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Comment on “Probabilistic Integration:
A Role in Statistical Computation?”
Michael L. Stein and Ying Hung

We commend the authors for their serious effort
to address some of the mathematical, conceptual and
practical issues that arise when using probabilistic
methods for evaluating integrals of deterministic func-
tions and assessing the uncertainties in these meth-
ods. Applying Gaussian process models to determin-
istic but difficult to compute functions is, as this paper
emphasizes, gaining increasing attention in the numer-
ical analysis literature, but it has been actively pursued
in the computer experiment literature since at least the
seminal paper Sacks et al. (1989). In computer ex-
periments, the interest is usually in interpolation or
optimization of some complex deterministic function,
rather than integration, but many of the issues raised
in this work are also pertinent when interpolating. We
would also point to Sacks and Ylvisaker (1970) as
an early work that considers theoretical design issues
when integrating Gaussian processes, although from
the standpoint of assuming the unknown function re-
ally is a Gaussian process model with a known covari-
ance structure.

The present paper takes the point of view, com-
mon in the approximation theory literature, that the un-
known function lies in some specified RKHS. It then
exploits the fact that this reproducing kernel can be
viewed as the covariance function for a Gaussian pro-
cess, making it possible to make Bayesian inferences
based on this model. The problem with this approach,
which has long been known but can still lead to confu-
sion, is that if f is a realization of a Gaussian process
with covariance function k, then its realizations are in-
sufficiently smooth to be elements of the RKHS. This
paper provides some theory and a number of exam-
ples showing that, despite this fundamental problem,
the Bayesian inferences we get from the Gaussian pro-
cess model may provide good point estimates and use-
ful uncertainty assessments for the integral of f over
some domain.
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The theory in this work focuses on posterior con-
traction to the true value of the integral. As the au-
thors make clear, this is a very different notion than
the posterior distribution providing accurate probabil-
ity statements. Indeed, the paper also notes that there is
no theory, asymptotic or otherwise, to support a claim
that the posterior probability statements coming from
Bayes theorem will have a valid probability interpreta-
tion when f is an element of the RKHS.

To clarify the issues, let us consider a simple ex-
ample. Suppose we wish to integrate a function f

on [0,1] for which it is known f (0) = f (1) = 0.
Brownian bridge on [0,1] provides a Gaussian pro-
cess model whose realizations satisfy this condition; its
mean is 0 and its covariance function on [0,1] × [0,1]
is k(x, y) = σ 2(min(x, y) − xy) for some σ > 0. For a
Gaussian process Z with this covariance function ob-
served at j/n for j = 0, . . . , n, the optimal predictor of∫ 1

0 Z(x)dx is the trapezoidal rule and its RMSE can be
shown to be σ/(

√
12n). Realizations of this Gaussian

process are nowhere differentiable with probability 1.
In contrast, the elements of the RKHS with this kernel,
which we can call H(k), are functions f that satisfy
f (0) = f (1) = 0 and are absolutely continuous with
an almost everywhere first derivative that is square in-
tegrable.

It is exceedingly implausible that a likelihood func-
tion or a solution of a deterministic differential equa-
tion of practical interest would be nowhere differen-
tiable, so one should use caution when interpreting
posterior probability statements based on this model.
Lack of differentiability in these types of functions,
when it occurs, tends to occur along lower-dimensional
manifolds. For example, for 0 < s < t < 1, suppose
f (x) equals 1 for s < x < t and is 0 otherwise. This
function shares some properties with Brownian bridge.
First,

(0.1) lim
n→∞

n∑
j=1
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= σ 2
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almost surely and

(0.2) lim
n→∞

n∑
j=1

{
f

(
j

n

)
− f

(
j − 1

n

)}2
= 2,

so these limits are the same when σ 2 = 2. Note that
the limit in (0.2) is 0 for any f in H(k). Second, the
spectral representation for Brownian bridge closely re-
sembles the Fourier series for f . Specifically,

Z(x) =
∞∑

n=1

Bn sin(πnx),

where the Bn’s are independent N(0,2σ 2/(nπ)2),
whereas

f (x) =
∞∑

n=1

cos(2πns) − cos(2πnst)

πn
sin(2πnx).

For Z, the standard deviations for the coefficients in the
sine series decay like 1/n and, for f , the coefficients
in the analogous sine series Fourier decay like 1/n.

The integration errors for Z and f are also compa-
rable. Specifically, the error of integration of the trape-
zoidal rule for f is t −�nt�/n− (s −�ns�/n), which is
O(1/n), just like the RMSE for the integral of Z. But
the correspondence is arguably much tighter than this.
Specifically, first imagine that S < T are the ordered
values for two independent draws from a uniform dis-
tribution on [0,1] and s and t are their realized values.
Then straightforward calculation yields that the RMSE
of the numerical integration is 1/(

√
6n), which is ex-

actly what we get when σ 2 = 2 and (0.1) and (0.2)
agree. However, the distribution of the error for f is
not even asymptotically Gaussian, but instead follows
a triangular distribution on [−2/n,2/n] for all n suffi-
ciently large. Note that if we define f (x) = V on S <

x < T with E(V ) = 0, var(V ) = 1 and V , S and T in-
dependent, then cov(f (x), f (y)) = 2(min(x, y)−xy),
exactly the same as for Brownian bridge with σ 2 = 2.

Using either the famous result of Blackwell and Du-
bins on the merging of posterior distributions
(Blackwell and Dubins, 1962) or by direct calculation,
it is possible to show that if the two jump points are
sampled from any density on [0,1]2 that is bounded
away from 0 and ∞, then the posterior distribution of
the error is very nearly triangular on [−2/n,2/n] in
the sense that the variation distance between this dis-
tribution and the exact posterior tends to 0 as n → ∞.
We might interpret this result as saying that if the only
aspects of f unknown were the jump points s and t

with its value fixed at 1 between s and t , then any

reasonable Bayesian model representing our uncer-
tainty about their location would lead to asymptotically
equivalent inferences about our uncertainty for the in-
tegral when using equally spaced design points. Fur-
thermore, if we behave as if this f were a realization
of Brownian bridge with σ 2 unknown and estimate it
by σ̂ 2 = ∑n

j=1{f (
j
n
) − f (

j−1
n

)}2, then (0.1) and (0.2)

imply that σ̂ /(
√

12n) gives an asymptotically valid es-
timate of the root mean squared integration error under
the stochastic model for (S, T ).

One might conclude that this example shows the
appropriateness of treating deterministic functions as
Gaussian processes even when that assumption is badly
untrue. Perhaps, although the fact that f is not in the
Sobolev space Hα for any positive integer α means that
none of the results in this paper apply to f . But there is
a deeper problem in our view. Suppose one were faced
with integrating a function on [0,1] like f in prac-
tice that had jumps at unknown locations. Clearly there
would be value in using an adaptive sampling strategy
that added more observations between existing obser-
vations where a jump appears to occur. For the func-
tion f itself with jump points s and t unknown, an er-
ror rate exponentially decreasing in n would be attain-
able by using a divide and conquer approach to locat-
ing the two jump points. More generally, for a function
on a region in d dimensions that is infinitely differen-
tiable on most of its domain with limited differentiabil-
ity on unknown lower dimensional manifolds, it would
surely improve the integration to know the locations
of these manifolds. In principle, one could attempt to
accommodate such singularities through Gaussian pro-
cess models by allowing nonstationarity in either the
mean or the covariance function of the process.

A number of methods have been proposed to incor-
porate nonstationarity into Gaussian process models,
including those that use spatial deformations and pro-
cess convolutions. The idea behind the spatial defor-
mation approach is to map nonstationary inputs in the
original space into a dispersion space in which the pro-
cess is stationary. Early work on this approach is due
to Sampson and Guttorp (1992), although that work
requires multiple realizations of the random process.
The idea of process convolution is to construct non-
stationary processes via the convolution of a family of
independent stationary Gaussian processes. For exam-
ple, Fuentes (2002) proposed a spatially-varying super-
position of several independent stationary processes.
These methods are usually computationally demand-
ing. A faster alternative is to couple stationary pro-
cesses with treed partitioning to account for the non-
stationarity (Gramacy and Lee, 2008).
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When the goal is to interpolate with estimated co-
variance parameters from a Gaussian process, selecting
states by experimental design methods can be crucial.
Zhu and Stein (2006) considered optimal design crite-
ria that account for estimation uncertainty in both point
and interval prediction using asymptotic approxima-
tions. In addition to regularly spaced sampling points,
their resulting optimal designs often contain clusters of
points. These clusters are important for capturing the
local behavior of the process and it is this local behav-
ior that determines what RKHS a function lies in. Al-
though it is computationally infeasible to carry out an
exhaustive search for the optimal design, some heuris-
tic search algorithms have been proposed to solve this
problem. Additionally, for moderately large sample
sizes, the two-step algorithm proposed by Zhu and
Stein (2006) appears to be effective in tackling the
computational issue. It uses some of the sites to find the
best design for prediction with known covariance pa-
rameters and then, conditional on these sites, uses the
rest to find the best design for estimation of those co-
variance parameters. Discretization of the search space
by Latin hypercube designs and the implementation of
columnwise-pairwise exchanges can further enhance
the search efficiency, especially for high-dimensional
problems. Besides nonadaptive designs, a number of
sequential sampling procedures have been proposed.
For example, Gramacy and Lee (2009) draws ideas
from active learning to construct an adaptive design
and Joseph (2012) proposed a sequential strategy to
add new points at the locations with maximum con-
ditional prediction variance.

We found it a bit restrictive statistically to focus only
on numerical uncertainty in the point estimate, such as
the example given in Section 5.3. Inferences beyond
point estimates, like uncertainty quantification of pre-
diction intervals, can be of great importance in many
applications. Note that an advantage of the MCMC is
that it provides a direct way of sampling from the pos-
terior, which is of greater interest than just the posterior
mean.

In terms of the implementation of the methodology,
we would like to mention the possibility of using con-
ditional simulations of Gaussian processes as a tool
for addressing some of the numerical issues related to
Bayesian cubature, at least for stationary Gaussian pro-
cesses in up to, say, three dimensions. Specifically, be-
cause exact simulation of a wide range of stationary
Gaussian processes on a dense grid can be done effi-
ciently using the discrete Fourier transform (Gneiting
et al., 2006) and because conditional simulations of

Gaussian processes can be readily done using point
prediction and unconditional simulations (Chilès and
Delfiner, 2012), we can move beyond models with a
closed-from kernel mean as long as we are willing to
approximate the integral by a dense sum. By carry-
ing out multiple conditional simulations under a fitted
Gaussian process model, we can use their average as an
estimate of the posterior mean and their sample stan-
dard deviation as an estimate of the posterior standard
deviation. A useful advantage of this conditional simu-
lation approach is that it can be trivially applied when
f is modeled as a known strictly monotonic point-
wise transformation of a Gaussian process. For exam-
ple, when integrating posterior distributions as in Sec-
tions 5.2 or 5.4, it may make more sense to treat the
log-posterior as a Gaussian process than the posterior
itself, in which case one can trivially exponentiate each
conditional simulation of the Gaussian process and av-
erage these values to get a sample from the distribution
of the integrated posterior given the available values of
the posterior.

It is interesting that the probability statements in the
examples based upon the Gaussian process models are
often reasonably well calibrated. It is conceivable that
there could be a theoretical justification for this find-
ing, but this paper does not provide it and it may be
difficult even to formulate a relevant asymptotic the-
ory. Whenever uncertainty quantification is of interest,
we consider it conceptually helpful to think about what
a really smart Bayesian with lots of time and comput-
ing resources might do, and thus, find the theoretical
results and practical examples in this paper worthy of
careful consideration. However, we are skeptical that
the solution to this problem will be found in deciding
which RKHS to assume the function is an element. We
would advocate instead taking the implications of the
stochastic process model more seriously, which will of-
ten mean seeking models beyond stationary Gaussian
processes.
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