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Rejoinder: Bayes, Oracle Bayes, and
Empirical Bayes
Bradley Efron

This paper was originally a talk at the 2017 JSM,
presenting a personal point of view on the current state
of empirical Bayes inference. It is not surprising that
the discussants, all of whom have written important
papers on the subject, should have different points of
view—from each other’s and from mine. I don’t have
serious disagreements with any of these, but rejoin-
ders have the nice property of being unchallengeable,
at least in the short run, so I won’t pass up my chance
to get in a few free shots.

The paper and the commentaries touch on a range of
related dichotomies, some of which have dogged dis-
cussions of empirical Bayes since its earliest days:

1. Hierarchical Bayes or frequentist empirical Bayes?
2. Omnibus loss functions or individual parameter in-

ferences?
3. g-modeling or f -modeling?
4. Smooth parametic priors or the NPMLE?
5. Relevance considerations or inferences from the full

data?
6. Random parameters θ or the compound decision

model?
7. Finite sample performance or asymptotics?

Robbins’ original work began at the apogee of statis-
tical frequentism, with Bayesian thinking playing a de-
cidedly minor role. Professors Greenshtein and Ritov’s
comments are fully frequentist (which attracts them
to the compound decision framework) while Professor
van der Vaart follows the hierarchical Bayes route. My
paper tries to have it both ways. I never use hierarchical
priors but, in Section 6, I employ Laird and Louis’ Type
III bootstrapping as a poor man’s substitute. Van der
Vaart is correct, the Dirichlet prior approach is pretty,
but that doesn’t mean it is right. Uninformative priors
aren’t guaranteed to produce accurate inferences—see
Figure 13.7 of [3]—though here, in expert hands, it is
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probably fine. (Notice that in Professors Kroenker and
Gu’s careful calculations Dirichlet priors took more
than an hour of computer time, compared to a few sec-
onds for the bootstrap methods; van der Vaart is more
optimistic about DP computation.)

Early empirical Bayes work focused on omnibus
loss functions, for example, ASE in equation (5) of
the paper, equation (1) in Professor Jiang’s comments,
and (1) in Greenshtein and Ritov. As emphasized in
Section 2, omnibus loss favors the frequentist side of
empirical Bayes; Section 6 redresses the balance in
its “finite Bayes” calculations, where Bayesian ideas
are dominant. Both van der Vaart and Greenshtein
and Ritov consider empirical Bayes confidence inter-
vals, more individual-parameter than omnibus in nature
(though Jiang’s confidence interval setup is omnibus).
Sections 6 and 7, where individual confidence intervals
are examined, were my own favorite parts of the paper.

The results are in for g-modeling vs f -modeling:
none of the discussants had much good to say for f -
modeling. As Professor Laird points out, f -modeling
requires large numbers of perfectly parallel situations
for its work, as well as a specialized problem set; g-
modeling requires large numbers too, but not necessar-
ily parallel ones. General g-modeling is discussed in
[2], including an example incorporating covariate in-
formation (answering Greenshtein and Ritov’s “plain
vanilla” critique). Professor Louis’ Section 2 nicely
sums up the prosecution’s case against f -modeling.
And yet, many of the well-known empirical Bayes ap-
plications, from the butterflies and Robbins’ formula
and the baseball players up to false discovery rates,
have depended on f -modeling, so it would be pre-
mature to banish it from the empirical Bayes toolkit.
(I may be over-defensive on this point: my 2011 book
used only f -modeling.)

Laird’s 1978 paper [8] provided the key NPMLE
theorem, while Koenker and Mizera’s 2014 paper [7]
translated the theory into a practical applied tool. Over-
all, the discussants’ preferences tipped toward non-
parametric maximum likelihood estimation (NPMLE)
rather than the smooth parametric models in the pa-
per. Koenker and Gu’s commentary, a model for the
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clear presentation of complicated results, shows the
smooth approach doing fine when the underlying truth
is smooth, and not so fine when it is not (though see
the next paragraph on the two towers example). Jiang,
whose 2009 paper with Zhang pioneered Oracle Bayes
considerations, also demonstrates favorable NPMLE
results for interval estimation. He used the new de-
convolveR package for the smooth g-mod calcula-
tions ([4]).

The two towers example in the paper’s Figure 1 was
originally designed to show the limitations of low-
dimensional smooth parametric g-modeling. It turned
out to perform well, providing quite small EB regret.
NPMLE also did well. Omnibus loss criteria such as
ASE take the pressure off of g-modeling: having the
estimated prior be too smooth or too rough makes lit-
tle difference. Things are more delicate for individ-
ual parameter estimation, as in Figure 10, for exam-
ple. Betting on smoothness is indeed a bet, but in this
case a spiky three-point posterior density, looking like
Koenker and Gu’s Figure 2, probably wouldn’t be of
much use.

A conventional Bayesian prior distribution can be
thought of as an infinite list of cases relevant to the
problem at hand. Somehow this is easier to accept than
the finite number of (perhaps) relevant cases available
for an empirical Bayes analysis. I didn’t succeed in
worrying the discussants about the relevance questions
in Section 7, but I did worry myself. The DTI example
of Figures 13 and 14, and Table 8, show how critical the
choice of relevance can be. (Thanks to Greenshtein and
Ritov for the reminder of Fay and Herriot’s paper.) The
relevance rule of “all the cases that show up together
on my desk” doesn’t stand up to scrutiny, but formu-
lating an alternative seems difficult. As a first try, the
long paragraph beginning at equation (92) describes an
algorithm for permitting an individual case to opt out
of an empirical Bayes analysis if it looks sufficiently
different from the others.

Nan Laird’s hopeful prediction about big data and
empirical Bayes has been instantly verified by Pro-
fessors Wang, Miller, and Blei (WMB). I was aware
of variational Bayes, thanks to Blei’s earlier work,
but hadn’t thought about its connection to empirical
Bayes. Here it appears as a 21st-century version of g-
modeling. WMB’s commentary is a stimulating small
paper in itself, a jaunty combination of ideas from ma-
chine learning and statistics. The computer science side
worries about applications to massive data sets, where
computational feasibility is of more concern than sta-
tistical efficiency. The kind of nitty-gritty numerical

comparisons in Jiang or Koenker and Gu would be on
a statistician’s wish list, but right now that might be
missing the point. I hope the WMB team will continue
developing this line of work, for the sake of both disci-
plines.

Among the discussants, only Tom Louis showed any
interest in Poisson applications and the butterflies–
what I’ve always thought of as the origin of empiri-
cal Bayes. (Greenshtein and Ritov even rule them out
of empirical Bayes consideration!) Zipf’s law always
struck me as some sort of science joke, but no, here
it performed like an overachiever. There’s something
wrong with Louis’ NPMLE one-year trapping estimate
of 25.5 new butterfly species; Good and Toulmin’s non-
parametric estimate was 45.2 while Fisher’s gamma
model gave 46.6. To answer Louis’ final question: I’m
more sympathetic to the Bayesian point of view than I
was in 1986, and Bayesian methodology is a lot more
practical than it was then. In general there seems to
be less frequentist/Bayesian sniping these days. (It’s a
good thing not to be fighting a religious war while the
AI atheists are at our gates.)

Somehow my list of seven questions didn’t include
the paper’s main one: is empirical Bayes Bayesian
or frequentist? “Both” was the paper’s answer, which
seemed okay with the discussants. My thanks to them
and our editor, Cun-Hui Zhang, for putting together
this discussion.
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