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Comment: Empirical Bayes, Compound
Decisions and Exchangeability
Eitan Greenshtein and Ya’acov Ritov

Abstract. We present some personal reflections on empirical Bayes/
compound decision (EB/CD) theory following Efron (2019). In particular,
we consider the role of exchangeability in the EB/CD theory and how it can
be achieved when there are covariates. We also discuss the interpretation of
EB/CD confidence interval, the theoretical efficiency of the CD procedure,
and the impact of sparsity assumptions.
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1. INTRODUCTION

We follow Efron (2019) in considering our perspec-
tive on the empirical Bayes (EB) research.

The empirical Bayes/compound decision (EB/CD,
respectively) problem is the following:

θ1, . . . , θn ∈ � unknown parameters

Xi | θ ∼ F(· | θi), i = 1, . . . , n independently

L(θ , θ̂) =
n∑

i=1

L(θi, θ̂i),

(1)

where bold symbol denotes the vector of the cor-
responding elements; thus X = (X1, . . . ,Xn)

′, θ =
(θ1, . . . , θn)

′, etc. Saying it simply, we have n obser-
vations, each one on a different parameter. We want to
estimate these parameters. The difference between the
EB and CD interpretations is whether θ is considered a
vector of random variables with an unknown common
distribution G, or just unknown parameters. There is
very little technical difference between the two prob-
lems.

In all EB/CD problems, the statistic of interest is
a vector of estimators of the individuals parameters
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θ1, . . . , θn, where the loss function is additive in the
loss of each of the n estimating problems. We em-
phasize this to distinguish the EB/CD setup from the
general semiparametric inverse problems with mixing
or with latent variables. These semiparametric prob-
lems, which have a rich history going back at least
to the g-factor of intelligence of Spearman (1904),
can be formulated as an inference about a parameter
ν = ν(G) ∈ Rk (possibly, k = ∞) after observing a
sample from X ∼ ∫

F(· | θ) dG(θ). In these problems,
the final interest is in the (empirical) distribution of θ

and not in the individual estimators θ̂i , i = 1, . . . , n.
Thus, in our personal view, the species problem is not
an EB/CD problem and will not discussed further in
this comment.

In the plain vanilla EB problem, θ1, . . . , θn are i.i.d.
random variables. In the corresponding CD problems,
they are unknown parameters. A crucial element in
both cases is that the order of (θ1,X1), . . . , (θn,Xn) is
arbitrary and noninformative. We consider such a sit-
uation as exchangeable. All estimators which respect
this and neglect the order are permutation equivari-
ant—satisfying

(2) θ̂(π ◦ X) = π ◦ θ̂(X) ∀π ∈ �,

where � is the set of all permutations of 1, . . . , n and
for every π ∈ � and a ∈ Rn, π ◦a = (aπ(1), . . . , aπ(n))

′.
Efron complains, “Considering the enormous gains

potentially available from empirical Bayes methods,
the effects on statistical practice have been somewhat
underwhelming.” The problem with the plain vanilla
formula is that it is, well, plain. Some spices, nuts,
or chocolate should be added to make it more useful.
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There are very few situations where we encounter n ex-
actly similar problems with no extra information that
makes them nonexchangeable. Usually the order is im-
portant, or there are other observed covariates which
are different from an observation to an observation.
The extensions we consider in the following are, nat-
urally, those which we found as interesting research
topics.

2. NONEXCHANGEABLE PROBLEMS AND THE
PRESENCE OF COVARIATES

The main feature that the Robbins EB problems have
is that the observations are exchangeable. The idea of
CD is that it is possible to gain efficiency by learn-
ing from similar statistical problems. Similar is un-
derstood here as a formal statistical concept: the order
of the observations X1, . . . ,Xn is not informative, and
L(Xi | θi = θ) does not depend on i. This is a very
restrictive structural assumption, which makes the ap-
proach rarely relevant to actual real problems where or-
der is important and the distribution of Xi may depend
on covariate Zi in addition to θi .

It is not true that EB ideas are not standard tools of
the trade. In fact, in some contexts they are the stan-
dard. It is a rare that one faces n exchangeable prob-
lems with n at least moderate. However, if the order
is relevant, it is more natural to model θ1, . . . , θn as
a random process, for example, a Markov chain. The
Kalman Filter and the general hidden Markov models
(HMMs) are standard tools used to estimate θ1, . . . , θn

when the observations Y1, . . . , Yn are independent
given θ1, . . . , θn and L(Yi | θ1, . . . , θn) = L(Yi | θi). In
the filtering problem, we estimate θ1, . . . , θn with ad-
ditive loss function

∑
L(θi, θ̂i), which is the essence

of the EB problem minus the permutation invariance.
More generally, a frequentist may consider θ1, . . . , θn

as fixed unknown constants, but he may want to mini-
mize the risk when mostly θi ≈ θi+1, i = 1, . . . , n − 1.
For example, only a few change points are permitted,
or any other shape constraint like monotonicity and
boundedness are imposed on the vector θ .

Exchangeability is lost when there are covariates.
For example, suppose that we know of two subsets of
the measurements, one subset has measurements that
were taken from males and the other has measurements
that were taken from females. One might consider the
measurements in each subset as exchangeable and ap-
ply empirical Bayes ideas separately on each subset.

Consider now a more general situation where there
is a covariate Zi independent of Xi given θi . One may

split the data into K subsets based on their values of Zi

and apply EB/CD ideas separately on each subset (cf.
Weinstein et al. (2018)). The finer is the split the lower
is the Bayes risk

∑K
k=1 #{Zi : Zi ∈ Ak}RG(·|Z∈Ak),

where RG is the risk for estimating θ when the prior
is G. The best would be to partition the sample to sin-
gletons. However, in the EB context, the Bayes proce-
dure should be estimated given the data, and if we con-
sider each sub-sample Ak separately, each sub-sample
should be relatively large, so that the Bayes estima-
tor can be learnt from the the observations in the stra-
tum. Hence, unless n is extremely large, a fine partition
yields a poor estimator.

In many cases, there is an alternative approach,
which was discussed extensively in the literature. It is
in line with Efron’s equations (85) and (86) in the dis-
cussed paper. We extend this discussion somewhat and
bring our perspective on the topic. Consider the clas-
sical case Xi ∼ N(θi, σ

2). Let β(Zi) be a proxy for
θi based on the covariate Zi . Let X̃i = Xi − β(Zi).
Since it is assumed that Xi ⊥⊥ Zi | θi , then X̃i | θ̃i ∼
N(θ̃i, σ

2), where θ̃i = θi − β(Zi). This translates the
non permutation equivariant original problem to the
plain-vanilla EB/CD formulation (1) since the infor-

mation in Zi was exhausted by β(Zi). Let ˆ̃
θi be the

CD estimator for this problem; then, one may use θ̂i =
ˆ̃
θi +β(Zi) as the CD estimator in the original problem.

This approach was first suggested in the seminal pa-
per of Fay and Herriot (1979), who considered the lin-
ear functions β(Zi) = β ′Zi and used the parametric-
empircal-Bayes of Efron and Morris (1973) for solving
the induced plain-vanilla EB problem. Cohen, Green-
shtein and Ritov (2013) extended the idea to a non-
parametric empirical Bayes estimation of θi , when the
function β may be chosen from a class B of func-
tions. The criterion for choosing an optimal β has to do
with the corresponding distribution that is induced on
the corresponding θ̃ . As demonstrated by Cohen et al.,
the heuristic and appealing approach of selecting β0 =
argminβ∈BE(θ − β(Z))2 (e.g., the least squares estima-
tor in the linear regression problem or the smoothing
spline in the discussed paper) is not optimal. See their
examples 3 and 4.

Greenshtein, Mansura and Ritov (2018) apply sim-
ilar ideas to the estimation of θ1, . . . , θn that are as-
sumed tactically (and not necessarily correctly) to fol-
low a state-space model. Assume that (X1, . . . ,Xn) are
independent and normally distributed given θ1, . . . , θn.
They considered two cases. In the first Zi = (X1, . . . ,

Xi−1,Xi+1, . . . ,Xn), and, in the second, Zi = (X1,
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. . . ,Xi−1), corresponding to in-line and off-line fil-
tering. They took β(Zi) as the natural predictor of θi

given Zi (typically, the Kalman filter). Their estima-
tor improves upon the standard Kalman filter estimator
whenever the true model is not fully Gausssian.

3. NONPARAMETRIC f - AND g-MODELING

The nonparametric estimator considered by Efron is
the Robbins estimator,

(3) θ̂i = (Xi + 1)
Nn(Xi + 1)

Nn(Xi)
,

where Nn(x) = ∑n
i=1 1(Xi = x). Asymptotically, it is

actually quite good. Brown, Greenshtein and Ritov
(2013) proved that its loss of efficiency relative to
the Bayesian risk is only O((log(n)/ log log(n))2n−1).
However, its actual behavior is quite poor when n is
small or moderate—the empirical ratio between two
relatively small proportions is unstable. Brown et al.
(2013) exemplify this fact empirically and suggest a
few possible improvements to the basic estimator. The
main steps include the smoothing and monotonizing
the estimator. This follows since a proper estimator of
f should satisfy some shape constraints. In particular,
θ̂ (x) should be monotone increasing in x by the mono-
tone likelihood property of the exponential families.

There is inherent inefficiency in the estimator (3). Its
value at Xi = x depends only on observations with val-
ues x and x +1. Typically, this value x can be obtained
from a wide range of values of θ , and all observations
are informative about the underlined distribution of θ .
This information is not used in evaluating θ̂i , and the
estimator may be very inefficient when the sample size
is moderate. This motivates the other important non-
parametric alternative—the g-modeling—the nonpara-
metric estimation of g, for example, as suggested by
Koenker and Mizera (2014). The decision process is
automatically monotone, and the NPMLE is an off the
shelf tool that can be generally implemented without
too much difficulty. It is not clear to us that the NPMLE
is an efficient estimator for our task (our anecdotal ex-
perience is that it is not, and an early stopping, as a way
of smoothing the NPMLE, improves it considerably).

It is hard to compare theoretically the effect on esti-
mation of these f and g nonparametric modeling. Part
of the problem is that, as written above, theoretically
speaking, the Robbins’s estimator leaves very little for
an asymptotic improvement.

4. EB CONFIDENCE INTERVALS

The EB statement is essentially non-Bayesian, cer-
tainly not in any subjective sense of this philosophy.
Even if θi is random, it is random in the frequen-
tist sense of the word and, hence, every statistician,
whether he considers himself Bayesian or frequentist,
may consider it as random. The “prior,” the underlying
empirical distribution of θ1, . . . , θn, has only the fre-
quentist sense of probability. Ultra orthodox frequen-
tists do accept Bayes theorem. They do not believe in
subjective probabilities.

Efron raises the question whether there is a frequen-
tist notion of EB confidence intervals. His answer is
no, and EB intervals can have interpretation only as
Bayesian credible sets. We think that as other aspects,
EB confidence intervals can be understood mainly in
the frequentist sense. Frequentists do have confidence
intervals for random variables, for example, the con-
fidence intervals for prediction in the standard linear
model, or confidence bound in the filtering problem of
state space models. Since the framework of the EB/CD
is when n → ∞, while we want to be informative for
every θi , the familywise error rate may not be a rele-
vant concept. The proper notion is that of mean cover-
age. Confidence sets Ci , i = 1, . . . , n, with confidence
1−α are such that n−1 ∑

P(Ci � θi) > 1−α whatever
is the value of θ . This definition conforms to the logic
that for any values of the parameter the confidence in-
terval should include the true value, “on the average,”
in (1 − α)100% of the times it is calculated.

Nonparametric g-modeling is a convenient way to
compute EB/CD confidence interval, the EB credible
sets. The nonparametric MLE has typically a finite sup-
port (e.g., this is the case when an exponential family is
assumed), hence the credible set for each θi should be
something like the convex hull of the formal credible
set with the NPMLE as the prior (if it is consistent).

It is possible to use the f -modeling as well. Here
we present a naively simple example for a confidence
bound. Efficient confidence sets would be more com-
plex and are beyond the scope of this note. Suppose
Xi ∼ N(θi, σ

2), and suppose, for simplicity, that we
want an 1 − α confidence bound. Following the Efron
and Morris (1973) parametric EB approach, we suggest
a confidence bound of the form (τ 2/(σ 2 + τ 2))X + c,
where τ 2 is the variance of θ1, θ2, . . . . However, we
want to find c such that the coverage would be true
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even if the prior G is not normal. That is, we need

α =
∫

�

(
1

σ

(
σ 2

τ 2 θ − σ 2 + τ 2

τ 2 c

))
dG(θ)

=
∫

�

(
σ

τ 2

(
θ − σ 2 + τ 2

σ 2 c

))
dG(θ)

= F ∗
(
−σ 2 + τ 2

σ 2 c

)
,

where F ∗ = G � N(0, τ 4/σ 2). But, assuming that the
likelihood is more informative than the prior, τ 2 > σ 2

and, hence, F ∗ = F � N(0, (τ 4 − σ 4)/σ 2). Thus, F ∗
can be easily estimated by a kernel smoothing of the
empirical distribution of X with a fixed N(0, (τ 4 −
σ 4)/σ 2) kernel.

5. THE NATURE OF THE ORACLE

Orcales are introduced in statistics in order to prove
the efficiency of a procedure. If we consider the EB
setup (1) with θ1, . . . , θn i.i.d. from an unknown G, the
oracle is simple, that is, he is the Bayesian who knows
G. Since the pairs (θi,Xi) are i.i.d., the Bayesian esti-
mator has the form of θ̂i = δ(Xi;G). We call a decision
rule of the form δi(X1, . . . ,Xn) = δ(Xi) a separable
rule. The EB procedure to be used is most likely not
separable, but we can argue that in many important sit-
uations the Bayesian separable procedure can be well
approximated based on the data.

The situation with CD is less simple—we do not
have a theoretical G to consider. We may even assume
that θ was selected by an adversarial agent, who un-
derstands the statistician’s procedure. A real oracle is
needed to argue for the efficiency of the procedure.
Three conditions are needed in order for an oracle ar-
gument to be valid: (1) The oracle should know every-
thing the statistician knows; (2) he should be no more
restricted than the statistician; and (3) he should be ef-
ficient given what he knows and what he is restricted
to do.

To prove the efficiency of the standard procedures
applied to the CD problem (1), Efron considers an or-
acle who knows Gn, the empirical distribution of θ ,
or, in other words, who knows θ1, . . . , θn up to an un-
known permutation. It is implicitly implied that the or-
acle would choose θ̂i as the Bayes procedure based on
observing Xi and with prior Gn, θ̂i = δ(Xi;Gn). In
particular, if L is the standard quadratic loss function
then

θ̂i = δ(Xi;Gn) =
∫

θf (Xi | θ) dGn(θ)∫
f (Xi | θ) dGn(θ)

.(4)

However, this is not that simple.

The parameter sets the oracle faces is the set of all
n! permutations of θ . The oracle who wants to ensure
the minimax risk against an adversary, and naturally
does not worry about computational complexities, will
use the Bayes procedure with respect to the uniform
probability distribution over the n! permutations:

(5) θ̂ =
∑

π∈� π ◦ θ
∏n

i=1 f (Xi | θπ(i))∑
π∈�

∏n
i=1 f (Xi | θπ(i))

.

This procedure is minimax since it is both Bayes and
an equalizer.

Moreover, since the CD problem is invariant un-
der permutation, it may seem natural for the oracle
to use an equivariant procedure. The estimator sug-
gested in (5) is the only possible Bayes (and hence ad-
missible) equivariant procedure for the oracle, that is,
ASE(θ, θ̂) < ASE(θ,�) for any other equivariant pro-
cedure �.

Generally speaking (4) and (5) are different. Sup-
pose n = 2, the oracle is told that {θ1, θ2} = {−1,1},
and Xi ∼ N(θi,1). In this case, the ASE of the per-
mutation equivariant estimator of the oracle is 48%
lower than that his separable procedure. For exam-
ple, if X = (0,4)′. Then, a reasonable oracle will use
θ̂ ≈ (−1,1)′ as prescribed by (5) and not θ̂ ≈ (0,1)′
as implied from (4). When θ1, . . . , θn are i.i.d. N(0,9),
the minimax risk is much lower than that of the sepa-
rable estimator for n as large as 150, as can be seen in
Figure 1. Of course, being humans, we couldn’t com-
pute the exact equivariant estimator but only approxi-
mated it, so the result of the simulations presented in
Figure 1 are only an upper bound on the actual risk.

However, Greenshtein and Ritov (2009) strengthen
the results of Hannan and Robbins (1955), and prove
that under some mild conditions the two oracle’s esti-
mators are asymptotically equal up to O(1/n) in terms
of their ASE risk. Such accuracy is needed for deal-
ing with sparse CD problems where the ASE of the (5)
is O(1/n). For example, if Xi ∼ N(θi,1), θi ∈ [a, b],
i = 1, . . . , n, the conditions are met and the estimator
of (5) can be approximated by a separable procedure.

The asymptotic equivalence of (4) and (5) is nec-
essary for establishing the asymptotic optimality of
the EB/CD procedure. Hence, at least under some
conditions, the oracle may use (4). But, the standard
EB/CD arguments show that in many interesting mod-
els (4) can be well approximated by the statistician, and
the EB/CD procedures achieves the minimal possible
ASE.

This argument cannot be avoided. One could try to
restrict arbitrary the oracle to separable decision proce-
dures of the form θ̃i = θ̃i (Xi;Gn). But the statistician
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FIG. 1. The ratio between the (approximated) risk of the equivariant oracle of (5) and the separable one of (4) as a function n, where
θ ∼ N(0,9) and X | θ ∼ N(0,1) as a.

does not know Gn, and the all nature of the EB/CD idea
is that the statistician’s θ̂i depends on all the observa-
tions, not only on Xi , θ̂i = δ(Xi;X1, . . . ,Xn), which is
not a separable procedure. Thus, under this restriction,
although the oracle knows more than the statistician,
he has less freedom, and hence the two cannot be com-
pared and this oracle is of no use.

That is all for these strange creatures, the oracles.

6. SPARSITY

Dealing with sparse vectors seems to be in the center
of attention of the current research. When the vector θ
is sparse, CD procedures typically excel. When most of
θ1, . . . , θn are 0, NPMLE detects mostly noise and lin-
ear shrinkage shrinks all the way to 0. Many CD pro-
cedures automatically detect the range of the nonzero
parameters and the conditional (empirical) distribution
of {θi : θi 
= 0}.

However, this is a context where the right asymptotic
formulation is that of triangular arrays. The Bayes for-
mulation, when θi ∼ G for G that does not depend on
n cannot hold since the fraction of nonzero parameters
converges to 0. It seems that the natural formulation is
that of the compound decision problem. See Jiang and
Zhang (2009), Greenshtein, Park and Ritov (2008), and
Brown and Greenshtein (2009).
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