s variability over replications. It uses simulation to provide intuition
that relying on the p-value as inferential tool without considering its sample-
to-sample variability falls short of the mark even within an otherwise correct
frequentist interpretation. Section 4 concludes with a discussion of what can be
done on the institutional level to improve the quality of published research and
statistical inference.

2. Classical pitfalls in significance testing

2.1. Uncorrected multiple testing

Unintentional disregard of evident multiple testing

Confirmatory studies based on experiments regularly analyze how various treat-
ments (multiplicity of treatments) affect various outcomes (multiplicity of ef-
fects) across various subgroups (multiplicity of groups). Contrary to a single
test, where the p-value denotes the probability of falsely rejecting the null when
it is valid, conventional p-values do not reflect the probability under the null in
the case of multiple testing. While adjustments for multiple tests on the same
data set are common in many other areas of science, it is still, “with a few
exceptions, [. . . ] uncommon for the analyses of these data to account for the
multiple hypothesis testing in economic experiments” (List et al. 2016: 1).

While even less accounted for, multiple testing is also present in confirmatory
studies based on the multiple regression analysis of observational data whenever
multiple tests are performed on one data set, i.e., whenever several hypotheses
are tested one by one (see footnote 1). This inflates claims of statistical signif-
icance analogous to multiple testing in experimental study. Let’s take a closer
look why. Adopting the frequentist null hypothesis testing assumption of no
association, significance testing of multiple regression coefficients represents a
Bernoulli experiment: we independently repeat, for each regressor, a trial with
two possible outcomes “significant” S and “not significant” S, with probabilities
P (S) = 0.05 = p∗, and P (S) = 0.95 = 1−p∗. The chance of finding “significant”
coefficients despite a fully random data structure is provided by the binomial
distribution Bm,p∗(k), with m indicating the number of regressors and thus
null hypotheses, p∗ = 0.05 the probability of falsely claiming significance, and
k ∈ {0, . . . ,m} the number of mistaken significance declarations (Altman and
Krzywinski 2017).

Table 2 illustrates how multiple tests inflate claims of statistical significance.
The implications are woeful if adjustment requirements are ignored. In this case,
a researcher might be convinced of having found several “significant” results at
the conventional level of p∗ = 0.05 without realizing that (s)he faces an inflated
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Table 2

Probability of k false significance declarations at the p∗ = 0.05 threshold in multiple
regressions with independent hypotheses tests and completely random data structure

Number of multiple tests (null hypotheses)
m = 1 m = 2 m = 3 m = 5 m = 10 m = 20

Bm,0.05 (0) = P (k = 0) 0.95 0.903 0.857 0.774 0.599 0.358
Bm,0.05 (1) = P (k = 1) 0.05 0.095 0.135 0.204 0.315 0.377
Bm,0.05 (2) = P (k = 2) – 0.003 0.007 0.021 0.075 0.189

P (k ≥ 1) = 1− 0.95m 0.05 0.098 0.143 0.226 0.401 0.642
Inflation factor:

P (k ≥ 1) /0.05
1.000 1.950 2.853 4.524 8.025 12.830

probability of 0.098 (0.143, 0.226, 0.401, 0.642) of finding at least one significant
coefficient in a multiple regression with 2 (3, 5, 10, 20) regressors even though
there is no association whatsoever in the data.

p-hacking: covert testing of multiple analytical variants and selective reporting

The arbitrary dichotomization of results into “significant” and “not significant,”
in conjunction with researchers’ self-interested desire to obtain findings that can
be declared “significant” is considered a major cause of the reproducibility crisis
(cf., e.g., Amrhein et al. 2017; Berry 2017; Gelman and Carlin 2017; Greenland
2017; MacShane et al. 2017; Trafimow et al. 2017). This holds for both ex-
perimental and observational study. The term “p-hacking” has been coined to
describe the behavior of researchers who try a multiplicity of analytical alterna-
tives and then report only the one that produced the desired result (Simmons
et al. 2011). In p-hacking there are several noteworthy features: first, the list of
possible analytical alternatives is near endless in most research contexts. Sec-
ond, problem awareness among researchers is frequently low, especially in the
analysis of observational data, due to the ambiguity of how much specification
search is appropriate.5 Third, the multiple analytical variants that can be tried

5 In designed experiments, we purposefully generate data to answer a given research ques-
tion and (at least ideally) use a pre-specified analytical model that is not altered after seeing
the data (“being blind to the data”). In contrast, regression-based analysis of observational
data must get along with pre-existing data or survey data that are often not particularly well-
suited to answer a given research question using a pre-specified model. It is therefore often
considered appropriate or even imperative to fit the analytical model to the data (specification
search). A simple example is when the violation of a distributional assumption is discovered
and rendered “innocuous” by a log-transformation. A much more critical instance of altering
a model after seeing the data is the removal of variables from an initial model because of
multi-collinearity, i.e., high correlations between regressor variables that result in high stan-
dard errors and p-values. Omitting correlated variables reduces the p-values of the remaining
coefficient estimates and thus invites overconfident inferential conclusions. Even worse, it is
likely to bias our estimates (omitted variable bias). In other words, the very fact that in
non-experimental confirmatory analysis it is not considered completely illegitimate to modify
an analytical model after seeing the data creates analytical ambiguities (a gray area between
“appropriate model fitting” and “p-hacking”) that, as Simmons et al. (2011) note, facilitate
the unconscious self-justification of choices that mesh with researchers’ desire to obtain low
p-values.
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often seem to have little in common at first view. They share one noxious qual-
ity, however: selective reporting of covert multiple tests may disastrously inflate
claims of statistical significance.

The literature concerned with the pitfalls of significance tests and declarations
has extensively discussed the various forms of p-hacking (see Hirschauer et al.
2016 for an overview). We do not intend to summarize this literature once more.
However, to facilitate the understanding in which ways p-hacking represents a
covert and thence especially harmful type of multiple testing, we briefly describe
the four main forms of p-hacking that can be distinguished.

a) Testing multiple data sets: Researchers might be tempted to explore
whether p-values can be reduced when the number of units in a sample is
manipulated. There are several possibilities: the reduction of sample size,
for example through a tentative elimination of outliers, is one possibility.
Another one is the increase of sample size if an original sample yielded
“disappointing” p-values. A general feeling that larger samples are better
may impede the awareness that this constitutes a test of multiple sam-
ple sizes. Finally, researchers might try which p-values they can obtain
when analyzing multiple data subsets (subgroups, cf., List et al. 2016).
Separately testing a treatment in 20 arbitrary subgroups and displaying
only significant results, for example, leads to “false positive probabilities”
as shown in the last column of Table 2 even when the effect is nil in all
subgroups (Kerr 1998; Motulsky 2014).

b) Testing multiple data transformations: Researchers might also be
tempted to check which (combination) of many conceivable data trans-
formations produces lower p-values than the original data. Possibilities
are plentiful: downgrading of measurement scales (e.g., age classes instead
of age in years), log-transformation, squaring, and the synthetization of
various variables including ratios and interaction terms. Some of these
manipulations may be claimed to be statistically appropriate in the light
of the theory, research question, and data – for example when researchers
realize, after seeing the data, that distributional assumptions are violated
(see footnote 5). They inflate claims of statistical significance, however, if
they are driven by a researcher’s significance-pursuing behavior.

c) Testing multiple variable sets: Besides the number of units in a sam-
ple, researchers might also be tempted to try out different predictor and
response variables. In experimental study, this implies pronouncing sta-
tistical significance for selected results after a multiplicity of treatments
were tested for a multiplicity of outcomes. Regression-based confirmatory
analysis may be threatened by similar practices. The choice of variables
to be included in a regression is often ambiguous: Which theoretical (la-
tent) constructs are to be included as predictor variables? Which manifest
variables (e.g., survey items) should be used to measure these constructs?
Which control variables should be considered? Mining for a combination
of variables that yields low p-values inflates statistical significance claims.
A researcher who studies, for example, how people’s attitudes towards or-
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ganic farming affect their willingness to pay for organic products produces
a distortion if (s)he keeps on searching for a survey item for “attitude”
until (s)he finds one that produces a “significant” result.

d) Testing multiple estimation models: Selecting statistical tests and
models also offers ample scope for decisions that “improve” p-values. For
example, when facing an ambiguous choice of whether to use a simple
OLS estimator or a panel data model, it would be good scientific practice
to transparently compare the results of both models. However, the rules
of good scientific practice are occasionally broken and data analyses are
not performed as planned in a prior study design but ad hoc adjusted
according to the criterion of which analytical model yields low p-values.
Scientific transparency is lost when the results of competing models are
neither explicitly reported nor comparatively discussed.

Disregarding multiplicities and notably p-hacking are problems that arise
when confirmatory and exploratory study are conceptually mixed up. Explor-
ing potentially interesting associations among a set of variables as well as ex-
plorative model fitting and variable selection can be an adequate firststep of the
research process. In exploratory study, p-values may help identify what might
be worth investigating with new data in the future (Head et al. 2015; Mo-
tulsky 2014).6 This exploratory exercise, however, must be clearly distinguished
from confirmatory analysis; i.e., the exploratory search for new hypotheses must
not be presented as hypothesis testing after results are known (HARKing; cf.,
Kerr 1998). Attaching the label “significance test” to p-values in exploratory
studies is misleading per se since no testable hypotheses exist. As reminder
for researchers and readers alike, Berry (2016: 2) thence suggests to include a
“black-box warning” into all exploratory studies: “Our study is exploratory and
we make no claims for generalizability. Statistical calculations such as p-values
and confidence intervals are descriptive only and have no inferential content.”
In contrast, not accounting for multiple testing in confirmatory analysis inflates
significance claims. It is nonetheless common in economics (Romano et al. 2010)
– even though ever-increasing numbers of models are tested and variables in-
cluded in regression models due to increased computing power and better data
availability (Ioannidis and Doucouliagos 2013).

Multiple testing adjustment requirements

We engage in multiple comparisons every time we perform and interpret sig-
nificance tests for more than one statistical hypothesis based on one data set.
Covert multiple testing (p-hacking) is hard to detect and overcome because it
withholds the information that is needed to correct for multiplicities. By con-
trast, adjustment tools are available for those who are ready to account for the
multiple tests they have made in accordance with their research interests. If, in

6 This seems to be what Fisher had in mind when noting that low p-values signify “worth
a second look” if we have little to no prior knowledge (cf., Gigerenzer et al. 2004; Lecoutre
and Poitevineau 2014; Nuzzo 2014).
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Table 3

Multiple testing adjustments for m = 3 consistent with a single-test threshold of 0.05

Conventionally computed (“raw”) p-values 0.01 0.03 0.04
Rank r of rawp-values 1 2 3
Family wise error rate (FWER) corrections
Significance threshold after Bonferroni adjustment:
0.05/m

0.0167 0.0167 0.0167

Significance threshold after Bonferroni-Holm adjustment:
0.05/(m+ 1− r)

0.0167 0.0250 0.0500

False discovery rate (FDR) correction
Significance threshold after Benjamini-Hochberg
adjustment: 0.05 · r/m

0.0167 0.0333 0.0500

a multiple testing setting, we are interested to make claims of statistical signif-
icance that are comparable to the one we would make for a single significance
test (i.e., at a threshold comparable to the conventional p∗ = 0.05), we have to
adjust the significance levels.7

Both the Bonferroni and the Bonferroni-Holm adjustment are used to control
the so-called family wise error rate (FWER or multiple type I error rate). The
logic behind the FWER correction is to restrict the probability of rejecting even
one null hypothesis when it is true, irrespective of how many of the other null
hypotheses are valid (Hochberg and Tamhane 1987; Pigeot 2000). The compu-
tationally easiest way to arrive at a family wise error rate is the Bonferroni
correction (see Fisher 1935). Assuming the conventional significance threshold
of 0.05, the Bonferroni correction implies that the adjusted threshold of 0.05/m
is used for each of a total number of m tests. For large m, this leads to extremely
small significance levels. This, in turn, usually results in only few null hypothe-
ses being rejected. In our example for m = 3 tests (see Table 3), only the effect
associated with the “raw” p-value of 0.01 would be declared significant since the
adjusted threshold is 0.0167. Hence, alternative and less conservative corrections
have been suggested. The Bonferroni-Holm adjustment (Holm 1979) is an exam-
ple. It calculates different thresholds for each one of the m tests. The respective
threshold is computed according to the formula 0.05/(m+ 1− r) and increases
with the rank r of the raw p-values. The rationale is to identify the smallest raw
p-value that is above the adjusted threshold and then declare all smaller raw
p-values “significant.” Following this rule in our example, we would still only
declare the raw p-value of 0.01 “significant” even though the Bonferroni-Holm
thresholds are generally less rigorous than the Bonferroni thresholds.8

7 Although adjusting the significance level is necessary in most cases of multiple testing,
there are special constellations where an inherent adjustment takes place within the very
system of tested hypotheses. This is the case for so-called closed families of hypotheses in the
special case of a coherent test procedure. The least-significant-differences test of Fisher (1935)
in case of one-way ANOVA falls into this class when three groups are compared, but not for
more than three groups. For details, see Pigeot (2000) or Didelez et al. (2006).

8 Another concept, the global level of simultaneous tests, can be directly linked to the
binomial distributions as shown in Table 2. The global level of simultaneous tests is aimed at
restricting the probability of rejecting one or more of the tested null hypotheses when all of
them are valid.
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A different perspective is adopted when using the concept of the false dis-
covery rate (Benjamini and Hochberg 1995) according to which different sig-
nificance levels for each of the m tests are computed based on the formula
0.05 · r/m. Here, the rationale is to identify the largest raw p-value that is be-
low or equal to the adjusted threshold and then declare this and all smaller raw
p-values “significant.” The FDR correction produces less rigorous thresholds
than the FWER correction. With the FDR rule, we would declare all three raw
p-values “significant.” To provide intuition, one could say that the FDR is aimed
at restricting the rate of valid null hypotheses being rejected relative to the to-
tal number of rejected hypotheses. One should keep in mind that, despite its
delusive naming, the FDR (along with the other non-Bayesian multiple testing
adjustments) shares the crucial limitation of the frequentist p-value approach:
it does not estimate the post-study probabilities of hypotheses given the data.
Analogous to the p-value, the frequentist FDR cannot work backwards and in-
form us about the probability of real-world phenomena (see section 2.2) – even
though we as researchers would want to have that kind of (inherently Bayesian)
information to assess the trustworthiness of our inductive conclusions.9

Contrary to multiple variables of interest that are subjected one by one to
significance testing, control variables, which often populate regression models in
large numbers, need not to be considered in multiple testing adjustment. Instead,
they have to be clearly identified as control variables and separated from the m
variables of interest. Disregarding control variables is only adequate, however,
if we explicitly distinguish between confirmatory and exploratory analysis. This
may require to clearly divide studies in two parts: a confirmatory part where we
perform a pre-defined number of multiple testsm, and an exploratory part where
we look at potentially interesting correlations in the control variables. As has
been said before, conventional p-values are an adequate focusing aid to identify
what might be worth investigating with new data. If this exploratory search
is not presented as confirmatory, which itself would be p-hacking (illegitimate
hidden testing) and HARKing (cf., Kerr 1998; Gigerenzer and Marewski 2015;
Motulsky 2014), no multiple testing corrections are needed.

Besides multiple hypotheses tested on the same data set in a given multi-
ple regression, an additional multiplicity problem may arise due to specifica-
tion search. In other words, it was easy to determine the number of tests m
that must be corrected for in our multiple regression example where we as-
sumed that a defined number m of pre-defined hypotheses were tested sepa-
rately. However, in many research settings, the determination of the number
of multiple tests and even the need for the consideration of multiple testing
may be less obvious. While obfuscating the dividing line between confirmatory
and exploratory research, many observational studies engage to some extent
in model fitting and retain one model as the final (“best”) model after dif-

9 To avoid confusion, the frequentist false discovery rate must be clearly distinguished
from the term’s Bayesian interpretation as used, for example, by Hirschauer et al. (2016)
and Motulsky (2014). The Bayesian false discovery rate (or: Bayesian error rate) is the post-
study probability of “no effect” and therefore the probability of a faulty scientific claim when
rejecting the null.
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ferent models have been evaluated using some measure of model fit (see foot-
note 5). This gives rise to many questions: how should we deal with variables
including controls, interaction terms, higher-order polynomials etc. that are in-
cluded in the regression besides the original variables in the course of the anal-
ysis? How should we consider tests of multiple model specifications in the first
place? The answer is straightforward in principle: whenever we perform multi-
ple tests on one data set, they need to be considered to prevent the inflation
of statistical significance claims. While we know that we arrive at overconfi-
dent conclusions if we assess the strength of evidence in only the “best” model
even though multiple alternatives had been tested (Forstmeier et al. 2016; Sim-
mons et al. 2011), we often lack the knowledge of how many analytical variants
have been tried out after seeing the data. This problem would be mitigated if
confirmatory research were completely based on pre-registration, where the re-
search hypotheses as well as the statistical model to test these hypotheses or at
least the analysis plan would be transparently specified before seeing the data
(Nosek et al. 2018).

We may summarize that the appropriate multiple testing adjustment depends
on the research setting. It is an often ambiguous choice on which we cannot
further elaborate in this paper. For a general overview and description of the
great variety of multiple comparison adjustments and their eligibility criteria
the reader is referred to Bretz et al. (2010) or Westfall et al. (2011).

2.2. Semantically induced misinterpretations of the p-value

Even if significance claims are not inflated, serious misunderstandings lurk due
to widespread cognitive biases in the interpretation of conditional probabilities
and the delusive technical terms of frequentist statistics that contradict everyday
language. The fact that a vast body of literature has decried these misinterpre-
tations over the last four decades (see Hirschauer et al. 2016 for an overview),
has apparently been of little avail. The ubiquity and persistence of faulty inter-
pretations of both experimental and observational data are, not least, caused by
the fact that they have been perpetuated over decades through academic teach-
ing and even through best-selling statistics textbooks (Haller and Krauss 2002;
Gigerenzer et al. 2004; Lecoutre and Poitevineau 2014; Krämer 2011; Nickerson
2000).

In regression-based econometric applications, the most common misinterpre-
tations of the p-value are best understood when realizing that the majority of
analyses are performed as if using the following misleading guidelines: (1) Run
a multiple regression. (2) Compute coefficients and p-values. (3) Declare coeffi-
cients with p-values below a threshold (usually 0.05) “statistically significant.”
(4) Do not reflect on the arbitrary dichotomization of results into “statistically
significant” and “not statistically significant.” (5) Implicitly attach a high trust-
worthiness or probability (possibly even 1− p) to statistically significant coeffi-
cients. (6a) Do not discuss the effect size or (6b) even suggest that a “significant
effect” is also large or important or (6c) simply claim the just-estimated effect to
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be real. (7) Attach the label “statistically nonsignificant” to coefficients with p-
values above 0.05 instead of noting that they are “not statistically significant” at
the arbitrary threshold. (8a) Interpret your “statistically nonsignificant” results
as minor or not noteworthy or (8b) even suggest that they can be interpreted
as a proof of no effect.

As a consequence of such misleading practices, researchers and readers alike
will not only overrate the inferential content of findings that have been declared
“statistically significant” but also of findings that have been declared “statis-
tically nonsignificant.” These dichotomous declarations will make them draw
similarly dichotomous existence/relevance conclusions that – to borrow a quote
from H.L. Mencken in the New York Evening Mail from November 16, 1917 –
are “neat, plausible, and wrong.” The first neat but wrong conclusion is that
effects with the label “statistically significant” can be considered to be real (and
may be large) with a high probability. The second neat but wrong conclusion
is that the label “statistically nonsignificant” is an indication or even proof of
no or little effect. Interpretations along this erroneous dichotomy is entrenched
practice for many researchers, a practice that is based on deeply engrained be-
liefs that result both from wishful thinking (desire for a “neat” interpretation)
and the inevitably wrong connotation of the word “significance” in everyday
language.

Unfortunately, the p-value, if correctly interpreted, has much less inferential
content than what colloquial associations with the terms “statistically signif-
icant” and “statistically nonsignificant” suggest (Berry 2016). Following the
misleading guidelines from above mirrors a serious misunderstanding of what
the p-value, which is merely a summary statistic of a given data set, can tell
about reality. It means falling prey to three fallacies that have been given dis-
tinct names: Cohen (1994) used the term inverse probability error to describe
the belief that the p-value is the conditional probability of (falsely rejecting) the
null hypothesis given the data under study. Instead, the p-value is the condi-
tional probability of finding the observed effect (or even a larger one) in random
replications if, as a thought experiment, we assumed the null hypothesis to be
true. Per definition, it cannot work inversely and inform us on the underlying
reality. But looking for answers to their scientific questions about reality, statisti-
cal practitioners often confuse frequentist and Bayesian probabilities and adopt
a Bayesian interpretation of frequentist measures such as the p-value.10 Mc-
Closkey and Ziliak (1996) coined the expression sizeless stare for the disregard
of effect size or the implicit equation of statistical significance with relevance.
In the light of the increasing availability of large samples, the näıve equation
of significance with relevance becomes more and more misleading because any
effect, even if very small and irrelevant, eventually becomes statistically signifi-

10 Cohen (1994: 997) succinctly described the harmful mixture of wishful thinking and
semantic confusion that causes the inverse probability error: “[the p-value] does not tell us
what we want to know, and we so much want to know what we want to know that, out of
desperation, we nevertheless believe that it does! What we want to know is ‘given these data,
what is the probability that H0 is true?’ But [. . . ], what it tells us is ‘given that H0 is true,
what is the probability of these (or more extreme) data?’ ”



150 N. Hirschauer et al.

cant in large samples.11 Hirschauer et al. (2016) used the term false dichotomy
to describe the logical fallacy that misleads people to first adopt an ill-founded
either-or perspective and then use the ensnaring label “statistically nonsignifi-
cant” that finally makes them interpret p-values above 0.05 (absence of statis-
tical significance) as an indication or even confirmation of the null (evidence of
absence).12

Colloquial associations that rashly equate “statistically significant” with “sci-
entifically trustworthy” may furthermore prevent researchers from realizing that
a meaningful interpretation of the p-value requires acknowledging its probabilis-
tic nature. Vogt et al. (2014: 242; 244) note that the classical tools for statistical
inference (including p-values) are inherently based on probability theory. They
conclude that “in research not employing random assignment or random sam-
pling, the classical approach to inferential statistics is inappropriate. [. . . ] If the
experimental and control groups have not been assigned using probability tech-
niques, or if the cases have not been sampled from a population using probability
methods, inferential statistics are not applicable. They are routinely applied in
inapplicable situations, but an error is no less erroneous for being widespread.”

In some instances, it is not clear whether we have a random sample or not.
Denton (1988: 166f.) notes that “where there is a sample there must be a pop-
ulation.” He points out that conceiving of the population can be difficult. The
easiest case is a sample drawn from a finite population such as the entirety of
a country’s citizens. Slightly less intuitive is an experiment such as flipping a
coin. Here, the population is an imaginary set of coin flip experiments that are
infinitely repeated under constant conditions. More conceptual challenges arise
in the case of observational data that are not a proportion of a larger population
but rather seem to represent the whole population (e.g., the macro-data of a
country). Here, the frequentist statistician must introduce an infinite “unseen
parent population” and a “generating process” from which we observe one ran-
dom realization under noise. Emphasizing that there are many people who will
not subscribe to the idea of a probability process underlying such observational
data, Denton notes with regard to such circumstances: “However, some notion
of an underlying process [. . . ] has to be accepted for the testing of hypotheses
in econometrics to make any sense” (Denton 1988: 167).

Using p-values in non-experimental study requires that the data represent (at
least approximately) a random sample of a defined parent population, or that

11 It is unlikely that any two real-world variables exhibit zero correlation. This is why
Lecoutre and Poitevineau (2014: 50) call the null hypothesis a “straw man” that significance
testing tries to knock down. Similarly, Leamer (1978: 89) notes that since “a large sample is
presumably more informative than a small one, and since it is apparently the case that we will
reject the null hypothesis in a sufficiently large sample, we might as well begin by rejecting
the hypothesis and not sample at all.”

12 The inverse probability error and the false dichotomy fallacy, even though jointly found
in many instances, are inconsistent in themselves. Committing the inverse probability error,
one would believe that p = 0.01 indicates a 1%-probability of the null being true and thus a
1%-probability of making a false claim when rejecting it. Similarly, one would have to believe
that a “nonsignificant” result with p = 0.15, for example, indicates a 15%-probability of the
null. After this error, one cannot logically interpret a “nonsignificant” result as a confirmation
of the null.
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one accepts the notion that they are a random realization from an unseen parent
population. In many contexts, the fact that even a truly random sample does not
exactly reflect the properties of the population (random sampling error) is the
least of worries. Data are frequently not obtained through random sampling but
affected by various types of selection bias. These problems are often more serious
than sampling error. Not having a random sample in observational study has
fundamental implications for the utilization of the p-value that, arithmetically,
can be computed for any data: (1) The p-values computed from non-random
samples have no meaningful interpretation. (2) The same holds when the sam-
ple itself represents a finite population of interest. In this case, random sampling
error is completely eliminated because we already have the population proper-
ties. (3) The p-value in observational study can only be meaningfully interpreted
if researchers explicitly define from which population the random sample has
been drawn and thence to which population a statistical inference is to be made.
(4) Statistical inference such as the generalization from a random sample to its
population is only the first step of scientific inference. Scientific inference is the
totality of reasoned judgments (inductive generalizations) that we (can) make
in the light of our own observations and the available body of evidence found
elsewhere. There is no easy-to-apply recipe or even calculus for making such
judgements. We instead have to critically rethink each situation. When trying
to answer the question, for example, of what we can learn from a sample of
agricultural students for a country’s student population or even its citizens, or
even human beings in general, we must keep in mind that a p-value can do
nothing to assess the generalizability of a result beyond the parent population
from which the random sample has been drawn.

2.3. Exaggerated focus on one-shot studies

Economic analyses are frequently based on multiple regression in which a “de-
pendent” or response variable (usually denoted as y) is modeled as a function
of several “independent” variables (usually denoted as xj). The independent
variables are often divided into focal variables of interest (focal predictors) and
variables that are used to control for confounding influences (control variables).
The direct outcomes of multiple regression analysis are the estimated coeffi-
cients β̂j (regression slopes) that relate the predictors xj to response y. If several
studies have tackled the same x–y relation (e.g., between education x1 and wage
earnings y), we are naturally interested in summarizing these findings.

In many areas of science, it is common to use methods known as meta-
analysis to obtain a concrete picture of the existing knowledge regarding a spe-
cific research question. Contrary to narrative reviews, meta-analyses are aimed
at computationally synthesizing the results from prior studies. Unfortunately,
the heterogeneity of multiple regression models in economics often make quan-
titative meta-analysis a difficult if not impossible task. In what follows, we first
outline the meta-analytical endeavors and its challenges in economics. We then
use a simulation-based example to illustrate the functional principle of meta-
analysis.
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Arguably going back to Stanley and Jarrell (1989), some economic meta-
analyses have been carried out on selected issues over the last decades. Zelmer
(2003), Cooper and Dutcher (2011), Engel (2011), and Lange (2016) addressed
economic experiments. Non-experimental meta-analyses were conducted by Card
and Krueger 1995, Crouch (1995), Loomis and White (1996), Fitzpatrick et al.
(2017), and Van Houtven et al. (2017). More than ten years ago, even a whole
issue of the Journal of Economic Surveys (cf., Roberts 2005) was dedicated
to the meta-analysis of regression coefficients. In the meanwhile, there is also a
Meta-Analysis of Economics Research Network that provides a platform for eco-
nomic meta-analyses. Nonetheless, the practice of meta-analysis is less common
in economics than other fields.13 What is more, even the statistical literature has
mainly dealt with the synthetization of measures such as (standardized) mean
differences or (risk or response) ratios that are primarily used in non-economic
experimental fields (e.g., medical sciences). In contrast, summarizing coefficients
from multiple regressions, which are the working horse of economists, has at-
tracted less attention (Becker and Wu 2007). The limited use of meta-analysis
in economics can be attributed to the fact that economic research is mainly a
non-programmed bottom-up research exercise. As such, it produces an enormous
quantity of empirical results on topical issues, but is also plagued by an enor-
mous heterogeneity of regression model specifications (Bruns 2017). Attempts to
summarize findings that deal with the same x–y relation (e.g., education-wage)
are thus hampered by a deficient or even lacking comparability of the regression
coefficients across prior studies.

The comparability of regression slopes across studies is severely constrained
by some basic features found in most economic research fields: first, the metrics
(scales and units of measurement) of independent and dependent variables usu-
ally differ across studies. Second, even if all variables are identically measured,
using structurally different models implies that the estimated coefficients are
usually beyond comparison. Third, even if identical metrics and model struc-
tures are used, comparability is jeopardized when models with different sets
of independent (control) variables are estimated. Fourth, even if metrics and
estimation models are similar, different studies may have drawn their samples
from different populations. Consequently, there may simply be no data base to
do a meta-analysis because each single study covers a different parent popula-
tion. Regression coefficients for the education-wage relation in France, Ghana,
and the US, for example, cannot be meaningfully synthesized into one summary
coefficient.

We use the univariate weighted least squares approach to demonstrate what
meta-analysis is about in principle. We assume that we are to summarize 20
individual studies based on different sample sizes (n = 20, 30, 40, 50). For the

13 Even a cursory look at economic publications will show that the critique by Stanley and
Jarrell (1989: 162) still applies: “The reviewer often impressionistically chooses which studies
to include in his review, what weights to attach to the results of these studies, how to interpret
the results, [. . . ]. Traditionally, economists have not formally adopted any systematic or ob-
jective policy for dealing with the critical issues which surround literature surveys. As a result,
reviews are rarely persuasive to those who do not already number among the converted.”
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sake of easy intuition, we avoid all complications, such as different metrics be-
tween studies, by simulating 20 samples (random realizations) from a “reality”
characterized by the linear relationship y = β0 + βx+ e, with β0 = 1, β = 0.2,
x ∈ {0.5, 1.0, 1.5, . . . , n/2}, and e∼N(μ;σ), with μ = 0 and σ = 5. In each single

study, an OLS regression is used to estimate β̂0 and the focal coefficient β̂.
Using the weighted least squares method, the summary coefficient β̂sum that

synthetizes the coefficients of the single studies is computed as follows (cf.,
Becker and Wu 2007: 7):

β̂sum =

I∑
i=1

β̂i·wi

/ I∑
i=1

wi, with wi = 1/ŜE
2

i (1)

where I is the number of single studies and β̂i is the coefficient estimated in the
ith study. The weight wi that is attributed to the coefficient from each study

i is the reciprocal of its squared standard error estimate ŜE
2

i ; and the ratio

wi/
∑I

i=1 wi denotes the percentage weight of each study. The standard error

of the summary coefficient β̂sum is:

ŜE
sum

=

(
1
/ I∑

i=1

wi

)0.5

. (2)

Table 4 describes the results of the meta-analysis. The p-values are com-
puted based on the assumption of standard normally distributed test scores and
one-sided tests. This reflects the assumption that the researchers who presum-
ably had carried out the 20 previous studies had qualitative prior knowledge
indicating a non-negative relation between x and y.

Several noteworthy findings and conclusions can be derived from Table 4:

1. A large majority of studies (14 in 20) have not found a statistically sig-
nificant result. This might mislead narrative reviewers to contrast tallies
and conclude that the results of these 20 studies represent contradictory
evidence or even overall a confirmation of no effect.

2. Meta-analysis is capable of leaving behind the arbitrary either-or interpre-
tation within each study. Instead, it synthesizes – with adequate weights
– the informational content of all studies given the fact that “the effect
best supported by the data from a given experiment [or random sample] is
always the observed effect, regardless of its significance” Goodman (2008:
136).

3. The meta effect size β̂sum = 0.195 approximates the true β = 0.2 quite
well. The meta p-value is 0.000000003. This shows that even a great ma-
jority of studies that are not statistically significant can together represent
a “highly statistically significant” effect. This is due to the fact that meta-
analysis is capable of including the informational content of studies even
if they are too small to produce statistical significance.

4. Given the meta effect size and its very low p-value, we would be confident
that the real-world level of β lies above 0 – and we would commonly refer
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Table 4

Meta-analysis for 20 single studies, each based on a simulated random sample from a reality
characterized by the x–y relation: y = 1 + 0.2x+ e, with e∼N(0; 5)

Study
No. i

Observations
n per study

Estimated
coefficient β̂

Standard
error ŜE

p-valuea) Weight (%)

1 0.008 0.267 0.487 1.56
2 −0.050 0.366 0.554 0.83
3 20 0.138 0.424 0.373 0.62
4 −0.083 0.294 0.611 1.29
5 0.166 0.471 0.362 0.50
6 0.121 0.201 0.274 2.76
7 0.240 0.249 0.167 1.80
8 30 0.560 0.206 0.003* 2.63
9 0.441 0.205 0.016* 2.65
10 0.330 0.178 0.032* 3.51
11 0.244 0.156 0.059 4.58
12 0.141 0.123 0.125 7.38
13 40 0.253 0.127 0.023* 6.92
14 0.213 0.143 0.069 5.44
15 0.177 0.146 0.113 5.21
16 0.284 0.095 0.001* 12.44
17 0.165 0.120 0.085 7.72
18 50 0.076 0.085 0.186 15.50
19 0.268 0.120 0.013* 7.70
20 0.097 0.112 0.192 8.95
Meta-analysis of all
20 studies (total no. of
observations: 700)

0.195 0.033 0.000* 100.00

Single large regression
(over all 700
observations)

0.212 0.027 0.000* −

a) p-values below the conventional threshold of p∗ = 0.05 are indicated by *.

to its estimated value of approximately 0.2 even though we realize that the
p-value does not provide a clear rationale or even calculus for statistical
inference (Goodman 2008).

5. Low p-values do not indicate results that are “more trustworthy” than
others. Considering only significant studies, for example, would introduce
a distortion (see section 3) and we would find a summary coefficient of
0.3109. That is, the results of all studies jointly represent the body of
evidence and are valuable and necessary, irrespective of their p-values, to
provide an approximately correct picture of the real-world regularity.

6. The 20 single studies in our illustrative example were not distorted but
based on 20 random realizations (simulations). If the single studies were
distorted due to publication bias (see section 2.4), the basic weighted least
squares method of meta-analysis, which is unable to control for such biases,
would simply summarize the distortion.14

14 While the weighted least squares approach is not able to control for publication bias,
meta-regression (cf., Stanley and Doucouliagos 2012; Stanley and Jarrell 1989) has been sug-
gested to control for the idiosyncrasies of model specifications in previous studies and notably
for publication bias.
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7. Being in the comfortable position to know all raw data, we also carried
out a single large regression over all n = 700 observations that serves as
benchmark for the meta-analytical calculus. The estimated β̂700 = 0.212
from the large regression is slightly above the true effect size β = 0.2 and
the computed meta effect size of β̂sum = 0.195.

Finally, one should bear in mind that conventional meta-analysis stays within
the confines of the frequentist approach: it does not provide probabilities of
scientific propositions given the data, or, as Kline (2013: 307) notes with re-
gard to experimental data, “a standard meta-analysis cannot answer the ques-
tion, What is the probability that the treatment has an effect?” Only Bayesian
methods can provide the post-study probabilities of scientific propositions that
researchers and users of scientific results are ultimately interested in (see foot-
note 10). While it is possible to combine Bayesian methods with meta-analytical
approaches (Howard et al. 2000; Kline 2013: 307), as the number of studies in-
creases, Bayesian methods become less important. This is due to the fact that we
consider an increasing number of observations and thus increasing evidence by
including more and more studies. Correspondingly, the number of studies that
remain unconsidered is declining. In the extreme, we include all prior studies
and consequently have an uninformative (flat) prior beyond these studies. If so,
the meta p-value approximates the post-study Bayesian error rate (Zyphur and
Oswald 2015).

The complications in multiple regressions that restrict the feasibility of meta-
analyses, as well as the eligibility of the meta-analytical approaches that are
available to deal with these problems, are beyond this paper’s scope. For fur-
ther study of meta-analysis, the reader is referred to Becker and Wu (2007),
Card (2012), Kline (2013: chapter 9), and Schmidt and Hunter (2014). For an
introduction to Bayesian methods, the reader is referred to Hartung et al. (2008:
chapter 12), Pitchforth and Mengersen (2013), and Zyphur and Oswald (2015).

2.4. Publication bias

The ill-directed incentives of the present publication system produce a bias to-
wards statistical significance (Fanelli 2011). This bias is arguably more covert
and higher in economics than other fields (Fanelli 2010), not least because repli-
cation is not a popular exercise among non-experimental economists (Evan-
schitzky and Armstrong 2010). While some researchers may honestly but er-
roneously believe that “starless” results are not interesting enough to warrant
publication (Sterne et al. 2008), the major problem is the one highlighted by
the “publish or perish” witticism: in our competitive research system, most re-
searchers are under pressure to produce journal papers with novel findings. If
papers with statistically significant findings (“positive” results) are more likely
to be published, researchers are likely to adopt one or several selection strategies:
selective preparation means not to conduct (replication) studies that are likely
to be a “waste of time” because they do not promise to produce statistically
significant novelties. Selective submission implies one does not submit papers
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Table 5

Selected methods for detecting publication bias

Method Authors
Comparison of published and
unpublished studies

Song et al. (2000); Sterne and Egger (2005)

Caliper test Berning and Weiß (2016); Gerber and Malhotra (2008)
p-curve analysis Head et al. (2015); Simonsohn et al. (2014)
Funnel plots Egger et al. (1997); Light and Pillemer (1984)
Capture-recapture method Bennett et al. (2004); Poorolajal et al. (2010)
Fail-safe N Rosenberg (2005); Rosenthal (1979)
Selection models Kicinski et al. (2015); Silliman (1997)

with results that are not statistically significant because they are unlikely to be
published. Selective reporting means p-hacking and the selective presentation
of an analytical variant that “worked best” in terms of producing significance.
Beyond the single researcher’s sphere of influence, there is finally the prob-
lem of selective publishing. Even if researchers are conscientious and scrupulous
enough to refrain from self-interested selection practices, reviewers and editors
have ample discretion to promote papers for publication that contain seeming
novelties. As result of all these selection processes, “significant” findings are
overrepresented and studies with negative results tend to stay in researchers’
“file drawers” (Rosenthal 1979) without ever being presented to the public. In
other words, they are missing but not missing at random and thence cause a
bias for significance. This leads to the definition by Kline (2013: 274) according
to which publication bias implies that published studies have more “statistically
significant” findings and larger effect sizes than unpublished studies (including
the ones that have not been made in the first place).

Over the last decades, a variety of meta-analytical methods have been devel-
oped to gauge publication bias (see Table 5). For a description of these methods
and their respective potential to identify selection procedures, the reader is re-
ferred to Cooper et al. (2009), Rothstein et al. (2005), Song et al. (2000), or
Weiß and Wagner (2011). In this paper, we will have to limit ourselves to briefly
describing a few selected approaches.

A first attempt to gauge publication bias is to compare gray literature (e.g.,
discussion and conference papers) with published studies (Song et al. 2000).
Larger effect sizes (and smaller p-values) in published compared to non-published
papers are an indication of publication bias caused by selective submission
and/or selective editorial policies. Besides the problem that unpublished studies
are less disseminated, neither selective preparation nor p-hacking can be identi-
fied through this comparison. This is why the assessment of publication bias is
often based on “anomalies” in the structure of test statistics. A widely applica-
ble method is the caliper test (Gerber and Malhotra 2008). Its idea is to compare
the frequency of reported test scores within a small band above and below the
usual significance thresholds. Gerber and Malhotra (2008: 6) claim that “there is
no reason to expect that, in the narrow region just above and below the critical
value, there will be substantially more cases above than below the critical value
unless the.05 level was somehow affecting what is being published.” Instead of
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Fig 1. Illustration of the basic idea of p-curve analysis

test scores, p-curve analysis looks directly at the distribution of p-values (Head
et al. 2015; Simonsohn et al. 2014). Figure 1 illustrates the idea: while we do not
know whether there is an effect or not, we know that the p-value distribution is
uniform if there is no effect. We also know that it has an exponential form with
a right skew (Head et al. 2015) if there is an effect. In both cases, anomalies
around the critical threshold should not occur and, if found, are taken as an
indication of publication bias. Whereas an overrepresentation of p-values below
0.05 can be attributed to p-hacking, all selection procedures jointly contribute
to the underrepresentation of values above the threshold.

In many research fields, publication bias itself has become an important ob-
ject of study. Joober et al. (2012: 149), for example, report that in some medical
areas almost no negative studies exist. They also find that publication bias has
increased in many fields over the last years. The issue has also been taken up in
the political and sociological sciences (cf., e.g., Auspurg and Hinz 2011; Gerber
et al. 2010). In a recent study using the caliper test, Berning and Weiß (2016)
find strong evidence for publication bias in papers published from 2001 to 2010 in
three flagship journals of the German social sciences (Kölner Zeitschrift für Sozi-
ologie und Sozialpsychologie, Zeitschrift für Soziologie, and Politische Viertel-
jahresschrift). With a few early exceptions (e.g., Denton 1985; Lovell 1983), the
awareness and study of publication bias has been less pronounced in economics
in the past. But recently, a large-scale study by Brodeur et al. (2016) analyzed
the distribution of about 50,000 test statistics that were published from 2005
to 2011 in three of the most prestigious economic journals (American Economic
Review, Journal of Political Economy, Quarterly Journal of Economics). They
find a considerable overrepresentation of marginally significant test statistics as
well as a sizeable underrepresentation of marginally “nonsignificant” statistics.
Their “interpretation is that researchers inflate the value of just-rejected tests
by choosing ‘significant’ specifications” (Brodeur et al. 2016: 1).

Many suggestions have been made to mitigate publication bias (see Munafò
et al. 2017 for an overview). Song et al. (2013) and Weiß and Wagner (2011)
propose to strengthen alternative publication outlets. They also call for a gen-
eral change of editorial policies towards giving equal publishing chances to all
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scientific results, including replications and negative findings. To reduce the risk
of selective reporting and increase the chance of being published independent of
whether positive or negative results are eventually found, Munafò et al. (2017)
suggest to go beyond the after-study provision of raw data, and peer-review
and register complete study designs before they are carried out. Across a vari-
ety of disciplines, various initiatives try to institutionalize efforts counteracting
distorting selection procedures. With a view to the dire consequences of publica-
tion bias in medical research, a global initiative All Trials Registered/All Results
Reported was launched in 2013. Along the same lines, the Journal of Negative
Results in BioMedicine, the PLOS ONE Journal, and the All Results Journals
explicitly encourage replication studies and pursue policies of publishing positive
and negative results.

Institutionalized efforts to strengthen the practice of replication and pre-
registration seem be weak in economics compared to other fields such as the
medical sciences that spearheaded the development. In a study of all 333 eco-
nomic Web-of-Science journals, Duvendack et al. (2015) find that most of them
still give very low priority to replication. Pre-registration of studies also seems
to lag behind other fields. No economic journal, for example, is among the ap-
proximately 40 journals that, according to the The Center for Open Science,
have adopted a policy of peer reviewing and registering study designs before
results are known (Duvendack et al. 2017). But things are changing. A topical
initiative is the call of the economics-ejournal in which researchers are asked
to select a published study as a candidate for replication and to discuss how
they would carry out the replication. There are also some noteworthy replica-
tion platforms for economists such as The Replication Network and Replication
in Economics that provide data bases of replications and the opportunity to
publish replication studies. The issue has also attracted the attention of pro-
fessional economic societies such as The American Economic Association that
concerned itself with replication on its 2017 annual meeting and has launched a
pre-registration scheme for randomized controlled trials. In this scheme, a study’s
design is peer-reviewed based on its methodological quality and registered if ac-
cepted. Peer-review of a study’s design and formal registration by a prestigious
institution are meant to prevent p-hacking and contribute to equal chances of
being published independent of which results are eventually found. Reaching
even further, the Journal of Development Economics recently started a pilot to
test whether pre-registration in conjunction with “blind reviews” can improve
the quality of empirical research in economics. The pilot provides researchers
with the opportunity to have their prospective studies reviewed and approved
for publication before the data are collected.

3. Disregard of p-value sample-to-sample variability

Practical empirical research often ignores the implications that result from the
fact that a p-value is but a statistical estimate and inherently based on prob-
ability theory. Consequently, results with small p-values are often declared sig-
nificant and then claimed to represent substantial evidence for the existence of
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a real phenomenon or even simply assumed to be real (Halsey et al. 2015). But
even if researchers do not commit the inverse probability error of interpreting
the p-value as the post-study probability of making a false existence claim or
even erroneously consider a low p-value as strong evidence in favor of a specific
alternative hypothesis, many believe that, after having found a low p-value,
repetition of an experiment or repeated random sampling will produce a sim-
ilar statistical verdict (Goodman 1992). With regard to the random sampling
case, which we will use for our argument and numerical illustrations hereafter,
Halsey et al. (2015: 180) note that “P -values are only as reliable as the sample
from which they have been calculated. A small sample taken from a population
[with big noise] is unlikely to reliably reflect the features of that population.”
They therefore provide a very unreliable signal of what is going to happen in
replications unless they are very low (Cumming 2008).

While most researchers realize that small samples and big noise increase the
level of the p-value that is to be expected, they are less likely to be fully aware
of the fact that they also considerably increase the sample-to-sample variability
of the p-value. The erroneous belief that the p-value indicates the likelihood
that significant results can be replicated has been called “replication fallacy”
(Gigerenzer et al. 2004). There is no way to assess the chance of replicating
“significant” results unless one has at least an approximate estimate of power.
The replication fallacy can be partly attributed to the fact that, contrary to
other statistical estimates, no measure of the p-value’s variability is usually
reported even though it can be of considerable magnitude (Boos and Stefanski
2011). What is more, conventional notation abstains from advertising that the p-
value is but an estimate (for example by using the notation p̂). The disregard of
the p-value’s variability, which is particularly widespread in multiple regression
analysis, is reflected in studies that do not discuss, let alone quantitatively assess,
statistical power.

Ignoring or underestimating the variability of the p-value over replications
goes hand in hand with underestimating the variability of effect size estimates.
Together, this generates the risk of overrating the inferential value of results that
are found in a single study. We use simulation to illustrate this risk with a fo-
cus on the regression-based confirmatory analysis of observations obtained from
random sampling. The simulation provides an intuitive numerical illustration of
how the random sampling error impacts on the variability of both p-values and
coefficient estimates over replications (repeated random sampling). This illus-
tration is aimed at counteracting the widespread misconception that an effect
size estimate accompanied by a small p-value is by itself a reliable indication of
the true effect size.

We carry out two simulations to illustrate why relying on the p-value without
considering its sample-to-sample variability falls short of the mark even within
an otherwise correct interpretation. In each simulation, we generate 10,000 ran-
dom samples based on a presumed “reality” characterized by the linear relation-
ship y = 1 + βx+ e, with β = 0.2. The two simulations differ in their normally
distributed error terms, which are e∼N(0; 3) and e∼N(0; 5), respectively. The
sample size is n = 50, with x varying from 0.5 to 25 in equal steps of 0.5. For
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Fig 2. p-value distribution over 10,000 replications (y = 1 + 0.2x + e; sample size n = 50)
(One-sided test; normal test statistic)

each reality (i.e., for the σ = 3 and the σ = 5 case), we run OLS-regressions
for each of the 10,000 samples. Since we use an estimator that perfectly fits
the association in the data, we can interpret the heterogeneous results in these
10,000 samples as direct effect of the random sampling error.

Figure 2 visualizes the variability of the p-value over the 10,000 OLS-reg-
ressions in each of the two simulations. The left-hand side shows the cumulative
distribution of the p-value for the normally distributed error term e∼N(0; 3).
The right-hand side shows it for the error term e∼N(0; 5). Let’s take an exem-
plary look at the cumulative distributions for a p-value of 0.01 and 0.10. In the
σ = 3 case, p ≤ 0.01 is obtained in 8,290 of the 10,000 samples (i.e., in 82.90%
of all samples), and we find p-values above 0.10 in only 1.77% (= 1 − 0.9823)
of all replications. In the σ = 5 case, the probability of obtaining p ≤ 0.01 in
a random sample drops to 37.29% while the probability of obtaining p-values
above 0.10 rises to 22.82% (= 1− 0.7718).

The cumulative distributions that are tabulated for selected p-values illus-
trate that the size of the error term has a considerable impact on the p-value’s
sample-to-sample variability. This is why many statisticians call for comple-
menting the p-value approach with statistical power considerations. Statistical
power is defined as the conditional probability of a significant result over many
replications if an effect is true. Having generated the data, we know the true
effect β = 0.2. We thence also know the true power to be the cumulative distri-
bution F of the p-value at the 0.05 level. For e∼N(0; 3), we find a true power of
95.29% (i.e., 9,529 out of 10,000 samples yield p ≤ 0.05). In contrast, the true
power is only 64.86% in the case of e∼N(0; 5).

Comparing the two p-value distributions in Figure 2 helps show that, besides
a single study’s p-value, its variability – and in dichotomous significance testing
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Fig 3. Estimated power for p = 0.01 based on the assumption β̂ = βtrue and ŜE = SEtrue

the statistical power15 – determines the informational value of a finding. High-
powered studies are more reliable in that they indicate not only lower average
p-values but also a lower variability of p-values over random replications. In
many cases, power is below the approximately 65% found in our e∼N(0; 5)
simulation. We should therefore cautiously interpret a p-value and realize that
p-values found in one study, albeit very low, should be put into perspective by
providing a measure of their variability.

Unfortunately, researchers usually face but one random realization and ig-
nore the true effect, the p-value’s variability, and the true power (Halsey et al.
2015). In each of the 10,000 random realizations, a researcher would estimate a

different coefficient β̂, a different standard error ŜE, and a different p-value. If
we näıvely assumed that the coefficient β̂ and the standard error ŜE that we
happened to estimate from one data set were true (βtrue = β̂; SEtrue = ŜE),
we could estimate the power. Figure 3 shows that under this assumption the
power estimate can be directly derived from a given p-value. We illustrate the
case for p = 0.01, which corresponds to a test score ZH0

Score = 2.326. Assuming a
one-sided significance test at the p∗ =0.05 level, we know the critical test value
Z∗ = ZH0

0.95 = 1.645. Presuming β̂ = βtrue as alternative hypothesis H1, we can

estimate ̂Power = 1− ΦH1 (1.645) = 75.22%.

Table 6 further illustrates the effect of random sampling error. It displays
p-values (and their cumulative distribution F ), coefficient estimates β̂ and stan-

dard error estimates ŜE (and their resulting scores under the null ZH0
Score), and

power estimates ̂Power for six selected samples out of the 10,000 replications

15 Power is a zeroth order (lower) partial moment of the p-value distribution over replica-
tions. As such, it contains only a part of the distributional information. This part, however,
is sufficient if one confines oneself to the dichotomous “statistically significant” vs. “not sta-
tistically significant” distinction; i.e., “statistical power quantifies the repeatability of the P
value, but only in terms of the either-or interpretation” (Halsey et al. 2015: 180).
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Table 6

p-values and coefficient and power estimates for six out of 10,000 simulated samples (with
size n = 50 each)

e∼N(0; 3) e∼N(0; 5) ZH0
Score

̂Power
[%]F (p)

[%]
β̂σ=3 a) ŜE

σ=3
F (p)
[%]

β̂σ=5 ŜE
σ=5

p = 0.00001 12.09 0.224 0.053 0.85 0.491 0.115 4.265 99.56
p = 0.0001 28.31 0.248 0.067 3.30 0.317 0.085 3.719 98.10
p = 0.001 54.49 0.174 0.056 12.30 0.304 0.098 3.090 92.58
p = 0.01 82.90 0.162 0.070 37.29 0.249 0.107 2.326 75.22
p = 0.05 95.29 0.112 0.068 64.86 0.170 0.103 1.645 50.00
p = 0.1 98.23 0.083 0.065 77.18 0.127 0.099 1.282 35.82
a) In general, lower p-values go hand in hand with larger coefficient estimates. The first
three p-value rows show, however, that there are simulation runs in which the coefficient
estimates do not follow the inverse order of the p-value. This is because both the mean
and the variance vary from sample to sample.

(with size n = 50 each) that we simulated for the e∼N(0; 3) and the e∼N(0; 5)
“realities,” respectively. In each simulation, we first ordered the 10,000 random
samples from low to high according to the obtained p-values. We then identified
the samples that yielded a p-value closest to the ones displayed in the first col-
umn. For example, in the σ = 3 case, the 1,209th sample yielded p = 0.00001 (the
cumulative distribution of this p-value is therefore 12.09%), a coefficient esti-

mate β̂σ=3 = 0.224, and a standard error ŜE
σ=3

= 0.053. In the σ = 5 case, only
85 out of the 10,000 samples produced a p-value lesser than or equal 0.00001.
The 85th sample yielded p = 0.00001, a coefficient estimate β̂σ=5 = 0.491, and a

standard error ŜE
σ=3

= 0.115. The identical p-value in both cases resulted from

the identical ZH0
Score = 4.265 = β̂σ=3/ŜE

σ=3
= β̂σ=5/ŜE

σ=5
. Using a one-sided

significance test at the p∗ = 0.05 level (corresponding to a critical test value
Z∗ = ZH0

0.95 = 1.645) and using alternative hypotheses H1σ=3 and H1σ=5 based
on the assumption that the respective coefficient and standard error estimates

are true, we obtain an estimated ̂Power = 99.56% = 1 − ΦH1σ=3

(1.645) =

1− ΦH1σ=5

(1.645) in both cases.

While low p-values are often associated with a high reliability of estimated
effects, Table 6 reflects an important fact: an unbiased estimator (in our case
the OLS-estimator) estimates correctly on average. While we would find in both
realities an average coefficient across all 10,000 simulation runs that is very close
to 0.2, we overestimate the effect size in the case of highly significant results.
In our simulation, for example, p = 0.00001 was accompanied by a coefficient
estimate of 0.491 in the σ = 5 case. In other words, under reasonable sample
sizes and population effect sizes, it is the abnormally large sample effect sizes
that produce “highly significant” p-values (Trafimow et al. 2017). If, out of the
10,000 simulated samples, we only considered the 6,486 samples that yielded
significant results at the 0.05 level (i.e., satisfied the ZH0

Score ≥ 1.645 condition),
we would find an average coefficient estimate of 0.257. This is not surprising: by
averaging over “significant” results only, we right-truncate the distribution of
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the p-value which, in turn, involves a left-truncation of the distribution of the
coefficient.

The p-value’s variability over replications undermines its already weak in-
formative value. Even if there were no uncorrected multiple testing, no misin-
terpretation of the p-value, and no distorting selection procedures, researchers
might still be overconfident and believe that at least a very low p-value of, let’s
say, 0.005 or 0.001 provides a trustworthy indication of the true effect. Unfor-
tunately, we cannot deduce even that much by just looking at the p-value. The
consequences for conventional significance testing are quite sobering: if we are
oblivious to the p-value’s unknown sample-to-sample variability, we will grossly
overestimate its limited informational content in a single study; and if we ac-
count for the p-value’s sample-to-sample variability, we must concede that its
suitability to indicate the strength of evidence is very limited. Let us briefly
summarize the main reasons behind this sobering insights:

1. The variability of the p-value over random replications may be high or low.
Being reduced to having to analyze data from one random realization, we
do not know the degree of variation (see footnote 2). We would need some
prior assumption regarding the true effect size.

2. In plausible constellations of noise and sample size, we can very easily find
a significant result in one random sample and not find a significant result
in another.

3. The variability of the p-value is paralleled by the variability of the esti-
mated coefficient. We may thence find a large coefficient in one random
sample and a small one in another.

4. Unbiased estimators estimate correctly on average, but we have no way of
identifying the p-value below which (above which) we overestimate (under-
estimate) the effect size. In our example, a p-value of 0.001 was associated
with a coefficient estimate of 0.174 in the σ = 3 case (= underestimation of
the effect size). In the σ = 5 case, it was linked to a coefficient estimate of
0.304 (= overestimation). That is, even in the case of a highly significant
result, we cannot make a direct inference regarding the effect.

5. If we rashly claimed a just-estimated coefficient to be true, we would not
have to be worried if it cannot be replicated. For example, if an effect size
and standard error estimate associated with a p-value of 0.05 were real, we
would necessarily have a mere 50% probability of finding a statistically sig-
nificant effect in replications (one-sided test). Things improve with lower
p-values. But even at the 0.01 level, we have only a 75% probability of
re-finding significance (see Table 6).

Our simulations provided an intuitive numerical illustration of the vagaries
of sampling and the often neglected fact that it would be an inferential error to
interpret the p-value as the probability of a hypothesis. Instead, it is but a mea-
sure that indicates how (in)compatible the particular data at hand (sample) is
with a specified statistical model including the null hypothesis (Wasserstein and
Lazar 2016). While the p-value is only a statement about a data set conditional
on the null hypothesis of no effect, small p-values nonetheless give a hint that
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there might rather be an effect than none, in the sense that small p-values will
occur more often if there is an effect compared to no effect (cf., the ideal-type
p-value distributions without publication bias in Figure 1). However, due to the
p-value’s data dependence and the imponderables of random sampling (partic-
ularly in the case of small samples and big noise), large p-values may occur in a
considerable fraction of random sampling replications even if there is an effect,
and vice versa (cf., Figure 2). Hence, we must be cautious when interpreting
p-values and realize that the p-value does not provide a clear rationale or even
formal calculus for statistical inference in terms of post-study probabilities of
scientific propositions (Goodman 2008). When trying to assess the evidence from
a particular data set regarding a hypothesis, statistical power calculations (or
more generally, the consideration of the p-value’s sample-to-sample variability)
would be a helpful complement to the conventional p-value approach. However,
since the size of the true effect is unknown, we are limited to power calculations
for varying but plausible effect sizes. Assuming such plausible effect sizes, in
turn, requires some degree of prior knowledge.

Furthermore, mixing up the p-value concept (“null hypothesis significance
testing”) and the estimation of effect size in the same step is problematic since
many of the best estimation procedures are based on the concept of unbiased-
ness. Claiming the effect size to be real that we happened to estimate out of
a sample where the effect showed up as “significant” bears the risk of overes-
timating the effect. Unfortunately, with decreasing p-values this risk seems to
increase. When samples are large enough, one might thence think about split-
ting the data at hand and using one part for the testing part of the analysis and
the other one for the estimation part. This might in further perspective lead to
cross-validation-like approaches or to resampling procedures. But at this point
we can only postpone such thoughts to further research.

4. Conclusion and outlook

Spotting and avoiding misinterpretations and misuses of statistical significance
tests is important because, as empirical social scientists and economists, we
are interested in learning from observations and statistical inference; i.e., we
want to draw inductive conclusions and make general propositions about reg-
ularities in social and economic life given the evidence from the data. We are
also interested in assessing the trustworthiness of these inductive conclusions
by assigning post-study probabilities to our propositions. Unfortunately, even
though the label “hypothesis testing” is commonly attached to statistical signifi-
cance testing, p-values cannot be used to test the trustworthiness of hypotheses
in terms of assigning post-study probabilities to hypotheses. Furthermore, p-
values and associated effect size estimates may exhibit a wide variability over
replications. However, we rarely start from scratch. Besides the evidence in our
own data, we would need to summarize the knowledge from prior studies and
use Bayesian statistics to assess the trustworthiness of scientific propositions in
terms of probabilities.
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We must realize that statistical inference is not as trivial as the dichoto-
mous “significance” vs. “nonsignificance” declarations suggest at first glance.
The corresponding either-or interpretations regarding the trustworthiness and
importance of estimated effects are neat and seemingly plausible but wrong.
What is more, misuses such as disregarding multiplicities and p-hacking as well
as selective publishing may inflate statistical significance claims and distort the
published body of evidence. Many reform measures have been suggested in the
literature to mitigate these problems. The most obvious one is the call for an
increase of statistical literacy through better teaching. Others include changes
of research standards and incentives that would reduce the publish-statistically-
significant-results-or-perish pressure that dominate many disciplinary cultures.
The most notable examples of reform on the institutional level (journals, sci-
entific associations, etc.) are policies of pre-registration, sharing (of data and
analytical protocols), replication, and unbiased publishing of both positive and
negative results.

While some of these policies are being slowly introduced into economics, there
are a number of specific concerns that need to be addressed before approaches
from other fields can be successfully transplanted to (non-experimental) eco-
nomic research. These concerns stem from the prevalence of regression-based
observational study and the data-driven specification search that characterize
many econometric analyses. A primary question is whether a given research con-
text provides a probabilistic justification for using the p-value at all. Because the
nature of the inference varies from one research context to the other, researchers
should explicitly state whether their inferential argument is based on random-
ization in experiments, random sampling, or the assumption of having a random
realization of an unseen parent population. Especially in the analysis of non-
experimental data, another important question is whether and where we can
draw a dividing line between confirmatory study (hypothesis testing) and data-
driven exploratory modeling (hypothesis generation). Even though the labels
“theory-based” and hypothesis testing” are frequently attached to econometric
models, they are often data-based; i.e., some variable selection, data transfor-
mation, and other model specification search procedures are carried out after
seeing the data. Considering this appropriate for confirmatory research gives rise
to two more questions: first, where is the dividing line between adequate model
specification and p-hacking? Second, if researchers declare a study confirmatory
but nonetheless engage to some degree in specification search, (how) would they
need to adjust for multiple testing?

Even widely applauded measures aimed at improving research practices need
to be scrutinized regarding their viability and effectiveness in econometric re-
search. It is not clear, for example, how measures such as the pre-registration
of analytical designs, the replication of studies, and the correction for multi-
ple testing would have to look like within a scientific culture where it is com-
mon practice to specify statistical models that fit the data. Related to that,
the question arises of how to meet the requirement of considering the body of
evidence instead of focusing on single studies. How can we carry out a meta-
analysis regarding a specific scientific issue when comparability across studies is
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impeded because there are often (nearly) as many data-dependent model spec-
ifications as there are studies? Another question is how, in view of the p-value’s
inferential limitations, we can provide an interpretative orientation vis-à-vis the
often large numbers of regression coefficient estimates. This is an especially
urgent issue since data-based economic models are often heavily populated, be-
sides the original variables of interest, by interaction terms, (log)transformed
variables, lagged variables, instrumental variables, higher-order polynomials,
and control variables. Can Bayesian approaches provide a practically feasi-
bly solution in such a context? And if so, how can we specify Bayesian pri-
ors given the frequent lack of comparability among studies and the often large
variable sets?
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und Statistik 231(5-6): 661–684.

Westfall, P., Tobias, R., Wolfinger, R. (2011): Multiple comparisons and multiple
testing using SAS. Cary: SAS Institute.

Zelmer, J. (2003): Linear public goods experiments: A meta-analysis. Experi-
mental Economics 6(3): 299–310.

Ziliak, S.T., McCloskey, D.N. (2008): The Cult of Statistical Significance. How
the Standard Error Costs Us Jobs, Justice, and Lives. Ann Arbor: The Uni-
versity of Michigan Press. MR2730043

Zyphur, M.J., Oswald, F.L. (2015): Bayesian Estimation and Inference: A User’s
Guide. Bayesian Probability and Statistics in Management Research, Special
Issue of the Journal of Management 41(2): 390–420.

http://www.ams.org/mathscinet-getitem?mr=3511040
http://www.ams.org/mathscinet-getitem?mr=2730043

	Introduction
	Classical pitfalls in significance testing
	Uncorrected multiple testing
	Semantically induced misinterpretations of the p-value
	Exaggerated focus on one-shot studies
	Publication bias

	Disregard of p-value sample-to-sample variability
	Conclusion and outlook
	Acknowledgments
	References

