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Methods for Estimation of Convex Sets
Victor-Emmanuel Brunel

Abstract. In the framework of shape constrained estimation, we review
methods and works done in convex set estimation. These methods mostly
build on stochastic and convex geometry, empirical process theory, functional
analysis, linear programming, extreme value theory, etc. The statistical prob-
lems that we review include density support estimation, estimation of the
level sets of densities or depth functions, nonparametric regression, etc. We
focus on the estimation of convex sets under the Nikodym and Hausdorff
metrics, which require different techniques and, quite surprisingly, lead to
very different results, in particular in density support estimation. Finally, we
discuss computational issues in high dimensions.
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1. PRELIMINARIES

1.1 Introduction

In nonparametric inference, the unknown object of
interest cannot be described in terms of a finite num-
ber of parameters. Examples include density estima-
tion, nonparametric and high dimensional regression,
support estimation, etc. Since the number of observa-
tions is only finite, it is necessary to make assump-
tions on the object of interest in order to make statis-
tical inference significant. Two types of assumptions
are most common: smoothness assumptions and shape
constraints. A smoothness assumption usually imposes
differentiability up to some fixed order, with bounded
derivatives (the reader could find an introduction to the
estimation of smooth density or regression functions
in [88], Chapter 1; [61] imposes smoothness assump-
tions on the boundary of the support of an unknown
density or on the boundary of an unknown set in image
reconstruction from random observations). Shape con-
straints rather impose conditions such as monotonic-
ity, convexity, log-concavity, etc. (e.g., [53] assumes
log-concavity of the unknown density; [23] imposes
monotonicity or more general shape constraints on the
unknown regression function; [55] imposes a mono-
tonicity or a convexity constraint on the boundary of
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the support of the unknown density; [59, 16] impose
convexity on the support of the unknown distribution).

Smoothness is a quantitative condition, whereas a
shape constraint is usually qualitative. Smoothness
classes of functions or sets depend on meta parame-
ters, such as the number of existing derivatives or upper
bounds on some functional norms. However, in statisti-
cal applications, these meta parameters are unlikely to
be known to the practitioner. Yet, statistical inference
usually requires to choose tuning parameters that de-
pend on these meta parameters. One way to overcome
this issue is to randomize the tuning parameters and
apply data driven adaptive procedures such as cross
validation. However, such procedures are often techni-
cal and computationally costly. On the opposite, shape
constraints usually do not introduce extra parameters,
which makes them particularly attractive.

Many different shape constraints can be imposed on
sets. For instance, [85, 56, 55] consider boundary frag-
ments, which are the subgraphs of positive functions
defined on a hypercube (or, more generally, on a metric
space). Shape constraints on such sets directly translate
into shape constraints on their edge functions. For gen-
eral sets, convexity is probably the most simple shape
constraint, even though it leads to a very rich field in
geometry. Convexity can be extended to the notion of
r-convexity, where an r-convex set is the complement
of the union of open Euclidean balls of radius r , r > 0
(see, e.g., [63] and [77, 69] for set estimation under
r-convexity and, more generally, [29, 30] for broader
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shape constraints in set estimation). Informally, con-
vexity is the limit of r-convexity as r goes to ∞. In set
estimation, if it is assumed that the unknown set is r-
convex for some r > 0, the meta parameter r may also
be unknown to the practitioner and [78] defines a data-
driven procedure that adapts to r . In the present article,
we only focus on convexity, which is a widely treated
shape constraint in statistics. On top of convexity, two
additional constraints are common in statistics: the
rolling ball condition and standardness. A convex set
G is said to satisfy the r-rolling ball condition (r > 0)
if, for all x on the boundary of G, there is a Euclidean
ball B(a, r) such that x ∈ B(a, r) ⊆ Ḡ, where Ḡ is
the closure of G (see [92, 93] for characterizations of
the rolling ball condition, connections with r-convexity
and statistical applications in set estimation). An equiv-
alent condition is that the complement of G has reach
at least r . The reach of a set is the supremum of all
positive numbers ε such that any point within a dis-
tance ε of that set has a unique metric projection onto
the closure of that set (see [84], Definition 11). A con-
vex set G is called ν-standard (ν ∈ (0,1)) if for all x

on its boundary, Vol(G ∩ B(x, ε)) ≥ νVol(B(x, ε)), for
all ε > 0 small enough. This roughly means that the set
G does not have peaks.

In general, two main types of convex bodies are dis-
tinguished in the literature.

• Convex bodies with smooth boundary: The bound-
ary ∂G of a convex body G is smooth if for all
x ∈ ∂G, G has a unique supporting hyperplane that
contains x. In that case, let Hx be the unique sup-
porting hyperplane containing x and let ηx be the
unit vector orthogonal to Hx and pointing towards
the inside of G. Identify the (d −1)-dimensional lin-
ear subspace Hx − x = {z − x : z ∈ Hx} with R

d−1;
Then every y ∈ ∂G that is in some neighborhood of
x can be written uniquely as y = x + t + fx(t)ηx ,
where t ∈ Hx − x and fx is a nonnegative convex
function defined in a neighborhood of 0 in Hx − x.
If the Hessian of fx at 0 is positive definite, ∂G is
said to have positive curvature at x. Otherwise, ∂G

has zero curvature at x.
• Convex polytopes: A convex polytope (in short, a

polytope) is the convex hull of finitely many points
in R

d . By the Minkowski–Weyl theorem, a polytope
can also be represented as the intersection of finitely
many closed half-spaces. The supporting hyperplane
of a polytope P containing x ∈ ∂P is unique if x

is not in a k-dimensional face of P for some k ≤
d − 2, and P has zero curvature at all such boundary
points x.

We refer the readers who are interested in learning
more about convex bodies to [80], and to [96] for a
comprehensive study of convex polytopes.

In the field of nonparametric statistics, the problem
of set estimation arose essentially with the works [42]
(On a geometric estimation problem) and [27], which
deal with the estimation of the support of a density in
a general setup. A simple and natural estimator of the
support of an unknown density was introduced in [31],
where the estimator is defined as the union of small
Euclidean balls centered around the data points. In fact,
this estimator is equal to the support of a kernel density
estimator for the kernel that is the indicator function of
the Euclidean unit ball.

The scope of this survey is the estimation of con-
vex sets. We aim to give an exposition of several meth-
ods that build on stochastic and convex geometry, em-
pirical process theory, functional analysis, linear pro-
gramming, order statistics and extreme value theory,
etc. Different models associated with the estimation of
convex sets include density support estimation [57, 56,
55, 16, 17, 13], density level set estimation [51, 70, 86],
inverse problems in density support estimation [19], es-
timation of the support of a regression function [58,
85, 14], estimation of the level sets of the Tukey depth
function [18], estimation of support functions [40, 48],
etc.

Throughout this survey, a set estimator is a set-
valued statistic, that is, a set which depends on the
observed random variables. A precise definition would
be necessary in order to rule out measurability issues.
However, in order to keep the focus on convex set es-
timation, we rather choose not to mention these issues,
and all probabilities (resp., expectations) should be un-
derstood as outer probabilities (resp., expectations).
For detailed accounts on set-valued random variables,
we refer to [64].

Before going more into the details, let us introduce
some notation and definitions.

1.2 Notation and Definitions

In the sequel, d is a positive integer, standing for the
ambient dimension. For a positive integer p, the closed
p-dimensional Euclidean ball with center a ∈ R

p and
radius r ≥ 0 is denoted by Bp(a, r). If p = d , we may
omit the subscript p. The (p − 1)-dimensional unit
sphere is denoted by S

p−1 and the volume of the p-
dimensional unit Euclidean ball is denoted by βp . The
Euclidean norm in R

d is denoted by ‖ ·‖, the Euclidean
distance is ρ and we write 〈·, ·〉 for the canonical dot
product.
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A convex body G ⊆ R
d is a compact and convex

set with nonempty interior. We denote by Kd the col-
lection of all convex bodies and by K(1)

d the collec-
tion of all convex bodies included in B(0,1). The sup-
port function hG of a convex body G is defined as
hG(u) = max{〈u,x〉 : x ∈ G}, for all u ∈ S

d−1: It is the
signed distance of tangent hyperplanes to the origin.

The volume of a measurable set A ⊆ R
d is denoted

by |A|.
The Nikodym distance between two measurable sets

K,L ⊆ R
d is the volume of their symmetric difference:

d�(K,L) = |K�L|. The Hausdorff distance between
any two sets K,L ⊆ R

d is defined as dH(K,L) =
inf{ε ≥ 0 : K ⊆ L + εB(0,1),L ⊆ K + εB(0,1)}.

The cardinality of a finite set A is denoted by #A.
When i.i.d. random points X1, . . . ,Xn ∈ R

d have a
density f with respect to the Lebesgue measure, we
denote by Pf their joint distribution and by Ef the
corresponding expectation operator, where we omit the
dependency on n for simplicity. When f is the uniform
density on a compact set G, we simply write PG and
EG. The convex hull of X1, . . . ,Xn is denoted by K̂n.

In this article, most, if not all, set-valued estimators
are polytopes that depend on a finite random sample.
Nonetheless, in order to be consistent with the liter-
ature, we reserve the name random polytope for K̂n

only.

1.3 Outline

In order to assess the quality of a set estimator, the
Nikodym and the Hausdorff metrics are most com-
monly used. Depending on which of these two metrics
is to be used, the techniques in estimation of convex
sets may differ a lot.

Section 2 is devoted to the estimation of convex
sets under Nikodym-type metrics, especially in density
support estimation. We first review essential properties
of random polytopes and we relate them to the problem
of support estimation under the Nikodym metric. We
also recall well-known results on the covering num-
bers of classes of convex bodies and show how these
can be used in order to obtain deviation inequalities in
convex support estimation. Then we review extensions
of these results to the estimation of density level sets
under convexity and we discuss other convex set esti-
mation problems under the Nikodym metric.

In Section 3, we switch to the estimation of con-
vex bodies under the Hausdorff metric. An elementary,
yet essential result, stated in Lemma 2, shows that the
Hausdorff distance between two convex bodies can be
computed through their respective support functions.

We review important properties related to the support
functions of convex bodies and we show how they ap-
ply to the estimation of convex sets under the Haus-
dorff metric.

Finally, in Section 4, we briefly discuss the compu-
tational aspects of convex set estimation in high di-
mensions. We show, through two examples, how to re-
duce the computational cost without affecting the rate
of convergence of convex set estimators.

2. ESTIMATION OF CONVEX SETS UNDER THE
NIKODYM METRIC

2.1 Random Polytopes and Density Support
Estimation

The most common representation of random poly-
topes consists of taking the convex hull of i.i.d. ran-
dom points in R

d . Stochastic and convex geometry
have provided powerful tools to understand the prop-
erties of random polytopes, since the seminal works
[74, 75]. In these two papers, d = 2 and the random
polygon is the convex hull of n i.i.d. random points
with the uniform distribution in a planar convex body.
The expectation of the missing area and of the num-
ber of vertices of the random polygon are computed,
up to negligible terms as n goes to infinity. The results
substantially depend on the structure of the boundary
of the support. Namely, the expected missing area de-
creases significantly faster when the support is itself a
polygon than when its boundary has positive curvature
everywhere. The missing area is exactly the Nikodym
distance between the random polygon and the support
of the random points. Hence, [74, 75] give an approx-
imate value of the risk of the random polygon as an
estimator of the convex support. Later, much effort has
been devoted to extend these results to higher dimen-
sions, starting with [35], that proves integral formulas
for the expected missing volume, surface area, number
of vertices, etc. in dimension 3. Among most general
results, a ground breaking one is due to [5]. Define the
ε-floating body of a convex body G ∈ Kd as the set of
points x ∈ G such that any closed half-space H ⊆ R

d

containing x has an intersection with G whose volume
is at least a fraction ε of the total volume of G, that
is, satisfies |G ∩ H | ≥ ε|G|, where ε ∈ (0,1) (see [34,
9, 82]). The ε-wet part of G, denoted by G(ε), is the
complement of the ε-floating body of G in G. If one
thinks of G as an iceberg seen from above, the floating
body is the part of G that is above the surface of the
water, whereas the wet part is the immersed part of the
iceberg.
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THEOREM 1 ([5]). Let G ∈ Kd have volume one.
Then

c1
∣∣G(1/n)

∣∣ ≤ EG

[|G \ K̂n|]
≤ c2(d)

∣∣G(1/n)
∣∣ ∀n ≥ n0(d),

where c1 is a universal positive constant, c2(d) is a
positive constant that depends on d only and n0(d) is
a positive integer that depends on d only.

As a consequence, computing the expected missing
volume of K̂n asymptotically reduces to computing the
volume of the (1/n)-wet part of G, which is no longer a
probabilistic question. In addition, it is also known [5]
that if G has volume one and ε goes to zero, |G(ε)| is of
the order at least ε ln(1/ε) and at most ε2/d+1 [5]. The
former rate is achieved when G is a polytope whereas
the latter rate is achieved when G has a smooth bound-
ary with positive curvature everywhere.

In fact, when G is a smooth convex body with posi-
tive curvature everywhere, it is shown in [81] that

(1) n2/(d+1)
EG

[ |G \ K̂n|
|G|

]
−→ c(d,G), n → ∞,

where c(d,G) is an explicit positive constant that de-
pends on d and G and that is affine invariant in G,
that is, c(d,G) = c(d, T (G)) for all invertible affine
transormations T . [81] actually shows that this conver-
gence holds for all convex bodies G, by noting that all
convex bodies have a unique supporting hyperplane at
almost all their boundary points (e.g., almost all bound-
ary points of a polytope lie on a (d − 1)-dimensional
face), and where c(d,G) is equal to zero if and only if
∂G has zero curvature almost everywhere (e.g., if G is
a polytope).

An interesting result, due to [46], shows that the

quantity EG[ |G\K̂n|
|G| ] is maximum when G is an ellip-

soid. In that case, it can be derived from [81] that the
constant c(d,G) in (1) is of the order dd+o(d), as d be-
comes large. As a consequence, when the dimension d

becomes too large, the random polytope K̂n performs
poorly as an estimator of G in the worst case, because
it suffers the curse of dimensionality, both in the rate
n−2/(d+1) and in the constant factor dd+o(d). Yet, it is
known that the rate n−2/(d+1) cannot be improved in a
minimax sense. The following result is proven in [16]
where, for two sequences an and bn of positive num-
bers, we write an �θ bn if an ≤ c(θ)bn, ∀n ≥ 1, for
some positive constant c(θ) that depends on a parame-
ter θ . In the sequel, we also write � with no subscript
if the involved constant is universal.

THEOREM 2 ([16]). The following inequalities
hold:

n− 2
d+1 �d inf

G̃n

sup
G∈Kd

EG

[ |G�G̃n|
|G|

]

≤ sup
G∈Kd

EG

[ |G�K̂n|
|G|

]
�d n− 2

d+1 ,

where the infimum is taken over all estimators G̃n

based on n i.i.d. observations.

As a consequence, the random polytope K̂n is rate
optimal over the class Kd in a minimax sense, with re-
spect to the Nikodym metric. The upper bound in The-
orem 2 is a direct consequence of Theorem 1, together
with Groemer’s result [46]: It suffices to evaluate the
volume of the (1/n)-wet part of a Euclidean ball of
volume one. However, it is not clear that K̂n is optimal
in terms of the constant factors that become exponen-
tially large with the dimension. Note that K̂n ⊆ G with
probability one, hence, K̂n always underestimates the
support G. This is why the estimation of G through a
dilation of K̂n could be appealing. It has been consid-
ered, for example, [76] in the planar case for Poisson
polytopes, and in [65] for d ≤ 2, but only heuristics are
given in the general case, except for the estimation of
the volume of G in [1]. [1] poses the question of the
performance of a dilated version of K̂n compared to
that of K̂n itself, but the question remains open.

Note that the lower bound in Theorem 2 is also
used in log-concave density estimation. The uniform
density on any convex body is log-concave, and for
any two convex bodies G and G′ of volume 1, the
corresponding uniform densities fG and fG′ satisfy
‖fG − fG′‖2

2 = |G�G′|, where ‖ · ‖ stands for the
L2 norm with respect to the Lebesgue measure in R

d .
Hence, some proof techniques for lower bounds on
minimax risks in [53] are based on similar arguments
as those used to prove the lower bound in Theorem 2.

2.2 Adaptation to Polytopal Supports

As we already mentioned earlier, an attractive fea-
ture of most shape constraints is that no meta pa-
rameters are needed to describe the objects of inter-
est, unlike in smoothness classes. Nonetheless, classes
of functions or sets with a shape constraint usually
contain parametric subclasses that correspond to sim-
pler structures, which may depend on meta parameters.
For instance, classes of monotone (resp. convex) func-
tions contain piecewise constant (resp. affine) func-
tions. A desirable property of an estimator is adapta-
tion to these simpler structures: If the unknown object
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belongs to a subparametric class, then the rate of con-
vergence of the estimator should be nearly as good as
that of an estimator that would not be agnostic to that
simpler structure. In recent years, there have been con-
siderable efforts put in understanding this automatic
adaptive features in shape constrained estimators [52,
24, 95, 23, 8, 49, 50].

Turning to the case of convex set estimation, the
class Kd contains subclasses of polytopes with
bounded number of vertices, hence, whose support
functions are piecewise linear with a bounded number
of pieces, each piece corresponding to a vertex.

For the estimation of the convex support of a uni-
form distribution, the random polytope K̂n is the
maximum likelihood estimator on the class Kd . In-
deed, the likelihood function is given by Ln(C) :=
|C|−n ∏n

i=1 1Xi∈C = |C|−n1
K̂n⊆C

, for all C ∈ Kd

which is maximized when C = K̂n (note that K̂n ∈ Kd

with probability 1 as long as n ≥ d + 1). Recall that,
as a consequence of Theorem 2, in the Nikodym met-
ric, K̂n estimates G at the speed n−2/(d+1) in the worst
case, that is, when G has a smooth boundary. When G

is a polytope, Theorem 1 implies that K̂n estimates G

at a much faster speed, namely, n−1(lnn)d−1. A more
refined (but not uniform in G) result was proven in [4].
For a polytope P ⊆ R

d , let T (P ) be the number of
flags of P , that is, the number of increasing sequences
F0 ⊆ F1 ⊆ · · · ⊆ Fd−1 ⊆ Fd = P of faces of P where
Fk is a k-dimensional face of P , k = 0, . . . , d . For ex-
ample, F(P ) = 2dd! if P is the d-dimensional hyper-
cube, or F(P ) = d! if P is the (d − 1)-dimensional
simplex.

THEOREM 3 ([4]). Let G = P be a polytope. Then

lim
n→∞

n

(lnn)d−1EP

[ |P \ K̂n|
|P |

]
= T (P )

(d + 1)d−1(d − 1)! .
In particular, if G is a polytope, then there is a sig-

nificant gain in the speed of convergence of K̂n, which
becomes nearly parametric up to logarithmic factors.
In other words, K̂n adapts to polytopal supports. How-
ever, its rate still suffers the curse of dimensionality
because of the (lnn)d−1 factor. In [16], it is shown that
this rate is not optimal over subclasses of polytopes
with given number of vertices in a minimax sense. The
idea is that K̂n maximizes the likelihood function over
the class of all convex bodies, which would too rich
if it was known in advance that G is a polytope with
a given number of vertices. If G has at most r ver-
tices, where r ≥ d + 1 is known a priori, [16] con-
siders the maximum likelihood estimator over the cor-
responding subclass of polytopes. Namely, denote by

Pr the class of all polytopes with at most r vertices.
The maximum likelihood estimator of P in the class Pr

is defined as P̂
(r)
n ∈ argmaxQ∈Pr

|P |−n1Xi∈P,∀i=1,...,n:
It is a polytope with at most r vertices that contains
X1, . . . ,Xn and has minimum volume. Note that, un-
like K̂n, the maximum likelihood estimator P̂

(r)
n may

not be uniquely defined. However, the rate of this es-
timator no longer suffers the curse of dimensionality
when G ∈ Pr .

THEOREM 4 ([16]). Let r ≥ d + 1. Then

1

n
�d inf

G̃n

sup
P∈P(r)

n

EP

[ |P�G̃n|
|P |

]

≤ sup
P∈P(r)

n

EP

[ |P�P̂
(r)
n |

|P |
]
�d

r lnn

n
,

where the infimum is taken over all estimators G̃n

based on n i.i.d. observations.

In [16], a better lower bound is proven when d = 2,
namely,

inf
G̃n

sup
P∈P(r)

n

EP

[ |P�G̃n|
|P |

]
� r

n
.

The proof of the upper bound in Theorem 4 builds
on a simple discretization of the class P(r)

n , obtained
by considering polytopes with vertices on a finite grid
in [0,1]d , and applying similar methods to those pre-
sented in Section 2.4.

The estimator P̂
(r)
n is not computable in practice, but

it gives a benchmark for the optimal rate in estimation
of P ∈ Pr , under the Nikodym metric. It is still not
clear whether the logarithmic factor could be dropped
in the upper bound (see [16], Section 3.2). A drawback
of P̂

(r)
n is that it requires the knowledge of r , whereas

K̂n is completely agnostic to the facial structure of G.
In order to fix this issue, [16] proposes a fully adap-
tive procedure and defines an estimator P̂

adapt
n that is

agnostic of the facial structure of G and yet performs
at the same rate as P̂

(r)
n when G ∈ Pr for some inte-

ger r ≥ d + 1, and as K̂n for general supports G (see
[16] and [15] for more details). However, the estima-
tors P̂

(r)
n and P̂

adapt
n are not computationally tractable,

and when the dimension d is not too large, the convex
hull K̂n is a more realistic estimator of G.

2.3 More Results on Random Polytopes

Even though this survey focuses on the statistical
aspects of random polytopes, it is worth mentioning
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many works that have tackled other probabilistic and
geometric properties, which are indirectly related to the
statistical estimation of the support and pose new sta-
tistical challenges.

In [74, 75], the expected number of vertices of K̂n

is computed in the planar case, up to some negligible
terms as n → ∞. [35] shows a very elegant identity
which relates the missing volume of K̂n and its num-
ber of vertices. It can be stated in a very general setup
as follows. Given a sequence of i.i.d. random points
X1,X2, . . . from some arbitrary probability measure μ

in R
d , let K̂n be the convex hull of X1, . . . ,Xn and Nn

be the number of vertices of K̂n, for n ≥ 1. Then, for
all n ≥ 1,

E
[
1 − μ(K̂n)

] = E[Nn+1]
n + 1

.

When μ is the uniform probability measure on a con-

vex body G ∈ Kd , this identity becomes EG[ |G\K̂n|
|G| ] =

EG[Nn+1]
n+1 . Extensions of this inequality to higher mo-

ments of |G \ K̂n| can be found in [20].
In [71], more results about the random polytope K̂n,

involving variance bounds, are proven using Efron–
Stein jackknife inequalities [36]. Very importantly,
[71] compares the random polytope K̂n to best poly-
topal approximations of smooth convex bodies. Let
G ∈ Kd be a smooth convex body and let G∗

N be a
polytope with at most N vertices, included in G, with
minimum missing volume |G \ G∗

N |. With probability
one,

|G \ G∗
Nn

|
|G \ K̂n|

−→ cd, n → ∞,

where cd ≤ 1 is a positive constant that only depends
on the dimension d . Moreover, [71] shows that cd −→
1 as d → ∞. This shows that in high dimensions, with
probability 1, K̂n performs nearly as well as the best
approximating inscribed polytope with same number
of vertices, as n becomes large.

Central limit theorems for the volume, number of
vertices, or more generally, number of k-dimensional
faces for k ≤ d − 1, of random polytopes are proven in
[73, 67, 68]. A worth mentioning technique that is used
in the proofs of these central limit theorems could be
called Poissonization–de-Poissonization. The idea is to
first consider a Poisson polytope, defined as the convex
hull of a Poisson point process [6] supported on a con-
vex body, with growing intensity. These are somewhat
easier to work with, and it is shown that their behav-
ior is close enough to that of the random polytope K̂n.

Hence, the central limit theorems are first proven for
the Poisson polytope, and the results are transferred to
the random polytope by a depoissonization step. At a
high level, this idea relies on the fact that if G ∈ Kd

has volume one and if X = {X1, . . . ,XN } is a Poisson
point process with constant intensity n supported on G,
then N is a Poisson random variable with parameter n,
hence, E[N ] = Var(N) = n and N ≈ n with high prob-
ability, and conditional on N = n, X1, . . . ,XN are n

i.i.d. random points uniformly distributed in G.
Asymptotic properties of the intrinsic volumes of the

random polytope are studied in [3, 72, 10] under dif-
ferent assumptions on the boundary of the underly-
ing convex body. The intrinsic volumes of a convex
body can be defined through Steiner formula [80], Sec-
tion 4.1. For G ∈ Kd and ε > 0, let Gε = G+ εB(0,1)

be the set of all points x ∈ R
d that are within a distance

at most ε of G. Steiner formula states that |Gε| is a de-
gree d polynomial in ε. Namely, one can write, for all
ε > 0,

(2)
∣∣Gε

∣∣ =
d∑

j=0

βd−j vj (G)εj ,

where vj (G) ≥ 0 is called the j th intrinsic volume
of G, for j = 0, . . . , d . For instance, v0(G) = |G| is
the volume of G, v1(G) is its surface area, v2(G) is
its mean width and vd(G) = 1. In [10], it is shown
that if G is a smooth convex body satisfying the r-
rolling ball condition, then for all j = 0, . . . , d − 1,
n2/(d+1)

EG[vj (G) − vj (K̂n)] −→ c(d,G) as n → ∞,
where c(d,G) is a positive constant that depends on
both the dimension and G. In particular, the plug-in
estimator vj (K̂n) is a consistent estimator of vj (G),
and it converges at the same rate as the rate of conver-
gence of K̂n in the Nikodym metric. Whether the plug-
in estimator vj (K̂n) is an optimal estimator of vj (G)

in a minimax sense is not known in general, except
when j = 0, when the answer is negative. [41] con-
siders the general problem of minimax estimation of
the volume of the support of an unknown density, not
necessarily uniform. In the particular case of the uni-
form density on an unknown convex body G ∈ Kd , a
sample splitting procedure is applied in order to correct
the plug-in estimator |K̂n/2|. It is shown that the mini-
max risk for the estimation of the volume of G ∈ K(1)

d

is of order n− d+3
2d+2 , and this rate of convergence is at-

tained by the explicit estimator given in [41]. The esti-
mation of the volume of G is also tackled in [1], where
the same Poissonization–de-Poissonization procedure
as mentioned above is used in order to obtain an esti-
mator of |G| based on a dilation of the random poly-
tope K̂n.
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2.4 Convex Bodies and Covering Numbers

Covering numbers provide a powerful tool to de-
scribe the complexity of a class. In empirical process
theory, they are often used in order to bound the sta-
tistical performance of an estimator in expectation or
with high probability, when the estimator is obtained
by optimizing a criterion, such as the likelihood func-
tion.

Consider the problem of estimating the support G

of a uniform distribution, with G ∈ Kd . Because the
support of the likelihood function (see Section 2.2) de-
pends on the unknown parameter itself, it is not valid to
take its logarithm and it cannot be approached through
the lens of empirical process theory. However, tools
such as covering numbers can still be borrowed from
that theory in order to prove deviation inequalities for
K̂n.

Without loss of generality, one can assume that
B(a, d−1) ⊆ G ⊆ B(0,1) for some a ∈ B(0,1). This
guarantees that G ∈ K(1)

d , which is a bounded class
of convex bodies, and that |G| is uniformly bounded
from below. This is due to John’s theorem (e.g.,
see [2]) and affine equivariance of K̂n. John’s the-
orem (e.g., see [2]) implies the existence an invert-
ible affine transformation T : Rd → R

d and a point
a ∈ B(0,1) with B(a, d−1) ⊆ T G ⊆ B(0,1). More-
over, if we rather denote by K̂n(X1, . . . ,Xn) the
convex hull of X1, . . . ,Xn, then K̂n(X1, . . . ,Xn) =
T −1K̂n(T X1, . . . , T Xn). Since X1, . . . ,Xn are i.i.d.
uniform random points in G, T X1, . . . , T Xn are i.i.d.

uniform random points in T G, and |G\K̂n(X1,...,Xn)|
|G| =

|T G\K̂n(T X1,...,T Xn)|
|T G| . As a consequence, the rescaled

risk |G\K̂n|
|G| is bounded from above by |G\K̂n|

βd
and we

only need to bound |G \ K̂n| uniformly on K(1)
d instead

of the whole unbounded class Kd .
Let ε > 0 and let d(·, ·) be a metric on K(1)

d (e.g.,

Nikodym or Hausdorff distance). An ε-net of K(1)
d with

respect to the metric d(·, ·) is a set N ⊆ K(1)
d such that

for all G ∈ K(1)
d , there is G∗ ∈ N with d(G,G∗) ≤ ε.

The ε-covering number of K(1)
d with respect to d(·, ·) is

the minimum cardinality of an ε-net of K(1)
d . The fol-

lowing theorem is an upper bound for the ε-covering
number of K(1)

d with respect to the Hausdorff distance.
By [13], Lemma 2, the Nikodym distance is domi-
nated by the Hausdorff distance uniformly on K(1)

d :

d�(G1,G2) ≤ αdH(G1,G2), for all G1,G2 ∈ K(1)
d ,

where α is a positive constant that depends on d only.

This result is a direct consequence of Steiner formula
for convex bodies (see Lemma 2). Hence, the following
theorem also implies an upper bound for the ε-covering
number of K(1)

d with respect to the Nikodym metric.

THEOREM 5 ([12]). Let ε ∈ (0,1). The ε-covering
number of K(1)

d with respect to the Hausdorff distance
is at most c1e

c2ε
−(d−1)/2

, for some positive constants c1
and c2 that depend on d .

We also refer to Section 8.4 in [32] for more details
on metric entropy for classes of convex sets. Build-
ing on this theorem combined with standard techniques
from M-estimation and empirical processes (see, e.g.,
[90, 89]), [13] proves the following deviation inequal-
ity for K̂n, which holds uniformly for all G ∈ Kd .

THEOREM 6 ([13]). There exist positive constants
a1, a2 and a3 such that the following holds. Let x ≥ 0
and n ≥ 2 be an integer. For all G ∈ Kd ,

|G \ K̂n|
|G| ≤ a1n

− 2
d+1 + x

n

with PG-probability at least 1 − a2e
−a3x .

Using the same techniques, more general devia-
tion inequalities are proven in [13], when the density
of the Xi’s is not uniform, but only supported on a
convex body G. For all measurable sets G,G′ ⊆ R

d

and all densities f on R
d , denote by df (G,G′) =∫

G\G′ f (x)dx. Note that df (G,G′) = |G\G′|
|G| when f

is the uniform density on G.

THEOREM 7 ([13]). There exist positive constants
C1 and C2, that depend on d only, such that the fol-
lowing holds. Let x ≥ 0 and n ≥ 2 be an integer. Let
G ∈ K(1)

d and f be a density supported in G, with
f ≤ M almost everywhere, for some positive num-
ber M . Let X1, . . . ,Xn be i.i.d. random points with
density f and K̂n be their convex hull. Then

df (G, K̂n) ≤ C1(M + 1)n−2/(d+1) + x

n

with probability at least 1 − C2e
−x .

It is not known whether a similar upper bound would
hold without the assumption that f ≤ M almost ev-
erywhere. This open problem amounts to the following
open question. Let μ be any probability measure sup-
ported in a convex body G ∈ K(1)

d . Do there exist pos-
itive constants c1 and c2 that only depend on d , such
that the ε-covering of K(1)

d with respect to the metric
d(G1,G2) = μ(G1�G2),G1,G2 ∈ K(1)

d is bounded
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from above by c1e
c2ε

−(d−1)/2
, for all ε ∈ (0,1)? If μ has

a bounded density f with respect to the Lebesgue mea-
sure, the answer is positive, and it is a consequence of
Theorem 8 below.

In the uniform case, concentration inequalities for
K̂n were proven in [91], using geometric techniques.
However, constants were not explicit and depended on
the support G, hence, could not be used in a minimax
approach.

2.5 Application of Empirical Process Theory to the
Estimation of Density Level Sets

In this section, we show how similar ideas as in Sec-
tion 2.4 can be used to estimate density level sets un-
der a convexity restriction, in the Nikodym metric. The
level sets of a density f in R

d are the sets Gλ = {x ∈
R

d : f (x) ≥ λ}, for λ > 0. Estimation of density level
sets and, more specifically, of convex level sets, has
been tackled, for example, in [51, 70, 86]. As pointed
by [51], estimation of density level sets may be useful
in cluster analysis. It arises as a natural tool in test-
ing for multimodality [66] and, more recently, it has
been explored under the lens of topological data anal-
ysis [94, 25]. Notice that the 0-level set of a density f

is its support, so support estimation is a particular case
of density level set estimation. However, in this sec-
tion we only treat the case of positive levels λ, where
empirical process theory has proven to be a successful
tool.

Let λ > 0 such that Gλ �= ∅. The excess mass of
a measurable set C ⊆ R

d is defined as Mλ(C) =∫
C f (x)dx − λ|C|. Simple algebra shows that
Mλ(C) ≤ Mλ(Gλ), for all measurable sets C ⊆ R

d .
The empirical excess mass of a set C, given a sam-
ple X1, . . . ,Xn, is naturally defined as M̂λ(C) =
1
n

∑n
i=1 1Xi∈C − λ|C|. Hence, the main idea to esti-

mate Gλ is to maximize M̂λ(C) over C ∈ C, where C
is a given class of measurable sets. In this section, we
assume that Gλ ∈ K(1)

d and we take C = K(1)
d . For in-

stance, convexity of Gλ is ensured if f is log-concave
or, more generally, quasiconcave. If f is the uniform
density on a convex body G ∈ K(1)

d , then G = Gλ

for all λ ∈ (0, β−1
d ): In that case, support estimation

is equivalent to level set estimation, for small lev-
els λ and the methods presented here could be ap-
plied to estimate G itself. In what follows, λ > 0
is a fixed number and we define the estimator Ĝn ∈
argmax

G∈K(1)
d

M̂λ(G).

In order to achieve consistency, an assumption is
usually made about the behavior of f around the

boundary of its level set Gλ. Namely, f should not be
too flat near the boundary of Gλ. The assumption pro-
posed in [70] takes the following form, where μ is the
continuous probability measure on R

d with density f .

ASSUMPTION 1. There exist positive constants c

and γ such that

μ
({

x ∈ R
d : ∣∣f (x) − λ

∣∣ < η
}) ≤ cηγ ,

for all η > 0 small enough.

Assumption 1, also known as margin condition, is
usually imposed for discriminant analysis [62, 60], sta-
tistical learning [87], level set estimation (a stronger
assumption is proposed in [86]; see Assumption 2 be-
low) or density support estimation [13].

In [70], the notion of covering number with inclu-
sion, slightly different from that of covering number, is
used to prove the main results.

DEFINITION 1 (Covering number with inclusion).
Let C be a class of measurable subsets of B(0,1),
μ a probability distribution in R

d and ε > 0. The ε-
covering number of C with inclusion with respect to μ

is the smallest integer N such that there exists a collec-
tion N of measurable sets, with #N = N , satisfying
the following: For all C ∈ C, there exist C∗,C∗ ∈ N
with C∗ ⊆ C ⊆ C∗ and μ(C∗ \ C∗) ≤ ε. It is denoted
by NI (ε,C,μ) and lnNI (ε,C,μ) is called the metric
entropy with inclusion of the class C with respect to μ.

Note that in this definition, N need not be included
in C. Also note that a similar notion, called metric en-
tropy with bracketing, is widely used in function esti-
mation, especially in empirical process theory (e.g., see
[90], Section 19.2). Let (E,‖ · ‖) be a normed space
of real-valued functions defined on a set X and let
F ⊆ E . For any two functions l, r ∈ E , the bracket [l, r]
is defined as the set of all functions f ∈ F satisfying
l(x) ≤ f (x) ≤ r(x) for all x ∈ X. For all ε > 0, the
ε-bracketing number of F with respect to ‖ · ‖ is the
smallest numbers of brackets [l, r] with ‖r − l‖ ≤ ε

needed to cover F . It is denoted by N[](ε,F,‖ · ‖)
and lnN[](ε,F,‖ · ‖) is called the metric entropy with
bracketing of the class F with respect to ‖ · ‖. It
is easy to see that for all class of measurable sets
C, if we let FC = {1C : C ∈ C}, then lnNI (ε,C,μ)

and lnN[](ε,FC,‖ · ‖1,μ) differ by at most a factor 2,
where ‖φ‖1,μ = ∫

Rd |φ(x)|dμ(x), for all measurable,
bounded functions φ : Rd → R. The following esti-
mate is available for the class K(1)

d .
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THEOREM 8 ([32]). Let μ be a continuous proba-
bility measure on B(0,1) with a density f with respect
to the Lebesgue measure. Assume that f ≤ M almost
everywhere, where M > 0 is a given number. Then, as
ε → 0,

lnNI

(
ε,K(1)

d ,μ
)
�d,M ε− d−1

2 .

Together with this estimate, [70], Theorem 3.7,
yields the following result.

THEOREM 9 ([70]). Assume that d ≥ 2. There ex-
ists a constant c(d) such that the following holds with
probability tending to one, as n goes to infinity. Let μ

be a probability measure on B(0,1) with a bounded
density f with respect to the Lebesgue measure and let
Assumption 1 hold. Let λ > 0 and let Gλ ∈K(1)

d . Then

μ(Ĝn�Gλ) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c(2)n

− 2γ
3γ+4 if d = 2,

c(3)n
− γ

2γ+2 lnn if d = 3,

c(d)n
− 2γ

(γ+1)(d+1) if d ≥ 4.

In fact, this theorem is stated under more general as-
sumptions than convexity of the level sets. If the level
sets belong to a class of sets with metric entropy with
inclusion of order ε−r , for some exponent r > 0 (e.g.,
r = (d − 1)/2 for the class K(1)

d ), the rates given in the
theorem depend on d , γ and r . It is noticeable that the
exponent r = (d − 1)/2 in the metric entropy with in-
clusion of the class K(1)

d matches that of the class of
sets with twice differentiable boundaries in some sense
(see [32]).

Note that the estimator Ĝn defined in [70] is a poly-
tope, and its vertices are sample points. Indeed, for all
C ∈ K(1)

d , M̂λ(C) ≤ M̂λ(C
∗), where C∗ is the convex

hull of the sample points contained in C. In the two-
dimensional case, [51] designs an algorithm to com-
pute Ĝn. To the best of our knowledge, there is no al-
gorithm to compute Ĝn or an approximation of Ĝn in
higher dimensions.

Optimality of the upper bounds in the above theo-
rem is not proven in [70]. However, [86] proves lower
bounds for the minimax risk in both Nikodym and
Hausdorff metrics. In the Nikodym metric, the lower
bounds proven by [86] match the upper bounds given
in the above theorem only for d = 2,3 (up to a loga-
rithmic factor when d = 3), and they are faster when
d ≥ 4. The estimation of convex level sets in the Haus-
dorff metric requires completely different techniques.
It has been tackled in [79, 86]. In [79], the author con-
siders both level sets corresponding to a given level

and level sets with given probability content (see also
[22] for the estimation of level sets with given proba-
bility content); the results are then applied to the esti-
mation of the mode of the density, by considering the
smallest estimated level set. Note that a control of the
estimated level sets in the Nikodym metric could not
yield consistent estimation of the mode, since two sets
can have a very small Nikodym distance if they both
have very small volumes, even if they are far apart
from each other in the space. Optimal rates in esti-
mation of convex density level sets in both Nikodym
and Hausdorff metrics are given in [86] when d = 2
and they are extended to higher dimensions. More gen-
erally, [86] proves optimal rates for density level sets
whose boundaries satisfy some smoothness condition.
In fact, it is noticed that if G ∈ Kd satisfies B(0, r) ⊆
G ⊆ B(0,R) for some 0 < r < R, then the boundary
of G is Lipschitz, in the sense that the radial function
of G, defined as rG(u) = max{λ ≥ 0 : λu ∈ G}, is Lip-
schitz. For completeness, we include the precise state-
ment and its proof here.

LEMMA 1. Let G ∈ Kd satisfies B(0, r) ⊆ G ⊆
B(0,R) for some 0 < r < R. Then the radial function
rG satisfies |rG(u)− rG(u′)| ≤ R/(2r)‖u−u′‖, for all
u,u′ ∈ S

d−1.

PROOF. Let G◦ be the polar body of G, de-
fined as G◦ = {x ∈ R

d : 〈x, y〉 ≤ 1,∀y ∈ K}. By
standard properties of polar bodies (see [80], Chap-
ter 1), one has B(0,R−1) ⊆ G◦ ⊆ B(0, r−1) and
the radial function rG is the inverse of the sup-
port function of G◦: rG(u) = (hG◦(u))−1, for all
u ∈ S

d−1. Subadditivity of support functions yield
|hG◦(u)−hG◦(u′)| ≤ max(hG◦(u−u′), hG◦(u′−u)) =
‖u − u′‖max(hG◦( u−u′

‖u−u′‖), hG◦( u′−u
‖u−u′‖)), for all u,

u′ ∈ S
d−1 with u �= u′. Since G◦ ⊆ B(0, r−1),

hG◦(v) ≤ r−1, for all v ∈ S
d−1. This proves that

hG◦ is r−1-Lipschitz. Now, since we also have that
B(0,R−1) ⊆ G◦, hG◦(v) ≥ R−1, for all v ∈ S

d−1.
Hence, (hG◦)−1 is (R/(2r))-Lipschitz. �

First, [86] computes the optimal rates for star shaped
density level sets with smooth radial functions. Stan-
dard techniques from functional estimation are used,
such as local polynomial approximations. Then the au-
thor tackles the problem of estimating convex level
sets. As shown in Lemma 1, the case of convex level
sets is included in the case of star shaped level sets with
Lipschitz radial functions. Hence, the optimal rates for
convex sets are not larger than the ones corresponding
to Lipschitz radial functions. Perhaps surprisingly, in
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the Hausdorff metric, convexity of the level set does
not make the problem easier than just the Lipschitz
property of its radial function, since [86] shows that
the optimal rate under convexity matches the optimal
rate under just the Lipschitz assumption, up to loga-
rithmic factors. In the Nikodym metric, the situation is
very different: [86] proves that at least in dimension 2,
the optimal rate for convex sets is actually much faster
than in the case of Lipschitz radial functions: This is a
consequence of Theorem 9 above. It can be seen eas-
ily that the same holds when d = 3, and [86] suggests
that this holds in arbitrary dimension, without a giving
proof. Hence, in the Nikodym metric, convexity does
contribute and improve the optimal rate from the Lips-
chitz assumption.

[86] does not exactly use the same margin condition
as [70], but makes the following assumption. Let f be
a density in R

d and let Gλ be its level set with level
λ > 0. Assume that Gλ is star shaped around the origin,
and let rλ be its radial function.

ASSUMPTION 2. Let b1, b2 > 0 with b1 < b2,
ν, δ0 > 0. Then, for all u ∈ S

d−1 and r > 0 such that
|f (ru) − λ| ≤ δ0,

b1 ≤ |f (ru) − λ|
|r − rλ(u)|ν ≤ b2.

Roughly, Assumption 2 is stronger than Assumption
1 if one takes γ = 1/ν. Under Assumption 2, [86] char-
acterizes the optimal rates for the estimation of a con-
vex level set Gλ that satisfies B(0, r) ⊆ Gλ ⊆ B(0,R)

with 0 < r < R when d = 2 and suggest the following
extensions to higher dimensions: n−2/(4ν+d+1) in the
Nikodym metric and n−1/(2ν+d) (up to a logarithmic
factor) in the Hausdorff metric. In the Nikodym metric,
the upper bound follows directly from [70] when d = 2
but [86] does not give a proof for larger d . For arbitrary
d , the rates suggested in [86] are actually faster than
the upper bounds given in [70]. In the Hausdorff met-
ric and for any d , as explained above, the upper bound
follows directly from the Lipschitz case, by Lemma 1.

When dealing with level sets with smooth radial
functions in arbitrary dimension, [86] proves that the
minimax rates are exactly given by n−β/((2ν+1)β+d−1)

in the Nikodym metric and (n/ lnn)−β/((2ν+1)β+d−1)

in the Hausdorff metric, where β is a smoothness pa-
rameter that roughly corresponds to the number of
bounded derivatives of the radial function (e.g., β = 1
corresponds to the Lipschitz case). It is noticeable that
for convex level sets, the minimax rate n−1/(2ν+d) in
the Hausdorff metric matches the one that corresponds

to smoothness β = 1, as discussed above (and as pre-
dicted by Lemma 1), whereas in the Nikodym met-
ric, the minimax rate n−2/(4ν+d+1) for convex level
sets matches the rate that corresponds to smoothness
β = 2. This complements the remark we made ear-
lier: The exponent r = (d − 1)/2 in the metric en-
tropy with inclusion for convex bodies is the same as
for sets with twice differentiable boundary (see [70]
and [32] for more details), and the corresponding min-
imax rates match. However, note that even though the
boundary of any convex body is twice differentiable
almost everywhere, the class of convex bodies G ∈ Kd

with B(0, r) ⊆ G ⊆ B(0,R), where 0 < r < R, con-
tains polytopes with arbitrarily many vertices, which
have very non-smooth boundaries, together with con-
vex bodies with smooth boundaries and positive cur-
vature everywhere, which yet can take arbitrarily large
values.

Finally, note that the rates n−2/(4ν+d+1) and
n−1/(2ν+d) given in [86] match (up to logarithmic fac-
tors) those obtained in the estimation of the support
of a uniform distribution, that is, at the limit ν = 0. In
the Nikodym metric, the minimax rate of estimation
of convex bodies is n−2/(d+1) (see Theorem 2 above),
whereas in the Hausdorff metric, it is (n/ lnn)−1/d , as
shown in Theorem 11 (with α = d); see [17].

2.6 Convex Support Estimation in Nonparametric
Regression

Let the following model hold:

Yi = f (Xi) + ξi, i = 1, . . . , n,

where X1, . . . ,Xn are deterministic or random points
in [0,1]d , ξ1, . . . , ξn are i.i.d. random variables, with
mean zero, independent of X1, . . . ,Xn and f : [0,1] →
[0,∞). In this section, we are interested in the esti-
mation of the support G of f , that is, the closure of
the set {x ∈ [0,1]d : f (x) > 0}. Throughout the sec-
tion, we assume that G is a convex body included in
[0,1]d . In [14], the function f is the indicator func-
tion of G: f (x) = 1 for x ∈ G, f (x) = 0 otherwise.
The design points X1, . . . ,Xn are i.i.d., uniformly dis-
tributed in [0,1]d and the ξi ’s are sub-Gaussian, that

is, E[etξ1] ≤ e
σ2t2

2 , for all t ∈ R, where σ > 0 need
not be known. [14] considers a least squares estima-
tor Ĝn ∈ argminC∈N A(C), where N is a n−2/(d+1)-
net of K(1)

d , with respect to the Nikodym metric and
A(C) = ∑n

i=1(1 − 2Yi)1Xi∈C . The following upper
bound is shown in [14], in which PG stands for the
joint distribution of the sample with f (·) = 1·∈G.
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THEOREM 10 ([14]). There exist three positive
constants C1, C2, C3 that depend on d and σ 2 and
a positive integer n0 that depends on d only, such that
the following holds:

For all G ∈ K(1)
d , all n ≥ n0 and all x ≥ 0,

|Ĝn�G| ≤ C1n
− 2

d+1 + x

n

with PG probability at least 1 − C2e
−C3x .

Of course, the estimator Ĝn is not computable in
practice, since ε-nets of K(1)

d are not available. We be-
lieve that maximizing the functional A over the whole
class K(1)

d would yield a similar upper bound, whose
rate is proven to be minimax optimal. However, it
would remain unclear how to compute the resulting
estimator G̃n. Nonetheless, note that for all C ∈ K(1)

d ,
A(C) = A(C∗), where C∗ is the convex hull of all the
design points Xi ∈ C, implying that G̃n can be cho-
sen to be a polytope whose vertices are design points.
Another open question is whether Ĝn (or G̃n) is adap-
tive to polytopal supports. In [14], it is shown that the
minimax rate on the class Pr of polytopes with at most
vertices is of the order (lnn)/n: Like in density sup-
port estimation, is the error of Ĝn (or G̃n) of that order
when the true support G is a polytope, up to logarith-
mic factors?

Here, we have only discussed the case when f is
an indicator function, but more general models for f

are considered in [58]. All these models, though, im-
pose a sharp separation condition on f , for example,
boundedness away from zero on its support, which es-
sentially reduces to the case of indicator functions. To
the best of our knowledge, harder cases, for exam-
ple, when f satisfies a margin type condition, that is,
|{x ∈ [0,1]d : f (x) ≤ η}| ≤ cηγ for all η > 0 small
enough, where c and γ are positive constants, have not
been tackled in the literature.

3. ESTIMATION OF CONVEX SETS UNDER THE
HAUSDORFF METRIC

3.1 Support Functions and Polyhedral
Representations of Convex Bodies

Support functions play a central role in estimation of
convex bodies under the Hausdorff metric. Indeed, the
Hausdorff distance between two convex bodies G1 and
G2 can be written in terms of their support functions
hG1 and hG2 .

LEMMA 2. For all convex bodies G1,G2 ∈ Kd ,

dH(G1,G2) = sup
u∈Sd−1

∣∣hG1(u) − hG2(u)
∣∣.

Here, we state a few results about support functions
that are useful in estimation of convex sets, and we re-
fer to [80] for more details on their account.

Note that a convex body is completely determined
by its support function and G = {x ∈ R

d : 〈u,x〉 ≤
hG(u),∀u ∈ S

d−1}, for all G ∈Kd .
A function h : Sd−1 → R is the support function of

a convex set if and only if it is subadditive, in the fol-
lowing sense.

DEFINITION 2. Let h : Sd−1 → R. Define the
function h̃ as h̃(v) = ‖v‖h(v/‖v‖) if v �= 0, h̃(0) = 0.
We say that h is subadditive if h̃ is convex.

If h : Sd−1 → R is subadditive, then it is the sup-
port function of the convex set {x ∈ R

d : 〈u,x〉 ≤
h(u),∀u ∈ S

d−1}.
A polyhedral representation of a convex body is

a way of writing it as the intersection of closed
half-spaces or, equivalently, as a collection of affine
constraints. For φ : Sd−1 → R, we let Gφ = {x ∈
R

d : 〈u,x〉 ≤ φ(u),∀u ∈ S
d−1}. It is easy to see that

hGφ(u) ≤ φ(u), for all u ∈ S
d−1. In general, the two

functions are not equal, since φ is not necessarily sub-
additive. Subadditivity is actually a necessary and suf-
ficient condition for φ to be a support function (see
[18], Proposition 1).

LEMMA 3. Let φ : Sd−1 → R. Then, φ = hGφ if
and only if φ is subadditive.

Actually, an interesting consequence of this result is
the following.

LEMMA 4. Let φ : Sd−1 → R. Then hGφ is the
largest subadditive function that is smaller or equal
to φ.

PROOF. Let g : Sd−1 → R be a subadditive func-
tion with g(u) ≤ φ(u), for all u ∈ S

d−1. Then Gg ⊆
Gφ . As a consequence, hGg(u) ≤ hGφ(u), for all u ∈
S

d−1. By Lemma 3, since g is subadditive, hGg = g,
yielding g(u) ≤ hGφ(u) for all u ∈ S

d−1. �
By Lemma 2, the Hausdorff distance between two

convex sets Gφ and Gψ can be written in terms of hGφ

and hGψ . However, these support functions may not be
easy to compute in terms of φ and ψ . The following
lemma provides a partial solution to this issue when
both φ and ψ are continuous.

LEMMA 5 ([18]). Let φ,ψ : Sd−1 → R be two
continuous functions. Assume that Gφ and Gψ have
nonempty interiors. Moreover, let R > r > 0 and as-
sume that B(a, r) ⊆ Gφ ⊆ B(a,R), for some a ∈
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R
d . Let η = maxu∈Sd−1 |ψ(u) − φ(u)|. If η < r , then

dH(Gψ,Gφ) ≤ ηR
r

1+η/r
1−η/r

.

In this lemma, the mapping ψ plays the role of an
estimate of φ. Moreover, a control of the estimation er-
ror of φ in sup-norm yields a control of the estimation
error of Gφ in the Hausdorff metric. However, in cer-
tain cases, it may not be easy to control the accuracy
of the estimation of φ(u) for all u ∈ S

d−1 simultane-
ously, but instead, only on a finite subset of Sd−1. Re-
call that for ε ∈ (0,1), an ε-net of Sd−1 is a subset N
of Sd−1 such that for all u ∈ S

d−1, there is u∗ ∈ N with
‖u − u∗‖ ≤ ε. For a subset N of Sd−1 and a function
ψ : N → R, let GN

ψ = {x ∈ R
d : 〈u,x〉 ≤ ψ(u),∀u ∈

N }. Then the following result is complementary to the
previous lemma, when φ = hGφ (i.e., by Lemma 3,
when φ is subadditive) and when ψ is only defined on
a (fine enough) discretization of Sd−1.

LEMMA 6 ([18]). Let G ∈ Kd and ψ : Sd−1 → R.
Let ε ∈ (0,1) and N be an ε-net of Sd−1. Let R > r >

0 and assume that B(a, r) ⊆ G ⊆ B(a,R), for some
a ∈R

d . Let η = maxu∈N |ψ(u) − hG(u)|. Then, if η <

r , dH(GN
ψ ,G) ≤ ηR

r
1+η/r
1−η/r

+ 2Rε
1−ε

.

Finally, the next lemma provides a polyhedral rep-
resentation of the convex hull of a finite collection of
points in the space. It is straightforward, given that a
linear function defined on a convex body is necessarily
maximized at an extreme point, but it yields a useful
representation of random polytopes.

LEMMA 7. Let x1, . . . , xn ∈ R
d and let Kn be their

convex hull. Then

hKn(u) = max
1≤i≤n

〈u,xi〉 ∀u ∈ S
d−1.

In particular, Kn = {x ∈ R
d : 〈u,x〉 ≤ max1≤i≤n〈u,

xi〉,∀u ∈ S
d−1}.

Of course, this polyhedral representation is not opti-
mal: since Kn is a polytope, the Minkowski–Weyl the-
orem for polyhedra states that only a finite number of
affine constraints should be sufficient to describe the
set Kn. Moreover, these constraints correspond to the
normal vectors of the (d −1)-dimensional faces of Kn:
All other affine constraints are redundant. However, in
practice, finding the (d − 1)-dimensional faces of the
convex hull of a given finite collection of points is a
hard problem (see, e.g., [11]).

3.2 Estimation of Support Functions

Sometimes, in order to estimate a convex body G, it
can be natural to estimate its support function hG. The
previous lemmas indicate that if the estimation error
are measured with respect to the Hausdorff metric, then
it is enough to bound the pointwise or sup-norm error
of the estimation of hG.

In this section, G is an unknown convex body and
we assume that an estimator ĥn of hG has been ex-
tracted from available data. Then G

ĥn
is a natural es-

timator of G. We review examples and show how the
results and properties stated in the previous section ap-
ply, by distinguishing two cases: when ĥn is subaddi-
tive, hence, when it is the support function G

ĥn
, and

when it is not.

3.2.1 When ĥn is subadditive. This is the case,
for instance, in density support estimation: A natu-
ral estimator of the support G of i.i.d. random points
X1, . . . ,Xn is ĥn(u) = max1≤i≤n〈u,Xi〉, u ∈ S

d−1. By
Lemma 7, ĥn is actually the support function of K̂n,
hence, it is subadditive.

LEMMA 8. Let G ∈ K(1)
d . Let ĥn be a subadditive

estimator of hG and let Ĝn = G
ĥn

. Let δ, η ∈ (0,1)

and assume that |ĥn(u) − hG(u)| ≤ η with probability
at least 1 − δ, for all u ∈ S

d−1. Then dH(Ĝn,G) ≤ 2η

with probability at least 1 − 2(18/η)dδ.

PROOF. The proof of this lemma relies on two fun-
damental facts. First, by a standard volumetric argu-
ment, there exists an ε-net of S

d−1 of cardinality at
most (3/ε)d , for all ε ∈ (0,1). Second, the following
result, which is Lemma 5.2 in [39], is a very elegant
tool to work with approximations of the unit sphere.

LEMMA 9 ([39]). Let ε ∈ (0,1) and let N be an
ε-net of S

d−1. Then, for all u ∈ S
d−1, there are se-

quences (uk)k≥0 ⊆ N and (εk)k≥1 ⊆ R such that u =
u0 + ∑∞

k=1 εkuk , with 0 ≤ εk ≤ εk , ∀k ≥ 1.

Let ε = η/6 and let N be an ε-net of S
d−1. De-

note by −N = {−u : u ∈ N }. Let A be the event
when |ĥn(u) − hG(u)| ≤ η, simultaneously for all u ∈
N ∪ (−N ). By a union bound,

P[A] ≥ 1 − ∑
u∈N∪(−N )

P
[∣∣ĥn(u) − hG(u)

∣∣ ≤ η
]

≥ 1 − 2(#N )δ ≥ 1 − 2(18/η)dδ.

Now, assume that A is satisfied and let u ∈ S
d−1. Then,

with the notation of Lemma 9, using subadditivity of
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support functions and the fact that hG ≤ 1 (since G ⊆
B(0,1)),

ĥn(u) ≥ ĥn(u0) − ∑
k≥1

εkĥn(−uk)

≥ hG(u0) − η − ∑
k≥1

εk(hG(−uk) + η
)

≥ hG(u0) − η − 2
∑
k≥1

εk

= hG(u0) − η − 2ε

1 − ε

≥ hG(u) − ∑
k≥1

εkhG(uk) − η − 2ε

1 − ε

≥ hG(u) − η − 3ε

1 − ε
≥ hG(u) − 2η

and similarly, hG(u) ≥ ĥn(u) − 2η. Thus, if A is sat-
isfied, then dH(Ĝn,G) = supu∈Sd−1 |ĥn(u) − hG(u)| ≤
2η, which completes the proof of the lemma. �

This technique is applied in [17] for support estima-
tion under smoothness conditions (see Assumption 3
below), where ideas from [33] are refined in order to
obtain nonasymptotic deviation inequalities. The gen-
eral framework considered in that work is the follow-
ing. Let G ∈ K(1)

d and μ a probability measure on R
d ,

satisfying the following assumption.

ASSUMPTION 3. For all u ∈ R
d and all t ∈ [0, r],

μ(CG(u, t)) ≥ Ltα , where:

• r,L,α are given positive numbers with r < 1;
• CG(u, t) is the cap of G in the direction u and with

height t , that is,

CG(u, t) = {
x ∈ G : 〈u,x〉 ≥ hG(u) − t

}
.

Particular cases of such pairs (G,μ) include uni-
form distributions on general convex bodies (α = d) or
smooth convex bodies (α = (d + 1)/2), uniform dis-
tributions on the boundary of smooth convex bodies
(α = (d −1)/2), linear projections of uniform distribu-
tions that are supported on higher dimensional smooth
convex bodies, distributions with densities supported
on a convex body with polynomial decay near the
boundary, etc.

It is easy to show that under Assumption 3, for all
u ∈ S

d−1 and all t ∈ [0, r], |ĥn(u) − hG(u)| ≤ t with
probability at least 1 − e−Lntα . Hence, the following
theorem is shown, using Lemma 8. Set

τα =
{

1 if α ≥ 1,

2α−1 if 0 < α < 1.

THEOREM 11 ([17]). Let r ∈ (0,1) and L,α > 0.
There exists a positive constant C such that the fol-

lowing holds. Set an = (C lnn
n

)
1
α and bn = n

−1
α . Let

G ∈ K(1)
d and μ be a probability measure on R

d and
let Assumption 3 hold. Then, for all x ≥ 0 such that
an + bnx ≤ r ,

dH(K̂n,G) ≤ 2an + 2bnx

with μ-probability at least 1 − 12d exp(−CαLxα).

As a consequence, under Assumption 3, K̂n satisfies
dH(K̂n,G) = OP((

lnn
n

)−1/α).

REMARK 1. [17] uses a different technique in or-
der to bound the error of K̂n when G is a polytope
that satisfies a standardness condition. Using the tech-
nique shown above would yield the rate ((lnn)/n)1/d

(α = d), which is suboptimal. Indeed, the following in-
equality is shown when G is a polytope with at most p

vertices (p ≥ d +1) and satisfies a ν-standardness con-
dition, for some ν ∈ (0,1):

PG

[
n1/ddH(K, K̂n) ≥ x

] ≤ pe−νβdxd ∀x ≥ 0.

Surprisingly, the adaptive feature of K̂n disappears
under the Hausdorff metric. As discussed in Section 2,
K̂n adapts to polytopal supports under the Nikodym
metric, and its rate of convergence in that metric is the
fastest when G is a polytope. On the contrary, the rate
of K̂n in the Hausdorff metric is the worst when the
support G is a polytope.

Another model where the same ideas could be ap-
plied has been considered in [40, 48]. Given indepen-
dent observations Yi = hG(ui) + εi , where ui ∈ S

d−1

is either deterministic or random and εi is a zero mean
error term, independent of ui , [48] estimates hG by the
least squares estimator on the class of all subadditive
functions h : Sd−1 → R. This produces an estimator
ĥn that is a support function itself. In general, L2-type
metrics are natural to measure the performance of least
squares estimators. [40, 48] prove rates of convergence
of their estimator with respect to the L2-distance, with
minimax optimality proven in [48]. However, the L2-
distance between the support functions of convex bod-
ies does not translate into a natural and geometric
measurement of a distance between the convex bod-
ies themselves. [40] uses elegant norm inequalities for
subadditive functions, which show that the L∞ dis-
tance is dominated by the L2 distance in some sense
(see [47], Proposition 2.3.1, and [40], Proposition 2.2).
In turn, they obtain error bounds for the L∞ metric be-
tween the support functions, and hence, for the Haus-
dorff distance between the convex sets. Nevertheless,
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as remarked in [48], these error bounds are very loose,
and the optimal rate of estimation of G ∈ K(1)

d with re-
spect to the Hausdorff distance in that model is still an
unsolved problem.

3.2.2 When the estimator ĥn is not subadditive.
There are many problems where an estimator of an
unknown convex body G is defined as Ĝn = G

ĥn
for

some estimator ĥn of hG, that is not necessarily subad-
ditive. Lemmas 5 and 6 are two key results to deal with
this case. Lemma 5 is useful when ĥn is continuous al-
most surely and its error can be bounded uniformly on
the unit sphere S

d−1. Indeed, if |ĥn(u) − hG(u)| ≤ η

simultaneously for all u ∈ S
d−1 with high probability,

then, if G satisfies the assumptions of Lemma 5 and
η is small enough, dH(G

ĥn
,G) ≤ η′ with high prob-

ability, where η′ is a small number that depends on η

and other parameters. We apply Lemma 6 in two cases:
when the true support function hG cannot be described
simply, that is, when G = Gφ for some function φ that
is not necessarily subadditive, and when the error of
ĥn can only be controlled pointwise, that is, for each
u ∈ S

d−1 separately. By a union bound, pointwise devi-
ations transfer to uniform deviations on ε-nets of Sd−1.
We give two examples, borrowed from [18] and [19],
where these results are used.

Multivariate quantile estimation: Level sets of the
Tukey depth [18]. As already pointed out in [38, 37,
39], the study of the convex hull of a cloud of points
is a multivariate extension of extreme value theory.
Indeed, by Lemma 7, the support function of K̂n in
any direction u ∈ S

d−1 is given by the maximum of
i.i.d. real random variables. In this regard, the defini-
tion of the random polytope K̂n can be extended to
that of the k-hull of the sample, for 0 ≤ k ≤ n − 1.
For each direction u ∈ S

d−1, instead of considering
the extreme statistic maxi=1,...,n〈u,Xi〉, take the kth
order statistics X(k)(u), where Xi(u) = 〈u,Xi〉 and
X(1)(u) ≥ X(2)(u) ≥ · · · ≥ X(n)(u) is the reordered list
of X1(u), . . . ,Xn(u) in nonincreasing order. The k-
hull of X1, . . . ,Xn is the convex set K̂

(k)
n = {x ∈ R

d :
〈u,x〉 ≤ X(k)(u),∀u ∈ S

d−1} [28]. The convex hull is
the 0-hull. In [18], k-hulls are used as estimators of the
Tukey depth level sets of probability measures in R

d .
Let μ be a probability measure on R

d . The Tukey
depth Dμ(x) of a point x ∈ R

d with respect to μ is de-
fined as the smallest probability mass of a closed half-
space containing x:

Dμ(x) = inf
x∈H∈Hd

μ(H),

where Hd is the collection of closed half-spaces in R
d .

For α ∈ (0,1), the α-level set of Dμ is the set G =
{x ∈ R

d : Dμ(x) ≥ α}. It is a closed convex set and it
has the following polyhedral representation (see [54],
Theorem 2, and [18], Lemma 1):

(3) G = {
x ∈R

d : 〈u,x〉 ≤ qu,∀u ∈ S
d−1}

,

where qu is the upper (1 − α)-quantile of 〈u,X〉 with
X ∼ μ. Let X1, . . . ,Xn be i.i.d. random points with
distribution μ and let μn be the corresponding em-
pirical measure: μn(A) = 1

n

∑n
i=1 1Xi∈A, for all Borel

sets A ⊆ R
d . The empirical α-level set of the Tukey

depth is Ĝn = {x ∈ R
d : Dμn(x) ≥ α}, which also has

a simple polyhedral representation: Ĝn = {x ∈ R
d :

〈u,x〉 ≤ q̂u,∀u ∈ S
d−1}, where q̂u = sup{t ∈ R : #{i =

1, . . . , n : 〈u,Xi〉 ≥ t} ≥ nα} is the empirical upper
(1−α)-quantile of the sample 〈u,X1〉, . . . , 〈u,Xn〉, for
all u ∈ S

d−1. With the above notation, q̂u = X(k)(u),
for k = �nα�, where, for x ∈ R, �x� stands for the
smallest integer larger or equal to x. Hence, the empir-
ical level set Ĝn of the Tukey depth coincides with the
k-hull of X1, . . . ,Xn. At the population level, there is
another very important connection to the theory of ran-
dom polytopes: As shown in [18], if μ is the uniform
distribution on a convex body K ∈ Kd , the population
level set G coincides with the α-floating body of K , as
defined in Section 2.1.

In general, neither u �→ qu nor u �→ q̂u are subad-
ditive, and hence, they are not the support functions of
the sets G and Ĝn, respectively. However, u �→ q̂u is al-
ways continuous, as a consequence of [18], Lemma 15,
and u �→ qu is continuous under some weak assump-
tions on μ (see [18], Lemma 11). Building on standard
results from empirical process theory, [18] shows that
under some assumption on μ, supu∈Sd−1 |q̂u − qu| is
small, with high probability. Hence, using Lemma 6,
this yields the following result.

THEOREM 12 ([18], Corollary 2). Let μ have a
density f with respect to the Lebesgue measure and
let 0 < α < maxx∈Rd Dμ(x). Assume that f satisfies
one of the following conditions:

1. f is continuous and positive everywhere and
there exist C > 0 and ν > d − 1 such that |f (x)| ≤
C(1 + ‖x‖)−ν,∀x ∈ R

d .
2. f is supported on a bounded convex set and is

uniformly continuous on its support.

Then dH(Ĝn,G) = OP(n
−1/2).

More precise deviation inequalities are proven in
[18] but here, we only state the result in this form
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for simplicity of the development. Note that any log-
concave distribution satisfies one of the two conditions
imposed on f in this theorem and, as a particular case,
the uniform distribution on a convex body K ∈ Kd sat-
isfies the second condition. Computational questions
are tackled in Section 4.

Estimation of the convex support of a density from
noisy observations [19]. The last model that we present
here is an extension to density support estimation,
where the observations are contaminated with some
additive noise. Consider a convex body G ∈ Kd and
let X1, . . . ,Xn be i.i.d. random points uniformly dis-
tributed in G. Assume that only Yi = Xi + ξi , i =
1, . . . , n, are observed, where the ξi ’s are i.i.d. cen-
tered Gaussian vectors with covariance matrix σ 2Id (Id

is the identity matrix and σ 2 > 0 is known), indepen-
dent of the Xi’s. For u ∈ S

d−1, a consistent estima-
tor of hG(u) is given by ĥn(u) = max1≤i≤n〈u,Yi〉 −
bn, where bn ≈ √

2σ 2 lnn is a deterministic debias-
ing term, and the set estimator of G is defined as
Ĝn = G

ĥn
. By extending some results on extreme

value statistics [45, 19] proves that |ĥn(u) − hG(u)| is
small with high probability, for every single u ∈ S

d−1.
However, due to the constant term bn in its definition,
ĥn is not subadditive in general. In [19], Lemma 6 is
used in order to show that

dH(Ĝn,G) = OP

(
ln lnn√

lnn

)
.

A stronger deviation inequality is proven in [19],
which uses the same ideas described above. Moreover,
building on techniques developped in [43], it is also
shown that the minimax rate of estimation of G in this
model is very slow and that Ĝn is nearly rate optimal
in a minimax sense.

4. APPROXIMATING CONVEX SET ESTIMATORS:
A STATISTICAL/COMPUTATIONAL TRADE-OFF

The computational complexity of a set estimator can
be very large, and some estimators may not even be
computable in practice. For instance, computing the
convex hull of n points in R

d requires approximately
nd/2 operations (see, e.g., [26], and [7] for a descrip-
tion of the Quickhull algorithm, implemented by the
function convhulln in the R package geometry),
which is not doable if the dimension is too large. Note,
though, that in many applications that require the es-
timation of a set, the dimension is typically small: In
spatial data analysis such as home range estimation,
convex hulls or local convex hulls [44], or α-hulls [21]

are computed with d = 2; In econometrics, the efficient
boundary problem deals with the feasible productivity
domain of a firm, and d is roughly the number of in-
puts at the firm [83]; In image reconstruction, for ex-
ample, from satellite data [78], d = 2, typically. As
for the empirical level sets of the Tukey depth, aka
k-hulls [28], there is no available algorithm to com-
pute them in high dimensions. As we have seen above
(Lemma 7 and (3)), k-hulls (including convex hulls,
for k = 0) can be easily written using infinitely many
affine constraints. When k = 0, those constraints de-
fine a subadditive function, which turns out to be the
support function of the random polytope, by Lemma 3.
n Section 3.2.2, when k ≥ 1, we saw that in general,
the function defined by these constraints is not sub-
additive, hence, the support function of the k-hull is
not simply determined by the univariate order statistics
X(k)(u), u ∈ S

d−1.
The idea exploited in [17] for convex hulls and in

[18] for k-hulls (k ≥ 1) is to select a finite number
of these constraints, leading to a larger approximating
polytope, using a discretization of the unit sphere. One
must bear in mind the purpose of approximating these
sets, which is the estimation of an underlying set: The
support of a density, or a population level set of the
Tukey depth. Hence, an acceptable approximation er-
ror may be as large as the statistical error of the initial
estimator.

In order to discretize S
d−1, the idea is to sample

enough independent random unit vectors. The follow-
ing lemma, proven in [18], shows that with high prob-
ability this procedure provides an ε-net of Sd−1, where
ε depends on the number of sampled unit vectors.

LEMMA 10 ([18]). Let M be a positive integer
and U1, . . . ,UM be i.i.d. uniform vectors in S

d−1. Let
ε ∈ (0,1) and let C be the event satisfied when the col-
lection {U1, . . . ,UM} is an ε-net of Sd−1. Then

P[C] ≥ 1 − 6d exp
(
−Mεd−1

2d8
d−1

2

+ d ln
(

1

ε

))
.

Together with Lemma 6, this result is used in
[17] in order to compute an approximate convex

hull in O(d28
d
2 n2−1/d(lnn)1/d) steps if the data are

uniformly distributed in a general convex body and

O(d28
d
2 n

3d−1
d+1 (lnn)−

d−3
d+1 ) steps if the data are uni-

formly distributed in a smooth convex body. In [18],

an approximate k-hull is computed in O(8
d
2 d3nd lnn)

operations, under some extra assumptions on the pop-
ulation level set, when k = αn for some fixed number
α ∈ (0,1). Even though [18] provides an algorithm to
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approximate the k-hull, it still suffers the curse of di-
mensionality, because of the factor (

√
8n)d in its com-

plexity.
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