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A Kernel Regression Procedure in the 3D
Shape Space with an Application to
Online Sales of Children’s Wear
Gregorio Quintana-Ortí and Amelia Simó

Abstract. This paper is focused on kernel regression when the response
variable is the shape of a 3D object represented by a configuration matrix
of landmarks. Regression methods on this shape space are not trivial because
this space has a complex finite-dimensional Riemannian manifold structure
(non-Euclidean). Papers about it are scarce in the literature, the majority of
them are restricted to the case of a single explanatory variable, and many
of them are based on the approximated tangent space. In this paper, there
are several methodological innovations. The first one is the adaptation of
the general method for kernel regression analysis in manifold-valued data to
the three-dimensional case of Kendall’s shape space. The second one is its
generalization to the multivariate case and the addressing of the curse-of-
dimensionality problem. Finally, we propose bootstrap confidence intervals
for prediction. A simulation study is carried out to check the goodness of the
procedure, and a comparison with a current approach is performed. Then, it
is applied to a 3D database obtained from an anthropometric survey of the
Spanish child population with a potential application to online sales of chil-
dren’s wear.

Key words and phrases: Shape space, statistical shape analysis, Kernel re-
gression, Fréchet mean, children’s wear.

1. INTRODUCTION

Many problems in medical imaging analysis and
computer vision involve predicting the shape of an ob-
ject as a function of a set of numerical covariates (age,
dose, time, etc.) and therefore new statistical method-
ologies are needed to address this interesting problem.
With the expression “shape of an object” we mean all
the information of the object that remains invariant un-
der Euclidean similarity transformations, that is, trans-
lations, rotations and scale changes.
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There is a large number and variety of mathemati-
cal tools to represent the shape of an object. Depend-
ing on the type of mathematical representation chosen,
the statistical methodology to be used will be different
since in most cases the spaces in which they are em-
bedded are different. Moreover, the task to be carried
out is also important when choosing the representation
to use: shape summary, shape modelling, shape defor-
mation, etc. The four major mathematical approaches
to shape analysis are described below.

The first approach considers objects as subsets of
R

m. When the aim is the description, ideas of set
geometry and mathematical morphology can be used
(Serra, 1984). When the aim is modelling, they are
considered as a realization of a random compact set X

(Matheron, 1975, Stoyan and Stoyan, 1994, Baddeley
and Molchanov, 1998, Simó, de Ves and Ayala, 2004,
Molchanov, 2005), that is, a random variable taking
values in the space of all compact sets in R

m with
the myopic topology. Because of the difficulty of this
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space, the random distribution of X is summarized us-
ing a set of random variables taking values in a Eu-
clidean space.

The second approach uses functions to represent
the contours of the objects (Prince and Willsky, 1990,
Del Bimbo et al., 1998, Loncaric, 1998, Kindratenko,
2003, Gual-Arnau, Herold-García and Simó, 2013).
This approach transforms the objects into elements of
a function space, and tools developed for analyzing the
functions are used for analyzing the shape. Usually, the
contour is represented on a particular functional ba-
sis, thus reducing the representation to a small number
of parameters. This approach includes methods such
as the cross section function, the radius-vector func-
tion, the support function, the tangent-angle function
or the Fourier descriptors and it has been mainly used
for summarizing and classification purposes.

The third and more recent approach is called elas-
tic shape analysis (Azencott, 1994, Younes, 1996,
Younes, 1998, Klassen et al., 2004, Younes et al., 2008,
Srivastava et al., 2011, Gual-Arnau, Herold-García and
Simó, 2015). It proposes the representation of pla-
nar shapes by closed simple curves defined by the
boundaries of objects (Younes, 1998) or alternatively
by functions that characterize these curves, such as the
square-root velocity (Srivastava et al., 2011). After the
identification of elements invariant under translations,
rotations, scale changes and reparameterizations, the
resulting shape space is an infinite dimensional Rie-
mannian manifold and its Riemannian metric is used
to compare shapes. The focuses of this approach are
deformations, computation of intrinsic statistics and
statistical modelling. Thus, the shape representation
and Riemannian metric chosen are critically important.
The corresponding theory for the shape space of sur-
faces was generalized by Bauer, Harms and Michor
(2012) and Jermyn et al. (2017); however, its practical
application is very challenging because of the infinite-
dimensional nature of the space.

Finally, the majority of the research has been re-
stricted to landmark-based analysis, where objects are
represented using k labelled points in the Euclidean
space R

m. These landmarks are required to appear in
each data object, and to correspond to each other in a
physical sense. They are given by certain geometrical
or anatomical properties. Seminal papers on this topic
are Bookstein (1978), Kendall (1984) and Goodall
(1991). The main references are Dryden and Mardia
(1998, 2016) and Kendall et al. (1999). This paper will
focus on this approach, which will be explained in de-
tail in the next section.

Recall that shape is defined as the geometrical
information about the object that is invariant un-
der Euclidean similarity transformations. When the
landmark-based approach is used, the shape space
is the resulting quotient space, and it is a finite-
dimensional Riemannian manifold. Therefore, stan-
dard statistical methodologies on linear spaces based
on Euclidean distance cannot be used.

There are several difficulties in generalizing proba-
bility distributions and statistical procedures to mea-
surements in a nonvectorial space like a Riemannian
manifold, but fortunately there has been a significant
amount of research and activity in this area over the re-
cent years. An excellent review can be found in Pennec
(2006). Our aim is to take advantage of and extend this
recent significant research on statistics on Riemannian
manifolds. Hence, our approach to the statistical shape
analysis will be mainly focused from the point of view
of Riemannian geometry.

To begin with one important difficulty, the concept
of expectation of a random element in a manifold can-
not be generalized, since it would be an integral with
values in the manifold. In a Euclidean space, there is a
clear and unique concept of mean, which corresponds
to the arithmetic average of realizations. In Riemannian
manifolds different kinds of means have been defined
as Fréchet parameters associated with different types of
distances (Bhattacharya and Patrangenaru, 2002, 2003,
Kobayashi and Nomizu, 1969). Since a mean in a man-
ifold is the result of a minimization, its existence is
not ensured. Karcher (1977) and Kendall (1990) estab-
lished conditions on a manifold to ensure the existence
and uniqueness of the mean, and a gradient descent al-
gorithm in the manifold can be found in Woods (2003).

Although statistical analysis of manifold-valued data
has gained a great deal of attention in recent years,
there is not much literature on regression analyses on
manifolds. Early papers were developed for directional
data (Jupp and Kent, 1987, Mardia and Jupp, 2000). In
regression of directional data, parametric distributions,
such as the Von Mises distribution, are commonly as-
sumed. However, it is very challenging to assume use-
ful parametric distributions for other manifold-valued
data. Hence, nonparametric regression has been very
common until now. Local constant regressions have
been developed for manifold-valued data defined with
respect to the Fréchet mean in Davis et al. (2007). On
the other hand, Shi et al. (2009) developed a semi-
parametric regression model that uses a link function
to map from the Euclidean space of covariates to the
Riemannian manifold. However, the drawback of this
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approach is that the link function must be known, and
this is not common in usual applications.

When dealing with data in a manifold, linear meth-
ods are not applicable because the scalar product and
the addition operations are not defined there. In the
particular case of a scalar covariable, some authors
have tried to use a geodesic curve as the natural gen-
eralization of a “straight line” on a manifold, and
they have defined “linear models” as “geodesic mod-
els.” Fletcher (2011) introduced a regression method
for modelling the relationship between a manifold-
valued random variable and a real-valued independent
parameter based on a geodesic curve, parameterized
by the independent parameter. The multivariate case
using multiple geodesic basis on the manifold and a
variational algorithm is treated in Kim et al. (2014).
Recently, a regression parametric model based on a
normal probability distribution has been introduced
in Fletcher and Zhang (2016).

This paper was motivated by an important current
application: a 3D anthropometric study of the child
population in Spain developed by the Biomechanics In-
stitute of Valencia. The aim of this study was to gen-
erate anthropometric data to help and inform decision
makers (parents/relatives/children) during the size se-
lection process, focusing on online shopping for chil-
dren’s wear. For this purpose, 739 randomly-selected
Spanish children from 3 to 12 years old were scanned
using a 3D body scanner.

Several new technologies and online services ad-
dressing the selection of proper garment sizes or
models for the consumer have been developed in re-
cent years. These applications can be classified into
two groups. The first group uses neural network al-
gorithms to match the garment being considered to
other clothes worn by the user (see, for instance,
www.whatfitsme.com). This method requires an ini-
tial database (the user’s virtual closet) for training al-
gorithms. The second group predicts the size and fit
of the garment using user’s anthropometric measure-
ments and their relationship with the dimensions of the
garment (see, for instance, www.fits.me). In this paper,
instead of correlating children’s anthropometric mea-
surements with the dimensions of the garment, we pro-
pose to use them to predict the children’s body shape
represented by landmarks. In order to achieve this, we
propose a new methodology in the shape space.

There are several methodological novelties in our
work. The first novelty is the adaptation of the gen-
eral method for kernel regression analysis in manifold-
valued data of Davis et al. (2007) to the landmark-
based 3D shape space. Although this method has been

used in previous works, it has never been applied
to 3D landmark data before because of its analyti-
cal and computational challenges. The second con-
tribution of this work is the generalization of this
method to multiple explanatory variables introducing
a multivariate kernel and the addressing of the curse-
of-dimensionality problem. Finally, we propose boot-
strap confidence intervals for analyzing the predictions.
A simulation study with simple and predictable objects
is performed to check the validity of our approach,
and then a performance comparison with a current ap-
proach is conducted on this dataset.

Moreover, this new methodology has been applied
to the aforementioned children database with excellent
results. The resulting predicted shapes can then be used
to choose the most suitable size for the selected gar-
ments.

Vinué, Simó and Alemany (2016) used women’s
body shapes represented by landmarks to define a new
sizing system by adapting clustering algorithms to the
shape space. The 3D database used was very similar to
the one used in this paper, and it was obtained from an
anthropometric survey of the Spanish female popula-
tion.

The R language (R Development Core Team, 2014)
was employed in our implementations. We used the
shapes package by Ian Dryden (Dryden, 2012). This
is a very powerful and complete package for the statis-
tical analysis of shapes. As its efficiency for medium
and large data sets is limited, we rewrote some parts to
accelerate it and to run our codes in a shorter time.

The code developed in this work is available as
an open-source software in the https://github.com/
gquintanaorti/kernel_regression_of_3d_shapes public
code repository. This repository contains both the code
and the simulated dataset employed in Section 5.

The article is organized as follows. Section 2 de-
scribes the basic concepts of statistical shape analysis.
Section 3 shows the kernel regression for shape anal-
ysis. Some important details regarding our implemen-
tations are described in Section 4. A simulation study
is conducted in Section 5. The application for regres-
sion to children’s body shapes is detailed in Section 6.
Finally, conclusions are discussed in Section 7.

2. SHAPE SPACE

Because our goal is to apply statistical methods on
manifold-valued data to analyze shapes, first we intro-
duce here a brief summary of the shape space as a Rie-
mannian manifold and the main concepts that will be
needed later in our approach.

http://www.whatfitsme.com
http://www.fits.me
https://github.com/gquintanaorti/kernel_regression_of_3d_shapes
https://github.com/gquintanaorti/kernel_regression_of_3d_shapes


KERNEL REGRESSION IN THE 3D SHAPE SPACE 239

FIG. 1. Three planar objects with the same shape.

The word “shape” is very common in everyday lan-
guage, usually referring to the appearance of a geo-
metric object. Shape can be defined as the geometrical
information of the object that is invariant under a Eu-
clidean similarity transformation, that is, location, ori-
entation and scale (Kendall, 1977, Dryden and Mardia,
1998, 2016). Thus, two objects have the same shape
if we can find a transformation (translations, rotations
and/or scale changes) that makes the two objects fit
perfectly. For instance, the three objects in Figure 1
have the same shape. Invariance under reflections is not
considered.

In this work, a geometrical m-dimensional object
(usually m = 2,3) is determined by a finite number of
k > m coordinate points, known as landmark points.
Each object is then described by a k × m configura-
tion matrix Y containing the m Cartesian coordinates
of its k landmarks. For instance, the left-most object in
Figure 1 is represented by the following configuration
matrix:

YT =
[
0 0 0.5 1 1
0 0.5 1.5 0.5 0

]
.

In this way, an object could be regarded as an ele-
ment of the Ecuclidean space R

mk .
However, a configuration matrix Y is not a proper

shape descriptor because it is not invariant under sim-
ilarity transformations. For any similarity transforma-
tion, that is, for any translation vector t ∈ R

m, scale pa-
rameter s ∈ R

+ and rotation matrix R in the special or-
thogonal group SO(m), the configuration matrix given
by sYR + 1kt

T (where 1k is the k × 1 vector of ones)
describes the same shape as Y .

For instance, the central object in Figure 1 is ob-
tained by applying the above transformation to the left
object with:

s = 1, R =
[
cos 45◦ − sin 45◦
sin 45◦ cos 45◦

]
, t =

[
0.5
3

]
.

FIG. 2. Two classes of equivalence each with three geometrical
planar objects. Each class corresponds to a different shape.

As was previously said, all the objects in Figure 1
correspond to the same shape, that is, they are equiv-
alent. Hence, from a theoretical point of view we can
define the shape space as:

DEFINITION 1. The shape space �k
m is the set of

equivalence classes [Y ] of k × m configuration matri-
ces Y ∈ Rk×m under the action of Euclidean similarity
transformations.

For example, Figure 2 shows two different equiva-
lence classes.

The configuration matrix could be modified in many
different ways to effectively correspond to a shape
descriptor, that is, to obtain a representative of each
equivalence class [Y ]. Among popular shape coordi-
nates are, for instance, Bookstein coordinates
(Bookstein, 1986) and Kendall coordinates (Kendall,
1984). We will use the most suitable one for our goal of
using statistical tools on Riemannian manifolds. This
is described below.

Let Y be a configuration matrix, we remove the sim-
ilarity transformations one at a time. A way to remove
the location effect consists of multiplying it by the
Helmert submatrix H , that is, YH = HY .

The Helmert submatrix H is obtained by removing
the first row in the Helmert matrix. The Helmert ma-
trix is an h × h orthogonal matrix with its first row of
elements equal to 1/

√
h and the remaining rows or-

thogonal to the first row. The j -th row of the Helmert
submatrix H is given by the number −1/

√
j (j + 1) re-

peated j times, followed by −j/
√

j (j + 1), and then
(h − j − 1) zeros.

Note that after removing the location, the object
could be regarded again as an element of the Euclidean
space, but now the Euclidean space is Rmk−m.
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To filter scale, we can divide YH by the centroid size,
which is given by

S(Y ) = ‖YH‖ = ‖HY‖
=

√
trace

(
(HY)T (HY)

) = ‖CY‖.
The quotient Z = YH/‖YH‖ is called the pre-shape

of the configuration matrix Y because all information
about location and scale has been removed, but rotation
information still remains.

DEFINITION 2. The pre-shape space Sk
m is the set

of all possible pre-shapes.

It is important to note now that after removing scale,
our matrix Z can no longer be represented by an ele-
ment on a Euclidean space because we have the restric-
tion of size one. Therefore, Sk

m is a hypersphere of unit
radius in R

mk−m.
Sk

m is a Riemannian manifold that has been widely
studied and therefore well known. �k

m is the quotient
space of Sk

m under rotations, and a shape [Y ] is an orbit
associated with the action of the rotation group SO(m)

on the pre-shape. The complexity of the Riemannian
structure of the shape space depends on k and m. For
example, the quotient space �k

2 is isometric with the
complex projective space CPk−2, a familiar and well-
known Riemannian manifold. Even more, the particu-
lar case of �3

2 , the shape space of planar triangles, is
the sphere in three dimensions with radius 1/2. An il-
lustrative description can be found in Dryden and Mar-
dia (2016).

For m > 2, which is the case of our application, �k
m

is not a familiar space, and it has singularities, that is,
points at which the differential structure is not defined.

From now on, in order to simplify the notation, we
will use Y to denote both, a configuration matrix and
its shape, provided that its meaning is understood in its
context.

2.1 Riemannian Manifolds

Before continuing with the description of the Rie-
mannian structure of �k

m, let us review some impor-
tant concepts on Riemannian manifolds which will be
needed later.

A differential manifold immersed in R
m is a topo-

logical space which is locally homeomorphic with a
Euclidean space. The local homeomorphisms can be
smoothly patched together. The locally homeomorphic
vector space at a point Y is called the tangent space
and it is denoted by TY . This space contains all the
possible directions in which one can tangentially pass
through Y .

FIG. 3. Tangent space at point Y on a sphere.

A Riemannian manifold is a differential manifold
equipped with an inner product on the tangent space
that varies smoothly from point to point. As a result, it
induces a metric on the manifold by means of the pro-
jection of points in the tangent. This metric is called the
Riemannian metric and allows distances and angles on
the manifold to be measured. The Riemannian distance
from a point in the manifold to Y is equal to the Eu-
clidean distance between its projections in the tangent
space TY .

The locally shortest constant-velocity curves be-
tween two points in a manifold are called geodesics.

The map that allows us to move from the the tangent
space to the manifold is called the exponential map (see
Figure 3). This is an important expression that we will
need in our work. Given a vector in the tangent TY , the
exponential map is defined by the geodesic starting at
Y and goes in that direction for a unit time. The inverse
of the exponential map is called the logarithmic map.

2.2 Riemannian Structure of the Shape Space

Moving on to the shape space, remember that the
case m > 2, which is the case of our application, is a
complicated space with singularities. Since it is easier
to work with the pre-shape hypersphere, we must make
use of the theory of Riemannian submersions to obtain
the Riemannian structure of the nonsingular part of the
shape space.

Let π be the map to the quotient space that assigns
the corresponding element on the shape space to each
preshape Z:

π : Sk
m → �k

m = Sk
m/SO(m)

Z �→ π(Z).

The orbit π−1(π(Z)) = {XR : R ∈ SO(m)} is the
set of all the pre-shapes that have the same shape as Z,
and is also referred to as the fibre.

The theory of Riemmanian submersions tell us that
Sk

m/SO(m) is a Riemannian manifold with the quotient



KERNEL REGRESSION IN THE 3D SHAPE SPACE 241

metric if the action of the group SO(m) is free, that is,
R,S ∈ SO(m), R �= S implies ZR �= ZS.

For m > 2 this action is not everywhere free be-
cause if Z is a preshape with rank m − 2 or less
and we consider the matrix in SO(m) defined as
Rmdiag(Im−2,R2)R

T
m with R2 ∈ SO(2) and Rm ∈

SO(m), then ZRm diag(Im−2,R2)R
T
m = Z. Hence, the

images of preshapes with rank m − 2 or less are sin-
gularities in the shape space. Outside the singularity
set, the shape space inherits the Riemannian struc-
ture from the pre-shape sphere (Le and Kendall, 1993,
Kendall et al., 1999).

It is important to note that when we work with real-
world applications, we can usually assume that our data
are almost sure in the nonsingular part of the shape
space. For instance, in our application we can obvi-
ously assume probability zero of finding a body of a
child with all the landmarks of his pre-shape lying on
a line.

Using this previous result, the Riemannian distance
and the exponential and logarithmic maps in �k

m can be
computed (Le and Kendall, 1993, Dryden and Mardia,
1998, Kendall et al., 1999).

The inherited Riemannian distance in the shape
space is the quotient metric, and it is obtained rotating
the representative of one of the shapes to be as close as
possible with respect to the great circle distance to the
other one (see Figure 5). This distance is also called
the Procrustes distance.

DEFINITION 3. Given two configuration matrices
Y1 and Y2, the Procrustes distance between their re-
spective shapes is:

ρ(Y1, Y2) = min
R∈SO(m)

d(Z1,Z2R),

where Zj = HYj/‖HYj‖, j = 1,2, and d(Z1,Z2R) =
2 arcsin(‖Z1 − Z2R‖/2) is the Riemannian distance
(great circle distance) in the hypersphere Sk

m.

The solution to this optimization problem is

ρ(Y1, Y2) = arccos

(
m∑

i=1

λi

)
,

where λ1 ≥ λ2 ≥ · · · ≥ λm−1 ≥ |λm| are the square
roots of the eigenvalues of ZT

1 Z2Z
T
2 Z1, and the small-

est value λm is the negative square root if and only if
det (ZT

1 Z2) < 0 (Dryden and Mardia, 2016). By defi-
nition, note that the range of this distance is [0, π/2].

Evidence of the increasing complexity in space when
passing from m = 2 to m = 3 is described next. As
was commented before, the space of the triangles in
R

2 (�3
2) has a well-known Riemannian structure and

the Riemannian distance can be analytically obtained
in an easy way. However, in the case of the simplest
3D shape space �4

3 , an explicit simple expression for
the Procrustes distance between two tetrahedrons does
not exist.

Figure 4(a) shows three tetrahedrons with three dif-
ferent shapes. To get a visual idea of the Procrustes dis-
tance in this space, a multidimensional scaling (MDS)
has been applied to the Procrustes distance matrix be-
tween them. In this way, they are displayed as points
on a Euclidean 2D space with the corresponding dis-
tances (Cox and Cox, 2000) in Figure 4(b).

Let us see now how the Riemannian submersion the-
ory allows us to calculate the exponential and logarith-
mic maps. Given a point in the pre-shape sphere Z, we
can find two kinds of tangent vectors at Z, horizon-
tal and vertical (see Figure 5). The horizontal vectors
are invariant under rotations. A Riemannian submer-
sion maps the horizontal subspace of the tangent space

FIG. 4. Three tetrahedrons and MDS applied on its Procrustes distance matrix.
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FIG. 5. A graphical representation of the Riemannian submer-
sion of the shape space in the pre-shape hypersphere: (a) induced
distance between π(Z1) and π(Z2). (b) Horizontal and vertical
tangent spaces at Z.

to the pre-shape sphere isometrically onto the tangent
space to the shape space at π(Z).

As a result, if Y is the representative of a point in
�k

m, to obtain the expression of the projection onto the
tangent plane at Y of a pre-shape Z, Z is rotated to
be as close as possible again with respect to the great
circle distance to its preshape. We write the rotated pre-
shape as ZR̂. The expression of R̂ can be found on
page 61 of Dryden and Mardia (1998):

R̂ = UV T ,

where U,V ∈ SO(m) are respectively, the right and
left matrices of the singular value decomposition of
ZT

Y Z. Then (Le and Kendall, 1993, Dryden and Mar-
dia, 2016):

logY (Z) = (
Ikm−m − vec(ZY )vec(ZY )T

)
(1)

× vec(ZY R̂)
ρ

sin(ρ)
,

where Ikm−m is the (km−m)× (km−m) identity ma-
trix, ρ = ρ(π(ZY ),π(Z)), and the vectorizing opera-
tor of an l × m matrix A with columns a1, a2, . . . , am

is defined as: vec(A) = (aT
1 , aT

2 , . . . , aT
m)T .

Given v in the tangent space at Y ,

expY (v) = vec−1
(

cos
((

vT v
)1/2)

vec(ZY )

(2)

+ sin((vT v)1/2)

(vT v)1/2 v

)
R̂T .

See Dryden and Mardia (1998, 2016) and Small
(1996) for a more complete discussion of the tangent
space.

Because of the non-Euclidean structure of the shape
space, to introduce the concept of mean shape of a
given set of shape realizations, a Fréchet-type mean
(Fréchet, 1948) must be used, that is, one that mini-
mizes the sum of squared distances from any shape in
the set. We have the following definition.

DEFINITION 4. Given a set of configuration ma-
trices Y1, . . . , Yn, the empirical Fréchet mean in �k

m is
given by μ̂, where

(3) μ̂ = arg min
μ∈�k

m

n∑
i=1

ρ2(Yi,μ).

An explicit analytical solution for the optimization
problem 3 was found for two-dimensional data (Kent,
1994, Le, 2001). This solution is based on the eigen-
vectors of a complex sum of squares and matrix prod-
ucts (see page 44 in Dryden and Mardia, 1998). For
m = 3 and higher-dimensional data, the solution can-
not be found analytically, and an iterative procedure
based on a gradient descent algorithm must be used.

In Pennec (2006), we can find this algorithm for a
general Riemannian manifold M. To characterize a lo-
cal minimum of a twice differentiable function, we just
have to require a null gradient and a positive definite
Hessian matrix.

Given a point z ∈ M, the gradient of the function

hz(y) = ρ2(y, z), y ∈ M,

is, according to Pennec (2006),

(gradhz)(y) = −2 logy(z),

where logy(z) denotes the projection of z onto the tan-
gent plane at y, that is, the inverse of the exponential
map.

Therefore, given a set of points {x1, . . . , xn} ∈ M, if
we consider the function f :M −→ R defined as

f (y) = 1

n

n∑
i=1

ρ2(y, xi),

where ρ denotes the Riemannian distance in M and
we suppose that the points xi are away from any singu-
larity, we have

(gradf )(y) = 1

n

n∑
i=1

(gradhxi
)(y)

(4)

= −2

n

n∑
i=1

logy(xi).
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FIG. 6. Empirical Fréchet mean of the three tetrahedrons of Fig-
ure 4.

The gradient descent algorithm is

(5) yt+1 = expyt

(∑n
i=1 logyt

(xi)

n

)
This constant step-size gradient descent algorithm is

the most popular and easiest version of the gradient de-
scent method on Riemannian manifolds (Afsari, Tron
and Vidal, 2013).

A modification of this algorithm will be used to ob-
tain our nonparametric regression procedure in �k

m.
The empirical Fréchet mean of the three tetrahedrons

of Figure 4 can be seen in Figure 6.
It is worth noting at this point that if the data are

fairly concentrated around the mean, the Euclidean dis-
tance in the tangent space around the mean shape is a
good approximation to ρ, that is, the tangent space is
the linearized version of the shape space in the vicinity
of the mean, and so we can perform standard multivari-
ate statistical techniques in this space. This is an ap-
proach to inference on shape space that is widely used
in many applications. A comparison of this approach
and our methodology will be shown in Section 5.1.

3. KERNEL REGRESSION ALGORITHM IN THE
SHAPE SPACE

In this section, we describe our new methodological
proposals.

Let us consider the regression problem with response
in the shape space and Euclidean p-dimensional co-
variates, that is, given a sample {(X1, Y1), . . . , (Xn,

Yn)}, where Yi , i = 1, . . . , n are random configura-
tion matrices and Xi , i = 1, . . . , n are real valued p-
dimensional vectors (random or not). Our aim is to
estimate the regression function, μ(X), to predict the
shape of an object given the covariates X ∈ R

p .
As was commented before, classical regression

methods are not applicable in this setting because they
rely on the vector space structure of the observations.

Davis et al. (2007) used the notion of Fréchet ex-
pectation μ(X) = E(Y |X) to generalize the Euclidean
case regression to a general Riemannian manifold M.
They proposed a method that generalizes Nadaraya-
Watson kernel regression (Nadaraya, 1964) in order to
predict manifold-valued data from (ti, pi), where ti are
drawn from a univariate random variable and pi are
points in the manifold. They define a manifold kernel
regression estimator using the Fréchet empirical mean
estimator:

(6) mh(t) = arg min
q∈M

(∑n
i=1 Kh(t − ti)ρ

2(q,pi)∑n
i=1 Kh(t − ti)

)
,

where Kh is a univariate kernel function with band-
width h.

They used this method to study spatio-temporal
change in a random design database consisting of
three-dimensional MR (Magnetic Resonance) images
of healthy adults to compute representative images
over time. This work is completely different from ours
for two reasons. First, as they are interested in the
study of changes in anatomy, its response variable
takes values in the Riemannian manifold of diffeomor-
phic transformations and not in the landmark-based 3D
shape space. Second, their regression is a function of
just one scalar variable: the age.

There are many situations, in particular in our appli-
cation, where there are many explanatory variables that
determine the shape of an object, instead of just one.
We propose to extend the Davis et al. (2007) estimator
for general manifold-valued data to multiple explana-
tory variables by using a multivariate kernel (Härdle
et al., 2004). So

mH(X) =
(7)

arg min
Z∈�k

m

(∑n
i=1 KH(X − Xi)ρ

2(Z,Yi)∑n
i=1 KH(X − Xi)

)
where KH(X) = |H |−1/2K(H−1/2X), H is the p × p

matrix of smoothing parameters, symmetric and pos-
itive definite and K : Rp → [0,∞) is a multivariate
probability density.

As it is well known, there are a great number of pos-
sible kernel choices, but the difference between two
functions K is almost negligible. The choice of the
bandwidth matrix H is the most important factor af-
fecting the accuracy of the estimator.

In our application we have chosen a multivariate
Gaussian kernel because it is the easiest way to incor-
porate the correlation among covariates. In this way,
we can put more emphasis on regions with more data
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Algorithm 1 Kernel regression algorithm to predict the
shape of a 3D object
Given a sample {(X1, Y1), . . . , (Xn,Yn)}, where Yi , i =
1, . . . , n are configuration matrices and Xi ∈ R

p , i =
1, . . . , n. Let X0 be a vector of covariate values. The
algorithm to predict the shape corresponding to X0 is:

1: Initialize m0 = Yi (i at random), δ ∈ (0,1), d = 2δ,
j = 0, h;

2: Compute the preshapes of Y1, . . . , Yn →
Z1, . . . ,Zn.

3: while (d > δ) and (j < maxSteps) do
4: Compute the preshape of mj .
5: for i = 1, . . . , n do
6: Compute the singular value decomposition of

mT
j Zi , and let u and v be the left and right

matrices of this decomposition.
7: φ = vuT

8: Compute logmj
(Zi) from Eq. (1)

9: ki = KH(X0 − Xi)

10: end for
11: v = ∑

i ki logmj
(Zi)/

∑
i ki

12: mj+1 = expmj
(v) (Eq. (2))

13: d = ρ(mj ,mj+1)

14: j = j + 1
15: end while
16: Return mj

and assign less weight to observations in regions with
sparse data. With respect to the choice of the band-
width matrix H , we propose to use H = hSX , where
SX is the sample covariance matrix of {X1, . . . ,Xn},
and then choosing the positive constant h by cross val-
idation.

The algorithm that we propose for solving our re-
gression problem is based on applying the concepts in-
troduced in the previous section to Eq. (7). The dis-
tance ρ is given in Definition 3, and a modification of
the algorithm stated in Eq. (5) is used for solving the
minimization problem.

Taking into account all these considerations, we pro-
pose Algorithm 1.

As mentioned in Section 1, this algorithm will be
used to predict the body shape of a child given a num-
ber of features such age, height, waist circumference,
etc.

With respect to theoretical results about convergence
and consistency, we would like to note that the rate
of convergence of Newton-type algorithms in Rie-
mannian manifolds is studied in Dedieu, Priouret and
Malajovich (2003) and Alvarez, Bolte and Munier

(2008). On the other hand, Bhattacharya and Patrange-
naru (2002, 2003) focus on the asymptotic consistency
properties of the intrinsic means and variances for large
sample sizes on Riemannian manifolds. Here, our con-
cern is more applied and our aim is just to find at least
some good approximations. For this reason, these prop-
erties will be checked empirically in the experimental
sections.

3.1 Confidence Regions

It is also of interest for the apparel industry to gen-
eralize confidence intervals, which are widely used in
statistics, to build a region wherein the predictions lie
with a given confidence level.

Our approach follows the ideas stated by González-
Rodríguez, Trutschnig and Colubi (2009) for obtain-
ing confidence regions for the mean of a fuzzy random
variable. It is well known that given X, a real-valued
random variable with mean μ and finite variance, an
(1 −α)× 100% confidence interval for μ can be deter-
mined as CI = [X̄ − δ, X̄ + δ], where X̄ is the sample
mean of a random sample of n independent variables
X1, . . . ,Xn, with the same distribution as X, and where
δ = δ(X1, . . . ,Xn) is such that P(μ ∈ CI) = 1 − α.
Therefore, conventional confidence intervals for the
mean μ can equivalently be seen as balls with respect
to the Euclidean distance, centered in the sample mean
X̄, and with a suitable radius δ.

Applying these ideas to our regression context, we
can define the confidence ball for the mean μ(X0) =
E(Y |X0), with level of confidence 1 − α, CB1−α , as

CB1−α = {
Y ∈ �k

m : ρ(
Y,m(X0)

) ≤ δ
} :

P
(
μ(X0) ∈ CB1−α

) = 1 − α(8)

As in many other statistical problems, no procedure
to calculate δ is available other than bootstrap methods.
In particular, we propose to use pairwise resampling
bootstrap; see Mammen (2000).

Given the sample {(X1, Y1), . . . , (Xn,Yn)}, and
given α ∈ (0,1), the chosen significance level, the
procedure for building the confidence region can be
schematized as follows:

1. Let {(X1, Y1), . . . , (Xn,Yn)} be a random sample
where Yi is a shape and Xi a vector of real covariates.
Let X0 be the vector of covariate values whose shape is
to be predicted, and let m(X0) be the mean estimated
with this random sample.

2. Obtain B bootstrap sample sets {(X1, Y1)
b∗

, . . . ,

(Xn,Yn)
b∗} (where b∗ = 1, . . . ,B) from the original
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random sample {(X1, Y1), . . . , (Xn,Yn)}. For each re-
sample, compute its corresponding mean, and let this
be m(X0)

b∗
.

3. Compute the distances between the sample mean
and each bootstrap sample mean, that is, calculate

d∗
b = ρ

(
m(X0)

b∗
,m(X0)

)
, for b = 1, . . . ,B.

4. Choose δ as one of the (1 − α) quantiles of the
sample (d∗

1 , . . . , d∗
B).

3.2 The Curse-of-Dimensionality Problem

It is well known (Stone, 1985, Hastie, Tibshirani
and Friedman, 2001, Györfi et al., 2002, Klemelä,
2014) that kernel regression models can suffer from
the “curse of dimensionality” if the number of explana-
tory variables is large. This is the case of our appli-
cation in Section 6. It is impossible to simultaneously
maintain localness (low bias) and a sizeable sample in
the neighborhood (low variance) as the dimension in-
creases, without the total sample size increasing expo-
nentially in the dimension of the data (Hastie, Tibshi-
rani and Friedman, 2001).

Several solutions can be found in the literature
(Hastie, Tibshirani and Friedman, 2001, Klemelä,
2014) to deal with the curse of dimensionality. The
usual approaches include single-index models, additive
models, partially linear models and several extensions
and combinations of them. We must note that many of
these approaches cannot be directly used when the re-
sponse variable is in a manifold because the addition is
not defined.

Among the different possibilities, a simple approach
is the single-index model (Klemelä, 2014). The single-
index model is a semiparametric model that assumes
that the regression function satisfies

m(X) = g
(
XT θ

)
, X ∈ R

p,

where g : R→R is an unknown link function, and θ ∈
R

p is the unknown index vector with ‖θ‖ = 1. This
approach is well suited for our application because the
covariates may be highly correlated.

The estimation of θ and g can be made iteratively
using the so called M-Estimation approach. For a given
θ ∈ Rp , g can be estimated using a univariate kernel
type estimator, then the estimator of θ is obtained by
minimizing

∑n
i=1 ρ2(Yi − ĝθ (X

T
i θ)).

In our case, as our response variable is on a Rie-
manian manifold, we will use the generalization of

the Nadaraya–Watson kernel regression to manifold-
valued data given in equation (6):

ĝθ

(
XT

i θ
)

= arg min
Z∈�k

m

(∑n
i=1 Kh((X − Xi)

T β)ρ2(Z,Yi)∑n
i=1 Kh((X − Xi)T β)

)
,

where Kh is a univariate kernel function with band-
width h.

We have to note that this estimator has a very large
computational complexity.

4. IMPLEMENTATIONS

In our implementations, we have used the R lan-
guage and the shapes package by Ian Dryden. This
package provides many useful tools for the statistical
analysis of shapes that allowed us to reduce the time
spent on the implementation. It works very fast for
small data sets, but its speed is somewhat limited for
medium and large data sets.

Hence, we have rewritten some parts to acceler-
ate it and enable us to run our codes in a shorter
time. Specifically, we have improved routines pre-
shape and centroid.size since they were the
most time-consuming parts in our application. We
computed a performance profile of both routines, and
in our case they had the same bottleneck: Their main
cost was the explicit building of the Helmert matrix
and then the product of that matrix by the input argu-
ment (our dataset). We have improved the code so that
the Helmert matrix is not explicitly built and therefore
it is implicitly applied to the input argument.

In our case, the input argument (our dataset) was a
matrix with dimensions 3075 × 3. The original rou-
tine preshape took an average of 49.13 seconds with
these data. The new implementation takes an average
of 0.056 seconds. Hence, the new code is about 877
times faster.

The original routine centroid.size took an av-
erage of 24.54 seconds. The new implementation takes
an average of 0.028 seconds. Hence, the new code is
about 876 times faster.

These improvements in speed have made the full
procedure much faster and its overall time length is
now more reasonable.

5. SIMULATION STUDY

As an illustration of the performance of the method-
ology, we have carried out a simulation study.

First, we generate a compact geometric figure Z

described by k landmarks (see Figure 7). Then, we
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FIG. 7. Landmarks corresponding to the original geometric fig-
ure.

generate eight new geometric figures modifying the
shape of Z by means of three scalar covariates X =
(X(1),X(2),X(3)). Each covariate takes two different
values {10,20}, and each new figure, that we denote by
μ(X), is obtained by scaling the j -th coordinate of the
Z landmarks by X(j), j = 1,2,3. Figure 8 shows the
landmarks of these eight objects. Finally, a random ge-
ometric object Y given X is defined by a multivariate
normal distribution with 3k-dimensional mean vector
μ(X) and a 3k × 3k covariance matrix �, that is,

vec(Y |X)∼N3k

(
vec

(
μ(X)

)
,�

)
.

Given X, the distribution of the shape of Y is called
normal offset. In Dryden and Mardia (1998) p. 130,
the density with respect to the uniform measure in the
shape space is given for the 2-dimensional isotropic
case, i.d., when the covariance matrix � is a multiple of
the identity. In this case, the mean shape m(X), calcu-
lated by means of the general algorithm, is a consistent
estimate of μ(X).

Two random samples of sizes 50 and 25, respec-
tively, of Y given X are obtained for each combina-
tion of X-values resulting in random samples of size
n = 400 and n = 200: {(X1, Y1), . . . , (Xn,Yn)}. We
take � = σIk×3, and two values for σ (0.01,0.05) are
selected in such a way that the data are more or less
dispersed.

Figure 9 shows a simulated shape Yi given X, its
prediction, and μ(X) for X = (10,10,20) and both σ -
values. We have to note that in the case of the simulated
random house, landmarks do not always lie on lines.
However, we have added these lines as an artefact to
better visualize the 3D shape.

In order to do a quantitative analysis and to choose
the optimum value of h, the Procrustes distances be-
tween the real and the predicted shape for each one of
the eight sets of covariates are computed. As an illus-
tration, each cell of Table 1 shows the mean of these
values for σ = 0.05, different values of h, and different

FIG. 8. Mean shapes for different combinations of X-values.

numbers of iterations. We can see that they reach the
minimum values and become stable after around 2000
iterations. In addition, they are quite robust for small
values of h reaching the minimum for h = 0.25. These
obtained distances are much smaller than the average
of pairwise distances in the simulated set (0.3809).
We think that these good results validate the proposed
method.

With respect to the confidence regions, there are the-
oretical consistency results that justify bootstrap con-
fidence intervals in Euclidean spaces, but these results
are not available in our context; hence, simulation stud-
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FIG. 9. (a) A simulated shape Yi given X, (b) predicted mean m(X), (c) theoretical mean μ(X) for X = (10,10,20) for both σ values (top
row for σ = 0.05 and bottom row for σ = 0.01).

TABLE 1
Procrustes distances between the real and the predicted shape

Number of iterations

h 100 250 500 1000 2000 3000

0.1 0.209 0.145 0.080 0.029 0.017 0.017
0.25 0.209 0.145 0.080 0.029 0.017 0.017
0.5 0.211 0.149 0.085 0.035 0.020 0.019
1.0 0.220 0.169 0.116 0.074 0.059 0.058
1.5 0.229 0.187 0.145 0.111 0.099 0.098

ies are, at this moment, the only way to assess its per-
formance.

In order to evaluate the actual performance of the
bootstrap confidence sets, a total number of 100 orig-
inal samples of size 400 and 200 are generated,
Si = {(Xi1, Yi1), . . . , (Xin, Yin)} for i = 1, . . . ,100,
and the corresponding prediction means are obtained,
m(X)1, . . . ,m(X)100.

Bootstrap samples with B = 100 are taken from each
sample Si and the corresponding bootstrap confidence
sets at a 95% confidence level (nominal coverage) are
constructed: CB1

0.95, . . . ,CB100
0.95, or in other words, the

radii δ1, . . . , δ100 are obtained. The observed coverage
proportion of the theoretical prediction in such confi-
dence regions is calculated as
(9)

p̂i = card{CBi
0.95 : m(X) ∈ CBi

0.95, i = 1, . . . ,100}
100

.

The results of the simulation study show that the
method achieves good observed coverage proportions.

TABLE 2
Simulation results showing observed coverage proportions for a

nominal coverage of 95%

Sample size σ Coverage proportion

n = 200 0.01 100%
0.05 100%

n = 400 0.01 89%
0.05 98%

Table 2 summarizes the numerical outputs of our sim-
ulation study.

5.1 Comparison with the Multivariate Linear Model
in the Approximated Tangent Space

Because regression is a topic not often addressed in
shape analysis, there is no baseline model that works
in the shape space and completely suits our applica-
tion. In order to assess the goodness of our method,
we compare our results with the result of applying the
linear regression model to our data projected in the Eu-
clidean tangent space. As was previously commented,
this is a very common approximation in the shape anal-
ysis literature. The comparison has been reported in Ta-
ble 3. This table shows that the average and maximum
of the prediction errors are clearly lower using our new
methodology.

In addition to this error assessment, we have also
compared the speed of both methods since the time per-
formance is an important factor in our application and
in many other cases. Table 4 shows the time spent per-
forming one prediction of a house by using the kernel
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TABLE 3
Minimum, average, and maximum prediction error for both the
kernel regression in the shape space (h = 0.25, 2000 iterations)

and the linear model in the tangent space

Kernel regression Linear regression
in the shape space in the tangent space

Minimum 0.015 0.012
Average 0.017 0.029
Maximum 0.019 0.045

regression in the shape space (h = 0.25 and 2000 iter-
ations) and the linear regression in the tangent space.
The performances have been assessed with an increas-
ing number of landmarks. Each row of the table con-
tains the results obtained on a different dataset with an
increasing number of landmarks per house, where the
first row of the table is the dataset described above.
As it can be seen, the times required by the kernel
regression are much smaller than the times required
by the linear regression in the tangent space. The ker-
nel regression is about 10 times faster for the small-
est case, and about 30 times faster for the largest case,
thus showing a smaller dependence on the number of
landmarks. As the number of landmarks in the children
dataset is much larger (3075), we believe that our new
approach can be much faster on that dataset.

6. APPLICATION TO CHILDREN’S BODY SHAPES

The aim of this section is to show how the afore-
mentioned algorithm can be used to predict the body
shape of a child based on a small number of his or
her anthropometric measurements and his or her age.
The predicted shape could then be used to choose the
most suitable size in a potential online sales applica-
tion. There are multiple ways to perform this last step

TABLE 4
Time in seconds for both the kernel regression in the shape space
(h = 0.25, 2000 iterations) and the linear model in the tangent

space

Landmarks Landmarks Kernel regression Linear regression
per object per edge in the shape space in the tangent space

25 3 0.19 1.94
55 5 0.23 5.64

100 8 0.25 7.27
250 18 0.37 11.76
505 35 0.67 19.49

and all of them depend on the manufacturer. For in-
stance, one possibility would be to calculate the Pro-
crustes distance between the predicted shape and the
shapes of the mannequins for each size.

6.1 Children Dataset

Our database consists on the 3D full body scans of
a randomly selected sample of 739 Spanish children
aged from 3 to 12 and several anthropometric measure-
ments.

They were scanned using a Vitus Smart 3D body
scanner from Human Solutions, a nonintrusive laser
system which performs a sweep of the whole body.
First, several cameras captured images. Second, asso-
ciated software provided by the scanner manufacturer
detected the brightest points and used them to make
a triangulation that provides information about the 3D
spatial location of points on the body surface.

With the raw data provided by the body scanner, the
following preprocessing steps were applied: First, the
data were cleaned to remove redundancies, to fill holes
and to remove noise. Then, the posture-harmonised ho-
mologous models were obtained from the previously
obtained 3D scan data. This harmonization process
consisted of two steps for each body scan: The first
one was to fit a template with an anatomical skele-
ton to the scan surface to obtain a homologous struc-
tured representation. The second step was to use the
skeleton to make the homologous representation adopt
the same standard posture. For a detailed description,
see Ballester et al. (2014). Finally, a database of indi-
vidual 3D homologous avatars with anatomical one-to-
one vertex correspondence among them was created. In
the final dataset the 3D scan of the body of each child
comprises 3075 landmarks.

From the 3D mesh, several anthropometric measure-
ments were calculated semi-automatically by combin-
ing automatic measurements based on geometric char-
acteristic points with a manual review. The anthro-
pometric measurements obtained for each child are,
among others, the following: height, bust circumfer-
ence, waist circumference, hip circumference, right leg
length, left leg length, right arm length and left arm
length. In addition to those measurements other socio-
demographic variables were available for each child,
such as gender and age.

Figure 10 shows two examples contained inside our
dataset. The left example is a boy and the right example
is a girl. Both of them are 12 years old. Each example
consists of 3075 landmarks, generated with the previ-
ously described preprocessing procedure.
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FIG. 10. Two examples of 3D body scans from our dataset (a boy
in the left and a girl in the right).

6.2 Procedure

In order to illustrate our procedure, two subsam-
ples of our dataset have been chosen. For both sam-
ples, children over 7 years old were selected. The first
sample consisted of 244 boys; the second consisted of
251 girls. The body shape of each child in our data-set
was represented by 3075 3D landmarks, that is, by a
3075 × 3 configuration matrix.

Nine covariates were chosen in order to predict the
shape of a child: age, height, bust circumference, waist
circumference, hip circumference, right leg length, left
leg length, right arm length and left arm length. We
chose these covariates because they are the most com-
mon covariates asked for in online sales of wear, they
are easy to measure in a child, and they are well known
for everybody.

As an illustration of the developed application, Fig-
ure 11 shows the prediction that was obtained when
algorithm 1 was applied to predict the shape of a boy
with the covariates X0. The following values for the
covariates were employed: age = 12 years, height =
1508.5 mm, bust circumference = 784.75 mm, waist
circumference = 694.25 mm, hip circumference =
845.25 mm, right leg length = 964 mm, left leg
length = 955.75 mm, right arm length = 500.5 mm
and left arm length = 502.25 mm.

In this particular application, it would be desirable to
have, in addition, a prediction of the children’s size. Al-
though a kernel regression in the size and shape man-
ifold could be applied, we can employ a rather sim-
pler approach. Because shape and size could be con-
sidered independent, we can conduct separately a ker-
nel regression for the shape and a univariate kernel re-
gression for the size, given the above set of covariates.
Then, we combine both predictions.

In order to perform a quantitative analysis of the
effectiveness of the method, a 3-fold cross validation

FIG. 11. Shape predicted for a boy with the following covariates
X0 = (12,1508.5,784.75,694.25,845.25,964,955.75,500.5,

502.25).

study was conducted. The full sample was randomly
partitioned into three equal-sized subsamples. At each
step of this study, one of the three subsamples was
predicted from the covariates and the landmark data
of the other two subsamples. Next, the Procrustes dis-
tance between the real shape and the predicted shape
was calculated. The means of these prediction errors
for different values of h and different numbers of it-
erations are shown in Table 5. We can see that these
prediction errors are larger for small numbers of itera-
tions, and they reach the minimum and become stable
after around 1000 iterations. In contrast, the prediction
errors are quite robust against h-values, reaching the
minimum for h = 1.0. In general, these errors are con-
sidered acceptable in our application, especially taking
into account that just 8 anthropometrical measures plus
the age are used to predict the shape. In addition, unlike
the simulated dataset in the previous section, we must
consider that all the shapes in this dataset belong to
children and, therefore, they show very similar shapes.

TABLE 5
Distances between real and predicted shapes for different values

of h and number of iterations

Number of iterations

h 100 250 500 1000 2000

0.5 0.0447 0.0376 0.0351 0.0350 0.0350
1.0 0.0448 0.0373 0.0341 0.0335 0.0334
1.5 0.0450 0.0375 0.0342 0.0334 0.0334
2.0 0.0451 0.0377 0.0344 0.0336 0.0335
2.5 0.0452 0.0379 0.0346 0.0338 0.0338
3.0 0.0453 0.0381 0.0348 0.0341 0.0340

∞ (all children) 0.0459 0.0394 0.0367 0.0362 0.0362
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The cross validation study is also used to test how
reasonable the bootstrap confidence regions are. At
each one of the 24 steps of the cross-validation study,
the confidence interval (determined by the correspond-
ing δ-value) is obtained. Table 6 shows these val-
ues and the distances between the real and predicted
shapes. As we can see, distances are always smaller
than δ-values.

As we have commented previously, although the re-
sults seem acceptable for our application, the fact that
we are using nine covariates might introduce problems
with the dimensionality. To get some idea on how big
the sample is in the neighborhood of a child, Table 7
reports the average number of observations located at
a distance lesser or equal to h. As we can see, the op-
timum value of h chosen in each case provides a poor
size of the sample.

The 3-fold cross validation study was repeated us-
ing the single-index model reported in Section 3.2, and
the results are shown in Table 8. Note that in this case
using the single-index model does not improve the re-
sults, and they are even a bit worse than those of the

TABLE 6
δ-values of the 95% CI and distances

between the real and predicted shape in
24 cases of the cross-validation study

δ-value Procrustes distance

0.037 0.036
0.032 0.029
0.035 0.034
0.029 0.027
0.056 0.053
0.033 0.030
0.037 0.036
0.035 0.032
0.029 0.027
0.045 0.043
0.046 0.042
0.025 0.024
0.034 0.032
0.046 0.044
0.029 0.027
0.039 0.036
0.036 0.034
0.036 0.034
0.029 0.027
0.057 0.055
0.025 0.024
0.029 0.027
0.033 0.031
0.024 0.023

TABLE 7
Average number of observations at a distance

less than or equal to 2h of each child

Avg. no. of children

h Boys Girls

0.5 1.02 1.02
1.0 3.38 4.33
1.5 34.04 39.16
2.0 116.84 127.30
2.5 197.78 205.61
3.0 233.65 236.58

previous proposal. We think that the problem is a com-
bination of the optimization process used to find out
the optimal value of the parameter of the model and
the high computational cost of a prediction in our ap-
plication. Recall that alternative methods (i.e. additive
models) are not applicable because the addition is not
defined in a differential manifold. Even though some
other method could be applied in this case, the very
high computational cost of our dataset (a large num-
ber of landmarks and a rather large number of ob-
jects) would make its practical application very diffi-
cult.

7. DISCUSSION

In this paper, we have proposed an approach that
represents a novelty in terms of integrating concepts
from statistical shape analysis and regression proce-
dures. Although it is an important and common prob-
lem in real applications, papers on this subject are
scarce in the literature. The main novelty of this work
is to show how to apply a general nonparametric re-
gression method in manifold-valued data to the shape
space based on landmarks. The second novelty is the
generalization of the previous procedure to the case of

TABLE 8
Distances between real and predicted shapes for

different values of h and 1000 iterations using the
single-index model

h 1000

0.5 0.0487
1.0 0.0485
1.5 0.0490
2.0 0.0483
2.5 0.0484
3.0 0.0489
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multiple covariates. Moreover, we propose bootstrap
interval confidences for the predictions. A single-index
model has been proposed for handling the curse-of-
dimensionality problem when the number of covariates
is great with respect to the sample size. Furthermore,
a simulation study with simple objects was conducted
to validate the procedure, and a successful comparison
with a current approach was performed.

To illustrate our new methodology, it has been ap-
plied to a children body dataset with hundreds of sub-
jects in order to predict the shape of a child given
a small set of quantitative measures. The results ob-
tained with this dataset avail the feasibility of our new
method. This regression method could be useful for the
implementation of an online sales application.

We used the R language and the shapes pack-
age in our implementations. Due to the large size and
large dimensionality of our dataset, the overall com-
putational cost was too large. Therefore, we improved
the speed of some parts of certain routines of the afore-
mentioned package to reduce the computational cost of
the procedure. The new implementations were signifi-
cantly faster than the original ones. Moreover, we im-
plemented the most compute-intensive part of the code
by using the C programming language and a very effi-
cient library such as BLAS (Basic Linear Algebra Sub-
routines) to accelerate it even further.
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