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Abstract: Nonregular fractional factorial designs such as Plackett-Burman
designs and other orthogonal arrays are widely used in various screening ex-
periments for their run size economy and flexibility. The traditional analysis
focuses on main effects only. Hamada and Wu (1992) went beyond the tra-
ditional approach and proposed an analysis strategy to demonstrate that
some interactions could be entertained and estimated beyond a few sig-
nificant main effects. Their groundbreaking work stimulated much of the
recent developments in optimality criteria, constructionand analysis of non-
regular designs. This paper reviews important developments in nonregular
designs, including projection properties, generalized resolution, generalized
minimum aberration criteria, optimality results, construction methods and
analysis strategies.
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1. Introduction

In many scientific investigations, the main interest is in the study of effects
of many factors simultaneously. Factorial designs, especially two-level or three-
level factorial designs, are the most commonly used experimental plans for this
type of investigation. A full factorial experiment allows all factorial effects to
be estimated independently. However, it is often too costly to perform a full
factorial experiment, so a fractional factorial design, which is a subset or fraction
of a full factorial design, is preferred since it is cost-effective.

Fractional factorial designs are classified into two broad types: regular de-
signs and nonregular designs. Regular designs are constructed through defin-
ing relations among factors and are described in many textbooks such as Box,
Hunter and Hunter (2005), Dean and Voss (1999), Montgomery (2005) and
Wu and Hamada (2000). These designs have a simple aliasing structure in that
any two effects are either orthogonal or fully aliased. The run sizes are always
a power of 2, 3 or a prime, and thus the “gaps” between possible run sizes are
getting wider as the power increases. The concept of resolution (Box and Hunter
(1961)) and its refinement minimum aberration (Fries and Hunter (1980)) play
a pivotal role in the optimal choice of regular designs. There are many recent
developments on minimum aberration designs; see Wu and Hamada (2000) and
Mukerjee and Wu (2006) for further references.

Nonregular designs such as Plackett-Burman designs and other orthogonal
arrays are widely used in various screening experiments for their run size econ-
omy and flexibility (Wu and Hamada (2000)). They fill the gaps between regular
designs in terms of various run sizes and are flexible in accommodating various
combinations of factors with different numbers of levels. Unlike regular designs,
nonregular designs may exhibit a complex aliasing structure, that is, a large
number of effects may be neither orthogonal nor fully aliased, which makes it
difficult to interpret their significance. For this reason, nonregular designs were
traditionally used to estimate factor main effects only but not their interac-
tions. However, in many practical situations it is often questionable whether
the interaction effects are negligible.

Hamada and Wu (1992) went beyond the traditional approach and proposed
an analysis strategy to demonstrate that some interactions could be entertained
and estimated through their complex aliasing structure. They pointed out that
ignoring interactions can lead to (i) important effects being missed, (ii) spurious
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effects being detected, and (iii) estimated effects having reversed signs resulting
in incorrectly recommended factor levels.

Much of the recent studies in nonregular designs were motivated from results
in Hamada and Wu (1992). The studies included proposal of new optimality
criteria, construction and analysis of nonregular designs. The primary aim of
this paper is to review major developments in nonregular fractional factorial
designs since 1992.

Here is a brief history of the major developments in nonregular designs.
Plackett and Burman (1946) gave a large collection of two-level and three-
level designs for multi-factorial experiments. These designs are often referred
to as the Plackett-Burman designs in the literature. Rao (1947) introduced
the concept of orthogonal arrays, including Plackett-Burman designs as spe-
cial cases. Cheng (1980) showed that orthogonal arrays are universally optimal
for the main effects model. Hamada and Wu (1992) successfully demonstrated
that some interactions could be identified beyond a few significant main ef-
fects for Plackett-Burman designs and other orthogonal arrays. Lin and Draper
(1992) studied the geometrical projection properties of Plackett-Burman de-
signs while Wang and Wu (1995) and Cheng (1995, 1998) studied the hidden
projection properties of Plackett-Burman designs and other orthogonal arrays.
The hidden projection properties provide an explanation for the success of the
analysis strategy due to Hamada and Wu (1992). Sun and Wu (1993) were the
first to coin the term “nonregular designs” when studying statistical properties
of Hadamard matrices of order 16. Deng and Tang (1999) and Tang and Deng
(1999) introduced the concepts of generalized resolution and generalized mini-
mum aberration for two-level nonregular designs. Xu and Wu (2001) proposed
the generalized minimum aberration for mixed-level nonregular designs. Because
of the popularity of minimum aberration, the research on nonregular designs has
been largely focused on the construction and properties of generalized minimum
aberration designs. Our reference list suggests that keen interest in nonregular
designs began in 1999 and continues to this day as evident by the increasing
number of scientific papers on nonregular designs in major statistical journals.

Section 2 reviews the data analysis strategies for nonregular designs. Sec-
tion 3 discusses the geometrical and hidden projection properties of the Plackett-
Burman designs and other orthogonal arrays. Section 4 introduces the gener-
alized resolution and generalized minimum aberration criterion and their sta-
tistical justifications. Section 5 introduces the minimum moment aberration
criterion, another popular criterion for nonregular designs. Section 6 considers
uniformity and connections among various optimality criteria. Section 7 reviews
construction methods and optimality results. Section 8 gives concluding remarks
and future directions.

2. Analysis strategies

We begin with a review of a breakthrough approach (Hamada and Wu (1992))
by entertaining interactions in Plackett-Burman designs and other orthogonal
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arrays after identifying a few important main effects. Then we review another
strategy proposed by Cheng and Wu (2001) for the dual purposes of factor
screening and response surface exploration with quantitative factors.

2.1. The Hamada and Wu (1992) analysis strategy

The analysis strategy proposed by Hamada and Wu (1992) consists of three
steps.

Step 1. Entertain all the main effects and interactions that are orthogonal
to the main effects. Use standard analysis methods such as ANOVA and
half-normal plots to select significant effects.

Step 2. Entertain the significant effects identified in the previous step and
the two-factor interactions that consist of at least one significant effect.
Identify significant effects using a forward selection regression procedure.

Step 3. Entertain the significant effects identified in the previous step and
all the main effects. Identify significant effects using a forward selection
regression procedure.

Iterate between Steps 2 and 3 until the selected model stops changing. Note that
the traditional analysis of Plackett-Burman or other nonregular designs ends at
Step 1.

Hamada and Wu (1992) based their analysis strategy on two empirical prin-
ciples, effect sparsity and effect heredity (Wu and Hamada (2000, Section 3.5)).
Effect sparsity implies that only few main effects and even fewer two-factor
interactions are relatively important in a factorial experiment. Effect heredity
means that in order for an interaction to be significant, at least one of its par-
ent factors should be significant. Effect heredity excludes models that contain
an interaction but none of its parent main effects, which lessens the problem of
obtaining uninterpretable models. Hamada and Wu (1992) wrote that the strat-
egy works well when both principles hold and the correlations between partially
aliased effects are small to moderate. The effect sparsity suggests that only a
few iterations will be required.

Using this procedure, Hamada and Wu (1992) reanalyzed data from three
real experiments: a cast fatigue experiment using a 12-run Plackett-Burman
design with seven 2-level factors, a blood glucose experiment using an 18-run
mixed-level orthogonal array with one 2-level and seven 3-level factors, and a
heat exchange experiment using a 12-run Plackett-Burman design with ten 2-
level factors. They demonstrated that the traditional main effects analysis was
limited and the results were misleading.

For illustration, consider the cast fatigue experiment conducted by Hunter,
Hodi and Eager (1982) that used a 12-run Plackett-Burman design to study
the effects of seven factors (A–G) on the fatigue life of weld repaired castings.
The 12-run Plackett-Burman design has 11 columns and the seven factors were
assigned to the first seven columns. Table 1 gives the design matrix (including
the unused columns) and responses. The original analysis by Hunter, Hodi and
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Table 1

Design Matrix and Responses, Cast Fatigue Experiment

Factor Logged
Run A B C D E F G 8 9 10 11 Lifetime

1 + + − + + + − − − + − 6.058
2 + − + + + − − − + − + 4.733
3 − + + + − − − + − + + 4.625
4 + + + − − − + − + + − 5.899
5 + + − − − + − + + − + 7.000
6 + − − − + − + + − + + 5.752
7 − − − + − + + − + + + 5.682
8 − − + − + + − + + + − 6.607
9 − + − + + − + + + − − 5.818
10 + − + + − + + + − − − 5.917
11 − + + − + + + − − − + 5.863
12 − − − − − − − − − − − 4.809

Eager (1982) identified two significant factors F and D. The factor D had a
much smaller effect with a p value around 0.2. The fitted model was

ŷ = 5.73 + 0.458F − 0.258D, (2.1)

with a R2 = 0.59. However, Hunter, Hodi and Eager (1982) noted a discrepancy
between their fitted model (2.1) and previous work, namely, the sign of factor D
was reversed. Applying the three-step analysis strategy, Hamada and Wu (1992)
identified a significant two-factor interaction FG and obtained the following
model

ŷ = 5.73 + 0.458F − 0.459FG. (2.2)

This model has R2 = 0.89, which is a significant improvement over model (2.1)
in terms of goodness of fit. The identification of FG was not only consistent
with the engineering knowledge reported in Hunter, Hodi and Eager (1982) but
also provided a sound explanation on the discrepancy of the sign of factor D.
The coefficient of D in (2.1) actually estimates D + 1

3
FG and therefore the sign

of D in (2.1) could be negative even if D had a small positive effect. This ex-
periment was later reanalyzed with other methods by several authors, including
Box and Meyer (1993), Westfall, Young and Lin (1998), and Phoa, Pan and Xu
(2009).

Hamada and Wu (1992) discussed limitations of their analysis strategy and
provided solutions. Wu and Hamada (2000, chap. 8) further suggested some
extensions such as the use of all subset variable selection if possible.

2.2. The Cheng and Wu (2001) analysis strategy

Response surface methodology is a collection of statistical techniques for em-
pirical model building and model exploitation. By careful design and analysis
of experiments, it seeks to relate a response variable to several predictors. For
a comprehensive account of response surface methodology, see Box and Draper
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(1987), Khuri and Cornell (1996), and Myers, Montgomery and Anderson-Cook
(2009). Standard response surface methodology has three stages: an initial factor
screening stage, a stage of sequential experimentation to determine the region
of an optimum, and a final stage involving the fitting of a second-order model
in this region. Typically, separate experiments and designs are used for differ-
ent stages. However, it is sometimes difficult or even impossible to perform the
experiments sequentially. It is thus desirable to have a methodology that allows
factor screening and response surface exploration (i.e., the first and the third
stages in response surface methodology) to be conducted on the same experi-
mental region using one design. To achieve the dual objectives, Cheng and Wu
(2001) proposed the following two-stage analysis strategy.

Stage 1. Perform factor screening and identify important factors.
Stage 2. Fit a second-order model for the factors identified in stage 1.

For m quantitative factors, denoted by x1, . . ., xm, the second-order model is

y = β0 +

m
∑

i=1

βixi +

m
∑

i=1

βiix
2
i +

m
∑

1=i<j

βijxixj + ǫ,

where β0, βi, βii, βij are unknown parameters and ǫ is the error term. For the
pure quadratic terms βii to be estimated, all the factors must have more than
two levels.

Cheng and Wu (2001) proposed that the two-stage analysis be broken down
into three parts: screening analysis in stage 1, projection that links stages 1 and
2, and response surface exploration in stage 2. Various screening analyses can
be utilized in stage 1, such as the conventional ANOVA or half-normal plots on
the main effects. Their analysis strategy again assumes that effect sparsity and
effect heredity principles hold. They reanalyzed a PVC insulation experiment
reported by Taguchi (1987) that used a regular 27-run design with nine 3-level
factors. They identified a significant linear-by-linear interaction effect which was
missed by Taguchi.

For illustration, consider an experiment reported by King and Allen (1987)
that used an 18-run orthogonal array to study the effects of one two-level fac-
tor (A) and seven three-level factors (B–H) on radio frequency chokes. Each
run had two replicates and Table 2 gives the design matrix and the responses.
Xu, Cheng and Wu (2004) performed data analysis following the two-stage anal-
ysis strategy. At the first stage, they fitted an ANOVA model for main effects
and found that four factors B, E, G, and H were significant at the usual 5%
level. At the second stage, they fitted a second-order model among the four
active factors and obtained the following nine-effect model:

ŷ = 105.1 + 2.61B − 4.05E − 7.75G + 2.91H − 2.85E2

+ 1.39BE − 3.30EG− 1.41EH + 1.86GH,

where the levels 0, 1, 2 were coded as −1, 0, 1, respectively. The model has
R2 = 0.96, indicating a good fit. It is worthwhile to point out that the 18-
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Table 2

Design Matrix and Responses, Radio Frequency Chokes Experiment

Run A B C D E F G H Responses
1 0 0 0 0 0 0 0 0 106.20 107.70
2 0 0 1 1 1 1 1 1 104.20 102.35
3 0 0 2 2 2 2 2 2 85.90 85.90
4 0 1 0 0 1 1 2 2 101.15 104.96
5 0 1 1 1 2 2 0 0 109.92 110.47
6 0 1 2 2 0 0 1 1 108.91 108.91
7 0 2 0 1 0 2 1 2 109.76 112.66
8 0 2 1 2 1 0 2 0 97.20 94.51
9 0 2 2 0 2 1 0 1 112.77 113.03
10 1 0 0 2 2 1 1 0 93.15 92.83
11 1 0 1 0 0 2 2 1 97.25 100.6
12 1 0 2 1 1 0 0 2 109.51 113.28
13 1 1 0 1 2 0 2 1 85.63 86.91
14 1 1 1 2 0 1 0 2 113.17 113.45
15 1 1 2 0 1 2 1 0 104.85 98.87
16 1 2 0 2 1 2 0 1 113.14 113.78
17 1 2 1 0 2 0 1 2 103.19 106.46
18 1 2 2 1 0 1 2 0 95.70 97.93

run design does not have enough degrees of freedom to estimate all six two-
factor interactions among four factors (since each two-factor interaction has
four degrees of freedom).

2.3. Other analysis strategies

More sophisticated analysis strategies have been proposed for experiments with
complex aliasing. Box and Meyer (1993) proposed a Bayesian method for finding
the active factors in screening experiments. Chipman, Hamada and Wu (1997)
proposed a Bayesian approach that employs a Gibbs sampler to perform an
efficient stochastic search of the model space. Many other recent variable se-
lection methods can also be used for analyzing nonregular designs. For exam-
ple, Yuan, Joseph and Lin (2007) suggested an extension of the general-purpose
LARS (least angle regression), first proposed by Efron, Hastie, Johnstone and
Tibshirani (2004).

3. Projection properties of Plackett-Burman designs and other

orthogonal arrays

In the initial stage of experimentation, one may have to consider a large num-
ber of potentially important factors while only a few of these factors are active.
Box and Meyer (1986) referred this phenomenon to as factor sparsity. In de-
signing experiments for factor screening, it is important to consider projections
of the design onto small subsets of factors. The concepts of strength, resolution
and projectivity characterize the geometrical projection properties. Nonregular
designs also have certain appealing hidden projection properties that are not
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captured by these concepts. These geometrical and hidden projection proper-
ties provide a sound justification for various analysis strategies.

Rao (1947) introduced the concept of orthogonal arrays. An orthogonal array
of N runs, m factors, s levels and strength t, denoted by OA(N, sm, t), is an
N×m matrix in which each column has s symbols or levels and for any t columns
all possible st combinations of symbols appear equally often in the matrix. Rao
(1973) generalized the definition to the asymmetrical case where an orthogonal
array is allowed to have variable numbers of symbols, i.e., mixed levels. For
example, the 12-run Plackett-Burman design in Table 1 is an OA(12, 211, 2) and
the 18-run design in Table 2 is an OA(18, 2137, 2). Hedayat, Sloane and Stufken
(1999) gave a comprehensive account of theory and applications of orthogonal
arrays.

Plackett-Burman designs are saturated orthogonal arrays of strength two be-
cause all degrees of freedom are utilized to estimate main effects. Orthogonal ar-
rays of strength two allow all the main effects to be estimated independently and
they are universally optimal for the main effects model (Cheng (1980)). A neces-
sary condition for the existence of an OA(N, sm, 2) is that N−1 ≥ m(s−1). A de-
sign is called saturated if N−1 = m(s−1) and supersaturated if N−1 < m(s−1).
In the literature, orthogonal arrays of strength two are often called orthogonal
designs or orthogonal arrays without mentioning the strength explicitly.

Orthogonal arrays include both regular and nonregular designs. For regular
designs, the concepts of strength and resolution are equivalent because a regular
design of resolution R̃ is an orthogonal array of strength t = R̃ − 1. For a
regular design of resolution R̃, the projection onto any R̃ factors must be either
a full factorial or copies of a half-replicate of a full factorial. The projection for
nonregular designs is more complicated.

Plackett-Burman designs are of strength two so that the projection onto any
two factors is a full factorial. Lin and Draper (1992) studied the geometrical
projection properties of the Plackett-Burman designs onto three or more factors.
Their computer searches found all the projections of 12-, 16-, 20-, 24-, 28-, 32-
and 36-run Plackett-Burman designs onto three factors. They found that these
projections must have at least a copy of the full 23 factorial or at least a copy of
a 23−1 replicate or both. In particular, any projection onto three factors must
contain a copy of a full factorial except for the 16- and 32-run Plackett-Burman
designs, which are regular designs. The important statistical implication of this
finding is that if only at most three factors are truly important, then after
identifying the active factors, all factorial effects among these active factors are
estimable, regardless which three factors are important.

Box and Tyssedal (1996) defined a design to be of projectivity p if the pro-
jection onto every subset of p factors contains a full factorial design, possibly
with some points replicated. It follows from these definitions that an orthogonal
array of strength t is of projectivity t. Cheng (1995) showed that, as long as
the run size N is not a multiple of 2t+1, an OA(N, 2m, t) with m ≥ t + 2 has
projectivity t + 1, even though the strength is only t.

The 12-run Plackett-Burman design in Table 1 is of projectivity three but
not of projectivity four. Wang and Wu (1995) found that its projection onto any
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four factors has the property that all the main effects and two-factor interactions
can be estimated if the higher-order interactions are negligible. They referred
this estimability of interactions without relying on geometric projection to as
having a hidden projection property.

More generally, Wang and Wu (1995) defined a design as having a hidden
projection property if it allows some or all interactions to be estimated even
when the projected design does not have the right resolution or other geomet-
rical/combinatorial design property for the same interactions to be estimated.
For the Plackett-Burman designs their hidden projection property is a result of
complex aliasing between the interactions and the main effects. For example, in
the 12-run Plackett-Burman design in Table 1, any two-factor interaction, say
AB, is orthogonal to the main effects A and B, and partially aliased with all
other main effects with correlation 1/3 or −1/3. Because no two-factor interac-
tion is fully aliased with any main effects, it is possible to estimate four main
effects and all six two-factor interactions among them together.

The general results on hidden projection properties were obtained by Cheng
(1995, 1998) and Bulutoglu and Cheng (2003). Cheng (1995) showed that as
long as the run size N of an OA(N, 2m, 2) is not a multiple of 8, its projection
onto any four factors allows the estimation of all the main effects and two-
factor interactions when the higher-order interactions are negligible. Bulutoglu
and Cheng (2003) showed that the same hidden projection property also holds
for Paley (1933) designs of sizes greater than 8, even when their run sizes are
multiples of 8. A key result is that such designs do not have defining words of
length three or four. Cheng (1998) further showed that as long as the run size
N of an OA(N, 2m, 3) is not a multiple of 16, its projection onto any five factors
allows the estimation of all the main effects and two-factor interactions. Cheng
(2006) gave a nice review of projection properties of factorial designs and their
role in factor screening.

A few papers studied projection properties of designs with more than two
levels. Wang and Wu (1995) studied the hidden projections onto 3 and 4 fac-
tors of the commonly used OA(18, 37, 2) given in Table 2 (columns B–H).
Cheng and Wu (2001) further studied the projection properties of this
OA(18, 37, 2) and an OA(36, 312, 2) in terms of their two-stage analysis strategy.
They constructed a nonregular OA(27, 38, 2) that allows the second-order model
to be estimated in all four-factor projections. In contrast, any regular 27-run
design with eight 3-level factors does not have this four-factor projection prop-
erty. They concluded that three-level nonregular designs have better projection
properties and are more useful than regular designs for the dual purposes of fac-
tor screening and response surface exploration. Xu, Cheng and Wu (2004) fur-
ther explored the projection properties of 18-run and 27-run orthogonal arrays
and constructed a nonregular OA(27, 313, 2) that allows the second-order model
to be estimated in all of the five-factor projections. Tsai, Gilmour and Mead
(2000, 2004), Evangelaras, Koukouvinos, Dean and Dingus (2005) and Evange-
laras, Koukouvinos and Lappas (2007, 2008) also studied projection properties
of three-level orthogonal arrays. Dey (2005) studied projectivity properties of
asymmetrical orthogonal arrays with all except one factors having two levels.
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4. Generalized resolution and generalized minimum aberration

Prior to 1999, an outstanding problem was how to assess, compare and rank
nonregular designs in a systematic fashion. Deng and Tang (1999) and Tang
and Deng (1999) were the first to propose generalized resolution and generalized
minimum aberration criteria for 2-level nonregular designs, which are natural
generalizations of the traditional concepts of resolution and minimum aberration
for regular designs.

To define these two important concepts, generalized resolution and gener-
alized minimum aberration, Deng and Tang (1999) and Tang and Deng (1999)
introduced the important notion of J-characteristics that is defined as follows.
Suppose that d is an N ×m matrix (dij) with the two levels denoted by −1 and
+1. For s = {c1, . . . , ck}, a subset of k columns of d, define

jk(s) =

N
∑

i=1

ci1 · · · cik and Jk(s) = |jk(s)|, (4.1)

where cij is the ith component of column cj . The quantity jk(s)/N can be viewed
as an extension of correlation from two to k variables. For illustration, consider
the 12-run Plackett-Burman design in Table 1. For s = {A, B}, j2(s) = 0 since A
and B are orthogonal. For s = {A, B, C}, j3(s)/N = −1/3 is the correlation be-
tween the main effect of A (or B or C) and the two-factor interaction BC (or AC
or AB). For s = {A, B, C, D}, j4(s)/N = −1/3 is the correlation between two-
factor interactions AB and CD (or AC and BD, or AD and BC). The quantity
ρk(s) = Jk(s)/N is called the normalized J-characteristics by Tang and Deng
(1999) or aliasing index by Cheng, Li and Ye (2004) and Phoa and Xu (2009)
because 0 ≤ ρk(s) ≤ 1. It is not difficult to see that if d is a two-level regular
design then ρk(s) = 0 or 1 for all s. Ye (2004) showed that the reverse is also
true. Therefore, for a nonregular design, there always exist some s such that
0 < ρk(s) < 1.

Suppose that r is the smallest integer such that max|s|=r Jr(s) > 0, where
|s| is the cardinality of s and the maximization is over all subsets of r columns.
Then the generalized resolution is defined to be

R̃ = r + δ, where δ = 1 − max
|s|=r

Jr(s)

N
. (4.2)

For the 12-run design in Table 1, r = 3, δ = 2/3 and the generalized resolution
is R̃ = 3.67. It is easy to see that for an OA(N, 2m, t), jk(s) = 0 for any k ≤ t
and therefore r ≤ R̃ < r + 1 where r = t + 1. If δ > 0, a subset s of d with r
columns contains at least Nδ/2r copies of a full 2r factorial and therefore the
projectivity of d is at least r (Deng and Tang (1999)). For a regular design,
δ = 0 and the projectivity is exactly r − 1.

Two regular designs of the same resolution can be distinguished using the
minimum aberration criterion, and the same idea can be applied to nonregu-
lar designs using the generalized minimum aberration criterion (Deng and Tang
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(1999)), which was referred to as the minimum G-aberration criterion by
Tang and Deng (1999) and other authors, where G stands for generalized. For
clarity we use the latter here. Roughly speaking, the minimum G-aberration cri-
terion always chooses a design with the smallest confounding frequency among
designs with maximum generalized resolution. Formally, the minimum
G-aberration criterion is to sequentially minimize the components in the con-
founding frequency vector

CFV = [(f11, . . . , f1N); (f21, . . . , f2N); . . . ; (fm1, . . . , fmN)],

where fkj denotes the frequency of k-column combinations s with Jk(s) = N +
1 − j.

Minimum G-aberration is very stringent and it attempts to control J-charac-
teristics in a very strict manner. Tang and Deng (1999) proposed a relaxed
version of minimum G-aberration and called it the minimum G2-aberration cri-
terion. Let

Ak(d) = N−2
∑

|s|=k

J2
k(s). (4.3)

The vector (A1(d), . . . , Am(d)) is called the generalized wordlength pattern, be-
cause for a regular design d, Ak(d) is the number of words of length k in
the defining contrast subgroup of d. The minimum G2-aberration criterion
(Tang and Deng (1999)) is to sequentially minimize the generalized wordlength
pattern A1(d), A2(d), . . . , Am(d).

For regular designs both minimum G-aberration and minimum G2-aberration
criteria reduce to the traditional minimum aberration criterion. However, these
two criteria can result in selecting different nonregular designs. We note that
minimum G-aberration nonregular designs always have maximum generalized
resolution whereas minimum G2-aberration nonregular designs may not. This
is in contrast to the regular case where minimum aberration regular designs
always have maximum resolution among all regular designs.

Tang and Deng (1999) also defined minimum Ge-aberration for any e > 0 by
replacing J2

k (s) with Je
k(s) in (4.3). However, only the minimum G2-aberration

criterion is popular because of its firmer statistical justifications and interesting
theoretical results. The statistical justifications will appear in Section 4.1.

Xu and Wu (2001) proposed the generalized minimum aberration criterion
for comparing asymmetrical (or mixed-level) designs. The generalized minimum
aberration criterion was motivated from ANOVA models and includes the min-
imum G2-aberration criterion as a special case. By exploring an important con-
nection between design theory and coding theory, Xu and Wu (2001) showed
that the generalized wordlength pattern defined in (4.3) are linear combinations
of the distribution of pairwise distance between the rows. This observation plays
a pivotal role in the subsequent theoretical development of nonregular designs.

Ma and Fang (2001) independently extended the minimum G2-aberration cri-
terion for designs with more than two levels. They named their criterion as the
minimum generalized aberration criterion, which is a special case of the gener-
alized minimum aberration criterion proposed by Xu and Wu (2001).
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Ye (2003) redefined the generalized wordlength pattern and generalized min-
imum aberration for two-level designs using indicator functions. Cheng and Ye
(2004) defined generalized resolution and generalized minimum aberration crite-
rion for quantitative factors. The generalized minimum aberration criterion pro-
posed by Xu and Wu (2001) is independent of the choice of treatment contrasts
and thus model-free whereas the generalized minimum aberration criterion by
Cheng and Ye (2004) depends on the specific model.

4.1. Statistical justifications

Deng and Tang (1999) provided a statistical justification for the generalized
resolution by showing that designs with maximum generalized resolution min-
imize the contamination (or bias) of nonnegligible two-factor interactions on
the estimation of the main effects. Tang and Deng (1999) provided a similar
statistical justification for minimum G2-aberration designs. In a further exten-
sion, Xu and Wu (2001) gave a statistical justification for generalized minimum
aberration designs with mixed levels.

A common situation that arises in practice is that the main effects are of
primary interest but there are non-negligible interactions that we know will
affect the main effects estimates. To fix ideas, consider a two-level N × m de-
sign d = (dij) with columns denoted by d1, . . . , dm and generalized resolution
between 3 and 4. Suppose that one fits a main effects model

yi = β0 +

m
∑

j=1

βjdij + ǫi, (4.4)

but the true model is

yi = β0 +

m
∑

j=1

βjdij +

m
∑

k<l

βkldikdil + ǫi. (4.5)

The least squares estimator β̂j of βj from the working model (4.4), under the
true model (4.5), has expectation given by

E(β̂j) = βj + N−1

m
∑

k<l

j3(dj , dk, dl)βkl

for j = 1, . . . , m, where j3(dj , dk, dl) is defined in (4.1). There are many ways
to minimize the biases in estimating main effects due to the presence of the
interaction effects. A conservative approach is minimizing the maximum bias,
maxj<k<l J3(dj, dk, dl). This is equivalent to maximizing the generalized resolu-
tion as defined in (4.2). Therefore, designs with maximum generalized resolution
minimize the maximum bias of nonnegligible interactions on the estimation of
the main effects. A more aggressive approach is minimizing the sum of squared
coefficients

∑m

j=1

∑m

k<l[j3(dj, dk, dl)/N ]2 = 3A3(d), where A3(d) is defined in
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(4.3). Hence minimum G2-aberration designs minimize the overall contamina-
tion of nonnegligible interactions on the estimation of the main effects.

For regular designs, Cheng, Steinberg and Sun (1999) justified the minimum
aberration criterion by showing that it is a good surrogate for some model-
robustness criteria. Following their approach, Cheng, Deng and Tang (2002)
considered the situation where (i) the main effects are of primary interest and
their estimates are required and (ii) the experimenter would like to have as much
information about two-factor interactions as possible, under the assumption that
higher-order interactions are negligible. Without knowing which two-factor in-
teractions are significant, they considered the set of models containing all of the
main effects and f two-factor interactions for f = 1, 2, 3, . . .. Let Ef be the num-
ber of estimable models and Df be the average of D-efficiencies of all models
that contain main effects plus f two-factor interactions. Cheng, Deng and Tang
(2002) showed that the minimum G2-aberration designs tend to have large Ef

and Df values, especially for small f ; therefore, the minimum G2-aberration cri-
terion provides a good surrogate for the traditional model-dependent efficiency
criteria. Ai, Li and Zhang (2005) and Mandal and Mukerjee (2005) extended
their approach to mixed-level designs.

5. Minimum moment aberration

Based on coding theory, Xu (2003) proposed the minimum moment aberration
criterion for assessing nonregular designs. For an N × m design d with s levels
and a positive integer t, define the tth power moment to be

Kt(d) = [N(N − 1)/2]−1
∑

1≤i<j≤N

[δij(d)]
t
, (5.1)

where δij(d) is the number of coincidences between the ith and jth rows. For
two row vectors (x1, . . . , xm) and (y1, . . . , ym), the number of coincidences is the
number of i’s such that xi = yi. Note that m− δij(d) is the Hamming distance

between the ith and jth rows in coding theory.
The power moments measure the similarity among runs (i.e., rows). The first

and second power moments measure the average and variance of the similarity
among runs. Minimizing the power moments makes runs to be as dissimilar as
possible. Therefore, good designs should have small power moments. This leads
to the minimum moment aberration criterion (Xu (2003)) that is to sequentially
minimize the power moments K1(d), K2(d), . . . , Km(d).

We note that the computation of the power moments involves the number
of coincidences between rows. By applying generalized MacWilliams identities
and Pless power moment identities, two fundamental results in coding theory
(see, e.g., MacWilliams and Sloane 1977, chap. 5), Xu (2003) showed that the
power moments Kt defined in (5.1) are linear combinations of the generalized
wordlength patterns A1, . . . , At in (4.3). Specifically, for t = 1, . . . , m,

Kt(d) = ctAt(d) + ct−1At−1(d) + · · ·+ c1A1(d) + c0, (5.2)
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where ci are constants depending on i, N, m, s only and the leading coeffi-
cient ct is positive. It is not difficult to see now that sequentially minimizing
K1(d), . . . , Km(d) is equivalent to sequentially minimizing A1(d), . . . , Am(d).
Therefore, the minimum moment aberration is equivalent to the generalized
minimum aberration.

The equivalence of the minimum moment aberration and the generalized
minimum aberration is very important. On the one hand, it not only provides
a geometrical justification for the generalized minimum aberration, but also
provides a statistical justification for the minimum moment aberration. On the
other hand, it provides a useful tool for efficient computation and theoretical
development. For an N ×m design with two levels, the complexity of computing
the generalized wordlength pattern according to the definition (4.3) is O(N2m)
whereas the complexity of computing m power moments is O(N2m2). The sav-
ing in computation is tremendous when the number of factors m is large. This
observation led to successful algorithmic constructions of mixed-level orthogo-
nal arrays (Xu (2002)), a catalog of 3-level regular designs (Xu (2005b)), and
blocked regular designs with minimum aberration (Xu and Lau (2006)). As a
theoretical tool, Xu (2003) developed a unified theory for nonregular and super-
saturated designs. Xu and Lau (2006) and Xu (2006) further used the concept
of minimum moment aberration to develop a theory for blocked regular designs
and constructed minimum aberration blocked regular designs with 32, 64 and
81 runs.

To mimic the minimum G-aberration criterion (Deng and Tang (1999)),
Xu and Deng (2005) applied the minimum moment aberration criterion to pro-
jection designs and proposed the moment aberration projection to rank and clas-
sify general nonregular designs. It was a surprise that the minimum G-aberration
criterion and the moment aberration projection criterion are not equivalent for
two-level designs. Xu and Deng (2005) provided examples to show that the lat-
ter is more powerful in classifying and ranking nonregular designs than the
former. They also provided examples to illustrate that the moment aberration
projection criterion is supported by other design criteria. The concept of mo-
ment projection turns out to be very useful in the algorithmic construction of
regular designs; see Xu (2005b, 2009).

For mixed-level designs, Xu (2003) suggested to weight each column according
to its level, called natural weights, and replace δij(d) in (5.1) with the number
of weighted coincidences. Xu (2003) showed that if the generalized resolution of
d is ≥ r, the identity in (5.2) holds for t = 1, . . . , r; Therefore, the minimum
moment aberration is weakly equivalent to the generalized minimum aberration
for mixed-level designs.

6. Uniformity and connection among various criteria

Uniformity or space filling is a desirable design property for computer experi-
ments (Fang, Li and Sudjianto (2006)). Various uniformity measures are used to
assess the space filling property for the so-called uniform design (Fang and Wang
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(1994), Fang, Lin, Winker and Zhang (2000)). Fang and Mukerjee (2000) found
a connection between aberration and uniformity for 2-level regular designs. This
connection was extended by Ma and Fang (2001) for general two-level designs.
The basic result states that for a two-level N × m design d, regular or non-
regular, the centered L2-discrepancy (CL2), a uniformity measure introduced
by Hickernell (1998), can be expressed in terms of its generalized wordlength
pattern Ak(d) as follows:

{CL2(d)}2 =

(

13

12

)m

− 2

(

35

32

)m

+

(

9

8

)m
{

1 +

m
∑

k=1

Ak(d)

9k

}

.

Since the coefficient of Ak(d) decreases exponentially with k, one can anticipate
that designs with small Ak(d) for small values of k should have small {CL2(d)}2;
in other words, minimum G2-aberration designs tend to be uniform over the
design region. Ma and Fang (2001) also gave analytic formulas that link the
generalized wordlength pattern with other uniformity measures for two- and
three-level designs.

Tang (2001) showed that minimum G2-aberration designs have good low-
dimensional projection properties. Ai and Zhang (2004a) extended this result
to mixed-level designs and showed that generalized minimum aberration designs
have good low-dimensional projection properties.

There is much more work on the connection among aberration, uniformity
and projection. Hickernell and Liu (2002) showed that generalized minimum
aberration designs and minimum discrepancy designs are equivalent in a certain
limit. Qin and Fang (2004), Ai, Li and Zhang (2005), Fang and Qin (2005), Liu,
Fang and Hickernell (2006), Qin and Ai (2007), and Qin, Zou and Chatterjee
(2009) discussed the connections among different criteria for symmetrical and
asymmetrical fractional factorial designs, including generalized minimum aber-
ration, minimum moment aberration, and various uniformity measures.

7. Construction and optimality results

An important and challenging issue is the construction of good nonregular de-
signs. There are two simple reasons: (i) nonregular designs do not have a unified
mathematical description and (ii) the class of nonregular designs is much larger
than the class of regular designs. Since 1999, a main stream of research focused
on searching or constructing nonregular designs with good properties in terms
of the minimum G2-aberration and generalized minimum aberration criteria.
This section reviews algorithmic constructions and optimality results. The last
subsection reviews a simple yet powerful construction method via quaternary
codes.

7.1. Algorithmic constructions

Two-level nonregular designs are often constructed from Hadamard matrices.
A Hadamard matrix of order N is an N × N matrix with the elements ±1
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whose columns (and rows) are orthogonal to each other. From a Hadamard
matrix of order N , one obtains a saturated two-level orthogonal array with N
runs and N − 1 columns, which is a nonregular design if N is not a power of
2. Hedayat and Wallis (1978) surveyed the existence (as of 1977) of Hadamard
matrices and many of their applications. Neil Sloane of AT&T Shannon Labs
maintains a large collection of Hadamard matrices at his website http://www.

research.att.com/∼njas/, which includes all Hadamard matrices of orders N
up through 28, and at least one of every order N up through 256. Sloane also
maintains a library of orthogonal arrays as a companion to the book by He-
dayat, Sloane and Stufken (1999). SAS maintains a library of orthogonal arrays
(of strength two) up through 144 runs at http://support.sas.com/techsup/
technote/ts723.html. SAS also provides a set of free macros for constructing
over 117,000 orthogonal arrays up through 513 runs, which are documented in
the free Web book by Kuhfeld (2005).

A simple strategy for constructing generalized minimum aberration designs is
to search over all possible projection designs from existing Hadamard matrices
or orthogonal arrays. Deng and Tang (2002) presented a catalog of generalized
minimum aberration designs by searching over Hadamard matrices of order 16,
20, and 24. However, limiting the search to Hadamard matrices may miss the
optimal design in some cases; therefore, Li, Tang and Deng (2004) searched for
generalized minimum aberration designs from and outside Hadamard matrices
with 20, 24, 28, 32 and 36 runs. They found that the minimum G-aberration
20×6 and 20×7 designs cannot be obtained from Hadamard matrices. Similarly,
Xu and Deng (2005) considered the construction of optimal designs under the
moment aberration projection criterion. Besides searching over all Hadamard
matrices of order 16 and 20, they searched over all projection designs from 68
saturated OA(27, 313, 2) given in Lam and Tonchev (1996). Xu and Deng (2005)
observed that not all 20-run and 27-run moment aberration projection designs
can be embedded into Hadamard matrices or saturated orthogonal arrays.

Sun, Li and Ye (2002) proposed an algorithm for sequentially constructing
non-isomorphic orthogonal designs. Two designs are said to be isomorphic or
equivalent if one design can be obtained from the other by row permutations,
column permutations, or relabeling of levels. An essential element of their algo-
rithm is using minimal column base to reduce the computations for determining
isomorphism between any two designs. A column base is a subset of columns of
a design, such that no two rows in a column base are identical to or the mir-
ror images of each other. By using this algorithm, they obtained the complete
catalogs of two-level orthogonal designs for 12, 16, and 20 runs. Their results
suggest that there is only one unique 12× m design for m = 4 and 7 ≤ m ≤ 11
and that there are two non-isomorphic 12 × m design for m = 5 and 6. All
these designs can be found as projection designs of the 12-run Plackett-Burman
design in Table 1. They found that there are five 16 × 15 orthogonal designs,
which are equivalent to the five non-isomorphic Hadamard matrices of order 16
by Hall (1961). An important result is that all 16-run orthogonal designs are
projections of one of the five 16-run Hadamard matrices. They found that there
are three 20 × 19 orthogonal designs, which are equivalent to the three non-

http://www.research.att.com/~njas/
http://www.research.att.com/~njas/
http://support.sas.com/techsup/technote/ts723.html
http://support.sas.com/techsup/technote/ts723.html
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isomorphic Hadamard matrices of order 20 by Hall (1965). From their complete
catalog, they obtained generalized minimum aberration designs. They found
that most of the generalized minimum aberration designs are projections of the
20-run Hadamard matrices. This founding is consistent with results reported in
Deng and Tang (2002). However, Sun, Li and Ye (2002) found that the gener-
alized minimum aberration designs for m = 6 and m = 7 are not projections
of the Hadamard matrices, which are consistent with results from Li, Tang and
Deng (2004) and Xu and Deng (2005). The complete catalogs of 12, 16 and 20
runs were later used by Li, Lin and Ye (2003) in the choice of optimal foldover
plans, by Cheng, Li and Ye (2004) in the construction of blocked nonregular
designs, by Loeppky, Bingham and Sitter (2006) for constructing nonregular
robust parameter designs, and by Li (2006) for constructing screening designs
for model selection.

Xu, Cheng and Wu (2004) considered the design issues related to the dual
objectives of factor screening and interaction detection for quantitative factors.
They proposed a set of optimality criteria to assess the performance of de-
signs and a three-step approach to searching for optimal designs. They not only
searched over all projection designs from the commonly used OA(18, 37, 2) given
by columns B to H in Table 2 and 68 saturated OA(27, 313, 2) in Lam and Tonchev
(1996), but also used an algorithm due to Xu (2002) to construct new designs
directly. They presented many efficient and practically useful three-level nonreg-
ular designs with 18 and 27 runs for the dual objectives. Evangelaras, Koukou-
vinos and Lappas (2007) completely enumerated all nonisomorphic orthogonal
arrays with 18 runs and 3 levels. Their results suggest that there are 4, 12, 10,
8, and 3 nonisomorphic OA(18, 3m, 2) for m = 3, 4, 5, 6, and 7, respectively.
Evangelaras, Koukouvinos and Lappas (2008) further completely enumerated
all nonisomorphic OA(27, 3m, 2) for m = 3–13 and identified 129 nonisomorphic
saturated OA(27, 313, 2).

Loeppky, Sitter and Tang (2007) proposed to rank two-level orthogonal de-
signs based on the number of estimable models containing a subset of main
effects and their associated two-factor interactions. They argued that by rank-
ing designs in this way, the experimenter can directly assess the usefulness of the
experimental plan for the purpose in mind. They presented catalogs of useful
designs with 16, 20, 24, and 28 runs.

All these algorithmic constructions are limited to small run sizes (≤ 32) due
to the existence of a large number of designs and the difficulty of determining
whether two designs are isomorphic or equivalent. Katsaounis and Dean (2008)
gave a survey and evaluation of methods for determination of equivalence of fac-
torial designs. Fang, Zhang and Li (2007) proposed an optimization algorithm
for constructing generalized minimum aberration designs. It is not clear how ef-
fective their algorithm is for constructing large designs. Bulutoglu and Margot
(2008) recently completely classified some orthogonal arrays of strength 3 up to
56 runs and of strength 4 up to 144 runs. However, these arrays have a small
number of factors (≤ 11).
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7.2. Optimality and theoretical results

A powerful tool in the study of regular designs is the complementary design
technique. A regular sn−k design can be viewed as n columns of an N × (N −
1)/(s − 1) matrix which consists of n − k independent columns and all pos-
sible interactions among them, where N = sn−k. Every regular design has
a unique complementary design which consists of the remaining columns. It
is more convenient to study the complementary design than the design itself
when the former is smaller; see Chen and Hedayat (1996), Tang and Wu (1996),
Suen, Chen and Wu (1997), Chen and Cheng (1999) and Xu and Cheng (2008).
For nonregular designs, Tang and Deng (1999) developed a complementary de-
sign theory for minimum G2-aberration designs and Xu and Wu (2001) further
developed a theory for generalized minimum aberration designs. The theory
was extended by Ai and Zhang (2004b) for blocked nonregular designs and by
Ai and He (2006) for nonregular designs with multiple groups of factors, includ-
ing robust parameter designs. However, unlike in the regular case, a nonregular
design can have none, one or more than one complementary designs; therefore,
the complementary design theory for nonregular designs is less useful than that
for regular designs.

Xu (2003) gave several sufficient conditions for a design to have minimum
moment aberration and generalized minimum aberration among all possible de-
signs. One sufficient condition is that for an orthogonal array of strength t its
projection onto any t + 1 columns does not have repeated runs. For example,
consider the OA(18, 36, 2) given by columns C to H in Table 2. It is easy to
verify that its projection onto any three columns does not have repeated runs.
Thus, this design (and any of its projections) has minimum moment aberration
and generalized minimum aberration among all possible designs. Another suf-
ficient condition is that the numbers of coincidences between distinct rows are
constant or differ by at most one. In other words, a design is optimal under
the minimum moment aberration and generalized minimum aberration crite-
ria if its design points are equally or nearly equally spaced over the design
region. As an example, the OA(12, 211, 2) in Table 1 is optimal because the
number of coincidences between any two distinct rows is 5. Generalizing this,
Zhang, Fang, Li and Sudjianto (2005) proposed a majorization framework and
showed that orthogonality, aberration and uniformity criteria can be unified by
properly choosing combinatorial and exponential kernels.

Tang and Deng (2003) presented construction methods that yield maximum
generalized resolution designs for 3, 4 and 5 factors and any run size N that is
a multiple of 4. Butler (2003, 2004) presented a number of construction results
that allow minimum G2-aberration designs to be found for many of the cases
with N =16, 24, 32, 48, 64 and 96 runs. Butler (2005) further developed theoret-
ical results and presented methods that allow generalized minimum aberration
designs to be constructed for more than two levels. A key tool used by Butler
(2003, 2004, 2005) is some identities that link the generalized wordlength pat-
terns with moments of the inner products or Hamming distances between the
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rows. These identities can be derived easily from the generalized Pless power
moment identities developed by Xu (2003).

Xu (2005a) constructed several nonregular designs with 32, 64, 128, and 256
runs and 7–16 factors from the Nordstrom and Robinson code, a well-known
nonlinear code in coding theory. These designs are better than regular designs
of the same size in terms of resolution, aberration and projectivity. By using
linear programming he showed that 13 nonregular designs have minimum G2-
aberration among all possible designs and seven orthogonal arrays have unique
generalized wordlength patterns.

Tang (2006) studied the existence and construction of orthogonal arrays that
are robust to nonnegligible two-factor interactions. Butler (2007) showed that
foldover designs are the only (regular or nonregular) two-level factorial designs of
resolution IV or more for N runs and N/3 ≤ m ≤ N/2 factors. Yang and Butler
(2007) studied two-level nonregular designs of resolution IV or more containing
clear two-factor interactions and presented necessary and sufficient conditions
for the existence of such designs. They gave many designs in concise grid repre-
sentations for N = 48 up to 192 and N being a multiple of 16.

Stufken and Tang (2007) completely classified all two-level orthogonal ar-
rays with t + 2 factors, strength t and any run size. The key tool they used is
the theory of J-characteristics developed by Tang (2001). Cheng, Mee and Yee
(2008) studied the construction of second-order saturated orthogonal arrays of
strength three OA(N, 2m, 3), which allows N −m− 1 two-factor interactions to
be estimated besides m main effects.

7.3. Nonregular designs constructed via quaternary codes

The construction of efficient large regular designs is known to be very difficult
(Xu (2009)). The problem is even harder for nonregular designs. The construc-
tion via quaternary codes is relatively straightforward and can generate good
large nonregular designs.

A quaternary code is a linear subspace over Z4 = {0, 1, 2, 3} (mod 4), the
ring of integers modulus 4. A surprising breakthrough in coding theory is that
many famous nonlinear codes such as the Nordstrom and Robinson code can be
constructed via quaternary codes (Hammons et al. (1994)). A key device is the
so-called Gray map:

φ : 0 → (0, 0), 1 → (0, 1), 2 → (1, 1), 3 → (1, 0),

which maps each symbol in Z4 to a pair of symbols in Z2. Let G be a k × n
matrix and let C consist of all possible linear combinations of the row vectors
of G over Z4. Applying the Gray map to C, one obtains a 4k × 2n matrix or a
two-level design, denoted by d. Although C is linear over Z4, d may or may not
be linear over Z2.

Xu and Wong (2007) described a systematic procedure for constructing non-
regular designs from quaternary codes. They first generated a k × (4k − 2k)/2
generator matrix G which has the following properties: (i) it does not have any
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column containing entries 0 and 2 only and (ii) none of its column is a mul-
tiple of another column over Z4. Xu and Wong (2007) showed that the binary
image d generated by G is a 4k × (4k − 2k) design with resolution 3.5 whereas
regular designs of the same size have resolution 3. To obtain designs with less
than 4k − 2k columns, they developed a sequential algorithm, similar to those
by Chen, Sun and Wu (1993) and Xu (2005b). They also presented a collection
of nonregular designs with 32, 64, 128 and 256 runs and up to 64 factors, many
of which are better than regular designs of the same size in terms of resolution,
aberration and projectivity.

Phoa and Xu (2009) further investigated the properties of quarter-fraction
designs which can be defined by a generator matrix that consists of an identity
matrix plus an extra column. They showed that the resolution, wordlength and
projectivity can be calculated in terms of the frequencies of the numbers 1, 2
and 3 that appear in the extra column. These results enabled them to construct
optimal quarter-fraction designs via quaternary codes under the maximum res-
olution, minimum aberration and maximum projectivity criteria. These designs
are often better than regular designs of the same size in terms of the design cri-
terion. The generalized minimum aberration designs constructed via quaternary
codes have the same aberration as the minimum aberration regular designs, and
frequently with larger resolution and projectivity. A maximum projectivity de-
sign is often different from a minimum aberration or maximum resolution design
but can have much larger projectivity than a minimum aberration regular de-
sign. They further showed that some of these designs have generalized minimum
aberration and maximum projectivity among all possible designs.

There are two obvious advantages of using quaternary codes to construct
nonregular designs: (i) relatively straightforward construction and (ii) simple
design representation. Since the designs are constructed via linear codes over Z4,
one can use column indexes to describe these designs. The linear structure of a
quaternary code also facilitates the derivation and analytical study of properties
of nonregular designs.

8. Concluding remarks and future directions

We have discussed recent developments in nonregular fractional factorial designs
in the preceding sections. In a nutshell, when we compare regular designs with
nonregular designs, nonregular designs have the following advantages:

1. require smaller run size
2. are more flexible in accommodating various combinations of factors with

different numbers of levels
3. have better geometrical or hidden projection properties
4. have higher generalized resolution and projectivity
5. have less generalized aberration
6. lessen the contamination of nonnegligible two-factor interactions on the

estimation of the main effects.
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Some of the disadvantages of nonregular designs are that they are more compli-
cated to analyze and some estimates of factorial effects may have larger variance
than others.

This review does not include the developments in supersaturated designs,
which are factorial designs whose run sizes are not enough for estimating all
the main effects. The research on supersaturated designs has been very ac-
tive since the influential work of Lin (1993) and Wu (1993). Broadly speak-
ing, supersaturated designs are nonregular designs and optimality criteria such
as generalized resolution and generalized minimum aberration can also be ap-
plied directly. As mentioned earlier, Xu (2003) developed a unified theory for
nonregular and supersaturated designs using the concept of minimum moment
aberration. Xu and Wu (2005) obtained additional theoretical results under the
generalized minimum aberration criterion for multi-level and mixed-level super-
saturated designs. Gilmour (2006) reviewed the recent development of two-level
supersaturated designs for factor screening.

Computer experiments are increasing popular where complex physical pro-
cesses are being simulated. A popular class of designs for computer experiments
are Latin hypercube designs, especially those based on orthogonal arrays; see,
e.g., Tang (1993) and Owen (1994). The concepts of strength, resolution and
projectivity can be extended to the Latin hypercube designs in a straightforward
manner. For example, a Latin hypercube derived from a nonregular design with
resolution R̃ has desirable uniform projection properties up to R̃ − 1 dimen-
sions. The research reviewed in Section 6 highlights some connections between
factorial designs and computer experiments. For an introduction to design and
analysis of computer experiments, see Sacks, Welch, Mitchell and Wynn (1989),
Santner, Williams and Notz (2003) and Fang, Li and Sudjianto (2006).

Finally we highlight some future directions of research for nonregular designs
and comment briefly why we feel they are useful:

1. applications of nonregular designs
2. analysis of nonregular designs
3. construction of good nonregular designs with large run sizes
4. optimality results with respect to the generalized resolution.

Despite significant developments in recent years and the advantages of using
nonregular designs, they are still widely used for screening main effects only in
practice and applications are largely limited to industry. We hope that by docu-
menting recent advances in nonregular designs, our work may stimulate greater
research interest in nonregular designs. We feel that there are opportunities that
nonregular designs can be effectively applied to other fields to reduce experi-
mental cost and gain improvement in statistical efficiency. As an example, Mee
(2004) and Telford (2007) reported an application that used a regular resolution
V design with 4,096 runs to study 47 factors in a ballistic missile defense project
at Johns Hopkins University. Half of those 4,096 runs could have been saved had
the researchers used a nonreguar design; see Mee (2004) for more details.

The analysis of nonregular designs requires more attention. Although one
can use any general purpose variable selection procedures, it is desirable to
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have user-friendly packages that incorporate the special features of nonregular
designs in the analysis. More analysis strategies and comparisons are needed
to further understand and utilize the complex aliasing structure of nonreg-
ular designs. Different procedures do not always lead to unequivocal conclu-
sions. When that happens, extra runs are needed to resolve the ambiguity. See
Meyer, Steinberg and Box (1996), Wu and Hamada (2000, Section 4.4) and Box,
Hunter and Hunter (2005, Chapter 7) for methods of constructing follow-up de-
signs.

There are plenty of catalogs of optimal nonregular designs with small run
sizes (≤ 32). With the popularity of computer experiments, more and more
large fractional factorial designs will be used in practice. The quaternary code
construction method is very promising in this regard and is able to produce
large nonregular designs with good properties; see Xu and Wong (2007) for a
collection of nonregular designs with 32, 64, 128 and 256 runs and up to 64
factors. The construction of larger designs is challenging, especially for resolution
V designs that allow main effects and two-factor interactions to be estimated
independently. A question of great importance is whether nonregular designs
can accommodate more factors than regular designs. The answer is affirmative
in the cases of 128, 256, 2,048 and 4,096 runs; see Mee (2004). However, the
answer is yet unknown for the cases of 512 and 1,024 runs. According to Xu
(2009), a regular resolution V design with 512 runs can accommodate at most
23 factors and a regular resolution V design with 1,024 runs can accommodate
at most 33 factors. Can one construct nonregular designs with more factors via
quaternary codes or other methods?

Several optimality results and theories have been obtained for the minimum
G2-aberration and the generalized minimum aberration criteria. However, at
the present time, there is very limited results on the generalized resolution
for nonoregular designs. For example, Phoa and Xu (2009) constructed sev-
eral classes of optimal one-quarter fraction designs via quaternary codes. They
showed that one class of their designs are optimal over all possible designs un-
der the minimum G2-aberration criterion. A question of interest is whether
another class of their designs have maximum generalized resolution over all pos-
sible designs. Can one construct one-quarter fraction designs with even higher
generalized resolution?
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