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Comment: Unreasonable Effectiveness of
Monte Carlo
Art B. Owen

Abstract. There is a role for statistical computation in numerical integra-
tion. However, the competition from incumbent methods looks to be stiffer
for this problem than for some of the newer problems being handled by prob-
abilistic numerics. One of the challenges is the unreasonable effectiveness of
the central limit theorem. Another is the unreasonable effectiveness of pseu-
dorandom number generators. A third is the common O(n3) cost of methods
based on Gaussian processes. Despite these advantages, the classical methods
are weak in places where probabilistic methods could bring an improvement.
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1. INTRODUCTION

I think that the answer to the question in the authors’
title is “yes,” despite some challenges that I will de-
scribe. The title of an earlier version at arXiv asked
about a “role for statisticians in numerical analysis.”
There the answer is a resounding “yes.” That role
for statisticians includes developing Bayesian and fre-
quentist methods, applying them to problems such as
integration and approximation, and then using them to
get both point estimates and uncertainty quantifications
(UQ), such as interval estimates. Statistical ideas for
numerical methods have a long history and there are
exciting new developments too. Two examples from
Briol et al. (2017) are: using Bayesian methods to study
multiple solutions to Painlevé PDEs, and using those
methods to study an entire computational pipeline tak-
ing account of the fact that some steps are cheap to
change, some expensive and others completely frozen.
Those problems are fascinating and important, under-
served by frequentist methods, and I expect to see good
progress on them from Bayesian methods in the com-
ing years.

The paper focuses on the use of Bayesian methods to
estimate integrals and especially to quantify the uncer-
tainty in those estimates of integrals. This looks like
tougher going because the incumbent methods have
some “unreasonable effectiveness” properties that will
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be hard to match. After describing those strengths,
I will conclude by describing areas where the classical
methods are weak providing an opportunity for proba-
bilistic numerics (PN).

First, a few QMC-related remarks: The finite order
weights in Section 5.4.2 build in an assumption that
the integrand has no interactions whatsoever of order
3 and up (not just that they are small). This is consid-
ered quite risky (Sloan, 2007). Effective dimension is
not usually defined as a sum of γu. That sum might not
be smaller than d . For a brief history of effective di-
mension in QMC, going back to the 1950s, see Owen
(2018). The error in higher order digital nets can be
reduced by a factor of about n−1/2 by scrambling the
digits. See Dick (2011) for conditions.

The authors have not seen BMCMC used. Some-
thing like that is in the forthcoming paper of Lavine and
Hodges (2019). They use unequal weights designed for
autocorrelations of the form ρ|i−i′| between observa-
tions f (xi ) and f (xi′). As a result they estimate popu-
lation means by an unequally weighted sum of sample
values. Their weights correspond to BMCMC if there
is a first order autoregressive posterior distribution.

2. INFERENTIAL BASIS

The numerical approaches to integration that we
compare begin by writing the integrand as an expecta-
tion of a quantity f (x) where x has a probability den-
sity p. The integral estimates then take the form

μ̂ =
n∑

i=1

wif (xi ),
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where xi are representative of p in a sense that de-
pends on the method being used. Weights wMC

i , wQMC
i ,

wMCMC
i and wPN

i generate estimates μ̂MC, μ̂QMC,
μ̂MCMC and μ̂PN, for Monte Carlo, quasi-Monte Carlo,
Markov chain Monte Carlo and probabilistic numer-
ics, respectively. For QMC we ordinarily use methods
such as those in Devroye (1986) to make desired non-
uniform random variables from uniform ones. That is
we arrange for p = U[0,1]d , along with any necessary
compensating changes to f .

For MC, the law of large numbers (LLN) treating the
xi as genuinely random, gives μ̂MC → μ with proba-
bility one. For MCMC we also use an LLN but need ad-
ditional assumptions about how the xi approach their
target distribution and how they mix. In QMC, the
xi are ordinarily determinstic points in [0,1]d . The
counterpart to the LLN is that if f is Riemann in-
tegrable and the star discrepancy D∗

n (Niederreiter,
1992) between U{x1, . . . , xn} and U[0,1]d vanishes
then μ̂QMC → μ (Niederreiter, 1978). For PN, the
present paper proves convergence with probability 1
under a Gaussian process (GP) model for f .

For QMC, the wi are usually 1/n. In some MC
methods, wi is a function of xi . For PN and some
other MC methods each wi can depend on all of X =
(x1, . . . ,xn). MCMC usually uses equal weights, of-
ten skipping the first few observations and/or thinning
to every k’th observation. In any of these cases we get
μ̂ = μ̂(f,X), a function of both f and X. We then
make an error of size � = |μ̂ − μ| and we would like
some idea of how large that is.

What does it mean to know �? Diaconis (1988) be-
gins with a closed form expression for a function, and
then asks “What does it mean to ‘know’ a function?”
He then discusses Bayesian numerical analysis, cites
some historical references and shows how Bayes can
recover some well known methods as special cases.
His question applies with equal force to the error � =
|μ̂ − μ|. In what sense is it known (or unknown) when
there is a precise mathematical expression for it?

For MC and MCMC one usually models X as ran-
dom to get a distribution on �. For PN, one models
f as random for fixed X. It seems compelling from a
Bayesian point of view to condition on the observed
value of X, thereby treating them as known and not
random. The same argument can be made for f . We
might view f as a set of bytes describing a computa-
tion or more usefully as some (usually) smooth func-
tion describing a quantity of scientific interest. When
computing μ̂ however, one such f has been chosen
and even if it had been chosen at random, we could
reasonably condition on it.

If we condition on both f and X then μ̂ − μ is not
random and it is hard to motivate other values it could
have taken in order to fill up a confidence interval. One
approach is to treat the base measure dx as the un-
known and develop estimation and UQ methods based
on reweighting the sample values. See Tan (2004) for
an explanation. The resulting methods are similar to
frequentist methods that take f as fixed and xi as ran-
dom. The next section compares the interval estimates
from MC, QMC and PN.

3. INTERVAL ESTIMATES

I consider the interval estimates from Monte Carlo,
based on the central limit theorem, to be “unreasonably
effective,” despite some caveats in Section 6. First, they
are computable. Second, they are even more accurate
than the estimate μ̂ is, so we actually know more about
our error than we do about the thing we seek to esti-
mate.

In plain MC with wi = 1/n, the error estimation is
typically made based on the central limit theorem. We
can get statements like

PrX

(
|μ̂ − μ| > 2.58σ̂√

n

∣∣∣ f

)

= 0.99 + O

(
1

n

)
,

(3.1)

where σ̂ is computed from X. The error term is o(1)

by the central limit theorem but Edgeworth expansions
in Hall (1988) yield the given error term assuming
that f (x) has sufficiently many moments and is not
supported on points of an arithmetic sequence. Equa-
tion (3.1) shows that the error rate in the probability
statement is much better than the error rate in the es-
timate μ̂ itself. If we need more accuracy, perhaps be-
cause n is small, the bootstrap-t can get two-sided in-
terval estimates with error O(1/n2) (Hall, 1988) and
that calibration is quite good even in tiny samples
(Owen, 1992). Other bootstrap methods (Efron and
Tibshirani, 1993) can get one-sided interval estimates
with error O(1/n).

For QMC, the most studied counterpart to (3.1)
is the Koksma–Hlawka inequality (see Dick and Pil-
lichshammer, 2010) that gives

|μ̂ − μ| ≤ D∗
n(x1, . . . ,xn) × VHK(f ),(3.2)

where VHK is the total variation of f over [0,1]d in the
sense of Hardy and Krause. At first sight (3.2) looks
like much better UQ than (3.1) provides for MC. There
is no probability involved. Instead, we get an absolute
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upper bound on error and it holds for any integrand f

with VHK(f ) < ∞. Unfortunately, the bound holding
for all f means it can be extremely conservative for
some f . Furthermore D∗

n is extremely hard to compute
and VHK(f ) is much harder to get than μ. The upper
bound in (3.2) is then a product of two unknowns. The
comparison of (3.2) to (3.1) calls to mind a point made
by Ronald Fisher by way of George Barnard: In sta-
tistical inference, as distinct from mathematical infer-
ence, there is a world of difference between the two
statements “p is true” and “p is known to be true.”

We can quantify uncertainty with (3.1) but not
with (3.2). Equation (3.2) remains valuable as it shows
that the MC rate can be improved via constructions
achieving D∗

n = O(n−1+ε) for any ε > 0.
A counterpart to (3.1) from Bayesian numerical anal-

ysis is

Prf

(
|μ̂ − μ| > 2.58σ̂√

n

∣∣∣ f (X)

)
= 0.99,(3.3)

where μ̂ and σ̂ 2 are the posterior mean and variance of
μ over randomness in f given f (xi ). This also looks
better than (3.1) because it has no error term at all. But
we have reason to question whether the probabilities
in it are well calibrated. The probability statement is
ordinarily based on a GP model. It is not an objec-
tive Bayes statement because f is not really sampled
from the GP. It is not quite a subjective statement ei-
ther. The choice of GP usually takes into account qual-
itative properties of the GP such as mean squared dif-
ferentiability that are satisfied by many different GPs
that we could have chosen. From that set the selected
GP is based largely on familiarity and computational
feasibility, not just scientific opinion. Equation (3.3) is
not anybody’s belief.

QMC accuracy can be combined with MC-based er-
ror quantification in randomized QMC (RQMC) algo-
rithms. One replicates an n point QMC rule m times.
RQMC is surveyed by L’Ecuyer and Lemieux (2002).

Monte Carlo is unreasonably effective for error es-
timation but in practice we use pseudo-random num-
bers. That raises calibration issues due to flaws in the
pseudo-random number generators (PRNGs), which
we turn to next.

4. TESTING AND CALIBRATION

The numbers coming from a PRNG are meant to
simulate a stream of i.i.d. U(0,1) random variables but
they are not actually random. That seems to place MC
methods on the same footing as Bayesian numerical
analysis that treats a non-random f as random.

Random number generators have been the subject of
thorough testing for several decades. New results still
appear but the big crush in testU01 from L’Ecuyer and
Simard (2007) seems to have set the standard. Some
early PRNGs such as RANDU (Lewis, Goodman and
Miller, 1969) had serious flaws but things are much
better now. A flaw uncovered by Ferrenberg, Landau
and Wong (1992) was prominent enough to make the
news. The largest error in their tables is μ̂ − μ =
0.000511 where the known value of μ was about 1.5.
Pierre L’Ecuyer assures me (personal communication)
that modern generators are better than the ones used in
that paper. Gelman and Shirley (2011) consider an av-
erage of 100 independent draws from a posterior dis-
tribution, if we could get them, to be sufficient in sta-
tistical applications because the numerical error comes
along on top of a sizeable irreducible statistical error.
Vats, Flegal and Jones (2017) think larger samples are
needed. However, the point remains that errors from
PRNGs not being really independent uniform are not
a serious problem for those or most other MC applica-
tions.

By comparison, calibration for UQ modeling f as
random is much less developed. There is no “big crush”
of problems on which to calibrate Bayesian confidence
interval methods (yet). The calibration figures in this
paper plot coverage probability versus credibility level.
It is encouraging that they show qualitative agreement
that grows better with increasing sample size. In appli-
cations, we would like credible levels in the half open
interval [0.99,1.0) and perhaps at 0.95 as well. The
credible levels displayed are 0, 0.2, 0.4, 0.6, 0.8 and
1.0. Calibration at 100% should be automatically cor-
rect so the most interesting results are at 80% which is
not high enough for cautious users.

The function f is an infinite dimensional quantity,
and data may not “swamp the prior” in those settings
(Diaconis and Freedman, 1986). There are some signs
that calibration will prove hard for GP models in Xu
and Stein (2017). They consider functions f (x) on
0 ≤ x ≤ 1. If f (x) = xp is sampled at xi = i/n for
i = 1, . . . , n and one uses a squared exponential covari-
ance model, then they conjecture that the maximum
likelihood estimate of the scale parameter is asymp-
totically proportional to np−1/2. This holds theoreti-
cally for p = 0,1 and it seems to hold empirically for
p = 0,1,2,3 in their data. A similar thing happened
for the easy case, but not the hard case, in the authors’
Figure 9. We might have hoped for the GP parame-
ters to converge to some value, as it would if they were
being consistently estimated. Perhaps UQ calibrations
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can still converge properly in problems where a vari-
ance parameter converges to 0 or diverges to ∞, but re-
lying on that is worrisome. Of course xp was not drawn
from the GP and getting that function has probability
0. On the other hand, any function that we might work
with has probability 0 under the GP and we would want
calibration for it.

It is astonishing that PRNGs work as well as they do.
In practice floating point arithmetic not being the same
as real arithmetic causes more trouble. We all owe a
great debt to the people who did the algebra and imple-
mentations behind modern PRNGs.

5. CUBEDNESS

The Bayesian approach to estimation and uncer-
tainty quantification (UQ) typically includes a cost
component proportional to n3. That is a severe prob-
lem for integration methods. If an integration method
with error rate O(n−α) and cost O(n) is to be replaced
by a method with cost O(n3) the new method needs
error rate O(n−3α) to be competitive (asymptotically).
If the method is far from competitive at estimating μ

then its accuracy for UQ becomes much less well mo-
tivated. Users will ordinarily, though not universally,
choose the method with greater accuracy over one with
better UQ.

To illustrate, suppose that plain MC can be run with
some number N = ηn3 observations in the same time
that PN with a GP can be run. Then n = η−1/3N1/3.
Let’s use η = 10−3. In Figure 6, this value of η would
lead us to compare the QMC result with N = 211 to the
BC result with n = 127 and we can substitute the one
with n = 128. If that is the right η, then plain QMC is
much more accurate than BC. Drawing Figure 6 with
computational cost on the horizontal axis could leave
it essentially unchanged or shift the QMC points to be
above m/3 or something in between.

For MCMC, suppose one uses n observations and an
O(n3) computing budget. A competitor can run that
MCMC for 2n observations, discard the first n of them
to get samples closer to the target distribution than the
probabilistic numerics method would have. Then the
competitor can repeat that process independently some
O(n2) times to greatly reduce the estimation variance
by a factor like O(n2). Those replicates can also be
used in UQ.

There may be ways to mitigate the cubedness prob-
lem at least for integration of smooth functions over
[0,1]d . Jagadeeswaran and Hickernell (2018) reduce
the cost to O(n log(n)). They do that by choosing xi

to be certain shifted lattice points and then using also a
special covariance kernel that together with those input
points allows fast transform methods to be used.

6. CONCLUSIONS

Hennig, Osborne and Girolami (2015) delivered a
call to arms for probabilistic numerical methods, as an
alternative to classical methods. The classical methods
for integration are quite strong, making it a difficult set-
ting to score early improvements. Those methods do
however have weaknesses for integration, and proba-
bilistic methods could make a difference. Some prob-
lems in engineering and climate modeling have f so
expensive that the O(n3) cost of algebra is much less
than the cost of getting even one function evaluation.
That removes most or all of the computational advan-
tage of classical methods. Sometimes f (x) has an ex-
tremely skewed distribution as for rare events, weak-
ening the CLT, and we cannot always find a good im-
portance sampler to compensate. It can even happen
that

∫
f (x)2 dx = ∞ which makes the frequentist un-

certainty quantification problem extremely hard. Peng
(2004) has a good solution but even the best way to
handle heavy-tailed problems is not as good as hav-
ing a light-tailed problem. When the CLT is not avail-
able, then much of the benefit of good random number
generators disappears with it. With those three big ad-
vantages of the classical method gone, we might have
to turn to the scientific understanding behind the con-
struction of f to get a better answer. That puts the prob-
lem on grounds where Bayes has a big advantage over
classical alternatives. These harder problems might not
all be suitable for the plain Gaussian process models
that are central to probabilistic numerics at present.
That’s a good thing because we need alternatives to
those models and new uses will appear for them once
the alternatives develop.

I’ll end with another reason for optimism about the
probabilistic method. Sacks et al. (1989) find GP mod-
els to be more accurate than response surface regres-
sions. In my experience, GP interpolation has seemed
unreasonably effective for approximation of functions
such as those in the test bed of Surjanovic and Bing-
ham (2014). (I looked for survey articles to cite for this
and saw that not everybody had that same experience.)
When the GP approximation is working that well and
provides an easily integrable Bayesian approximation
f̃ to f , we can write f = f̃ + (f − f̃ ) and integrate
the two terms, using MC or RQMC for the second term
to get a better calibrated UQ. This decomposition is a
classical technique. Ritter (2000) gives it as Proposi-
tion II.4 and cites several earlier references.
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