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Abstract. Zero-inflated nonnegative continuous (or semicontinuous) data
arise frequently in biomedical, economical, and ecological studies. Examples
include substance abuse, medical costs, medical care utilization, biomarkers
(e.g., CD4 cell counts, coronary artery calcium scores), single cell gene ex-
pression rates, and (relative) abundance of microbiome. Such data are often
characterized by the presence of a large portion of zero values and positive
continuous values that are skewed to the right and heteroscedastic. Both of
these features suggest that no simple parametric distribution may be suit-
able for modeling such type of outcomes. In this paper, we review statistical
methods for analyzing zero-inflated nonnegative outcome data. We will start
with the cross-sectional setting, discussing ways to separate zero and pos-
itive values and introducing flexible models to characterize right skewness
and heteroscedasticity in the positive values. We will then present models of
correlated zero-inflated nonnegative continuous data, using random effects
to tackle the correlation on repeated measures from the same subject and
that across different parts of the model. We will also discuss expansion to
related topics, for example, zero-inflated count and survival data, nonlinear
covariate effects, and joint models of longitudinal zero-inflated nonnegative
continuous data and survival. Finally, we will present applications to three
real datasets (i.e., microbiome, medical costs, and alcohol drinking) to illus-
trate these methods. Example code will be provided to facilitate applications
of these methods.
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1. INTRODUCTION

Zero-inflated nonnegative continuous (or semicon-
tinuous) data are frequently encountered in biomedi-
cal, economic, and ecological studies. Such data of-
ten have two distinct features: (i) the presence of a
large portion of zero values, and (ii) right skewness
and heteroscedasticity for positive continuous values.
Examples include medical costs (Manning et al., 1981,
Duan et al., 1983, Zhou and Tu, 1999, Liu, 2009, Liu
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et al., 2008, 2010), medical care utilization (Xie et al.,
2004), daily precipitation levels (Hyndman and Grun-
wald, 2000), alcohol consumption (Liu, Ma and John-
son, 2008, Liu et al., 2016b, Han et al., 2018), health
assessment score (Boag, 1949), single cell gene expres-
sion rates (McDavid et al., 2013, Finak et al., 2015),
and relative abundance of microbiome data (Chen and
Li, 2016, Chai et al., 2018). Of note, there also exist
zero-inflated data when the continuous portion of the
data can be positive and negative but with excessive
zeroes, for example, changes of alveolar bone height
of the tooth sites as considered in Lu, Lin and Shih
(2004). In this paper, we will focus on zero-inflated
nonnegative continuous outcomes, and hereafter may
omit the word “nonnegative” without causing further
confusion.

Three motivating applications are considered in this
paper to illustrate the use of these models. The first
example is microbiome composition data. In such a
study, the raw measures of microbial abundances (in
read counts) are not comparable across samples. They
are normalized to relative abundances, a proportion in
[0,1), for each species. However, not all species are
present, resulting in zero values in relative abundances.
For example, Figure 1(A) shows the distribution of the
relative abundance of Haemophilus, which has exces-
sive zeros (39%). The continuous nonzero values are
right skewed, ranging from 0.0000106 to 0.4440, hav-
ing a mean of 0.0285. The second example is medical
cost data. Figure 1(B) shows monthly medical costs
of heart failure patients in the University of Virginia
Health System (Liu, 2009). In any given month, some
patients had no costs while other patients incurred
tremendous medical costs which may increase with
disease severity. Specifically, in this dataset, (i) a large
portion of monthly medical costs (49%) are zero; and
(ii) positive monthly costs have a mean of $2982 and
median of $365. Thus, the data exhibit a pattern of
a point mass at 0, and the positive values are right
skewed with possible heteroscedasticity. In the third
example, we are interested in the daily drinking level
(converted to number of standard drinks) in a topira-
mate trial to treat alcohol dependence (Johnson et al.,
2007). A “standard drink” is 0.5 oz of absolute alco-
hol, equivalent to 10 oz of beer, 4 oz of wine, or 1 oz of
100-proof liquor. After conversion to the unit of stan-
dard drinks, alcohol consumption data are present as
fractional drinking levels, resulting in continuous data
instead of count data. On a given day, some alcohol
dependent individuals were abstinent, that is, had zero
drinking values, while others drank heavily. As shown

in Figure 1(C), there is a presence of a large portion
(32%) of zero values. The continuous nonzero (posi-
tive) values have a mean of 7.6 standard drinks with a
range of 0.072–58.9, demonstrating the right skewness.

A common analytical approach for such zero-inflated
nonnegative outcome data is to do a linear regression
on the log transformed value log(Y + c), where c is
a small positive number, for example, $1 for medical
costs. This is the so-called “one part” model. However,
the transformed outcome still has a point mass at log c.
Furthermore, it is of clinical significance to distinguish
zero from positive values in the original zero-inflated
continuous data. For example, for alcohol consump-
tion, a “0” value means abstinence, which is an impor-
tant treatment target to achieve. In medical cost data,
individuals with $0 in medical costs may be healthy
and have not sought any medical treatment. However,
it is also possible that the absence of any medical costs
reflects an inability to seek medical care due to finan-
cial or other access barriers.

In this paper, we will explore more advanced and rig-
orous methods to handle the features of zero-inflated
nonnegative continuous outcomes. The first challenge
is to distinguish between zero and positive values,
which will be discussed in Section 2. Then, we present
more flexible models to address the right skewed and
often heteroscedastic positive values in Section 3. Cor-
related zero-inflated nonnegative data, for example,
clustered medical costs or longitudinal drinking out-
comes, will be tackled in Section 4. In Section 5, we
will discuss other forms of zero-inflated data, for exam-
ple, zero-inflated count and zero-inflated survival mod-
els. Next, we will consider other issues commonly en-
countered in zero-inflated continuous data, for exam-
ple, nonlinear covariate effects in Section 6 and joint
models of longitudinal zero-inflated outcomes and a
terminal event in Section 7. In Section 8, we illus-
trate the applications of some of these methods to three
datasets. Concluding remarks and future methodologi-
cal considerations are given in Section 9. Sample pro-
gramming codes are provided in the web materials.

Of note, a recent tutorial on modeling zero-inflated
count and semicontinuous data was published in Statis-
tics in Medicine by Neelon, O’Malley and Smith
(2016). While our paper has some overlap in the gen-
eral model set-up, we placed considerably more atten-
tion on analytical challenges associated with the posi-
tive values of the semicontinuous data, such as the right
skewness and heteroscedasticity (Sections 3 and 4) and
nonlinear covariate effects (Section 6). In addition, this
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FIG. 1. (A) Histogram of relative abundance of Haemophilus. (B) Histogram of monthly medical costs (in 10,000 U.S. dollars) for heart
failure patients. (C) Histogram of daily drinking levels in the topiramate trial.

review covers several more advanced topics in zero-
inflated models, including zero-inflated survival mod-
els (Section 5) and joint models of semicontinuous data
with survival or other clinical outcomes (Section 7).

2. ZERO VS. POSITIVE VALUES

Two approaches are generally adopted to describe a
semicontinuous outcome: a Tobit model (Tobin, 1958)

where zero values are considered as “censored” obser-
vations, or a two-part model (2PM or TPM, Manning
et al., 1981) which separately describes the proba-
bility of the outcome being positive and the magni-
tude of positive values. These two approaches will be
discussed in the first two subsections. We will then
describe a zero-inflated Tobit model (Moulton and
Halsey, 1995) which accommodates the characteristics
of both the Tobit and the two-part models.
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2.1 Tobit Model

In this approach, the actual (underlying true or la-
tent) outcome Y ∗ is continuous and positive. However,
for example, due to the detection limit of a measuring
instrument, we may not be able to observe the true out-
come below such a detection limit. Denoting the ob-
served value by Y , we have

Y =
{
Y ∗ Y ∗ > ymin,

0 Y ∗ ≤ ymin,
(1)

where ymin is the smallest observed positive value (e.g.,
the detection limit). The actual outcome Y ∗ is left cen-
sored at ymin if it drops below the detection limit (com-
pared to right censoring in survival models), resulting
in a point mass at 0 for observed Y . Importantly, the
choice of value for Y is arbitrary when Y ∗ ≤ ymin; with
zero, ymin, or ymin/2 being 3 such example; however,
zero is mostly used for simplicity and ease in interpre-
tation.

Covariates can be included, such as in the following
Tobit model (Tobin, 1958): given a covariate vector X,

logY ∗|X ∼ XT β + e,(2)

where β is a coefficient vector and e is an error term
that is independent of X. If we assume e ∼ N(0, σ 2),
the underlying Y ∗ has a lognormal distribution.

There are many variations of the Tobit model. As
an example, the Heckman sample selection model
(Heckman, 1979), also known as the Type II Tobit
model, introduces a second latent variable Y ∗

2 in ad-
dition to the first latent variable Y ∗

1 : let

Y2 =
{
Y ∗

2 if Y ∗
1 > ymin,

0 o.w.,
(3)

where

logY ∗
1 |X ∼ XT β1 + e1,

logY ∗
2 |X ∼ XT β2 + e2.

(4)

That is, Y ∗
2 is observed if and only if Y ∗

1 > ymin. Other
variations of Tobit models (Types III–V) can be found
in Amemiya (1994).

2.2 Two-Part Model (2PM)

In contrast to the Tobit model which considers the
true outcome to be left censored, the two-part model
does not distinguish between Y and Y ∗ and treats zero
values as true observations. More accurately, it models
the observed data as a mixture, separating the zero and

positive values explicitly by two submodels (parts). Let
Y0 be a Bernoulli random variable such that

logitP(Y0 = 1|X) = XT α.(5)

Let Y+ > 0 be a continuous random variable such that

logY+|X ∼ XT β + e,(6)

where X and e are independent. Then, defining the
nonnegative random variable Y = Y0Y+, the above
specifications induce a conditional cumulative distri-
bution function of the form

P(Y ≤ y|X) = 1 − p(X)

+ I (y > 0)p(X)Fe

(
logy − XT β

)
,

where Fe(u) = P(e ≤ u) and p(X) = expit(XT α).
This last expression generates the so-called two-part
model (2PM: Aitchison, 1955; Manning et al., 1981);
that is, if only Y is observed, the probability model
specification involves two parts:

• Part I: P(Y > 0|X) = p(X) and P(Y = 0|X) = 1 −
p(X);

• Part II: the probability distribution [Y |Y > 0,X]
is given by [Y+|X], with E(logY |Y > 0,X) =
E(logY+|X) = XT β .

Variations on this model that use a probit link in
place of the logit link, or some alternative monotone
transformation linking Y+ to X, are clearly possible.
Throughout the remainder of the paper, and with a
slight abuse of notation, we will not make a distinc-
tion between the conditional distributions [Y+|X] and
[Y |Y > 0,X], understanding that the former is being
used to represent the latter.

2.3 Tobit vs. 2PM

The Tobit model and 2PM are not directly compa-
rable through their respective likelihoods due to the
inclusion of ymin as part of the Tobit model, and in
particular, the requirement that ymin > 0 for there to
be a point mass at zero. In principle, the Tobit model
is more plausible when there exists a detection limit.
However, for many data types including alcohol intake,
the Tobit model is not appropriate because there is no
clinically meaningful definition of the detection limit.
More importantly, a zero daily drinking level is consid-
ered to be a “true” zero, indicating abstinence which
is an important goal to achieve in alcohol dependence
studies. The same applies to medical cost data: a zero
cost is a “true” zero, indicating a condition free of med-
ical service usage.
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The major difference between these two classes of
models is that the error term in Equation (6) is only
meaningful when Y > 0, while in the Type II Tobit
model (4) there is no such condition. Manning, Duan
and Rogers (1987) conducted a simulation study to
evaluate the merits of both models and concluded in fa-
vor of the two-part model. Leung and Yu (1996) carried
out an independent study and concluded that, in gen-
eral, the two-part and sample selection model classes
are designed to answer distinct inferential questions
and both are useful in their respective contexts.

2.4 Zero-Inflated Tobit Model

When there are a large portion of zeros (below the
detection limit), the Tobit model needs a large spread
(variance) to cover the probability of zeros, which of-
ten results in poor fit. Moulton and Halsey (1995) ac-
commodated the features of both the two-part and To-
bit models, and proposed a zero-inflated Tobit (ZIT)
model. In the ZIT model, the observed zero values
are assumed to come from two sources: either a “true”
zero as in a two-part model, or a left-censored “actual
but unobserved” outcome. Formally, given X, the ZIT
model is defined as

Y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y ∗I
(
Y ∗ > ymin

)
with probability

p(X),

0 with probability

1 − p(X),

(7)

where Y ∗ is as given in (2) and

logit
(
p(X)

) = XT γ.(8)

The case where p(X) is independent of X corresponds
to γ = 0 (i.e., except possibly the intercept); other link
functions are also possible.

The ZIT model is another example of a finite mix-
ture model with two components: a point mass at zero
and a Tobit model. It contains the Tobit model (i.e.,
if p(X) = 1 for every X) and two part model (i.e., if
p(X) �= 1 for every X and ymin ≤ 0) as special cases.
However, an important challenge with the ZIT model is
identifiability, similarly to other finite mixture models.

2.5 Marginalized 2PM

The notion of “marginalization” in the context of
a 2PM really refers to the overall effect of X on the
mean of the observed Y , or E(Y |X). In a 2PM, one has
E(Y |X) = P(Y > 0|X)E(Y+|X); since both P(Y >

0|X) and E(Y+|X) involve a set of regression param-
eters intended to capture the effect of X, the product

form creates challenges in easily determining the ef-
fect of a given covariate on E(Y |X).

Suppose X contains a continuous component, say
Xs , and let xs denote realizations of this component.
Then, using models (5) and (6), Liu et al. (2010) con-
sidered the overall impact of a covariate on E(Y |X)

through

∂ logE(Y |X)

∂xs

= ∂ logP(Y > 0|X)

∂xs

+ ∂ logE(Y+|X)

∂xs

= αsP (Y = 0|X) + βs,

where αs and βs are the regression coefficients corre-
sponding to Xs . Multiplying ∂ logE(Y |X)/∂xs by xs ,
one can write

xs

∂ logE(Y |X)

∂xs

= ∂E(Y |X)/E(Y |X)

∂xs/xs

,

which is the “partial elasticity” of the mean cost with
respect to xs (e.g., Wooldridge, 2002, page 16). Liu
et al. (2010) also derive a related formula for binary X.

Smith et al. (2014) proposed an alternative form of
the marginalized 2PM for E(Y |X), parameterizing in-
stead the point mass probability p(X) = P(Y > 0|X)

as p(X) = expit(XT α) and the “marginalized” mean
E(Y |X) = exp(XT γ ). In certain cases, it is possible to
fit the marginalized 2PM model using software capable
of fitting a general 2PM. For example, suppose [Y+|X]
in (6) follows a lognormal distribution with parame-
ters μ(X) and σ 2; that is, logY+|X ∼ μ(X)+ e, where
e ∼ N(0, σ 2). Then, under the 2PM,

E(Y |X) = p(X) exp
(
μ(X) + σ 2/2

)
.

Letting μ(X) = XT γ − logp(X) − σ 2/2, it follows
that

E(Y |X) = p(X) exp
(
μ(X) + σ 2/2

) = exp
(
XT γ

)
,

showing that the conventional 2PM can be parameter-
ized in a way that yields the desired marginalized 2PM
(c.f. Smith et al., 2014). The corresponding likelihood
can be maximized using SAS PROC NLMIXED. Other
types of distributions introduced in Section 3, for ex-
ample, log skew normal (Smith et al., 2014), general-
ized gamma (Smith et al., 2017a) and Beta (Chai et al.,
2018), can also be considered in the marginalized 2PM.

2.6 Remarks

We will mostly focus on the two-part model frame-
work throughout the rest of the review article since,
as indicated in our motivating examples, neither medi-
cal costs or drinking data have the detection limit fea-
ture. Statistically, the Tobit model may be appropriate
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when there exists an inflated but small percentage of
zero values, for example, to allow for a somewhat bet-
ter fit compared to a continuous model. SAS code for
fitting a Tobit model can be found at http://www.ats.
ucla.edu/stat/sas/faq/cens_nlmixed.htm, and SAS code
designed to fit the ZIT model may be found in Berk
and Lachenbruch (2002).

3. MODELING POSITIVE VALUES IN PART II OF
THE 2PM

In this section, we will review methods to model
positive values in Part II of the 2PM. Recall that we
use [Y+|X] to represent the conditional distribution
[Y |Y > 0,X], and as a continuation of that slight abuse
in notation, we will use Y+ to represent the positive
values of Y .

Historically, a logarithmic transformation of the re-
sponse Y+ is most commonly used to tackle positive
values with skewness and heteroscedasticity, followed
by regressing the transformed Y+ on covariates X, as
in Model (6). However, using a transformed Y+ (e.g.,
logY+) for regression no longer models the mean re-
sponse on the original scale of interest. This presents
a problem, especially in the area of predicting medi-
cal costs. Below, we discuss the retransformation issue
and contrast that approach with one based on gener-
alized linear models (GLMs), where the need for re-
transformation is avoided. In addition, although com-
monly used in practice, the use of a log normal distri-
bution for [Y+|X] may not be adequate for describing
right skewness and potential heteroscedasticity; hence,
also reviewed below are three useful parametric exten-
sions of the log normal distribution and some related
approaches for tackling heteroscedasticity. Finally, we
will discuss several other possible adaptations of the
2PM.

3.1 GLM vs. Log Transformation

In Model (6), a transformed Y+ (e.g., logY+) is taken
as the dependent variable. However, we are often more
interested in E(Y+|X) (e.g., dollars) than E(logY+|X)

(log dollars), especially for prediction purposes. There-
fore, a retransformation mapping the results of the
analysis done on a transformed scale back to the scale
of interest is needed to draw inference about E(Y+|X)

(Manning, 1998, Manning and Mullahy, 2001).
In Model (6), E(Y+|X) = exp(XT β)E(exp(e)). If

the error e ∼ N(0, σ 2), then E(Y+|X) = exp(XT β)×
exp(σ 2/2). If the error distribution is unknown but
homoscedastic (having the same error variance), re-
transformation is possible using a “smearing estimate”

(Duan, 1983) that uses the average of exp(ê) to esti-
mate E(exp(e)), where ê is the residual in Model (6).
However, in the presence of heteroscedasticity, the
smearing estimate becomes very complicated and can
sometimes fail (Manning and Mullahy, 2001).

To avoid the need for retransformation, generalized
linear models (GLMs) have been proposed, for ex-
ample, see Blough, Madden and Hornbrook (1999)
and Mullahy (1998). For example, instead of estimat-
ing E(logY+|X), a GLM can be set up to model
logE(Y+|X) to obtain the mean on the desired scale.
These models simultaneously describe the link and
variance structure by pre-specified functions, for ex-
ample, log link with a gamma error distribution. How-
ever, an issue in GLMs is to determine the proper
distributional form. Manning and Mullahy (2001) pro-
posed a modified Park’s test (Park, 1966) by regressing
the log squared residual ê2 on log of the prediction Ŷ+,
that is, log(ê2) = α0 + α1 log Ŷ+ + ε. The significance
in testing α1 = 0 indicates heteroscedasticity, and the
magnitude of α1 can be used to determine the distri-
bution, for example, α1 = 0: Gaussian; α1 = 1: Pois-
son; α1 = 2: Gamma; and α1 = 3: Inverse Gaussian or
Wald. Further methods for characterizing and model-
ing heteroscedasticy are given in Section 3.3.

3.2 Three Parametric Extensions to Log Normal
Distribution

Liu et al. (2016b) considered 3 extensions of the log
normal distribution: generalized gamma distribution,
log skew normal distribution, and normal distribution
after Box–Cox transformation. All 3 extensions have 3
parameters, and all contain the 2-parameter log normal
distribution as a special case.

3.2.1 Generalized gamma distribution. For a gener-
alized gamma distribution with 3 parameters (κ : shape,
μ: location, σ : scale), the density function is (Manning,
Basu and Mullahy, 2005, Liu et al., 2010, 2016b)

f (y+;κ,μ,σ ) = ηη

σy+
(η)
√

η

× exp
[
u
√

η − η exp
(|κ|u)]

,

(9)

where η = |κ|−2 > 0 and u = sign(κ)(logy+ − μ)/σ

depends on the sign of κ . If Y+ is a random variable
with density (9),

E(Y+) = exp
{
μ + σ log(κ2)

κ
+ log

[



(
1/κ2 + σ/κ

)]

− log
[



(
1/κ2)]}

http://www.ats.ucla.edu/stat/sas/faq/cens_nlmixed.htm
http://www.ats.ucla.edu/stat/sas/faq/cens_nlmixed.htm
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and

Var(Y+) = {
exp(μ)κ2σ/κ}2

{

(1/κ2 + 2σ/κ)


(1/κ2)

−
[

(1/κ2 + 2σ/κ)


(1/κ2)

]−2}
.

The generalized gamma distribution is very flexi-
ble, including the standard gamma, inverse gamma,
Weibull and lognormal distributions as special or lim-
iting cases. For example, if σ = κ , the generalized
gamma distribution (9) reduces to a standard gamma
with shape parameter η = κ−2 and scale parameter
ν = κ2 exp(μ), that is,

f (y+;ν, η) = 1

νη
(η)
y

η−1
+ exp(−y+/ν),

with mean exp(μ) and variance κ2 exp(2μ). If we set
κ = −σ with σ > 0, we will obtain the inverse gamma
distribution with density

f (y+; ε, η) = εη


(η)

(
1

y+

)η+1
exp(−ε/y+),

with shape parameter η and scale parameter ε = ηeμ

(e.g., Robert, 2007, page 520). The Weibull and log-
normal distributions are obtained by fixing κ . Specifi-
cally, setting κ = 1 reduces the generalized gamma to
a Weibull distribution with shape parameter 1/σ and
scale parameter eμ. Alternatively, as κ → 0, we obtain
a log normal probability density function with param-
eters μ and σ :

f (y+;μ,σ) = 1

σy+
√

2π
exp

{
−(logy+ − μ)2

2σ 2

}
.

3.2.2 Log skew normal distribution. The density of
the skew normal distribution is given by (e.g., see Chai
and Bailey, 2008)

f (z;λ,μ,σ) = 2√
σ 2 + λ2

φ

(
z − μ√
σ 2 + λ2

)

× �

(
λ

σ

z − μ√
σ 2 + λ2

)
,

where φ(·) and �(·) are the standard normal den-
sity and cumulative distribution functions, respectively.
The three parameters are: λ: skewness; μ: location; σ :
scale. If λ = 0, the skew normal distribution reduces to
the normal distribution.

The density of the log skew normal distribution for
y+ = exp(z) is

f (y+;λ,μ,σ) = 1

y+
2√

σ 2 + λ2
φ

(
logy+ − μ√

σ 2 + λ2

)

× �

(
λ

σ

logy+ − μ√
σ 2 + λ2

)
.

(10)

3.2.3 Normal after Box–Cox transformation. The
Box–Cox transformation (Box and Cox, 1964) is given
by

v(y+) =
{
γ −1(

y
γ
+ − 1

)
γ �= 0,

logy+ γ = 0,

where γ is a parameter to be estimated. Assuming that
Y+ has some probability distribution, the “Normal af-
ter Box–Cox transformation” assumes that v(Y+) ∼
N(μ,σ 2), that is, the transformed value follows a nor-
mal distribution. The log normal distribution for Y+ is
a special case at γ = 0.

3.3 Modeling Heteroscedasticity

In both the ordinary least squares (OLS) and GLM
frameworks, a misspecified variance function can lead
to a substantial loss of efficiency for parameter esti-
mates. In this section, we will review several possible
methods for modeling heteroscedasticity.

A simple solution is to model the scale parameter
as a function of covariates. For example, in all three
distributions introduced in Section 3.2, we can have the
following model for heterogeneity (scale parameter):

σ 2(X) = exp
(
XT δ

)
,(11)

where δ is a parameter to be estimated.
Alternatively, we can assume the scale parameter

to be a function of the mean. For example, Basu and
Rathous (2005) assumed

Var(Y+|X) = h
(
μ(X)

)
,(12)

where h(·) has a known functional form, for example,
h(μ) = θ1μ

θ2 or h(μ) = θ1μ + θ2μ
2 for parameters

θ1 and θ2, and μ is the mean. It is also possible to
take log(h(μ(X))) as an unknown but smooth func-
tion whose form could be estimated by nonparamet-
ric regression, for example, splines, as in Chen et al.
(2013a). Since there is no need to assume any specific
form of the variance structure, this approach is more
robust in fitting data with heteroscedasticity.

Finally, along the lines of Rigby and Stasinopoulos
(2005), we can also consider

σ 2(X, z1, . . . , zm)

= exp
(
XT α + h1(z1) + · · · + hm(zm)

)
,

(13)

where (z1, . . . , zm)T is a m × 1 vector of continuous
variables. This model is more appealing when one is
interested in the associations between covariates and
the variance structure. However, when there exist mul-
tiple smooth functions for nonlinear covariate associ-
ations, it becomes more complicated computationally
than assuming a single smooth function (of mean μ) as
in Chen et al. (2013a).
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3.4 Other Models for Positive Values

3.4.1 Cox proportional hazards model. The Cox
proportional hazards model has been used for positive
medical costs (Dudley et al., 1993, Lipscomb et al.,
1998). Of note, we assume there is no censoring in such
data—we observe the complete cost for each subject,
which is different from censored medical costs where
cumulative medical costs could be censored by events
such as end of study or drop out (e.g., Lin et al., 1997;
Jain and Strawderman, 2002).

The Cox model is a semiparametric alternative to
the OLS and GLM methods, where [Y+|X] is modeled
through the hazard function specification

λ(y+|X) = λ0(y+) exp
(
XT α

)
,(14)

where λ0(·) is an unspecified baseline hazard func-
tion (at X = 0). This model can accommodate an arbi-
trary shape for the distribution of Y+. The baseline cu-
mulative hazard function �0(y+) = ∫ y+

0 λ0(u) du can
be estimated nonparametrically by the Nelson–Alalen
or Kaplan–Meier estimator (Kalbfleisch and Prentice,
2002, Section 4.3); alternatively, splines or other forms
of smoothing can be used to obtain a smooth estimate
of λ0(y+) (Lipscomb et al., 1998). It should be noted
that the interpretation of the regression coefficient α

(or hazard ratio) is different from that in the OLS or
GLM models. For example, if Y+ represents medical
cost and X is a binary treatment indicator, then exp(α)

indicates the ratio of conditional probabilities between
treatment and placebo of no additional cost given y+
dollars have been spent. Thus, it is not appropriate to
directly compare hazard ratios with regression coeffi-
cients in the OLS or GLM models.

The corresponding conditional density function of
Y+ can be written

p(y+|X) = λ0(y+) exp
(
XT α

)
× exp

(− exp
(
XT α

)
�0(y+)

)
,

where

E(Y+|X) =
∫ ∞

0
sp(s|X)ds

=
∫ ∞

0
exp

(− exp
(
XT α

)
�0(s)

)
ds.

The key to the Cox model is the proportionality as-
sumption, which requires the effects of the predic-
tor variables upon the hazard function to be additive
on the indicated scale and constant over “time” (e.g.,
cost). The appropriateness of the proportional haz-
ards assumption can be informally tested by exam-
ining the interaction of the fixed effects with certain

functions of time. Schoenfeld residuals are often used
to give graphical evidence of the nonproportionality
(Schoenfeld, 1982). Therneau and Grambsch (2000)
(Chapter 6) gave a more general discussion on test-
ing proportional hazards. Basu and Manning (2006)
proposed a novel test to detect the nonproportionality
of hazards within the class of exponential conditional
mean models, based on the coefficients of the general-
ized gamma regression model.

In simulation studies, Basu, Manning and Mullahy
(2004) demonstrated the poor performance of the Cox
model in estimating the expected outcome, E(Y+|X)

when the proportionality assumption fails. To tackle
this issue, survival analysis techniques without the pro-
portional hazards assumption can be used in model-
ing medical cost data, for example, Martinussen and
Scheike (2006), Tian, Zucker and Wei (2005), Jain and
Strawderman (2002), and Wooldridge (2002).

3.4.2 Four-part model. In medical cost data, there
is often a marked difference between outpatient and
inpatient costs when the medical costs are positive. In
the example of heart failure patients in the clinical data
repository (CDR) database, the monthly costs for indi-
viduals who had only outpatient services have a mean
of $813 and standard deviation of $2058, while the
monthly costs among individuals with at least one in-
patient service have a mean of $15,457 and standard
deviation of $30,004. Duan et al. (1983) considered a
four-part model for medical cost data, further separat-
ing outpatient and inpatient costs. Part I is a logistic
model for the indicator of any positive costs

logitP(U = 1|X) = XT α.(15)

Part II is another logistic model for the indicator of any
inpatient costs conditional on any medical services

logitP(V = 1|U = 1,X) = XT β.(16)

Part III describes the magnitude of outpatient (i.e.,
U = 1, V = 0) costs

log(Y )|{U = 1,V = 0,X} ∼ XT γ + ec,(17)

and Part IV describes the inpatient (V = 1) costs

log(Y )|{U = 1,V = 1,X} ∼ XT δ + ed.(18)

3.4.3 Comparison of one-part vs. multipart model.
Duan et al. (1983) compared the one-part, two-part,
and four-part models with applications to a large por-
tion of the Rand Health Insurance Experiment (RHIE)
data. They found that both the two-part model and
the four-part model performed better than the one-part
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model in terms of consistency and accuracy for making
predictions. They expected the four-part model would
outperform the two-part model if more data were avail-
able for analysis.

Smith et al. (2017a) advised that one-part GLMs
be avoided since they may yield biased and unreli-
able results for datasets with >10% zeros. They also
showed that parametric two-part marginalized models
outperform one-part GLMs in many settings, particu-
larly when the focus is on estimating treatment effects.

3.4.4 Beta distribution for proportions. Zero-inflat-
ed proportions are commonly present in compositional
data. For example, microbiome compositional data
(denoted by relative abundance) can be represented as
proportions, though may be skewed and contain many
zeros. Such data can be modeled by a two-part model
with a Beta distribution for modeling proportions, that
is,

logit
(
p(X)

) = XT α,(19)

logit
(
μ(X)

) = XT β,(20)

where [Y |Y > 0] follows a Beta distribution with mean
μ(X) = E(Y |Y > 0,X) ∈ (0,1); see, for example,
Chen and Li (2016). A logistic transformation is used
to address the presence of skewness in the proportion
outcome.

4. CORRELATED ZERO-INFLATED
CONTINUOUS DATA

4.1 Random Effects 2PM

More recently, there has been an increasing interest
in analyzing correlated zero-inflated continuous data.
The correlation may stem from the structure of clus-
tered data, where the outcomes (e.g., medical costs)
of subjects from the same cluster are correlated due to
similarities in their health status, socioeconomic char-
acteristics, and shared genetic traits. Another source of
correlation arises in longitudinal data where repeated
measures (e.g., daily drinking levels) are correlated for
the same subject. Examples of correlated zero-inflated
continuous data include pharmacy costs for patients
clustered within physicians (Zhang et al., 2006, Liu
et al., 2010), longitudinal (e.g., monthly) medical costs
(Liu et al., 2008), longitudinal drinking levels (Liu, Ma
and Johnson, 2008, Liu et al., 2016b), and repeated
measures of microbiome data (Chen and Li, 2016).

Olsen and Schafer (2001) and Tooze, Grunwald
and Jones (2002) proposed a random effects two-part

model to describe repeated measures of semicontinu-
ous data. We will use daily drinking outcomes as an
example to illustrate this model. Denote by Yij a semi-
continuous repeated measure for the j th observation of
subject i, where i = 1,2, . . . , n and j = 1,2, . . . ,mi .
The random effects 2PM can be written as

logitP(Yij > 0|Xij ,Zij , ai, bi) = XT
ijα + ZT

ijai,(21)

logY+ij |{Xij ,Zij , ai, bi} ∼ XT
ijβ + ZT

ijbi + eij ,(22)

where (aT
i , bT

i )T ∼ N(0,�) are correlated random ef-
fects, � is a positive definite matrix, Xij and Zij are
respectively covariate vectors for fixed and random ef-
fects, and extending an earlier notational convention
that will be used going forward, [Y+ij |Xij ,Zij , ai, bi]
represents a model for [Yij |Yij > 0,Xij ,Zij , ai, bi].
We therefore have two correlated models: a general-
ized linear mixed model (21) (e.g., for the longitudinal
binary outcome of drinks being positive) and a linear
mixed model (22) (e.g., for the level of positive drinks).
Zhang et al. (2006) consider a Bayesian version of this
model.

The random effects are used to describe two types
of correlation: within-part and cross-part correlations.
The within-part correlation for longitudinal drinking
data arises among repeated measures of abstinence,
which is characterized by random effect ai in Part I;
while in Part II, the repeated measures of the amount
of alcohol on a drinking day are correlated for the same
subject, indicated by random effect bi . The cross-part
correlation, specified by the correlation between ai and
bi (or the covariance in the off-diagonal elements of
matrix �), is used to describe the relation between fre-
quency (“how often”) and amount (“how much”) of
drinking; for example, subjects more likely to be ab-
stinent may tend to drink less on a drinking day. Cross-
part correlation may also exist for medical cost data:
patients in poorer health may be more likely to seek
medical treatments, and in the event that they do, one
may expect their costs to be higher.

Statistically, ignoring the within-part correlation
may lead to bias in the estimation of standard errors of
parameter estimates, while ignoring the cross-part cor-
relation could result in biased estimates in coefficients
of Model (22). For example, Albert (2005) and Su,
Tom and Farewell (2009) showed that a positive cross-
part correlation between random intercepts in Models
(21) and (22) results in a positively biased estimate of
intercept β0 in (22) if one estimates the model param-
eters assuming cross-part independence, as was done
in Lu, Lin and Shih (2004). Conceptually, the source
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of this bias may be viewed as arising from the pres-
ence of an informative cluster size; when the random
effects ai and bi are correlated, the propensity for hav-
ing a positive response (i.e., Part I) will influence the
observed number of positive responses available for
estimating the parameters in Part II. A GEE-type ap-
proach that ignores this dependence will estimate the
parameters of Part II (i.e., (22)) separately from those
in Part I (i.e., (21)), and leads to a biased estimate of
the (subject-specific) regression effects in (22) because
larger clusters of observations will exhibit greater in-
fluence on the regression parameter estimates in com-
parison to smaller clusters (Williamson, Datta and Sat-
ten, 2003). A related view of this same problem can be
adapted from the discussion provided by Su, Tom and
Farewell (2009). Consider a randomly selected subject
i and suppose that ai and bi are each scalar (i.e., a ran-
dom intercept model). When ai is large and positive,
Model (21) shows that there is a higher propensity of
seeing positive responses across j . Suppose also that
ρ = cor(ai, bi) > 0; then, bi is more likely to be large
and positive, the propensity being dependent on the
magnitude of ρ. In combination, this results in an in-
creased number of positive, larger Yij s. In a GEE-type
approach that essentially treats the estimation of the
two parts separately, those subjects with larger values
of bi can be expected to contribute more observations
to estimating β , and these observations will also tend
to be larger than average. Consequently, an estimate
of β in Model (22) that is derived from the reduced
sample of subjects having positive observations will
typically be biased, and the magnitude of this bias will
depend on the magnitude of ρ. Although the situation
is more complicated with random effects models that
are more complex, similar conclusions apply; see, for
example, Su, Tom and Farewell (2009). Thus, GEE-
type marginal models are not recommended when there
exists the possibility of a strong cross-part correlation.

4.2 Extensions in Part II

In Part II of the random effect 2PM (22) we assume
that the positive values follow a log normal distribu-
tion. As in Section 3.2 for cross-sectional data, we can
use extensions of the log normal distribution for cor-
related semicontinuous data. For example, Liu et al.
(2010) considered a generalized gamma distribution in
Part II, with the location parameter

μij = XT
ijβ + ZT

ijbi,(23)

and scale parameter (heteroscedasticity term)

σ 2
ij = exp

(
XT

ij δ
)
.(24)

A random effects 2PM with a log skew normal or nor-
mal after Box–Cox transformation in Part II can be
similarly defined (Liu et al., 2016b). Of note, Mahmud,
Lou and Johnston (2010) proposed a log skew normal
distribution, while Tooze et al. (2006) proposed a Box–
Cox transformation in Part II of the random effects
2PM. However, neither addressed heteroscedasticity as
in Model (24).

4.3 Random Effects 4PM

Liu et al. (2008) extended the 4 part model in Sec-
tion 3.4.2 to correlated zero-inflated data with random
effects. Part I is a logistic model for the indicator of any
positive costs

logitP(Uij = 1|Xij ) = XT
ijα + ai.(25)

Another logistic model is used in Part II for the indi-
cator of any inpatient costs conditional on any medical
services

logitP(Vij = 1|Uij = 1,Xij ) = XT
ijβ + bi.(26)

The level of outpatient and inpatient costs are de-
scribed in Parts III and IV:

log(Yij )|{Xij ,Uij ,Vij }

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XT
ijγ + ci + ec

ij for monthly

outpatient costs

(Uij = 1, Vij = 0),

XT
ij δ + di + ed

ij for monthly

inpatient costs

(Uij = 1, Vij = 1).

(27)

Although not explicit in the notation, each of these
parts is also specified conditionally upon the full set
of random effects, that is (ai, bi, ci, di). The within-
and cross-part correlations are denoted by the correla-
tion among the four random effects (ai, bi, ci, di)

T ∼
N(0,�), where � is a positive definite matrix. In an
example of monthly medical costs of heart failure pa-
tients, Liu et al. (2008) found several highly significant
cross-part associations: (i) patients with higher odds of
positive monthly medical costs were more likely to in-
cur higher outpatient costs (Parts I and III); (ii) higher
odds of hospitalization were correlated to higher out-
patient costs (Parts II and III); (iii) higher outpatient
costs were associated with higher inpatient costs (Parts
III and IV).
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4.4 Random Effects 2PM for Proportions

The two-part model with a Beta distribution in Sec-
tion 3.4.3 can be extended to correlated proportion data
by adding random effects to capture the “within-part”
and “cross-part” correlation:

logit(pij ) = XT
ijα + ZT

ijai,(28)

logit(μij ) = XT
ijβ + ZT

ijbi,(29)

where (ai, bi)
T ∼ N(0,�) are correlated random ef-

fects and � is a positive definite matrix. The model
specifications for pij and μij are both conditional on
Xij , Zij , ai and bi . Of note, Chen and Li (2016) de-
veloped such a two-part logistic-Beta regression model
with random effects to account for the “within-part cor-
relation,” but did not consider “cross-part correlation”
(i.e., � is diagonal).

4.5 Multilevel 2PM

Semicontinuous data may have a hierarchical struc-
ture. For example, longitudinal zero-inflated continu-
ous outcomes are recorded for subjects, which are fur-
ther clustered within families, hospitals, or communi-
ties. Consider a three-level 2PM, where level 1 consists
of longitudinal daily drinking records for each subject,
level 2 is the subject level, and level 3 is the cluster
(e.g., family) level. Denote by Yijk the kth daily drink-
ing record of subject j in cluster i. Liu, Ma and John-
son (2008) proposed a three-level random effects 2PM:

logitP(Yijk > 0|Xijk, ui, vi, aij , bij )

= XT
ijkα + ui + aij ,

(30)

logY+ijk|{Xijk, ui, vi, aij , bij }
∼ XT

ijkβ + vi + bij + eijk,
(31)

where ui and aij are random effects in Part I, vi and bij

are random effects in Part II, and Models (30) and (31)
are each specified conditionally on Xijk , ui , vi , aij , bij .
Of note, ui and vi are random effects at the cluster level
(level 3), and aij and bij are random effects at the sub-
ject level (level 2). We assume (ui, vi)

T ∼ N(0,�1) is
independent of (aij , bij )

T ∼ N(0,�2) for all i and j .
The error term eijk ∼ N(0, σ 2

e ) is independent of ran-
dom effects (ui, vi, aij , bij ).

4.6 Estimation in Multipart Models with Random
Effects

Parameter estimation in the afore-mentioned random
effects models is often challenging due to the appear-
ance of an integral of a complicated nonlinear func-
tion with respect to the multivariate normal density for

the random effects in the loglikelihood function. Sev-
eral estimation options are available. Olsen and Schafer
(2001) adopted the high (sixth) order Laplace approx-
imation (Raudenbush, Yang and Yosef, 2000), while
Tooze, Grunwald and Jones (2002) used the adaptive
Gaussian quadrature (AGQ). Based on our experiences
(Liu et al., 2008, 2010), both methods yield accurate
estimates. The high order Laplace approximation is
much faster in computational time and it can also han-
dle more random effects then AGQ. However, its im-
plementation is very challenging as substantial math-
ematical derivation involving higher order matrix and
vector differentiation is needed. As a result, no ready-
to-use software is available for this method. On the
contrary, the AGQ is much easier to implement, for ex-
ample, in SAS Proc NLMIXED (Littell et al., 2006).

However, for the multilevel zero-inflated continu-
ous model (30) and (31), SAS Proc NLMIXED can-
not handle the multilevel random effects well. Non-
adaptive Gaussian quadrature, such as the aML Mul-
tiprocess Multilevel Modeling software available at
http://www.applied-ml.com, can be used for multilevel
data.

In addition to these frequentist methods, Bayesian
approaches have been adopted as an alternative solu-
tion to this often intractable problem (e.g., Zhang et al.,
2006, Cooper et al., 2007, Neelon, O’Malley and Nor-
mand, 2011, Smith et al., 2017b).

4.7 Random Effects Tobit/ZIT Model

The random effects Tobit model is an alternative
to the random effects multipart models for correlated
semicontinuous data. Random effects Tobit models
have been used to assess the effects of the conversion
of eligible hospitals to critical access hospitals on hos-
pital patient safety (Li, Schneider and Ward, 2007) and
to investigate the association between arsenic exposure
and oxidative stress (Breton et al., 2007), among oth-
ers. Twisk and Rijmen (2009) compared the perfor-
mance of the random effects Tobit model with the lin-
ear mixed model using data from a longitudinal reha-
bilitation study among stroke patients.

Denote by Y ∗
ij the actual outcome measured for the

j th observation of subject i. The corresponding ran-
dom effects Tobit model is

Y ∗
ij |{Xij ,Zij , ri} ∼ XT

ijβ + ZT
ij ri + eij ,(32)

Yij = Y ∗
ij I

(
Y ∗

ij > ymin
)
,(33)

where Xij and Zij are the covariate vectors for fixed
effect β and random effect ri ∼ N(0,�r), with �r be-
ing a positive definite covariance matrix.

http://www.applied-ml.com


264 L. LIU ET AL.

Berk and Lachenbruch (2002) extended the ZIT
model with the addition of random effects and applied
the model to a study of the private speech of children.
Bjerre et al. (2007) used the model to study the hos-
pital care utilization and sick leave in an intervention
program to decrease alcohol intake in driving-while-
impaired offenders. The random effects ZIT model is

Y ∗
ij |{Xij ,Zij , ri} ∼ XT

ijβ + ZT
ij ri + eij ,(34)

Yij =

⎧⎪⎪⎨
⎪⎪⎩

Y ∗
ij I

(
Y ∗

ij > ymin
)

with probability pij ,

0 with probability 1 − pij .

(35)

The probability pij may depend on covariates and ran-
dom effects, such as

logit(pij ) = XT
ij δ + ZT

ijai,(36)

in which case the full model specification is given
conditionally on {Xij ,Zij , ri, ai} with (rT

i , aT
i )T ∼

N(0,�d).
The random effects Tobit model can be fit in several

software packages. The Tobit model with random in-
tercept can be fit by function survreg in R. SAS Proc
NLMIXED can be used to fit Tobit models with more
complicated random effects and the random effects
ZIT model (Berk and Lachenbruch, 2002).

4.8 Marginalized 2PM with Random Effects

Smith et al. (2017b) extended the marginalized two-
part model in Section 2.5 to longitudinal semicontin-
uous data, proposing a marginalized random effects
2PM:

logitP(Yij > 0|Xij ,Zij , ai, bi) = XT
ijα + ZT

ijai,(37)

logE(Yij |Xij ,Zij , ai, bi) = XT
ijγ + ZT

ijbi,(38)

where both models are specified conditionally on all
covariates and random effects. A fully Bayesian ap-
proach that can accommodate correlated multidimen-
sional random effects was used for estimation to im-
prove computational tractability relative to maximum
likelihood. It is of interest to adapt such marginalized
random effects 2PM to other distributions, for exam-
ple, generalized gamma in (38).

5. OTHER TYPES OF ZERO-INFLATED DATA

Zero-inflation is commonly encountered with other
types of data, particularly counts. Examples of zero-
inflated count data include health care utilization (e.g.,
number of days of hospitalization) and school atten-
dance (e.g., number of days absent), among others.

Suppose that a subject has a probability p of being
Y = 0, and a probability of 1 − p to have Poisson or
negative binomial distribution (Lambert, 1992, Hall,
2000). Unlike the continuous setting, a Poisson or neg-
ative binomial distribution can have zero as a possible
realization; hence, observed zeros can either represent
a “true zero” or a realization of 0 from the Poisson or
negative binomial distribution (“random zero”). This
differs from the 2PM for zero-inflated continuous data,
where true zeros are easily distinguished from positive
values.

Although not technically “zero inflated” in the sense
considered thus far, “cure models” for single event data
share some important similarities to zero-inflated count
data. In such models, there is the presumed presence of
long term survivors, which may be reflected by heavy
censoring at the end of the follow-up period. Viewed
from a counting process perspective, where Ni(t) is a
monotone binary process that starts and remains at zero
until an event occurs for subject i, the resulting event
counts at the end of follow-up may be characterized
by a substantial proportion of zeros. Similarly to the
case of zero-inflated count data, these zeros may arise
because a subject is a long-term survivor (i.e., not sus-
ceptible to the event) or because a subject is susceptible
but has merely been right-censored.

As will be seen in the following two subsections,
both types of data can be viewed as special cases of
finite mixture (or latent class) models involving two
distributions, similar in spirit to the zero-inflated Tobit
model.

5.1 Zero-Inflated Count Data

Lambert (1992) first proposed a zero-inflated Pois-
son (ZIP) model for count data with excess zeros. In
this model, zero values can come from either a true
(i.e., structural) zero or the realization of a random zero
from the Poisson distribution. Let A = 1 denote a “true
zero” and A = 2 otherwise. Then, the ZIP model is

logitP(A = 2|X) = XT α,(39)

Y |{X,A = 2} ∼ Poisson
(
θ(X)

)
,(40)

where θ(X) = exp(XT β). The corresponding loglike-
lihood is

I (Y = 0) log
(
1 − p(X) + p(X)e−θ(X))

+ I (Y > 0)
[
logp(X) − θ(X) + Y log

(
θ(X)

)
− log(Y !)],

where p(X) = P(A = 2|X). The ZIP model can be
fitted in SAS Proc GENMOD, for example, http://

http://www.ats.ucla.edu/stat/sas/dae/zipreg.htm
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www.ats.ucla.edu/stat/sas/dae/zipreg.htm. A zero in-
flated negative binomial (ZINB) model can be simi-
larly constructed.

Hall (2000) extended the ZIP and ZINB models to
correlated data with random effects. Denote by Yij the
count outcome for subject j in cluster i, and Xij , Aij

defined similarly as above, the model is

logitP(Aij = 2|Xij , bi) = XT
ijα,(41)

Yij |{Xij , bi,Aij = 2} ∼ Poisson(θij ),(42)

where θij = exp(XT
ijβ + bi), and bi is a random effect

to capture the association among the correlated out-
comes from the Poisson distribution. A random effect
can also be added to (41) (e.g., Min and Agresti, 2005).

5.2 Cure Models

Cure models for a single event type (Boag, 1949,
Farewell, 1982, Kuk and Chen, 1992, Peng, 2000,
2003, Sy and Taylor, 2000 and Peng, Taylor and Yu,
2007) have been a useful tool to analyze survival data,
including in cancer studies (Sposto, 2002, Othus et al.,
2012). Let A = 1 denote “cured” (i.e., not susceptible
to the event) and A = 2 otherwise. Then, a Cox propor-
tional hazards cure model for a single event is

logitP(A = 2|X) = XT α,(43)

λ(t |X,A = 2) = λ0(t) exp
(
XT β

)
.(44)

This model assumes that a subject’s cure status is a
baseline quantity that is inherent to the subject, and
that both the propensity of cure and cure status does
not change with time. A subject that experiences the
event during follow-up clearly has A = 2. However,
subjects that do not experience an event before being
censored represent a potential mixture of subjects with
A = 1 and A = 2. Similarly to zero-inflated count data,
a challenge with this model is that the ascertainment of
cure is difficult to identify from the observed data with-
out further information. For example, patients who do
not experience a cancer-related event over a long pe-
riod of time (e.g., 5 years) might be considered “cured”
from a clinical perspective. If this is a priori taken to
be the definition of cure, the ability to identify subjects
having A = 1 clearly improves, despite the reality that
these patients may simply be at greatly reduced risk for
a future event.

The model given by (43) and (44) can also be viewed
as a special case of a latent class model with two

classes, where

λ(t |X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ0(t) exp
(
XT β

)
with probability

p(X) =
P(A = 2|X),

0 with probability

1 − p(X) =
P(A = 1|X).

(45)

As an alternative, we can also consider other survival
models, such as the accelerated failure time (AFT)
model, to describe the survival time of noncured sub-
jects. For example, the model (44) can be replaced by
its log-linear model equivalent

logT |{X,A = 2} ∼ −XT β + e.(46)

The baseline distribution, equivalently error distri-
bution e, in (46) can either be parametric, as in
(Yamaguchi, 1992), or nonparametric, as in (Li and
Taylor, 2002).

In related fashion, recurrent event data may also ex-
hibit the characteristic inflation of zero counts associ-
ated with the standard cure model. We have previously
analyzed data on four different diseases: recurrent in-
patient services for end stage renal disease patients
(Liu, Wolfe and Huang, 2004), recurrent tumor occur-
rences in a soft tissue sarcoma study (Liu and Huang,
2008), recurrent hospital visits for heart failure patients
(Liu et al., 2008, Liu, Ma and Johnson, 2008), and re-
current opportunistic diseases for AIDS patients (Liu,
2009). In each of these studies, a large portion (often
1/2 to 2/3) of subjects had no recurrent events by the
end of follow-up. When this occurs, there may be non-
susceptible subjects whose event intensity is zero, that
is, “cured” in the same sense described above.

Let Ai = 1 denote “nonsusceptible” and Ai = 2
“susceptible” for subject i. As with a single event, sub-
jects experiencing zero recurrent events may fall into
either class. Rondeau et al. (2013) proposed a zero-
inflated frailty model to analyze such data:

logitP(Ai = 2|Xi) = XT
i α,(47)

λ(t |Xi, νi,Ai = 2) = λ0(t) exp
(
XT

i β + νi

)
,(48)

where νi is the frailty (random effect) shared by recur-
rent events experienced by the ith subject and (48) de-
scribes the recurrent event intensity among susceptible
subjects that remain at risk.

http://www.ats.ucla.edu/stat/sas/dae/zipreg.htm
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FIG. 2. Trajectory analysis of the topiramate study (Chen et al., 2012). (A) Probability of drinking. (B) Log number of drinks on drinking
days. The solid (dashed) lines are the estimated curves for topiramate (placebo). The dotted lines are 95% pointwise confidence intervals.

6. NONLINEAR COVARIATE EFFECTS

6.1 Nonlinear Trajectories in 2PM

In Figure 2, we present the trajectories of the proba-
bility of drinking alcohol and number of daily drinks
in a topiramate study (Chen et al., 2012). The esti-
mated trajectory plots clearly show nonlinear tempo-
ral trends in drinking outcomes. The decrease in the
drinking measure tends to stabilize during the end of
the trial. This trajectory analysis can be taken as an ex-
ploratory tool to evaluate the efficacy of pharmacother-
apy trials. For example, we can use the plots to deter-
mine the “grace period” wherein the data are only an-
alyzed for efficacy after sufficient time has elapsed for
the treatment to achieve its full effect (Food and Drug
Administration, 2006, Falk et al., 2010).

However, Figure 2 does not consider the cross-
part correlation between the frequency and amount of
drinking in the longitudinal drinking records. To tackle
this issue, Chen et al. (2013a) proposed a random ef-
fects 2PM with nonlinear trajectories; using notational
conventions introduced earlier,

logitP(Yij > 0|ui, vi, tij ) = f1(tij ) + ui,(49)

logY+ij |{ui, vi, tij } ∼ f2(tij ) + vi + eij ,(50)

where f1(·) and f2(·) are unknown functions of time
(denoted by tij for the j th observation of subject i).
The functions f1(·) and f2(·) can be estimated by pe-
nalized splines; correlated subject-level random effects
(ui, vi)

T ∼ N(0,�) are used to account for the “cross-
part” correlation.
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6.2 Semiparametric Model for Positive Values

Chen et al. (2013b) considered a generalized semi-
parametric model with an unknown variance function

g(μ) = XT β + f1(z1) + · · · + fm(zm),(51)

log
(
Var(Y+)

) = V(μ),(52)

where μ = E(Y+|X,z1, . . . , zm) is the mean of the
positive values, g(·) is a known link function (e.g.,
g(·) = log(·) for medical costs), fj (·), j = 1, . . . ,m

are unknown smooth functions, and V(·) is an un-
known but smooth function of the mean. In this model,
there are two types of covariates: a p × 1 vector X

that has a linear effect on the scale of the link func-
tion; and a m × 1 vector of continuous variables z =
(z1, . . . , zm)T that may have distinct nonlinear effects.
This model is very flexible, and does not assume any
specific form of the variance structure, increasing ro-
bustness when fitting data with heteroscedasticity. As-
suming that fi(·)’s are each splines, this model can
also be fitted using penalized quasi-likelihood, avoid-
ing parametric assumptions on the distribution of Y+,
hence Y .

Chen et al. (2016) extended Models (51) and (52)
to correlated medical costs, for example, for subjects

within the same family. They used a working correla-
tion matrix for cov(Y+), for example, Compound Sym-
metry or AR(1). The estimation is carried out using ex-
tended generalized estimating equations (EGEE) (Hall
and Severini, 1998). The method is applied to a sub-
set of Medical Expenditure Panel Survey (MEPS) data:
a nonlinear age effect in medical costs, together with
substantial heteroscedasticity as shown in Figure 3.

7. JOINT MODEL OF ZERO-INFLATED OUTCOMES
WITH SURVIVAL

7.1 Joint Model for Longitudinal Semicontinuous
Data and Survival

In many longitudinal studies, subjects may drop-out
or experience a terminal event before the end of study.
These events may be correlated with the longitudi-
nal outcome of interest. For example, in alcohol trials,
there is concern with whether drop-out is associated
with drinking outcomes, for example, subjects drink-
ing heavily are more likely to drop-out (informative
drop-out). While in longitudinal medical cost studies,
“frailer” patients tend to have a higher mortality rate
and accumulate medical cost faster, resulting in poten-
tial correlation between longitudinal medical costs and

FIG. 3. Curve estimation for MEPS data. Left: estimated curve for age with 95% point-wise confidence interval; right: estimated variance
function (“mu” represents the mean of positive medical costs in the unit of US$1000.)
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survival. Failure to account for such correlation would
result in biases in parameter estimates.

Joint models of longitudinal and survival data have
been developed to take into account the potential cor-
relation between longitudinal and survival data using
shared random effects, for example, Wulfsohn and Tsi-
atis (1997), Henderson, Diggle and Dobson (2000),
Vonesh, Greene and Schluchter (2006) and Liu and Liu
(2015). Clinically, a joint model of longitudinal medi-
cal costs and survival can present a clear picture of the
cost accrual process until death, clarifying the mislead-
ing relationship between total medical costs and health
status. It is particularly attractive in cost effectiveness
studies, when both costs and survival are of interest
simultaneously (Pullenayegum and Willan, 2007). As
another example, a joint model of drinking outcomes
and the time to drop-out can provide a sensitivity anal-
ysis on the mechanism of missing data (Johnson et al.,
2013).

Liu (2009) proposed a joint model of longitudinal
semicontinuous medical costs and survival. One ver-
sion of this model appears below: for independent sub-
jects i = 1, . . . , n,

logitP(Yij > 0|Xij , ai, bi)

= XT
ijα1 + ZT

i α2 + ai,
(53)

logY+ij |{Xij , ai, bi}
∼ XT

ijβ1 + ZT
i β2 + δ1ai + bi + eij ,

(54)

λ(t |Xi, ai, bi)

= λ0(t) exp
(
ZT

i γ + δ2ai + δ3bi

)
,

(55)

where {Xij , j ≥ 0} represents a longitudinally mea-
sured vector of covariates and Zi represents a vec-
tor baseline covariates. Part I is a logistic model
for monthly costs being positive, and Part II mod-
els the amount of positive monthly costs. All models
are conditional on covariates and random effects and
implicitly condition on a subject remaining at risk.
Model (55) links the semicontinuous medical costs
with the terminal event by the shared random effects
ai and bi , where ai ∼ N(0, σ 2

a ) and bi ∼ N(0, σ 2
b ) are

independent. Model association is denoted by δ1, δ2,
δ3. For example, δ2 and δ3 in Model (55) indicate the
relation between frequency and costs of medical ser-
vices and death. As shown in Section 8.2, if they are
both significantly greater than 0, patients who are more
likely to seek medical treatment and/or incur higher
monthly medical costs tend to have higher mortality
rates.

The specification of Model (55) can be easily ex-
tended to the setting where Xi is replaced by an exter-
nal time dependent covariate, say Xi(t), t ≥ 0. In prin-
ciple, it should also be possible to extend this model to
the case of an internal time-dependent covariate, such
as Xi(t) = Xi,Ni(t−), where Ni(t) is a counting process
that describes the times at which longitudinal measure-
ments have been taken through time t .

7.2 Joint Model for Zero-Inflated Recurrent and
Terminal Events

Recurrent and terminal events are often correlated;
for example, in AIDS studies, patients with poor health
tend to experience more recurrences of opportunistic
diseases and are also at a higher risk of death. Build-
ing on earlier literature that jointly modeled recurrent
and terminal events (e.g., Wang, Qin and Chiang, 2001;
Liu, Wolfe and Huang, 2004), Liu et al. (2016a) pro-
posed a joint model of zero-inflated recurrent and ter-
minal events that adds a Cox regression model for
the terminal event to models (47) and (48) from Sec-
tion 5.2:

logitP(Ai = 2|Xi, νi) = XT
i α,(56)

λ(t |Xi,Ai = 2, νi) = λ0(t) exp
(
XT

i β + νi

)
,(57)

h(t |Xi, νi) = h0(t) exp
(
XT

i η + νi

)
.(58)

The frailty term νi in the recurrent events model also
appears in Model (58) for the terminal event, introduc-
ing the correlation between the recurrent and terminal
events. A higher intensity of recurrent events is associ-
ated with a higher mortality rate. If a subject is “unsus-
ceptible”, s/he cannot experience any recurrent events.

There are two situations for the relation between zero
inflation (“susceptibility”) and the terminal event. For
AIDS patients, there is no “cure”, so even patients who
are unsusceptible to recurrent opportunistic diseases
would die from AIDS. Therefore, there is no condition
Ai = 2 in Model (58).

On the other hand, some cancers, for example, sarco-
mas, can be “cured”: the cured subjects can experience
neither recurrent tumors nor death from sarcoma. We
can change model (58) to

h(t |Xi, νi,Ai = 2) = h0(t) exp
(
XT

i η + νi

)
.(59)

By adding the condition Ai = 2, cured subjects cannot
experience death due to sarcoma, that is, h(t |νi,Ai =
1) = 0. For detailed likelihood and estimation methods,
please see Liu et al. (2016a).
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8. APPLICATIONS

In this section, we consider the application of these
methods to three datasets. In the first application, the
methods of Section 4.4 are applied to a microbiome
study. In the second application, the methods of Sec-
tion 4.2 are applied to an oral topiramate trial for the
treatment of alcohol dependence. In the third applica-
tion, the methods of Section 7.1 are used to analyze
monthly medical costs for heart failure patients.

8.1 Two-Part Random Effects Model for
Microbiome Data

The first example is a microbiome study which com-
pares different therapies for pediatric inflammatory
bowel disease (IBD) patients (Lewis et al., 2015, Chen
and Li, 2016). The goal of this study is to identify
the bacterial taxa that showed overall different abun-
dances in patients who were given different treatments.
The longitudinal data contains 236 samples for 69 chil-
dren with IBD. Among them, 47 received anti-tumour
necrosis factor (TNFα) antibodies, and 22 received ex-
clusive enteral nutrition (EEN). Gut microbiome sam-
ples were collected for each subject at four time points:
baseline, 1 week, 4 weeks and 8 weeks into the therapy.
In microbiome studies, microbial abundances mea-
sured in read counts are not comparable across sam-
ples. The read counts are often normalized to rela-
tive abundances, which are bounded in [0,1). Conse-
quently, the relative abundances of all microbes in one
sample sum to one (Tyler, Smith and Silverberg, 2014).

The data contain the relative abundances at the genus
level of the 18 most common bacterial genera. Fig-
ure 1(A) shows the distribution of the relative abun-
dance of a bacterial genus named Haemophilus; it has
a large portion of zero values (39%). The continuous
positive values have a mean of 0.0285 with a range
of 0.0000106 to 0.4440, demonstrating the right skew-
ness. In addition, the repeated measures of the relative
abundance of the bacteria from the same sample across
time points are expected to be correlated. Correlated
random effects are thus used to capture the association
within and between the two parts.

Let Yij be the relative abundance of subject i at the
j th time for a given bacterial genus. Models (28) and
(29) can be used to model the relative abundance:

logit(pij ) = XT
ijα + ai,

logit(μij ) = XT
ijβ + bi,

where pij = P(Yij > 0|Xij , ai, bi) and μij = E(Y+ij |
Xij , ai, bi); the random effects ai and bi are used to

account for the correlation among the repeated mea-
surements on the same sample. Chen and Li (2016) as-
sumed that ai and bi are independent and respectively
follow normal distributions:

(60) ai ∼ N
(
0, σ 2

1
)
, bi ∼ N

(
0, σ 2

2
)
.

However, their model does not allow the “cross-part
correlation” between the two parts, that is, as the rela-
tive abundance is more likely to be positive, its magni-
tude tends to be larger. Hence, we consider a two-part
random effects model for the microbiome data with
a cross-part correlation. Covariates of interest in both
parts of the model include time (in weeks) and treat-
ment. The results for Haemophilus are shown in Ta-
ble 1. For comparison, we also show the results from
a model without the cross-part correlation in the right
panel of Table 1.

The results suggest that the model with the cross-
part correlation provide a better fit, with a covariance
estimate σ̂12 = 0.88 and p = 0.01. In this model, treat-
ment is significant in both parts: it reduces the odds of
the relative abundance being positive and the magni-
tude if the abundance is positive. There is a decreasing
temporal trend in Part I of the model. For comparison,
we find that the parameter estimate for treatment in
Part II is not significant (p = 0.08) in the model with-
out the cross-part correlation. Thus, ignoring the cross-
part correlation could lead to an erroneous conclusion
on the treatment effect. Note that here and below we
use the adjustment by Stram and Lee (1994) to address
the boundary testing issue for variance components.

8.2 Zero-Inflated Models for Alcohol Drinking Data

The second application comes from a double-blind
randomized controlled 14-week trial on the safety and
efficacy of oral topiramate (Topa) for the treatment
of alcohol dependence (Johnson et al., 2007). Three
hundred seventy one subjects were enrolled in this
study. Among them, 183 alcoholics received Topa and
188 were given a placebo. The outcome of interest
was daily drinking records, which were assessed every
week by the timeline follow-back method (Sobell and
Sobell, 1992). A dose escalation mechanism was de-
signed for the study: the dose of Topa (or the placebo)
started at 25 mg for week 1 and was increased to
300 mg for weeks 6–14. Since this is a proof-of-
concept trial, we are not interested in the dose re-
sponse. Rather, the objective is to assess the overall
Topa treatment effect at improving drinking outcomes.
Thus, treatment is taken as a binary variable: Topa vs.
placebo.



270 L. LIU ET AL.

TABLE 1
Random effects two-part model for Haemophilus

With cross-part correlation Without cross-part correlation

Covariates Est. SE P -value Est. SE P -value

Part I

Intercept 1.30 0.32 0.0001 1.27 0.32 0.0002
Time −0.10 0.05 0.04 −0.10 0.05 0.04
Treatment −1.86 0.57 0.002 −1.81 0.56 0.002

Part II

Intercept −3.84 0.21 <0.0001 −3.72 0.21 <0.0001
Time −0.041 0.028 0.14 −0.034 0.029 0.24
Treatment −0.96 0.40 0.02 −0.70 0.39 0.08

Variance components

σ 2
1 1.39 0.72 0.03 1.24 0.67 0.03

σ 2
2 0.59 0.22 0.004 0.48 0.18 0.004

σ12 0.88 0.35 0.01

Dispersion parameter

φ 18.0 3.9 <0.0001 17.4 3.9 <0.0001

Model comparison

-2Loglik −736.6 −726.4

As shown in Figure 1(B), there is a large portion
(32%) of zero values, that is, on average, participants
were abstinent in about 1/3 of the follow up period.
The continuous nonzero (positive) values have a mean
of 7.6 (range: 0.072–58.9) standard drinks. In the orig-
inal paper, Johnson et al. (2007) utilized a data reduc-
tion technique to calculate the weekly average of drinks
per drinking day (DDD) and percentage of days ab-
stinent (PDA) for the follow-up period. However, the
weekly averaged drinking outcome is not as efficient
as the original daily outcome.

We fit two-part random effects models for daily
drinking records using three flexible distributions in
Part II (Liu et al., 2016a): generalized gamma (Mod-
el A); log skew normal (Model B); and Box–Cox trans-
formation (Model C). Random intercepts and slopes
are included in both parts, resulting in a total of 4
random effects for each model. We also consider het-
eroscedasticity as in Model (24). Covariates of interest
in each part of Models A–C include gender, age, base-
line drinking level, treatment (Trt), time since onset,
and the interaction between time and treatment. The
results are shown in Table 2.

As expected, the parameter estimates are almost
identical in Part I across the three models. However,

the covariate effects in Part II are quite different.
For example, age is not significant in Model B, but
highly significant in Models A and C. Also, strong het-
eroscedasticity exists in all three models. Each of the
shape/skewness parameters is highly significant, indi-
cating that each model fits better than the log normal
distribution.

For interpretation of covariate effects, the treatment
by week interaction is highly significant in both parts.
Topa is significantly better than placebo in reducing the
odds of drinking over time, and the amount of drink-
ing on any drinking day was reduced more quickly in
the Topa group. Males tended to drink less often but
consumed more alcohol on drinking days. Age is also
in the opposite direction in the two parts: being older
is correlated with increased odds of drinking, but also
significantly associated with consuming less alcohol on
a drinking day.

The estimate of variance components show that all 4
random effects (random intercept and slope) are highly
significant, so heterogeneity exists in both parts. There
is a significant positive cross-part correlation σ̂24 (for
random slope in Parts I and II): patients more likely to
decrease their odds of drinking were also more likely
to decrease their amount of drinking.
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TABLE 2
Random effects two-part model for alcohol drinking data

Generalized gamma distribution Log skew normal distribution Box–Cox transformation

Covariates Est. SE P -value Est. SE P -value Est. SE P -value

Part I

Intercept −0.50 0.83 0.55 −0.50 0.84 0.55 −0.50 0.89 0.57
Male −0.27 0.32 0.39 −0.27 0.32 0.39 −0.27 0.34 0.42
Age 0.047 0.015 0.002 0.048 0.015 0.002 0.048 0.016 0.003
Base drinking 0.17 0.033 <0.0001 0.17 0.033 <0.0001 0.17 0.036 <0.0001
Treatment −0.22 0.28 0.43 −0.22 0.29 0.44 −0.22 0.31 0.47
Time −0.10 0.023 <0.0001 −0.11 0.023 <0.0001 −0.12 0.023 <0.0001
Trt × Time −0.17 0.033 <0.0001 −0.18 0.033 <0.0001 −0.17 0.033 <0.0001

Part II

Intercept 1.80 0.11 <0.0001 1.81 0.11 <0.0001 2.69 0.23 <0.0001
Male 0.17 0.040 <0.0001 0.21 0.041 <0.0001 0.31 0.083 0.0002
Age −0.0066 0.0019 0.0007 −0.0022 0.0020 0.27 −0.019 0.0041 <0.0001
Base drinking 0.064 0.004 <0.0001 0.069 0.004 <0.0001 0.13 0.009 <0.0001
Treatment −0.015 0.036 0.68 0.054 0.037 0.14 −0.13 0.080 0.11
Time −0.033 0.0035 <0.0001 −0.032 0.0035 <0.0001 −0.067 0.0069 <0.0001
Trt × Time −0.033 0.0055 <0.0001 −0.037 0.0056 <0.0001 −0.053 0.011 <0.0001

Heteroscedasticity

Intercept −1.20 0.07 <0.0001 −1.13 0.15 <0.0001 0.18 0.073 0.02
Male −0.031 0.024 0.20 −0.13 0.052 0.02 0.10 0.023 <0.0001
Age −0.013 0.0012 <0.0001 −0.029 0.0025 <0.0001 −0.018 0.0012 <0.0001
Base drinking −0.010 0.002 <0.0001 −0.031 0.005 <0.0001 0.033 0.0023 <0.0001
Treatment 0.13 0.041 0.002 0.21 0.088 0.02 0.043 0.039 0.27
Time −0.0022 0.0033 0.51 −0.013 0.0076 0.10 −0.026 0.0031 <0.0001
Trt × Time 0.0087 0.0052 0.09 0.032 0.011 0.003 −0.0047 0.0048 0.33

Variance components

σ 2
1 5.70 0.66 <0.0001 5.70 0.66 <0.0001 6.79 0.88 <0.0001

σ 2
2 0.066 0.0088 <0.0001 0.064 0.0083 <0.0001 0.066 0.0087 <0.0001

σ 2
3 0.10 0.0091 <0.0001 0.11 0.0096 <0.0001 0.51 0.049 <0.0001

σ 2
4 0.0020 0.00021 <0.0001 0.0020 0.00022 <0.0001 0.007 0.00082 <0.0001

σ12 −0.092 0.049 0.06 −0.095 0.048 0.05 −0.14 0.058 0.02
σ13 −0.059 0.049 0.23 −0.055 0.050 0.27 0.16 0.13 0.20
σ14 −0.0064 0.007 0.38 −0.0070 0.007 0.33 −0.035 0.017 0.03
σ23 −0.0037 0.0054 0.50 −0.0020 0.0053 0.71 −0.018 0.012 0.15
σ24 0.0061 0.0010 <0.0001 0.0062 0.001 <0.0001 0.014 0.0020 <0.0001
σ34 −0.0025 0.0010 0.01 −0.0020 0.0010 0.04 −0.021 0.0045 <0.0001

Shape/skewness

κ 0.70 0.017 <0.0001
λ −0.60 0.006 <0.0001
γ 0.36 0.008 <0.0001

Model comparison

Loglik −64,114 −64,228 −64,170
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FIG. 4. Boxplots of the difference in marginal loglikelihoods for each subject. Solid bold lines in the boxplot denote the corresponding
mean (rather than median) difference in marginal loglikelihoods. Y -axis limits are truncated at {−10,10}. From left to right, minimum and
maximum differences are respectively {−50.21,45.83}, {−38.02,22.38}, {−36.27,38.20}.

Next we compare the performance of the three mod-
els. Generalized gamma distribution (Model A) has the
largest likelihood. However, the three models are not
nested within each other, so the likelihood ratio test
cannot be applied. Since the three models have the
same number of parameters, comparison of AIC/BIC
results yields the same conclusion as that of loglikeli-
hood. Instead, we considered the likelihood-based test
statistic in Vuong (1989) for nonnested hypotheses,
which uses the Kullback–Leibler Information Crite-
rion to measure the closeness of a model to the truth.
Since SAS Proc NLMIXED cannot provide the con-
tribution of each subject to the marginal loglikelihood
directly, we used the R package gaussquad to compute
the marginal likelihood for each subject using adaptive
Gaussian quadrature.

The results of model comparisons are shown in Fig-
ure 4. For pairwise model comparisons, the p-values
are: (i) Model A (generalized gamma) vs. Model B (log
skew normal): 0.099; (ii) Model A vs. Model C (Box–

Cox transformation): 0.70; (iii) Model B vs. Model C:
0.64. It is reasonable to conclude that Model A pro-
vides the best overall description of the data because
of the more pronounced difference between Models A
and B, as well as the more straightforward interpreta-
tion of fixed effects afforded by Model A in compari-
son to Model C (i.e., using y0.36 as the outcome).

8.3 Joint Model of Longitudinal Semicontinuous
Medical Costs and Survival

The third application concerns a dataset of medical
costs for heart failure patients in the clinical data repos-
itory (CDR) from the University of Virginia (UVa)
Health System. Heart failure is the only cardiac dis-
ease growing in prevalence, with 670,000 new patients
diagnosed each year. A total of 5.7 million heart failure
patients reside in USA. It is one of the most expensive
health care problems in the U.S., costing $39.2 billion
in 2010. Also, heart failure is the leading cause of hos-
pitalization among people 65 and older in the United
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TABLE 3
Summary of the heart failure data

Mean (Percent) SD

Age 72.4 7.8
Male 54.7%
White 73.2%

Follow up months per subject 18.8 8.7
Months with nonzero cost per subject 49%
Positive monthly costs $2982 $14,383

States. Thus, it is important to identify risk factors and
explore strategies to reduce medical costs for this com-
mon and expensive disease.

A total of 1475 patients over 60 years old were first
diagnosed with and treated for heart failure in 2004.
The follow up ended with each patient’s last hospital
admission, or July 31, 2006, or death date extracted
from the Death Certificate Database. The outcome of
interest is the UVa health system costs (actual mone-
tary expenses of the hospital). Table 3 shows a sum-
mary of the data.

Medical costs are collected longitudinally. Here
medical costs are grouped by month, forming monthly
medical costs. Grouping by other time units, for exam-
ple, quarter or year, could also be considered. Analy-
sis of longitudinal medical costs is more efficient than

that of cross sectional medical costs. It is essential to
understand the dynamics of medical costs, illustrating
the processes of cost accumulation and the reasons for
cost differences between arms (Heitjan, Kim and Li,
2004). Moreover, it is useful in estimating incidence
costs (medical costs after diagnosis) and predicting fu-
ture medical costs, offering useful information for pol-
icy makers when making decisions about resource al-
location and coverage of specific treatments (Yabroff
et al., 2009). Finally, it can help to assess the effect
of health care policy change on medical costs (Cotter
et al., 2006).

There is often a U-shape (or bathtub shape) pattern
observed for longitudinal medical costs. For example,
Yabroff et al. (2009) showed three phases of longitu-
dinal medical costs for colorectal cancer: high costs in
the initial period following diagnosis, high costs (up
to 30% of lifetime medical costs) during the end of life
period (e.g., final 12 months before death), and low and
relatively stable costs in between these two periods.
A similar U-shape pattern is presented in Figure 5(B)
when using the Lowess estimate on medical costs of
heart failure patients.

Liu (2009) applied the joint model of semicontin-
uous medical costs and survival to this data; that is,
models (52)–(54). In this model, Part I is a logistic
model for monthly costs being positive, Part II models
the amount of positive monthly costs, and a Cox model

FIG. 5. Time pattern of monthly medical costs for heart failure patients in the CDR database. (A) Probability of cost being positive;
(B) amount of positive monthly costs (in log scale). The cross-sectional mean for each month is denoted by a circle. Lowess estimate is
provided to show the temporal pattern.
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TABLE 4
Results for heart failure data

Par Est SE P -value

Part I: Monthly cost being positive

Intercept 0.151 0.077 0.05
Male −0.051 0.070 0.47
White −0.159 0.079 0.04
Age 0.201 0.045 <0.0001
Linear Rise 0.013 0.009 0.16
Quadratic Rise 0.015 0.007 0.03

Part II: Log positive monthly cost

Intercept 6.304 0.090 <0.0001
Male 0.120 0.069 0.08
White −0.247 0.078 0.002
Age −0.080 0.046 0.09
Age2 −0.185 0.052 0.0004
Time −0.158 0.084 0.06
Time2 0.126 0.035 0.0004

Survival

Male 0.194 0.130 0.14
White −0.178 0.143 0.21
Age 0.505 0.084 <0.0001

Model association

δ1 0.325 0.035 <0.0001
δ2 0.347 0.065 <0.0001
δ3 0.689 0.074 <0.0001

Variance components

σ 2
a 1.320 0.071 <0.0001

σ 2
b 1.127 0.060 <0.0001

with shared random effects is used to model survival.
Covariates of interest are shown in Table 4. Age is cen-
tered at 72 years old. “Linear rise” (= max(month −
12,0)) and “quadratic rise” (square of linear rise) are
used to describe the pattern shown in Figure 5(A),
where the probability of monthly costs being positive
has a quadratically increasing temporal trend from 12
months after entry into study. A quadratic time effect
is included to describe the U-shape pattern for longitu-
dinal medical costs shown in Figure 5(B). A quadratic
age effect is incorporated in Part II based on prelimi-
nary analysis.

There is a significant increasing quadratic time effect
happening 12 months after entry on the logit of proba-
bility of positive monthly costs. There also exists a sig-
nificant quadratic time effect on the amount of positive
monthly costs; that is, there is a high initial cost (due to

diagnosis and treatment) and a high cost in the end of
follow up (due to intensive care during the end-of-life
stage). This is consistent with the “bathtub” shape of
monthly outpatient Erythropoietin (EPO) medical cost
data for dialysis patients (Liu, Wolfe and Kalbfleisch,
2007), or the U-shape pattern of incidence cancer costs
(Yabroff et al., 2009).

No significant gender difference is found. However,
a racial difference is identified, as white patients tended
to have a lower odds (OR = 0.85, p = 0.04) of seeking
medical treatments. They had lower positive monthly
costs (−0.247 in log scale, p = 0.002) in Part II; they
were also at a lower risk of mortality, although this
is not statistically significant. These results reflect the
fact that white patients had better outcomes than non-
white patients, indicating possible racial disparities in
the care of heart failure patients. This is consistent with
a study by Jha et al. (2003) which showed that black
women less often received appropriate preventive ther-
apy and adequate risk factor control despite having a
greater risk of coronary heart disease events; conse-
quently, they often began treatment at more advanced
disease states and incurred higher costs when treated.

The model also reveals differences in care based on
age. Older patients were more likely to seek medical
care (OR = 1.22 for every 10-year increase in age,
p < 0.0001). Older age is associated with a higher
mortality rate (OR = 1.66 for every 10-year increase
in age, p < 0.0001). Finally, age has a quadratic ef-
fect on the amount of positive monthly medical costs:
the trend first increases, then decreases after age 70.
The decrease after age 70 can be explained by the fact
that older patients were usually treated less aggres-
sively, thus incurring less medical costs. For example,
Gatsonis et al. (1995) showed less frequent utilization
of coronary angiography for elderly patients. Further-
more, Stukel, Lucas and Wennberg (2005) and Stukel
et al. (2007) showed that younger patients with heart
diseases were more likely to receive invasive treat-
ments and medical therapies.

Association across the three outcomes is captured
in the estimates of δ1, δ2, δ3; all three parameters are
positive and highly significant. Patients seeking med-
ical treatments more often had higher medical costs
and higher mortality rates. Furthermore, patients with
higher costs were at higher risk of mortality. Finally,
from the estimates of random effects variance σ 2

a and
σ 2

b , heterogeneity appears to exist in both use and costs
of health services.



ZERO-INFLATED NONNEGATIVE CONTINUOUS DATA 275

9. DISCUSSION

In this paper, we reviewed contemporary statistical
methods to analyze zero-inflated nonnegative contin-
uous data. Taking microbiome, alcohol consumption,
and medical cost data as examples, we showed various
approaches to separating zero and positive values and
modeling the right skewed and heteroscedastic positive
values. We considered both cross-sectional and corre-
lated data. We also discussed related issues of zero-
inflated count/survival data, nonparametric regression,
and joint models of zero-inflated data and time to event.

There are several issues worthy of further study.
First, methodological research on Part II of the 2PM
to date has largely focused on statistical inferences of
mean, while little attention has been paid to other seg-
ments of the entire distribution. From both policy and
clinical perspectives, the group of “high spenders” or
“heavy drinkers” is of utmost interest as policies or in-
terventions affecting this group would likely achieve
the largest impact, either in terms of reducing health-
care costs or improving health outcomes. Importantly,
behaviors of high spenders or heavy drinkers cannot be
understood by studying the mean. Refinement of ro-
bust approaches on the higher tail of the distribution,
for example, 90th or 95th percentile, deserves more
consideration. Quantile regression methods (e.g., Bang
and Tsiatis, 2002; Dominici and Zeger, 2005; Dominici
et al., 2005) could be employed for the positive val-
ues of semicontinuous data. This analytical approach
can fully utilize information from the entire distribu-
tion, thus providing important insights to more com-
prehensively understand the characteristics of individ-
uals with excessively high medical costs or drinking
records.

Second, more complicated correlation structures
could be imposed in the zero-inflated continuous data.
For example, Neelon, Zhu and Neelon (2015, 2016)
considered spatial and spatial-temporal models for
zero-inflated count and semicontinuous data. For mi-
crobiome composition data, the correlation among the
semicontinuous relative abundance of different species
is dependent on the structure of the phylogenetic tree,
with a constraint that the relative abundance of all
species sums up to 1. Modeling the semicontinuous
micriobiome composition data is a field worthy of fur-
ther investigation.

Third, variable selection is necessary when there ex-
ists a large number of covariates for the semicontin-
uous outcome. Sparse estimation via the regularized
method is attractive for enhanced prediction accuracy

and model interpretability. Recently, Han et al. (2018)
proposed a feasible way of conducting variable selec-
tion for the random effects two-part model (21) and
(22) on the basis of the “minimum information crite-
rion” (MIC) method (Su et al., 2016). Adaptation of
this method to other complicated models for semicon-
tinuous data forms another topic for future research.

Finally, most of the methods reviewed in this pa-
per are in the frequentist framework. Bayesian meth-
ods have been adopted in the analysis of zero-inflated
continuous data. For example, adopting a hierarchi-
cal Bayesian approach, Zhang et al. (2006) modeled
provider effects on pharmacy cost data in a random
effects 2PM model in which the probability of posi-
tive costs and observed positive costs are each mod-
eled using dependent mixed models. Neelon, O’Malley
and Normand (2011) proposed a related two-part latent
class model for longitudinal medical expenditure data,
fitting a random effects 2PM within each latent class to
separately describe the probability of medical service
utilization and the mean spending trajectories among
those having used services. The deviance information
criterion (DIC) was used to determine the number of
classes. Bayesian versions of the two-part random ef-
fects model with nonlinear covariate effects (Models
(49) and (50)) was considered by Ghosh and Albert
(2009). Bayesian approaches for complicated semicon-
tinuous data merit future interest due to their computa-
tional and often inferential advantages.
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SUPPLEMENTARY MATERIAL

Supplement to “Statistical Analysis of Zero-
Inflated Nonnegative Continuous Data: A Review”
(https://github.com/joyfulstones/zero-inflated-
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continuous). Data and programming codes are avail-
able at https://github.com/joyfulstones/zero-inflated-
continuous.
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