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Inference: Lessons Learned from a Data
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Abstract. Dorie and co-authors (DHSSC) are to be congratulated for initi-
ating the ACIC Data Challenge. Their project engaged the community and
accelerated research by providing a level playing field for comparing the per-
formance of a priori specified algorithms. DHSSC identified themes concern-
ing characteristics of the DGP, properties of the estimators, and inference. We
discuss these themes in the context of targeted learning.
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1. INTRODUCTION

Dorie and co-authors (DHSSC) are to be congrat-
ulated for initiating the ACIC Data Challenge. Their
project engaged the community and accelerated re-
search by providing a level playing field for compar-
ing the performance of a priori specified algorithms.
The focus of the challenge was on estimation of the
statistical parameter, ψ0 = E[E(Y | Z = 1,X | Z =
1) − E(Y | Z = 0,X | Z = 1)], with a causal inter-
pretation as the sample average effect of treatment
among the treated (ATT) guaranteed by the organizers.
DHSSC designed data generating processes (DGP) that
posed a variety of challenges to the different estima-
tors. The DGPs varied according to six main character-
istics, or knobs. DHSSC identified themes concerning
characteristics of the DGP, properties of the estimators,
and inference. We discuss these themes in the context
of targeted learning.

Targeted learning is concerned with the construction
of data adaptive estimators of a parameter of the prob-
ability distribution (P0) of the data, while relying only
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on realistic statistical assumptions (van der Laan and
Rose, 2011). Our entry in the competition, SL+TMLE,
used data adaptive super learning (SL) to estimate the
response surface and the treatment assignment mech-
anism, denoted with Q0 and g0, respectively. SL is
an ensemble machine learning algorithm for prediction
(van der Laan, Polley and Hubbard, 2007, Polley and
van der Laan, 2010). However, SL’s optimality proper-
ties are with respect to a global loss function. Targeted
minimum loss-based estimation (TMLE) is a double-
robust efficient plug-in estimator designed to reduce
bias in the SL-based estimate of the parameter of in-
terest, often a much lower dimensional object (one-
dimensional in our example) (van der Laan and Rubin,
2006). TMLE uses information in the data with respect
to g0 to update the initial SL-based estimate of Q0.

2. MODELING THE RESPONSE SURFACE

DHSSC note that non-linearity of the response sur-
face posed significant challenges to many estimators.
Like DHSSC, we were not surprised to see that en-
semble methods were most successful when faced with
this challenge. SL exploits a diverse collection of al-
gorithms that model information in the data in differ-
ent ways. Of course, when the model space is large an
exhaustive search over the solution space is not feasi-
ble. Domain expertise can help focus computational re-
sources on likely areas within the model space. For ex-
ample, insights into relationships among covariates and
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data quality can inform procedures for pre-processing
covariates (e.g., creating plausible interaction terms)
and covariate selection algorithms. Experts can also be
asked to specify parametric models for inclusion in the
SL library along with machine learning algorithms that
more aggressively adapt to the data.

Domain expertise was not available in the Data Chal-
lenge, however all participants were able to examine
sample covariate data. Given the mix of binary, count,
and continuous covariates, we strove to create a gen-
eral SL library that would be flexible enough to suc-
cessfully model unknown covariate relationships with
the binary treatment indicator and a continuous out-
come. We defined covariate augmentation and screen-
ing procedures that narrowed the search at run-time
to different relevant portions of the solution space.
For example, instead of restricting lasso to main terms
models, we augmented the dataset with squared and di-
chotomized versions of continuous covariates. In con-
trast, the multivariate adaptive regression spline algo-
rithm was not supplied with squared terms. We used
other combinations of dimension augmentation and re-
duction routines geared towards each prediction algo-
rithm in the library. The highly adaptive lasso (HAL)
algorithm is guaranteed asymptotically efficient (van
der Laan, 2017), but was excluded from our competi-
tion entry due to its computational burden.

We had not anticipated BART’s impressive per-
formance. It’s properties are consistent with targeted
learning’s emphasis on avoiding unwarranted assump-
tions. The additive sum of trees approach can closely
approximate complex functional forms, and the regu-
larizing Bayes prior minimizes overfits for robust fi-
nite sample performance. The post-competition results
show that adding BART to the SL library improved
performance of our SL+TMLE entry. We would not
rely solely on BART, however, since BART might
not be consistent for some DGPs, or its convergence
rate might be slower than that of some other algo-
rithm. In the post-competition evaluation DHSSC used
TMLE to target an initial BART estimate. This pro-
vided an important layer of insurance grounded by the-
ory, with very little down side: machine learning al-
gorithms themselves are generally not asymptotically
linear estimators for target estimands, while targeting
them makes them asymptotically linear under the con-
dition that the machine learning algorithm converges
fast enough so that a second order remainder becomes
negligible. DHSSC demonstrated that even when the
initial BART estimate was already close to unbiased,
targeting did not increase bias or compromise effi-
ciency.

3. MODELING THE TREATMENT ASSIGNMENT
MECHANISM

DHSSC use the term alignment to describe the cor-
respondence between the treatment mechanism and the
outcome. They point out that bias caused by failing to
condition on a covariate present in the dataset depends
on the strength of its relationships with treatment and
outcome, and the functional forms of those relation-
ships. High alignment indicates a large overlap in the
two sets of predictive covariates. In other words, a co-
variate selection procedure that focuses on the outcome
will produce a similar set of covariates as one that fo-
cuses on treatment. Estimators that appropriately con-
dition on the selected set will be unbiased. DHSSC’s
findings highlight the difficulty of analyzing high di-
mensional datasets that contain unrelated covariates,
or instrumental variables (IV) predictive of treatment
only. When there is low alignment it can be hard to
rule out superfluous covariates. As a result, estimators
that unnecessarily condition on IVs when modeling the
treatment mechanism will have inflated variance, and
potentially inflated bias as well.

On a related note, DHSSC found that flexibly model-
ing the treatment mechanism did not markedly improve
performance. We posit this is because most methods
for doing so will not have the correct goal in mind.
Our collaborative TMLE (C-TMLE) data-adaptively
models g0 with respect to a loss function for Q0 (van
der Laan and Gruber, 2010, Gruber and van der Laan,
2010). One version of C-TMLE provides a stepwise
procedure for building a propensity score (or missing-
ness) model that trades off bias reduction and variance
inflation of the target parameter. It is particularly use-
ful when there is sparsity in the data. For example, for
the ATT parameter, when there are areas of the covari-
ate distribution among the treated that have low den-
sity among the controls. For this competition, we did
not use this stepwise version of C-TMLE because it
can be very time consuming. However, in a next round,
we would plan to incorporate more scalable versions
of C-TMLE, such as tuning a lasso-parameter of the
treatment mechanism with C-TMLE, or, more gener-
ally, using a scalable C-TMLE that first uses the data
to provide an ordered sequence of g0-estimators (Ju
et al., 2017). We did, however, automate a covariate
pre-screening procedure. In an attempt to exclude IVs
from the response surface and treatment models, we
examined the p-value on the coefficient in front of the
single covariate in a model regressing Y on Z and each
covariate in X in turn. Covariates with p-values > 0.5
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were dropped from the dataset, with the caveat that
a minimum of five covariates having the smallest p-
values be retained.

4. TREATMENT EFFECT HETEROGENEITY

For our SL+TMLE submission, we choose an
assumption-free way to account for treatment-covariate
interactions by modeling the response surface sep-
arately for treated and untreated subjects. The SL+
TMLE JOINT estimation approach saves computa-
tion time and space by fitting only one instead of two
models of the response surface. However, it places
more burden on the data adaptive algorithms in the
library to discover and correctly model important in-
teractions. Although we were not involved in specify-
ing the SL+TMLE JOINT estimator, when there are
heterogeneous treatment effects its performance would
likely improve by explicitly including pre-computed
treatment-covariate interaction terms in an augmented
dataset passed in to SL, or, by incorporating a machine
learning algorithm that targets the conditional treat-
ment effect function E(Y | Z = 1,X) − E(Y | Z =
0,X).

5. CONFIDENCE INTERVAL COVERAGE

The coverage of the SL+TMLE method typically
fell between 0.85 and 0.95. This was superior to most
methods, but failed to achieve the nominal rate. This
coverage could be further improved by improving vari-
ance estimation (influence curve variance based esti-
mators are often anti-conservative in the presence of
positivity violations), using a bootstrap method that in-
corporates second order terms in the expansion of the
TMLE to deal with lack of normality, using a more
adaptive SL for Q0 to remove remaining bias, for ex-
ample, including the HAL algorithm (van der Laan,
2017; Benkeser and van der Laan, 2016), and using an
adaptive C-TMLE algorithm. Although these improve-
ments will cause tension with the required computing
time in a competition setting, they are certainly worth-
while when analyzing data from an expensive, multi-
year study.

6. CONCLUSION

DHSSC report that a method’s performance on a
given DGP is not easily predicted, even given oracle
knowledge of characteristics of the DGP. In practice,
that means we cannot know in advance what is the best
method to analyze a given dataset. And if we choose

only one approach, we cannot comfortably rely on the
result. Therefore, one should aim for a method that is
asymptotically grounded by theory, and finite sample
robust across all allowed data generating distributions
in the statistical model. This is precisely why targeted
learning rests on a strong mathematical foundation,
emphasizes minimal assumptions, and relies on su-
per learning to exploit optimality properties of cross-
validation for data adaptively estimating relevant nui-
sance parameters.

Theory provides an important guide for construct-
ing estimators, but even when estimators possess the
same asymptotic properties, finite sample performance
can differ. Much of the work on TMLE has been moti-
vated by the need to robustify the estimator in the face
of unforeseen challenges in the data. Unexpected re-
sults send us back to the theory to understand why, and
then incorporate that understanding into the estimation
process: examples are the development of C-TMLE,
HAL, CV-TMLE (Zheng and van der Laan, 2011),
adaptive truncation using C-TMLE (Ju, Schwab and
van der Laan, 2017), among others. DHSSC demon-
strate that we no longer need to take comfort in the
adage that all models are wrong, but some are use-
ful. Their findings show that we obtain more reliable
answers when we combine machine learning with do-
main knowledge using semiparametric and nonpara-
metric methods. By thinking ahead and automating the
steps in a targeted theoretically grounded data adaptive
algorithm, we move statistical estimation further from
craft towards science.
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