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Comment: Bayes, Oracle Bayes, and
Empirical Bayes
Nan Laird

Efron has provided us with an interesting overview
of several newer analytical developments for Empiri-
cal Bayes (EB) applications. He begins by telling us
that empirical Bayes is new, but then immediately ac-
knowledges that it is not so new. This paper makes sev-
eral points that illustrate this dichotomy. First, there
are new statistical methods to improve/sharpen infer-
ences in the empirical Bayes setting. Second, both
Bayesians and frequentists can benefit from using these
approaches, and finally, the big-data era offers many
new possibilities for their application. All of these
points mean that we should see a lot more of empirical
Bayes in practice. I agree with Efron than this should
be true, although I do not feel as sanguine as Efron
does. The ability to convert a complex data set into the
simple EB framework as described by models 1 and
2 in Efron requires a lot of clever insight (for exam-
ple, casting FDR as an empirical Bayes approach to
multiple hypothesis testing) and we do not have good
recipes for that part of the job. In addition, whether or
not these techniques are widely accepted still suffers
partly from the lack of a clear frequentist or Bayesian
identity, partly on having reliable and readily available
software, but also on our being able to convince poten-
tial users of their advantages, especially if the methods
require complex computations and are not easy to ex-
plain. Efron’s paper makes a lot of progress on all of
these fronts.

Fred Mosteller introduced me to empirical Bayes
ideas when I was a graduate student. Mosteller is not
usually mentioned in the context of empirical Bayes,
although his famous work with Wallace on determin-
ing the authorship of the disputed federalist papers had
a decidedly empirical Bayes flavor (Mosteller and Wal-
lace, 1964). Their method was widely characterized as
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Bayes, but they used data from papers of known au-
thorship to estimate the “prior odds” for the two au-
thors under consideration for the disputed papers. Their
work is another good example of what I would charac-
terize as “clever insight.”

The first part of Efron’s paper concerning Oracle
Bayes has a decidedly frequentist bent and uses the
ASE as an optimality criterion. I admit to being a fre-
quentist, because it is generally the most practical, but I
cannot get excited about the ASE (Average Squared Er-
ror). I can see it is possibly attractive in some settings,
but with death rates, cure rates, hospital performance
measures, or even gene expression, I find we are more
interested in features of the ensemble, such as the ex-
tremes, thresholding, or in ordering the θ ’s. Thus my
remarks will focus more on estimation of the mixing
or prior density g, and on interval estimates for the θ ’s,
such as those discussed in Efron (1996).

Estimating the prior, or mixing, distribution clearly
arises in the EB setting, but also has broader appli-
cation. Many of the real-life applications I have been
involved with are more concerned with estimating g

rather than the individual θ ’s (DerSimonian and Laird
(1983)). For example, Mosteller and his collogues,
Gilbert and McPeek (Gilbert, McPeek and Mosteller
(1977)) were interested in how to quantitatively char-
acterize progress in surgery and anesthesia. They sam-
pled the surgical literature and obtained 13 randomized
clinical trials (RCTs), each producing an estimate of
the improvement in cure rate of an innovation over a
standard therapy. Their objective was to use the esti-
mates from these 13 RTCs to characterize the level of
improvement.

As Efron notes, estimating g plays a central role in
Bayes empirical Bayes inference, but using NonPara-
metric Maximum Likelihood Estimation (NPMLE) for
g is not attractive for this application because of its
sparseness. I mention the progress in surgery exam-
ple because it illustrates that sometimes sparseness is
precisely what we want. It also illustrates that in real
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problems, unequal variances are common. The RCTs
all had different sample sizes and different underlying
cure rates, and thus the observed measures of improve-
ment all had different variances. In this setting N = 13;
we let xi denote the observed difference in cure rates,
and let θi denote the “true” difference in cure rates
for the ith RCT. We assumed each θi is drawn i.i.d.
from g(θ). We made the simplifying assumption that
each RCT had a sufficiently large sample size such that
xi ≈ N(θi, vi), where the variance of each xi could be
estimated from the data and assumed known. This as-
sumption is at least credible, although one can argue
about whether or not the difference in cure rates is
the appropriate measure of progress. However, there
was no obvious assumption to make about the form
of g. In this context, f -modelling is not attractive, but
it is straightforward to estimate g nonparametrically.
F -modeling of the sort that Efron discusses is very at-
tractive for parallel designed experiments such as mi-
croarrays, but there will always be settings, especially
in descriptive work, where we are interested in infer-
ences about g and/or where it is not feasible to esti-
mate f .

The sparseness of the NPMLE of g should be no sur-
prise (especially with N = 13). Even in the best of set-
tings where vi = 0 for all i, so that xi = θi , g will be
a step function with mass 1/N at each xi . When the
vi ’s are not zero a lot of information is lost and the
number of support points can be far less than N . In our
data set, the NPMLE had 3 support points, (−0.0537,

0.041,0.2096), with mass (0.448,0.496,0.056). Most
of the statisticians are dismayed because of the sparse-
ness, but Mosteller and collogues were pretty happy,
since it has such a straightforward and credible inter-
pretation that is quite appropriate for the task at hand:
Most of the time there is little difference between the
innovation and the standard, but every now and then
we get a winner.

This estimate is pretty crude, and a more careful
analysis should consider transformations, such as θi

normalized by the cure rate of the standard, or cure
rate ratios, but simplicity and interpretation is impor-
tant. I would also agree that if the primary interest is
focused on this particular set of θi’s, then a very dis-
crete estimate of g is not attractive, although a boot-
strap estimate of g could be (Laird and Louis (1987)).

The second part of Efron’s paper deals with con-
struction of confidence intervals in the EB setting. In
the usual Bayes setting, a confidence interval can be
constructed in a straightforward way for any θ given
data x using the ordinary posterior, g(θ |x), assuming

the forms and any incidental parameters of the sam-
pling density, p(x|θ) and prior g(θ) are known. Fre-
quentists can also typically construct a confidence in-
terval for each theta based on p(x|θ), which has the ad-
vantage that it does not require knowledge of any prior
for θ . A big disadvantage is its nonintuitive interpre-
tation; nearly every “nonstatistician” intuitively gives
the frequentist interval a Bayes interpretation. But, as
Efron notes, to be Bayesian can require a lot more work
to overcome lack of knowledge about g(θ) and can be
complicated. Given the confusion that exists about con-
fidence intervals in the simple K = 1 case, it is not sur-
prising that there has been some difficulty over agree-
ing on what a confidence interval should be in the EB
setting.

Efron characterizes the EB setting as one that offers
Bayesians the opportunity to use the full sample x =
(x1, x2, . . . , xK) to approximate the standard Bayesian
approach of using hyperpriors for unknown features of
g(θ). Personally, I hope that frequentists like it because
I am again not so sanguine about Bayesians embracing
frequentist approaches. Laird and Louis (1987) used
the bootstrap to compute an approximate hyperprior;
their approach was very general and computationally
simple, but lacking in appeal because there was not a
general theory to support their estimate of the hyper-
prior.

Another approach is to estimate the prior (or un-
known parameters in the prior) to obtain ĝ(θ), then use
it as the prior to construct confidence intervals in the
ordinary way, assuming ĝ(θ) is the true prior (Morris
(1983)). This is the naive EB approach as the intervals
are not corrected for uncertainty in ĝ(θ). Information
in the data can be used to correct, or calibrate, these
naive EB intervals. Exactly how this should be done
has been the subject of much discussion.

An important piece of Efron’s proposal for the finite
Bayes approach is using g-modeling to obtain ĝ(θ).
The full sample x contributes to g-modeling, simi-
lar to f -modeling using the marginal density of x.
Rather than settle for parametric or strictly nonpara-
metric forms for g, he uses splines and assesses the fit
to the observed data x. Having settled on a good repre-
sentation for g(θ), ĝ(θ), he uses the bootstrap to com-
pute a ‘corrected’ prior, which is essentially E(ĝ(θ))
where E(·) is with respect to sampling distribution of
ĝ. Parametric Type II bootstrap samples (Laird and
Louis (1987)) are used to give a sampling distribu-
tion for ĝ(θ) to obtain a corrected prior, g̃. A confi-
dence interval for any particular θ0 given any x0 is then
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constructed from the usual posterior, where g̃ is used
as the prior. Efron likens this to a full Bayesian flat
hyperprior analysis. The approach is simple and in-
tuitive, computationally straightforward even in com-
plicated settings, and Efron provides some evidence
that it does a reasonable job of approximating a full
Bayesian.

All in all, Efron’s work on empirical Bayes methods,
both in this paper and many preceding ones, has been
an important advance in a somewhat controversial and
difficult field, and should be given careful considera-
tion by both Bayesians and frequentists alike.
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