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Nonparametric Shape-Restricted
Regression
Adityanand Guntuboyina and Bodhisattva Sen

Abstract. We consider the problem of nonparametric regression under
shape constraints. The main examples include isotonic regression (with re-
spect to any partial order), unimodal/convex regression, additive shape-
restricted regression and constrained single index model. We review some
of the theoretical properties of the least squares estimator (LSE) in these
problems, emphasizing on the adaptive nature of the LSE. In particular, we
study the behavior of the risk of the LSE, and its pointwise limiting distribu-
tion theory, with special emphasis to isotonic regression. We survey various
methods for constructing pointwise confidence intervals around these shape-
restricted functions. We also briefly discuss the computation of the LSE and
indicate some open research problems and future directions.

Key words and phrases: Adaptive risk bounds, bootstrap, Chernoff’s distri-
bution, convex regression, isotonic regression, likelihood ratio test, monotone
function, order preserving function estimation, projection on a closed convex
set, tangent cone.

1. INTRODUCTION

In nonparametric shape-restricted regression, the ob-
servations {(xi, yi) : i = 1, . . . , n} satisfy

(1) yi = f (xi)+ εi for i = 1, . . . , n,

where x1, . . . , xn are design points in some space (e.g.,
Rd , d ≥ 1), ε1, . . . , εn are unobserved mean-zero errors
(with finite variances), and the real-valued regression
function f is unknown but obeys certain known quali-
tative restrictions like monotonicity, convexity, etc. Let
F denote the class of all such regression functions. Let-
ting θ∗ := (f (x1), . . . , f (xn)), Y := (y1, . . . , yn) and
ε := (ε1, . . . , εn), model (1) may be rewritten as

(2) Y = θ∗ + ε,

and the problem is to estimate θ∗ and/or f from Y ,
subject to the constraints imposed by the properties
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of F . The constraints on the function class F translate
to constraints on θ∗ of the form θ∗ ∈ C, where

(3) C := {(f (x1), . . . , f (xn)
) ∈Rn : f ∈F

}
is a subset of Rn (in fact, in most cases, C will be a
closed convex cone). In the following, we give some
examples of shape-restricted regression.

EXAMPLE 1.1 (Isotonic regression). Probably the
most studied shape-restricted regression problem is
that of estimating a monotone (nondecreasing) regres-
sion function f when x1 < · · ·< xn are the univariate
design points. In this case, F is the class of all non-
decreasing functions on the interval [x1, xn], and the
constraint set C reduces to

(4) I := {(θ1, . . . , θn) ∈Rn : θ1 ≤ · · · ≤ θn

}
,

which is a closed convex cone in Rn (I is defined
through n−1 linear constraints). The above problem is
typically known as isotonic regression and has a long
history in statistics; see, for example, [23, 5, 132].

EXAMPLE 1.2 (Order preserving regression on a
partially ordered set). Isotonic regression can be eas-
ily extended to the setup where the covariates take val-
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ues in a space X with a partial order �;1 see, for ex-
ample, [115], Chapter 1. A function f :X →R is said
to be isotonic (or order preserving) with respect to the
partial order � if for every pair u, v ∈X ,

u � v⇒ f (u)≤ f (v).

For example, suppose that the predictors take values
in R2 and the partial order � is defined as (u1, u2) �
(v1, v2) if and only if u1 ≤ v1 and u2 ≤ v2. This partial
order leads to a natural extension of isotonic regression
to two dimensions; see, for example, [71, 114, 29]. One
can also consider other partial orders; see, for exam-
ple, [128, 129] and the references therein for isotonic
regression with different partial orders. We will intro-
duce and study yet another partial order in Section 6.

Given data from model (1), the goal is to estimate
the unknown regression function f :X →R under the
assumption that f is order preserving (with respect to
the partial order �). The restrictions imposed by the
partial order � constrain θ∗ to lie in a closed convex
cone C which may be expressed as{

(θ1, . . . , θn) ∈Rn : θi ≤ θj

for every i, j such that xi � xj

}
.

EXAMPLE 1.3 (Convex regression). Suppose that
the underlying regression function f :Rd →R (d ≥ 1)
is known to be convex, that is, for every u, v ∈Rd ,

f
(
αu+ (1− α)v

)
≤ αf (u)+ (1− α)f (v) for every α ∈ (0,1).

(5)

Convexity appears naturally in many applications; see
e.g., [73, 84, 38] and the references therein. The con-
vexity of f constrains θ∗ to lie in a (polyhedral) convex
set C ⊂Rn which, when d = 1 and the xi ’s are ordered,
reduces to

(6)

K :=
{
(θ1, . . . , θn) ∈Rn :

θ2 − θ1

x2 − x1
≤ · · · ≤ θn − θn−1

xn − xn−1

}
,

whereas for d ≥ 2 the characterization of C is more
complex; see, for example, [118].

Observe that when d = 1, convexity is character-
ized by nondecreasing derivatives (subgradients). This
observation can be used to generalize convexity to k-
monotonicity (k ≥ 1): a real-valued function f is said

1A partial order is a binary relation � that is reflexive (x � x for
all x ∈X ), transitive (u,v,w ∈X , u � v and v � w imply u � w)
and antisymmetric (u,v ∈X , u � v and v � u imply u= v).

to be k-monotone if its (k − 1)th derivative is mono-
tone; see, for example, [92, 28]. For equi-spaced de-
sign points in R, this restriction constrains θ∗ to lie in
the set {

θ ∈Rn : ∇kθ ≥ 0
}

where ∇ :Rn→Rn is given by ∇(θ) := (θ2− θ1, θ3−
θ2, . . . , θn − θn−1,0) and ∇k represents the k-times
composition of ∇ . Note that the case k = 1 and k = 2
correspond to isotonic and convex regression, respec-
tively.

EXAMPLE 1.4 (Unimodal regression). In many
applications f , the underlying regression function, is
known to be unimodal; see, for example, [49, 27] and
the references therein. Let Im, 1 ≤ m ≤ n, denote the
convex set of all unimodal vectors (first decreasing and
then increasing) with mode at position m, that is,

Im := {(θ1, . . . , θn) ∈Rn :
θ1 ≥ · · · ≥ θm ≤ θm+1 ≤ · · · ≤ θn

}
.

Then the unimodality of f constrains θ∗ to belong to
U := ⋃n

m=1 Im. Observe that now U is not a convex
set, but a union of n convex cones.

EXAMPLE 1.5 (Shape-restricted additive model).
In an additive regression model, one assumes that f :
Rd →R (d ≥ 1) depends on each of the predictor vari-
ables in an additive fashion, that is, for (u1, . . . , ud) ∈
Rd ,

f (u1, . . . , ud)=
d∑

i=1

fi(ui),

where fi’s are one-dimensional functions and fi cap-
tures the influence of the ith variable. Observe that
the additive model generalizes (multiple) linear regres-
sion. If we assume that each of the fi ’s are shape-
constrained, then one obtains a shape-restricted addi-
tive model; see, for example, [6, 95, 103, 35] for a
study of some possible applications, identifiability and
estimation in such a model.

EXAMPLE 1.6 (Shape-restricted single index
model). In a single index regression model, one as-
sumes that the regression function f : Rd → R takes
the form

f (x)=m
(
x
β∗

)
for all x ∈Rd,

where m : R→ R and β∗ ∈ Rd are unknown. Single
index models are popular in many application areas, in-
cluding econometrics and biostatistics (see, e.g., [111,
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88]), as they circumvent the curse of dimensionality
encountered in estimating the fully nonparametric re-
gression function by assuming that the link function
depends on x only through a one-dimensional projec-
tion, that is, x
β∗. Moreover, the coefficient vector
β∗ provides interpretability. Observe that single index
models extend generalized linear models (where the
link function m is assumed known). Moreover, as most
known link functions are nondecreasing, the monotone
single index model (where m is assumed unknown but
nondecreasing) arises naturally in applications; see, for
example, [106, 57, 9].

Observe that all the aforementioned problems fall
under the general area of nonparametric regression.
However, it turns out that in each of the above prob-
lems one can use classical techniques like least squares
and/or maximum likelihood (without additional ex-
plicit regularization/penalization) to readily obtain tun-
ing parameter-free estimators that have attractive the-
oretical and computational properties. This makes
shape-restricted regression different from usual non-
parametric regression, where likelihood based meth-
ods are generally infeasible. In this paper, we try to
showcase some of these attractive features of shape-
restricted regression and give an overview of the major
theoretical advances in this area.

Let us now introduce the estimator of θ∗ (and f ) that
we will study in this paper. The least squares estimator
(LSE) θ̂ of θ∗ in shape-restricted regression is defined
as the projection of Y onto the set C (see (3)), that is,

(7) θ̂ := arg min
θ∈C ‖Y − θ‖2,

where ‖ · ‖ denotes the usual Euclidean norm in Rn. If
C is a closed convex set, then θ̂ ∈ C is unique and is
characterized by the following condition:

(8) 〈Y − θ̂ , θ − θ̂〉 ≤ 0 for all θ ∈ C,

where 〈·, ·〉 denotes the usual inner product in Rn; see
[20], Proposition 2.2.1. It is easy to see now that the
LSE θ̂ is tuning parameter-free, unlike most nonpara-
metric estimators. However, it is not generally easy to
find a closed-form expression for θ̂ . As for estimating
f , any f̂n ∈F that agrees with θ̂ at the data points xi’s
will be considered as a LSE of f .

In this paper, we mainly review the main theoretical
properties of the LSE θ̂ with special emphasis on its
adaptive nature. The risk behavior of θ̂ (in estimating
θ∗) is studied in Sections 2 and 3. Section 2 mainly
deals with the isotonic LSE in detail whereas Section 3
summarizes the main results for other shape-restricted

problems. In Section 4, we study the pointwise asymp-
totic behavior of the LSE f̂n, in the case of isotonic and
convex regression, focusing on methods for construct-
ing (pointwise) confidence intervals around f . In the
process of this review, we highlight the main ideas and
techniques used in the proofs of the theoretical results;
in fact, we give (nearly) complete proofs in some cases.

The computation of the LSE θ̂ , in the various prob-
lems outlined above, is discussed in Section 5. In
Section 6, we mention a few open research prob-
lems and possible future directions. Although the pa-
per mostly summarizes known results, we also present
some new results—Theorems 2.1, 2.2, 2.3 and 6.1, and
Lemma 3.1 are new. There is a Supplementary Mate-
rial [68] which contains some of the detailed proofs of
results in this paper.

There are indeed many other important applications
and examples of shape-restricted regression beyond
those highlighted so far. We briefly mention some of
these below. Shape constrained functions also arise
naturally in interval censoring problems (e.g., in the
current status model; see [64, 76]), in survival anal-
ysis (e.g., in estimation of monotone/unimodal haz-
ard rates [75]) and in regression models where the
response, conditional on the covariate, comes from
a regular parametric family (e.g., monotone response
models [13]). It also arises in the study of many inverse
problems, for example, deconvolution problems (see,
e.g., [64, 77]) and the classical Wicksell’s corpuscle
problem (see, e.g., [58, 121]). There are many appli-
cations that involve testing with shape constraints; see,
for example, [44, 120, 137] and the references therein.

In this paper, we will mostly focus on estimation
of the underlying shape-restricted function using the
method of least squares. Although this produces tuning
parameter-free estimators, the obtained LSEs are not
“smooth.” There is also a line of research that combines
shape constraints with smoothness assumptions; see,
for example, [105, 91, 63] (and the references therein)
where kernel-based methods have been combined with
shape-restrictions, and see [94, 102, 106, 82] where
splines are used in conjunction with the shape con-
straints.

1.1 Some Applications of Shape-Restricted
Regression

Shape-constrained regression has a long history in
statistics: Hildreth [73] considered least squares es-
timation (i.e., maximum likelihood estimation under
Gaussian errors) of production functions under the
natural assumption of nonincreasing returns (which
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implies that the production function is concave and
nondecreasing). Around the same time, Brunk [23]
considered maximum likelihood estimation of a regres-
sion function under monotonicity constraints. Since
then isotonic regression (under any partial order) has
seen many applications in diverse settings: in biology
[109], in dose-response models [74], in psychology
[81], in genetics [89], etc.

Similarly, convexity or concavity constraints arise
natural in many disciplines. Economic theory dictates
that utility functions are increasing and concave [98]
whereas production functions are often assumed to be
concave [136]. In finance, theory restricts call option
prices to be convex and decreasing functions of the
strike price [2]; in stochastic control, value functions
are often assumed to be convex (see [79], [12], Chap-
ter 2, and [124]); see [90] for some applications of con-
vex regression in optimization (in particular, in linear
programming).

Unimodal regression also arises in many settings; see
[49] and the references therein. Shape-restricted addi-
tive and single-index regression models offer flexible,
yet interpretable, statistical procedures for handling
multidimensional covariates, and have been exten-
sively used in econometrics, epidemiology and other
fields (see [35, 113, 82] and the references therein).

2. RISK BOUNDS IN ISOTONIC REGRESSION

In this section, we attempt to answer the following
question: “How good is θ̂ as an estimator of θ∗?” To
quantify the accuracy of θ̂ , we first need to fix a loss
function. Arguably, the most natural loss function here
is the squared error loss: ‖θ̂−θ∗‖2/n. As the loss func-
tion is random, we follow the usual approach and study
its expectation:

(9)

R
(
θ̂ , θ∗

) := 1

n
Eθ∗

[∥∥θ̂ − θ∗
∥∥2]

= 1

n
Eθ∗

n∑
i=1

(
θ̂i − θ∗i

)2

which we shall refer to as the risk of the LSE θ̂ . We
focus on the risk in this paper. It may be noted that
upper bounds derived for the risk usually hold on the
loss ‖θ̂ − θ∗‖2/n as well, with high probability. When
ε ∼ Nn(0, σ 2In), this is essentially because ‖θ̂ − θ∗‖
concentrates around its mean; see [134] and [19] for
more details on high probability results.

One can also try to study the risk under more general
�p-loss functions. For p ≥ 1, let

(10)

R(p)(θ̂ , θ∗
) := 1

n
Eθ∗

[∥∥θ̂ − θ∗
∥∥p
p

]

= 1

n
Eθ∗

n∑
i=1

∣∣θ̂i − θ∗i
∣∣p,

where ‖u‖p := (
∑n

j=1 |uj |p)1/p , for u = (u1, . . . ,

un) ∈ Rn. We shall mostly focus on the risk for p = 2
in this paper but we shall also discuss some results for
p �= 2.

In this section, we focus on the problem of isotonic
regression (Example 1.1) and describe bounds on the
risk of the isotonic LSE. As mentioned in the Introduc-
tion, isotonic regression is the most studied problem in
shape-restricted regression where the risk behavior of
the LSE is well understood. We shall present the main
results here. The results described in this section will
serve as benchmarks to which risk bounds for other
shape-restricted regression problems (see Section 3)
can be compared.

Throughout this section, θ̂ will denote the isotonic
LSE (which is the minimizer of ‖Y − θ‖2 subject to
the constraint that θ lies in the closed convex cone I
described in (4)) and θ∗ will usually denote an arbi-
trary vector in I (in some situations we deal with mis-
specified risks where θ∗ is an arbitrary vector in Rn not
necessarily in I).

The risk, R(θ̂, θ∗), essentially has two different
kinds of behavior. As long as θ∗ ∈ I and V (θ∗) :=
θ∗n − θ∗1 (referred to as the variation of θ∗) is bounded
from above independently of n, the risk R(θ̂, θ∗) is
bounded from above by a constant multiple of n−2/3.
We shall refer to this n−2/3 bound as the worst-case
risk bound mainly because it is, in some sense, the
maximum possible rate at which R(θ̂, θ∗) converges
to zero. On the other hand, if θ∗ ∈ I is piecewise con-
stant with not too many constant pieces, then the risk
R(θ̂, θ∗) is bounded from above by the parametric rate
1/n up to a logarithmic multiplicative factor. This rate
is obviously much faster compared to the worst-case
rate of n−2/3 which means that the isotonic LSE is es-
timating piecewise constant nondecreasing sequences
at a much faster rate. In other words, the isotonic LSE
is adapting to piecewise constant nondecreasing se-
quences with not too many constant pieces. We shall
therefore refer to this logn/n risk bound as the adap-
tive risk bound.

The worst-case risk bounds for the isotonic LSE
will be explored in Section 2.1 while the adaptive risk
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bounds are treated in Section 2.2. Proofs will be pro-
vided in the Supplementary Material [68]. Before pro-
ceeding to risk bounds, let us first describe some basic
properties of the isotonic LSE.

An important fact about the isotonic LSE is that θ̂ =
(θ̂1, . . . , θ̂n) can be explicitly represented as (see [115],
Chapter 1)

(11) θ̂j =min
v≥j

max
u≤j

∑v
l=u yl

v− u+ 1
for j = 1, . . . , n.

This is often referred to as the min–max formula for
isotonic regression. The isotonic LSE is, in some sense,
unique among shape-restricted regression LSEs be-
cause it has the above explicit characterization. It is
this characterization that allows for a precise study of
the properties of θ̂ .

The above characterization of the isotonic LSE
shows that θ̂ is piecewise constant, and in each “block”
(i.e., region of constancy) it is the average of the re-
sponse values (within the block); see [115], Chap-
ter 1. However, the blocks, their lengths and their po-
sitions, are chosen adaptively by the algorithm, the
least squares procedure. If θ∗i = f (xi) for some de-
sign points 0 ≤ x1 < · · · < xn ≤ 1, then we can define
the isotonic LSE of f as the piecewise constant func-
tion f̂n : [0,1]→R which has jumps only at the design
points and such that f̂n(xi)= θ̂i for each i = 1, . . . , n.
Figure 1 shows three different scatter plots, for three
different regression functions f , with the fitted iso-
tonic LSEs f̂n. Observe that for the leftmost plot the
block-sizes (of the isotonic LSE) vary considerably
with the change in slope of the underlying function f

—the isotonic LSE, f̂n, is nearly constant in the inter-
val [0.3,0.7] where f is relatively flat whereas f̂n has

many small blocks towards the boundary of the covari-
ate domain where f has large slope. This highlights
the adaptive nature of the isotonic LSE f̂n and also
provides some intuition as to why the isotonic LSE
adapts to piecewise constant nondecreasing functions
with not too many constant pieces. Moreover, in some
sense, f̂n can be thought of as a kernel estimator (with
the box kernel) or a “regressogram” ([131]), but with a
varying bandwidth/window.

2.1 Worst-Case Risk Bound

The worst-case risk bound for the isotonic LSE is
given by the following inequality. Under the assump-
tion that the errors ε1, . . . , εn are i.i.d. with mean zero
and variance σ 2, the risk of the isotonic LSE satisfies
the bound (see [143]):

(12) R
(
θ̂ , θ∗

)≤C

(
σ 2V (θ∗)

n

)2/3
+C

σ 2 log(en)

n
,

where V (θ∗)= θ∗n −θ∗1 denotes the variation of θ∗ ∈ I
and C > 0 is a universal constant.

Let us try to understand each of the terms on
the right-hand side of (12). As long as the varia-
tion V (θ∗) is not small, the risk R(θ̂, θ∗) is given by
(σ 2V (θ∗)/n)2/3, up to a constant multiplicative factor.
This shows that the rate of estimating any monotone
function (under the �2-loss) is n−2/3. Moreover, (12)
gives the explicit dependence of the risk on the varia-
tion of θ∗ (and on σ 2).

The second term on the right-hand side of (12) is
also interesting—when V (θ∗)= 0, that is, θ∗ is a con-
stant sequence, (12) shows that the risk of the isotonic
LSE scales like logn/n. This is a consequence of the
fact that θ̂ chooses its blocks (of constancy) adaptively

FIG. 1. Plots of Y (circles), θ̂ (red) and θ∗ (blue) for three different choices of f : (i) cubic polynomial (left plot), (ii) constant (middle plot)
and (iii) piecewise constant. Here, n= 60, and ε ∼Nn(0, σ 2In) with σ = 0.1. Here, In denotes the identity matrix of order n.
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depending on the data. When θ∗ is the constant se-
quence, θ̂ has fewer blocks (in fact, it has of the order
of logn blocks; see [18], Theorem 3, and [100], Theo-
rem 1) and some of the blocks will be very large (see,
e.g., the middle plot of Figure 1), so that averaging the
responses within the large blocks would yield a value
very close to the grand mean Ȳ = (

∑n
i=1 yi)/n (which

has risk σ 2/n in this problem). Thus (12) already il-
lustrates the adaptive nature of the LSE—the risk of
the LSE θ̂ changes depending on the “structure” of the
true θ∗. In the next subsection (see (13)), we further
highlight this adaptive nature of the LSE.

REMARK 2.1. To the best of our knowledge, in-
equality (12) first appeared in [100], Theorem 1,
who proved it under the assumption that the errors
ε1, . . . , εn are i.i.d. N(0, σ 2). Zhang [143] proved (12)
for much more general errors including the case when
ε1, . . . , εn are i.i.d. with mean zero and variance σ 2.
The proof we give (in Section A.2 of the Supplemen-
tary Material [68]) follows the arguments of [143]. An-
other proof of an inequality similar to (12) for the case
of normal errors has been given recently by [26] who
proved it as an illustration of a general technique for
bounding the risk of LSEs.

REMARK 2.2. The LSE over bounded monotone
functions also satisfies the bound (12) and has been ob-
served by many authors including [107, 133, 39]. Prov-
ing this result is easier, however, because of the pres-
ence of the uniform bound on the function class (such a
bound is not present for the isotonic LSE). It must also
be kept in mind that the bounded isotonic LSE comes
with a tuning parameter that needs to chosen by the
user.

REMARK 2.3. Inequality (12) also implies that the
isotonic LSE achieves the risk (σ 2V/n)2/3 for θ∗ ∈
IV := {θ ∈ I : θn − θ1 ≤ V } (as long as V is not too
small) without any knowledge of V . It turns out that
the minimax risk over IV is of the order (σ 2V/n)2/3

as long as V is in the range σ/
√

n � V � σn (see, e.g.,
[28], Theorem 5.3). Therefore, in this wide range of
V , the isotonic LSE is minimax (up to constant multi-
plicative factors) over the class IV . This is especially
interesting because the isotonic LSE does not require
any knowledge of V . This illustrates another kind of
adaptation of the isotonic LSE; further details on this
can be found in [31].

2.2 Adaptive Risk Bounds

As the isotonic LSE fit is piecewise constant, it may
be reasonable to expect that when θ∗ is itself a piece-
wise constant (with not too many pieces), the risk of θ̂

would be small. The rightmost plot of Figure 1 corrob-
orates this intuition. This leads us to our second type of
risk bound for the LSE. For θ ∈ I , let k(θ)≥ 1 denote
the number of constant blocks of θ , that is, k(θ) is the
integer such that k(θ) − 1 is the number of inequali-
ties θi ≤ θi+1 that are strict, for i = 1, . . . , n − 1 (the
number of jumps of θ ).

THEOREM 2.1. Under the assumption that ε1, . . . ,

εn are i.i.d. with mean zero and variance σ 2, we have

(13)

R
(
θ̂ , θ∗

)≤ inf
θ∈I

[
1

n

∥∥θ∗ − θ
∥∥2

+ 4σ 2k(θ)

n
log

en

k(θ)

]

for every θ∗ ∈Rn.

Note that θ∗ in Theorem 2.1 can be any arbitrary vec-
tor in Rn (it is not required that θ∗ ∈ I). An important
special case of inequality (13) arises when θ∗ ∈ I and
θ is taken to be θ∗ in order to obtain

(14) R
(
θ̂ , θ∗

)≤ 4σ 2k(θ∗)
n

log
en

k(θ∗)
.

It makes sense to compare (14) with the worst-case
risk bound (12). Suppose, for example, θ∗j = 1{j >

n/2} (here 1 denotes the indicator function) so that
k(θ∗) = 2 and V (θ∗) = 1. Then the risk bound in
(12) is essentially (σ 2/n)2/3 while the right-hand side
of (14) is (8σ 2/n) log(en/2) which is much smaller
than (σ 2/n)2/3. More generally, if θ∗ is piecewise con-
stant with k blocks then k(θ∗) = k so that inequality
(14) implies that the risk is given by the parametric
rate kσ 2/n with a logarithmic multiplicative factor of
4 log(en/k)—this is a much stronger bound compared
to (12) when k is small.

Inequality (14) is an example of an oracle inequal-
ity. This is because of the following. Let θ̂OR denote
the oracle piecewise constant estimator of θ∗ which es-
timates θ∗ by the mean of Y in each constant block of
θ∗ (note that θ̂OR uses knowledge of the locations of
the constant blocks of θ∗, and hence is an oracle es-
timator). It is easy to see then that the risk of θ̂OR is
given by

R
(
θ̂OR, θ∗

)= σ 2k(θ∗)
n

.

As a result, inequality (14) can be rewritten as

(15) R
(
θ̂ , θ∗

)≤ (4 log
en

k(θ∗)

)
R
(
θ̂OR, θ∗

)
.
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Because this involves a comparison of the risk of the
LSE θ̂ with that of the oracle estimator θ̂OR, inequal-
ity (14) is referred to as an oracle inequality. Inequal-
ity (15) shows that the isotonic LSE, which uses no
knowledge of k(θ∗) and the positions of the blocks,
has essentially the same risk performance as the oracle
piecewise constant estimator (up to the multiplicative
logarithmic factor 4 log(en/k(θ∗))). This is indeed re-
markable.

For certain piecewise constant vectors θ∗ with k

blocks, it might be possible to approximate θ∗ closely
with another piecewise constant vector θ̃ having k′
blocks where k′ < k. In such cases, it makes sense
to compare the performance of the isotonic estimator
θ̂ to the oracle piecewise constant estimator with k′
blocks. Such a comparison is achieved by inequality
(13) which is a stronger inequality than (14). In fact,
(13) can actually be viewed as a more general ora-
cle inequality where the behavior of the isotonic LSE
is compared with oracle piecewise constant estimators
even when θ∗ /∈ I . We would like to mention here that,
in this context, (13) is referred to as a sharp oracle in-
equality because the leading constant in front of the
‖θ∗ − θ‖2/n term on the right-hand side of (13) is
equal to one. We refer to [19] for a detailed explana-
tion of oracle and sharp oracle inequalities.

Based on the discussion above, it should be clear to
the reader that the adaptive risk bound (13) comple-
ments the worst-case bound (12) as it gives much finer
information about how well any particular θ∗ (depend-
ing on its “complexity”) can be estimated by the LSE
θ̂ .

REMARK 2.4 (Model misspecification). As al-
ready mentioned, the sharp oracle inequality (13) needs
no assumption on θ∗ (which can be any arbitrary vec-
tor in Rn), that is, the inequality holds true even when
θ∗ /∈ I . See [28], Section 6, for another way of han-
dling model misspecification, where θ̂ is compared
with the “closest” element to θ∗ in I (and not θ∗).

REMARK 2.5. To the best of our knowledge, an
inequality of the form (13) first explicitly appeared in
[28], Theorem 3.1, where it was proved that

(16)

R
(
θ̂ , θ∗

)≤ 4 inf
θ∈I

[
1

n

∥∥θ∗ − θ
∥∥2

+ 4σ 2k(θ)

n
log

en

k(θ)

]

under the additional assumption that θ∗ ∈ I . The proof
of this inequality given in [28] is based on ideas devel-
oped in [143]. Note the additional constant factor of 4
in the above inequality compared to (13).

Under the stronger assumption ε ∼ Nn(0, σ 2In),
Bellec ([19], Theorem 3.2) improved (16) and proved
that

(17)

R
(
θ̂ , θ∗

)≤ inf
θ∈I

[
1

n

∥∥θ∗ − θ
∥∥2

+ σ 2k(θ)

n
log

en

k(θ)

]
,

for every θ∗ ∈ Rn. A sketch of the proof of this in-
equality is given in Section A.3 of the Supplementary
Material [68]. A remarkable feature of this bound is
that the multiplicative constants involved are all tight,
which implies, in particular, that

R
(
θ̂ , θ∗

)≤ inf
θ∈I

[
1

n

∥∥θ∗ − θ
∥∥2 +C

σ 2k(θ)

n
log

en

k(θ)

]

cannot hold for every θ∗ if C < 1. This follows
from the fact that when θ∗ = (0,0, . . . ,0) ∈ I and
ε ∼ Nn(0, σ 2In), the risk R(θ̂, θ∗) exactly equals
σ 2∑n

j=1 1/j � σ 2 logn; see [19] for an explanation.
It must be noted that this implies, in particular, that the
logarithmic term in these adaptive risk bounds cannot
be removed.

Note that inequality (13) has an additional factor of
4 compared to (17) on the second term in the right-
hand side. This is because the errors ε1, . . . , εn can be
non-Gaussian in Theorem 2.1.

REMARK 2.6. One may attempt to prove (12) from
the adaptive risk bound (13) by approximating arbi-
trary θ∗ ∈ I via θ ∈ I with a bound on k(θ). However,
it is likely that such an approach will lead to additional
logarithmic terms on the right-hand side of (12) (see,
e.g., [28], Theorem 4.1).

REMARK 2.7. For some choices of θ∗ ∈M, it is
possible to obtain bounds on the risk R(θ̂, θ∗) of the
LSE which combine aspects of both (12) and (13). For
example, if θ∗ is piecewise constant with k blocks for
1 ≤ i ≤ n/2 and if it is strictly increasing with vari-
ation bounded by V for n/2 ≤ i ≤ n, then it can be
shown that the risk of the LSE will be bounded from
above by a constant multiple of σ 2(k/n) log(en/k)+
(σ 2V/n)2/3. Techniques for obtaining such hybrid risk
bounds in isotonic regression can be found in [143],
Sections 2 and 3.

2.2.1 Adaptive risk bounds for R(p)(θ̂ , θ∗). The
risk bound (13) (or more specifically (15)) implies that
the isotonic LSE pays a logarithmic price in risk com-
pared to the oracle piecewise constant estimator. This
fact is strongly tied to the fact that the risk is measured
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via squared error loss (as in (9)). The story will be dif-
ferent if one measures risk under �p-metrics for p �= 2.
To illustrate this, we shall describe adaptive bounds for
the risk R(p)(θ̂ , θ∗) defined in (10).

The following result bounds the risk R(p)(θ̂ , θ∗) as-
suming that θ∗ ∈ I . The risk bounds involve a positive
constant Cp that depends on p alone. Explicit expres-
sions for Cp can be gleaned from the proof of Theo-
rem 2.2 (in Section A.5).

THEOREM 2.2. Assume that the errors ε1, . . . , εn

are i.i.d. N(0, σ 2). Fix θ∗ ∈ I and let p ≥ 1, p �= 2.
Let k denote the number of constant blocks of θ∗ and
let the lengths of the blocks be denoted by n1, . . . , nk .
We then have

(18)

R(p)(θ̂ , θ∗
)≤ Cp

σp

n

k∑
i=1

n
(2−p)+/2
i

≤ Cpσp

(
k

n

)min(p,2)/2
,

where Cp is a positive constant that depends on p

alone.

REMARK 2.8. As stated, Theorem 2.2 appears to
be new even though its conclusion is implicit in the de-
tailed risk calculations of [143] for isotonic regression.
We have assumed that ε1, . . . , εn are normal in Theo-
rem 2.2 but it is possible to allow non-Gaussian errors
by imposing suitable moment conditions.

REMARK 2.9. From an examination of the proof
of Theorem 2.2 (given in Section A.5 of the Supple-
mentary Material [68]), it is evident that the constant
Cp tends to +∞ as p→ 2. Note that this makes sense
because when p = 2, the right-hand side of (18) equals
Cpσ 2k/n and we know from the previous subsection
that there must be a logarithmic term (in n) for the
risk when p = 2. It is helpful here to note that by
Jensen’s inequality (and the bound (14)), we have, for
1≤ p ≤ 2, the bound

R(p)(θ̂ , θ∗
)≤ (R(2)(θ̂ , θ∗

))p/2

≤ 4p/2σp

(
k

n

)p/2(
log

en

k

)p/2
,

which does not explode as p ↑ 2. The above bound
can also be obtained by modifying the proof of The-
orem 2.2 where in place of the inequality

(19)
n∑

j=1

j−p/2 ≤ 2

2− p
n1−(p/2) for 1≤ p < 2,

we use

n∑
j=1

j−p/2 ≤ n

(
1

n

n∑
j=1

1

j

)p/2

≤ n

(
log(en)

n

)p/2
for all 1≤ p ≤ 2

(20)

which is again a consequence of Jensen’s inequality.

Let us now compare the isotonic LSE to the oracle
piecewise constant estimator θ̂OR (introduced in the
previous subsection) in terms of the �p-risk. It is easy
to verify that the risk of θ̂OR under the �p-loss is given
by

(21) R(p)(θ̂OR, θ∗
)= (E|η|p)σp 1

n

k∑
i=1

n
(2−p)/2
i

for every p > 0 where η := ε1/σ is standard normal.
Comparing (18) and (21), we see that the isotonic

LSE performs at the same rate (up to constant multi-
plicative factors) as the oracle piecewise constant es-
timator for 1 ≤ p < 2 (there is not even a logarith-
mic price for these values of p). When p = 2, as seen
from (15), the isotonic LSE pays a logarithmic price of
4 log(en/k(θ∗)). For p > 2, however, there is a signif-
icant price that is paid. For example, if all the constant
blocks have roughly equal size, then the oracle estima-
tor’s risk, when p > 2, is of order (k/n)p/2 while the
bound in (18) is of order k/n. It is also actually true
that if Ik denotes the class of all θ∗ ∈ I with k con-
stant blocks, then (for a positive constant Cp)

(22)

sup
θ∗∈Ik

R(p)(θ̂ , θ∗
)

≥ Cpσp

(
k

n

)
for every p > 2

and this confirms the fact that there is a significant price
to be paid by the LSE (compared to the oracle piece-
wise constant estimator) for estimating θ∗ ∈ Ik when
the risk is measured by R(p)(θ̂ , θ∗) for p > 2. A sketch
of the proof of (22) is given in Section A.4 of the Sup-
plementary Material [68].

Theorem 2.2 can be generalized to situations where
θ∗ ∈ I has a large number of constant blocks provided
it can be well approximated by θ ∈ I with a small
(compared to n) number of constant blocks. This re-
sult is given below (and proved in Section A.6). It is
similar in spirit to (13) even though it is not as sharp
or clean as (13). We need some notation to state this
result. An interval partition π of n is a finite sequence
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of positive integers that sum to n. Let 
 denote the
set of all such interval partitions π of n. For each
π = (n1, . . . , nk) ∈
, let k(π) := k. The variation of
θ ∈ I with respect to π ∈
 is defined as

Vπ(θ) := max
1≤i≤k

(θsi − θsi−1),

where si , 0≤ i ≤ k are defined (with respect to the par-
tition π := (n1, . . . , nk)) as s0 := 0 and si := n1+· · ·+
ni for i = 1, . . . , k.

THEOREM 2.3. Assume that the errors ε1, . . . , εn

are i.i.d. N(0, σ 2). Fix θ∗ ∈ I and let p ≥ 1, p �= 2.
Then

(23)

R(p)(θ̂ , θ∗
)≤ Cp inf

π∈


([
Vπ

(
θ∗
)]p

+ σp

(
k(π)

n

)min(p,2)/2)

for a positive constant Cp that depends on p alone.

Unlike (13), inequality (23) is not a sharp oracle in-
equality because it only holds for θ∗ ∈ I (and not for
general θ∗ ∈ Rn) and because the constant in front of
the Vπ(θ∗) term is not one. However, it is still useful
and it includes Theorem 2.2 as a special case (indeed
to derive (18) from (23), just take the partition π which
corresponds to the constant blocks of θ∗). The bound
(23) can also be used to obtain worst case risk bounds
for the LSE in terms of the Lp risk for 1≤ p < 2 (anal-
ogous to (12)). Indeed, it can be shown (see, e.g., [28],
Lemma 11.1 in the Supplementary Material) that for
every θ∗ ∈ I and δ > 0, there exists π ∈
 with

Vπ

(
θ∗
)≤ δ and k(π)≤ 1+ V (θ∗)

δ
.

This implies from (23) that

R(p)(θ̂ , θ∗
)

≤ Cp inf
δ>0

(
δp + σp

(
1

n
+ V (θ∗)

nδ

)min(p,2)/2)
.

From here, it can be shown that

R(p)(θ̂ , θ∗
)≤ Cp

(
σ 2V (θ∗)

n

)p/3

+Cp

(
σ 2

n

)p/2
for 1≤ p < 2.

It turns out that this bound cannot be improved (up to
the multiplicative factor Cp) as argued in [143], Theo-
rem 2.2 and the following discussion. We would like to
remark here that this method will lead to a suboptimal
worst-case risk bound for R(p)(θ̂ , θ∗) for p > 2.

3. RISK BOUNDS IN OTHER SHAPE-RESTRICTED
REGRESSION PROBLEMS

In this section, we consider the problems of con-
vex regression (Example 1.3), isotonic regression on
a partially ordered set (Example 1.2), unimodal regres-
sion (Example 1.4) and shape restricted additive mod-
els (Example 1.5). In each of these problems, we de-
scribe results related to the performance of the LSEs.
The reader will notice that the risk results are not as
detailed as compared to the isotonic regression results
of the previous section.

3.1 Convex Regression

Let us consider Example 1.3 where the goal is to esti-
mate a convex function f : [0,1]→R from regression
data as in (1). The convex LSE θ̂ is defined as the pro-
jection of Y onto the closed convex cone K (see (6)).
This estimator was first proposed in [73] for the estima-
tion of production functions and Engel curves. It can
be shown that θ̂ is piecewise affine with knots only at
the design points; see [61], Lemma 2.6. The accuracy
of the LSE, in terms of the risk R(θ̂, θ∗) (defined in
(9)), was first studied in [67] followed by [28, 19, 27].
These results are summarized below. Earlier results on
the risk under a supremum loss can be found in [70,
43].

Suppose that ε ∼Nn(0, σ 2In). In [27], the following
worst-case risk bound for θ̂ was given (when xi = i/n

are the ordered design points):

(24) R
(
θ̂ , θ∗

)≤ C

(
σ 2√T (θ∗)

n

)4/5
+C

σ 2

n4/5 ,

where C > 0 is a universal constant and T (θ∗) is a
constant depending on θ∗ (like V (θ∗) in (12) for iso-
tonic regression). Roughly speaking, T (θ∗) measures
the “distance” of θ∗ from the set of all affine (func-
tions) sequences. Formally, Let L denote the subspace
of Rn spanned by the constant vector (1, . . . ,1) and the
vector (1,2, . . . , n); that is, L is the linear subspace of
affine sequences. Let PL denote the orthogonal projec-
tion matrix onto the subspace L and let β∗ := (In −
PL)θ∗. Then T (θ∗) := max1≤i≤n β∗i − min1≤i≤n β∗i .
Observe that when θ∗ itself is an affine sequence
(which is also a convex sequence), then T (θ∗)= 0.

The risk bound (24) shows that the risk of the con-
vex LSE is bounded above by n−4/5. Inequality (24)
improved a result in [67], which had a similar bound
but with an additional multiplicative logarithmic fac-
tor (in n). Comparing with (12), it is natural to con-
jecture that the second term in (24) can be improved
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to Cσ 2(log(en))/n but this has not been proved so far.
Another feature of (24) is that the errors are assumed
to be Gaussian; it might be possible to extend them to
sub-Gaussian errors but this is still a strong assumption
compared to the corresponding result for isotonic re-
gression (see (12)) which holds without distributional
assumptions.

The proof of (24) (and other worst-case risk bounds
like (24) for shape-restricted regression problems un-
der Gaussian/sub-Gaussian errors) involves tools from
the theory of Gaussian processes like chaining and
Dudley’s entropy bound and crucially relies on an ac-
curate “size” measure of the underlying class (e.g., “lo-
cal” balls of K) as captured by its metric entropy; see
Section 3.5 for a broad outline of the proof strategy.
Although the main idea of the proof is simple, deriving
appropriate bounds on the metric entropy of the under-
lying class can be challenging.

As with the isotonic LSE, the convex LSE θ̂ exhibits
adaptive behavior. As the convex LSE θ̂ is piecewise
affine, it may be expected that the risk of θ̂ would be
nearly parametric if the true θ∗ is (well approximated
by) a piecewise affine function. Indeed this is the case.
For θ ∈ K, let q(θ) ≥ 1 denote the number of affine
pieces of θ ; that is, q(θ) is an integer such that q(θ)−1
is the number of inequalities in (6) that are strict. This
adaptive behavior can be illustrated through the follow-
ing risk bound:

(25)

R
(
θ̂ , θ∗

)≤ inf
θ∈K

[
1

n

∥∥θ∗ − θ
∥∥2

+ 8σ 2q(θ)

n
log

en

q(θ)

]
.

This inequality has been proved by [19], Section 4, im-
proving earlier results of [67, 28] which had superflu-
ous multiplicative constants. Note that this bound holds
for ε ∼N(0, σ 2In). It is not known if the bound holds
for non-Gaussian errors (compare this with the corre-
sponding inequality (13) for isotonic regression which
holds without distributional assumptions on the errors).
Let us also note that risk bounds for the LSE under the
R(p)(θ̂ , θ∗) risk (defined in (10)) are not available for
convex regression.

3.2 Isotonic Regression on a Partially Ordered Set

We now turn our attention to Example 1.2 where the
covariates are partially ordered and the goal is to es-
timate the order preserving (isotonic) regression func-
tion. The book by Robertson et al. ([115], Chapter 1)

gives a nice overview of the characterization and com-
putation of LSEs in such problems along with their ap-
plications in statistics. However, not much is known in
terms of rates of convergence for these LSEs beyond
the example of coordinatewise nondecreasing ordering
introduced in Example 1.2.

In this subsection, we briefly review the main re-
sults in [29] which considers estimation of a bivari-
ate (d = 2) coordinatewise nondecreasing regression
function. An interesting recent paper [69] has extended
these results to all dimensions d ≥ 2 (see Remark 3.1).
Estimation of bivariate coordinatewise nondecreasing
functions has applications and connections to the prob-
lem of estimating matrices of pairwise comparison
probabilities arising from pairwise comparison data
([32, 123]) and to seriation ([47]).

As the distribution of the design points xi complicate
the analysis of shape-restricted LSEs, especially when
d > 1, for simplicity, we consider the regular uniform
grid design. This reduces the problem to estimating an
isotonic “matrix” θ∗ := (θ∗ij ) ∈ Rn1×n2 from observa-
tions

yij = θ∗ij + εij for i = 1, . . . , n1, j = 1, . . . , n2,

where θ∗ is constrained to lie in

M := {θ ∈Rn1×n2 : θij ≤ θkl

whenever i ≤ k and j ≤ l
}
,

and the random errors εij ’s are i.i.d. N(0, σ 2), with
σ 2 > 0 unknown. We refer to any matrix in M as
an isotonic matrix. Letting Y := (yij ) denote the ma-
trix (of order n1 × n2; n := n1n2) of the observed re-
sponses, the LSE θ̂ is defined as the minimizer of the
squared Frobenius norm, ‖Y − θ‖2, over θ ∈M, that
is,

(26) θ̂ := arg min
θ∈M

n1∑
i=1

n2∑
j=1

(yij − θij )
2.

As M is a closed convex cone in Rn1×n2 , the LSE θ̂

exists uniquely.
The goal now is to formulate both the worst case and

adaptive risk bounds for the matrix isotonic LSE θ̂ in
estimating θ∗. In [29], Theorem 2.1, it was shown that

(27)
R
(
θ̂ , θ∗

)≤ C

(√
σ 2V 2(θ∗)

n
(logn)4

+ σ 2

n
(logn)8

)

for a universal constant C > 0, where V (θ∗) := θ∗n1n2
−

θ∗11 is the variation of the isotonic matrix θ∗. The above
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bound shows that when the variation V (θ∗) of θ∗ is a
nonzero constant, the risk of θ̂ decays at the rate n−1/2,
while when V (θ∗)= 0 (i.e., θ∗ is a constant), the risk is
(almost) parametric. The above bound probably has su-
perfluous logarithmic factors but bounds with smaller
logarithmic factors have not yet been proved. Some un-
derstanding of the dependence of the bound (27) on σ ,
V (θ∗) and n (which is different from the corresponding
dependence in the one-dimensional bound (12)) can be
derived from the following scaling argument. The risk
R(θ̂, θ∗) only depends on θ∗ and σ so let us denote it
by g(θ∗, σ ). By a natural scaling argument (where we
multiply all the observations by a constant t > 0), it
should be clear that

(28) g
(
θ∗, σ

)= t2g
(
θ∗/t, σ/t

)
for every t > 0.

It is easy to see now that the same identity holds when
g(θ∗, σ ) is taken to be the right-hand side of (27) as
well. This will not be true if, for example, V 2(θ∗) is
replaced by some other power of V (θ∗) in the right-
hand side of (27). This argument, via the scaling iden-
tity (28), can be used to understand the dependencies
on θ∗ and n in the one-dimensional bound (12) as well.

To describe the adaptive risk bound for the matrix
isotonic LSE, we need to introduce some notation.
A subset A of {1, . . . , n1}× {1, . . . , n2} is called a rect-
angle if A= {(i, j) : k1 ≤ i ≤ l1, k2 ≤ j ≤ l2} for some
1 ≤ k1 ≤ l1 ≤ n1 and 1 ≤ k2 ≤ l2 ≤ n2. A rectangu-
lar partition of {1, . . . , n1} × {1, . . . , n2} is a collection
of rectangles π = (A1, . . . ,Ak) that are disjoint and
whose union is {1, . . . , n1}×{1, . . . , n2}. The cardinal-
ity of such a partition, |π |, is the number of rectangles
in the partition. The collection of all rectangular parti-
tions of {1, . . . , n1}×{1, . . . , n2} will be denoted by P .
For θ ∈M and π = (A1, . . . ,Ak) ∈ P , we say that θ

is constant on π if {θij : (i, j) ∈ Al} is a singleton for
each l = 1, . . . , k. We define k(θ), for θ ∈M, as the
“number of rectangular blocks” of θ , that is, the small-
est integer k for which there exists a partition π ∈ P
with |π | = k such that θ is constant on π . In [29], The-
orem 2.4, the following adaptive risk bound was stated:

(29)

R
(
θ̂ , θ∗

)≤ inf
θ∈M

(‖θ∗ − θ‖2

n

+ Cσ 2k(θ)

n
(logn)8

)
,

where C > 0 is a universal constant.
In [29], the authors also established a property of the

LSE that they termed “variable” adaptation. Let In1 :={θ ∈ Rn1 : θ1 ≤ · · · ≤ θn1}. Suppose θ∗ = (θ∗ij ) ∈ I has

the property that θ∗ij only depends on i, that is, there ex-
ists θ∗∗ ∈ In1 such that θ∗ij = θ∗∗i for every i and j . If
we knew this fact about θ∗, then the most natural way
of estimating it would be to perform vector isotonic es-
timation based on the row-averages ȳ := (ȳ1, . . . , ȳn1),
where ȳi :=∑n2

j=1 yij /n2, resulting in an estimator θ̆

of θ∗∗. Note that the construction of θ̆ requires the
knowledge that all rows of θ∗ are constant. As a con-
sequence of the adaptive risk bound (29), it was shown
in [29], Theorem 2.4, that the matrix isotonic LSE θ̂

achieves the same risk bounds as θ̆ , up to additional
logarithmic factors. This is remarkable because θ̂ uses
no special knowledge on θ∗; it automatically adapts to
intrinsic dimension of θ∗.

REMARK 3.1 (Extension to d ≥ 2). The recent pa-
per, Han et al. [69], studied d-dimensional isotonic re-
gression for general d ≥ 1 and proved versions of in-
equalities (27) and (29). Specifically, it is shown there
that the worst-case risk of the LSE is bounded from
above by n−1/d(logn)4 (ignoring multiplicative fac-
tors involving σ and V (θ∗)). Note that for d = 2, this
matches the rate given by (27). Interestingly, it is also
shown in [69] that the LSE is minimax rate optimal (up
to the (logn)4 factor) over the class of all bounded iso-
tonic functions. This minimax optimality of the LSE is
especially impressive because the class of all bounded
isotonic functions for d ≥ 3 is quite massive in terms of
metric entropy and it was suspected previously that the
LSE might suffer from overfitting. [69] also extended
the adaptive risk bound (29) to d ≥ 3 by proving that

R
(
θ̂ , θ∗

)≤ inf
θ∈M

(‖θ∗ − θ‖2

n

+Cdσ 2
(

k(θ)

n

)2/d

(logn)8
)
.

Note that the k(θ)/n term in (29) is replaced by
(k(θ)/n)2/d in the above bound. [69], Proposition 2,
also observed that the above bound will not hold if
(k(θ)/n)2/d is replaced by k(θ)/n. This implies that
the LSE for d ≥ 3 also displays adaptive behavior for
piecewise hyperrectangular constant functions but that
the adaptation risks are not parametric. We should also
mention here that [69] also obtained results for the iso-
tonic LSE under random design settings.

Let us reiterate that the bounds (27) and (29) are es-
tablished under the assumption that the errors εi,j are
i.i.d. N(0, σ 2). It is possible to generalize them to sub-
Gaussian errors (see [19], Section 6, for general results
with sub-Gaussian errors). However, it is not known if
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they hold under general error distributions that are not
sub-Gaussian. Also risk bounds in other loss functions
(such as those in appropriate �p-metrics) are not avail-
able.

3.3 Unimodal Regression

In this subsection, we summarize the two kinds of
risk bounds known for the LSE in unimodal (decreas-
ing and then increasing) regression, introduced in Ex-
ample 1.4. The unimodal LSE θ̂ is defined as any pro-
jection of Y onto U , a finite union of the closed convex
cones described in Example 1.4. It is known that θ̂ is
piecewise constant with possible jumps only at the de-
sign points. Once the mode of the fitted LSE is known
(and fixed), θ̂ is just the nonincreasing (isotonic) LSE
fitted to the points to the left of the mode and nonde-
creasing (isotonic) LSE fitted to the points on the right
of the mode.

As in isotonic regression, the unimodal LSE θ̂ ex-
hibits adaptive behavior. In fact, the risk bounds for
the unimodal LSE θ̂ are quite similar to those ob-
tained for the isotonic LSE. The two kinds of risk
bounds are given below (under the assumption that
ε ∼Nn(0, σ 2In)):

(30)
R
(
θ̂ , θ∗

)≤ C

(
σ 2V (θ∗)

n

)2/3

+C
σ 2

n2/3 where θ∗ ∈ U

and

(31)

R
(
θ̂ , θ∗

)≤C inf
θ∈U

[
1

n

∥∥θ∗ − θ
∥∥2

+C
σ 2(k(θ)+ 1)

n
log

en

k(θ)+ 1

]
,

where k(θ) is the number of constant blocks of θ ,
V (θ∗) := maxi,j |θ∗i − θ∗j | is the range or variation of
θ∗ and C > 0 is a universal constant.

The worst-case risk bound (30) is given in [30], The-
orem 2.1, while the adaptive risk bound (31) is a conse-
quence of [19], Theorem A.4 (after integrating the tail
probability). The proof of (30) (given in [30], Theo-
rem 2.1) is based on the general theory of least squares
outlined in Section 3.5; also see [26], Theorem 2.2.
It shows that a unimodal regression function can also
be estimated at the same rate as a monotone function.
The adaptive risk bound (31), although being similar
in spirit to that of the isotonic LSE, is weaker than
(17) (obtained for the isotonic LSE). Note that inequal-
ity (31) is not sharp (i.e., the leading constant on the

right-hand side of (31) is not 1); in fact it is not known
whether a sharp oracle inequality can be constructed
for R(θ̂, θ∗) (see [19]). The proof of the adaptive risk
bound is also slightly more involved than that of The-
orem 2.1; the fact that the underlying parameter space
U is nonconvex complicates the analysis.

3.4 Shape-Restricted Additive Models

Given observations (x1, y1), . . . , (xn, yn) where
{xi = (xij ,1 ≤ j ≤ d)}ni=1 are d-dimensional design
points and y1, . . . , yn are real-valued, the additive
model (see, e.g., [72, 93]) assumes that

yi = μ∗ +
d∑

j=1

f ∗j (xij )+ εi for i = 1, . . . , n,

where μ∗ ∈ R is an unknown intercept term, f ∗1 , . . . ,

f ∗d are unknown univariate functions satisfying

(32)
1

n

n∑
i=1

f ∗j (xij )= 0 for every j = 1, . . . , d,

and ε1, . . . , εn are unobserved mean-zero errors. An
assumption similar to (32) is necessary to ensure the
identifiability of f ∗1 , . . . , f ∗d . We focus our attention to
shape-restricted additive models where it is assumed
that each f ∗j obeys a known qualitative restriction such
as monotonicity or convexity which is captured by the
assumption that f ∗j ∈ Fj for a known class of func-
tions Fj . One of the main goals in additive model-
ing is to recover each individual function f ∗j ∈ Fj for
j = 1, . . . , d .

The LSEs μ̂, f̂j of μ∗, f ∗j , for j = 1, . . . , d are de-
fined as minimizers of the sum of squares criterion, that
is,

(33)

(μ̂, f̂1, . . . , f̂d)

:= arg min
n∑

i=1

(
yi −μ−

d∑
j=1

fj (xij )

)2

under the constraints μ ∈ R, fj ∈ Fj ,
∑n

i=1 fj (xij )=
0 for j = 1, . . . , d . It is natural to compare the perfor-
mance of these LSEs to the corresponding oracle es-
timators defined in the following way. For each k =
1, . . . , d , the oracle estimator f̂ OR

k is defined as

(34)

f̂ OR
k := arg min

fk

n∑
i=1

(
yi −μ∗

−∑
j �=k

f ∗j (xij )− fk(xik)

)2
,
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where fk ∈Fk and satisfies
∑n

i=1 fk(xik)= 0. In other
words, f̂ OR

k assumes knowledge of f ∗j , for j �= k, and
μ∗, and performs least squares minimization only over
fk ∈Fk .

A very important aspect about shape-restricted ad-
ditive models is that it is possible for the LSE f̂k to
be close to the oracle estimator f̂ OR

k , for each k =
1, . . . , d . Indeed, this property was proved by Mammen
and Yu [96] under certain assumptions for additive iso-
tonic regression where each function fj is assumed to
be monotone. Specifically, [96] worked with a random
design setting where the design points are assumed to
be i.i.d. from a Lipschitz density that is bounded away
from zero and infinity on [0,1]d (this is a very general
setting which allows for nonproduct measures). They
also assumed that each function fj is differentiable and
strictly increasing. Although the design restrictions in
this result are surprisingly minimal, we believe that the
assumptions on the fj ’s can be relaxed. In particular,
this result should hold when fj ’s are piecewise con-
stant and even under more general shape restrictions
such as convexity.

Our intuition is based on the following simple ob-
servation that there exist design configurations where
the LSE f̂k is remarkably close to f̂ OR

k for each k =
1, . . . , d under almost no additional assumptions. The
simplest such instance is when the set of design points
X := {x1, . . . , xn} ⊆ Rd has a Cartesian product struc-
ture in the sense that X equals X1 × · · · × Xd where
each Xi is a subset of the real line. In this case, it is easy
to see that f̂k is exactly equal to f̂ OR

k as stated in the
result below. It is convenient here to index the obser-
vations as (i1, . . . , id) where each ij ranges in the set
Xj for j = 1, . . . , d . The observation model can then
be written as

(35)
yi1,i2,...,id = μ∗ + f ∗1 (i1)+ f ∗2 (i2)+ · · ·

+ f ∗d (id)+ εi1,i2,...,id ,

for in ∈ Xj , j = 1, . . . , d . The following result is
proved in Section A.7 of the Supplementary Material
[68] for the special case d = 2 (the proof for the gen-
eral case follows analogously).

LEMMA 3.1. Consider model (35) where f ∗j ∈Fj ,

for j = 1, . . . , d . Suppose that f̂j , j = 1, . . . , d denote
the LSEs of f ∗j , j = 1, . . . , d , as defined in (33). Also,

let the oracle estimators f̂ OR
j , j = 1, . . . , d be as de-

fined in (34). Then f̂j = f̂ OR
j for every j = 1, . . . , d .

Note that we have made no assumptions at all on
F1, . . . ,Fd . Thus when the design points come from

a product set X1 × · · · × Xd in Rd , the LSE of f ∗j
is exactly equal to the oracle estimate f̂ OR

j for ev-
ery j = 1, . . . , d . For general design configurations, it
might be much harder to relate the LSEs to the cor-
responding oracle estimators. Nevertheless, the afore-
mentioned phenomenon for gridded designs allows us
to conjecture that the closeness of f̂j to f̂ OR

j must hold
in much greater generality than has been observed pre-
viously in the literature.

It may be noted that the risk behavior of f̂ OR
j is easy

to characterize. For example, when f ∗j is assumed to

be monotone, f̂ OR
j will satisfy risk bounds similar to

those described in Section 2. Likewise, when f ∗j is as-

sumed to be convex, then f̂ OR
j will satisfy risk bounds

described in Section 3.1. Thus, when f̂j is close to f̂ OR
j

(which we expect to happen under a broad set of design
configurations), it is natural to expect that f̂j will sat-
isfy such risk bounds as well.

3.5 General Theory of LSEs

In this section, we collect some general results on
the behavior of the LSEs that are useful for proving
the risk bounds described in the previous two sections.
These results apply to LSEs that are defined by (7)
for a closed convex constraint set C. Convexity of C is
crucial here (in particular, these results do not directly
apply to unimodal regression where the constraint set
is nonconvex; see Section 3.3). We assume that the
observation vector Y = θ∗ + ε for a mean-zero ran-
dom vector ε. Except in Lemma 3.4, we assume that
ε ∼Nn(0, σ 2In).

The first result reduces the problem of bounding
R(θ̂, θ∗) to controlling the expected supremum of an
appropriate Gaussian process. This result was proved
by Chatterjee [26] (see [33, 134] for extensions to pe-
nalized LSEs).

LEMMA 3.2 (Chatterjee). Consider the LSE (7) for
a fixed closed convex set C. Assume that Y = θ∗ + ε

where ε ∼ Nn(0, σ 2In) and θ∗ ∈ C. Let us define the
function gθ∗ :R+→R as

(36) gθ∗(t) := E
[

sup
θ∈C:‖θ−θ∗‖≤t

〈
ε, θ − θ∗

〉]− t2

2
.

Let tθ∗ be the point in [0,∞) where t �→ gθ∗(t) at-
tains its maximum (existence and uniqueness of tθ∗ are
proved in [26], Theorem 1.1). Then there exists a uni-
versal positive constant C such that

(37) R
(
θ̂ , θ∗

)≤ C

n
max

(
t2
θ∗, σ

2).
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REMARK 3.2. Chatterjee [26] actually proved a
result that is much stronger than (37). Specifically,
he proved that the fluctuations of the random variable
‖θ̂ − θ∗‖ around the deterministic quantity tθ∗ are of
the order

√
tθ∗ . When tθ∗ is large, this therefore im-

plies that ‖θ̂ − θ∗‖ is tightly concentrated around tθ∗ .
The bound (37) is an easy consequence of this concen-
tration result.

Lemma 3.2 reduces the problem of bounding R(θ̂,

θ∗) to that of bounding tθ∗ . For this latter problem,
[26], Proposition 1.3, observed that

tθ∗ ≤ t∗∗ whenever t∗∗ > 0 and gθ∗
(
t∗∗
)≤ 0.

In order to bound tθ∗ , one therefore seeks t∗∗ > 0 such
that gθ∗(t∗∗)≤ 0. This now requires a bound on the ex-
pected supremum of the Gaussian process in the defi-
nition of gθ∗(t) in (36). A simple upper bound for this
expected Gaussian supremum is given by Dudley’s en-
tropy bound (see, e.g., [130], Chapter 2) which is given
below. This bound involves covering numbers. For a
subset K ⊆ Rn and ε > 0, let N(ε,K) denote the ε-
covering number of K under the Euclidean metric ‖ · ‖
(i.e., N(ε,K) is the minimum number of closed balls
of radius ε required to cover K). The logarithm of
N(ε,K) is known as the ε-metric entropy of K . Also,
for each θ∗ ∈ C and t > 0, let

B
(
θ∗, t

) := {θ ∈ C : ∥∥θ − θ∗
∥∥≤ t

}
denote the ball of radius t around θ∗. Observe that
the supremum in the definition in (36) is over all θ ∈
B(θ∗, t). Dudley’s entropy bound leads to the follow-
ing upper bound for the expected Gaussian supremum
appearing in the definition of gθ∗(t).

LEMMA 3.3 (Chaining). For every θ∗ ∈ C and
t > 0,

E
[

sup
θ∈B(θ∗,t)

〈
ε, θ − θ∗

〉]

≤ σ inf
0<δ≤2t

{
12
∫ 2t

δ

√
logN

(
ε,B

(
θ∗, t

))
dε

+ 4δ
√

n

}
.

REMARK 3.3. Dudley’s entropy bound is not al-
ways sharp. More sophisticated generic chaining argu-
ments exist which gives tight bounds (up to universal
multiplicative constants) for suprema of Gaussian pro-
cesses; see [130].

Lemma 3.2 and Lemma 3.3 present one way of
bounding R(θ̂, θ∗). This involves controlling the met-
ric entropy of subsets of the constraint set C of the form
B(θ∗, t). This method is useful but works only for the
case of Gaussian/sub-Gaussian errors.

Let us now present another result which is useful for
proving adaptive risk bounds under misspecification.
We shall now work with general error distributions for
ε that are not necessarily Gaussian (we only assume
that E(ε)= 0). This result essentially states for bound-
ing R(θ̂, θ∗), it is possible to work with tangent cones
associated with C instead of C. It is easier to deal with
cones as opposed to general closed convex sets which
leads to the usefulness of this result.

For a closed convex set C and θ ∈ C, the tangent cone
of C at θ is defined as

TC(θ) := Closure
{
t (η− θ) : t ≥ 0, η ∈ C

}
.

Informally, TC(θ) represents all directions in which one
can move from θ and still remain in C. It is helpful to
note that when C is a closed convex cone (as in many
applications of shape restricted regression), then the
tangent cone has the following simple expression:

(38) TC(θ)= {c− tθ : c ∈ C, t > 0}.
In other words, we simply add the generator −θ to the
cone C to obtain TC(θ).

The following lemma relates the risk R(θ̂, θ∗) to tan-
gent cones.

LEMMA 3.4. Let C be a closed convex set in Rn.
Let θ∗ ∈ Rn and suppose that Y = θ∗ + σZ for some
mean-zero random vector Z with E‖Z‖2 <∞. Then

(39)
E
[∥∥θ̂ − θ∗

∥∥2]
≤ inf

θ∈C
{∥∥θ∗ − θ

∥∥2 + σ 2E
[∥∥
TC(θ)(Z)

∥∥2]}
,

where 
TC(θ)(Z) denotes the projection of Z onto the
closed convex cone TC(θ).

Some remarks on this lemma are given below.

REMARK 3.4 (Statistical dimension). When Z ∼
Nn(0, In) and K is a closed convex cone in Rn, the
quantity

δ(K) := E
[∥∥
K(Z)

∥∥2]= E
[〈
Z,
K(Z)

〉]
= E

[(
sup

θ∈K:‖θ‖≤1
〈Z,θ〉

)2]
,

has been termed the statistical dimension of K by
Amelunxen et al. [3]. Therefore, when Z ∼Nn(0, In),
inequality (39) bounds the risk R(θ̂, θ∗) of the LSE via
the statistical dimension of the tangent cones TC(θ).
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REMARK 3.5 (No distributional assumptions).
There are no distributional assumptions on Z for (39)
to hold. In particular, the components of Z can be
arbitrarily dependent and non-Gaussian (as long as
E‖Z‖2 <∞). This follows from [19], Proposition 2.1,
which is a deterministic assertion.

REMARK 3.6. When θ∗ ∈ C, then one can take θ =
θ∗ in the right-hand side of (39) to deduce that

(40) E
∥∥θ̂ − θ∗

∥∥2 ≤ σ 2E
∥∥
TC(θ∗)(Z)

∥∥2
.

This inequality (40) was first proved by [110]. Bellec
[19] extended it to the case when θ∗ /∈ C by proving
Lemma 3.4.

REMARK 3.7 (Tightness). A remarkable fact
proved by Oymak and Hassibi [110] is that

(41)
lim
σ↓0

1

σ 2E
∥∥θ̂ − θ∗

∥∥2

= E
∥∥
TC(θ∗)(Z)

∥∥2 when θ∗ ∈ C.

Analogues of this inequality when θ∗ /∈ C have been
recently proved in [46]. The equality in (41) implies
that if rn(θ), for θ ∈ C, is any rate term controlling the
adaptive behavior of the LSE in the following sense:

(42)
E
∥∥θ̂ − θ∗

∥∥2 ≤ inf
θ∈C
{∥∥θ∗ − θ

∥∥2 + σ 2rn(θ)
}

for every θ∗ ∈Rn

then it necessarily must happen that

rn(θ)≥ E
∥∥
TC(θ)(Z)

∥∥2 for every θ ∈ C.

Thus it suffices to work with tangent cones (i.e., focus-
ing on bounding E‖
TC(θ)(Z)‖2) for proving adaptive
risk bounds of the form (42). It must be noted here
though that (42) can be quite suboptimal when σ is
large.

We shall show how to apply Lemma 3.4 to prove
the adaptive risk bound (13) in Section A.1 of the Sup-
plementary Material [68]. Lemma 3.4 is also crucially
used in [19] to prove the adaptive risk bound (25) for
convex regression. Lemma 3.4 also has applications
beyond shape-restricted regression. It has been recently
used to prove risk bounds for total variation denoising
and trend filtering (see [66]).

4. POINTWISE ASYMPTOTIC THEORY

Until now, we have focused our attention on (global)
risk properties of shape-restricted LSEs. In this sec-
tion, we investigate the pointwise limiting behavior of

the estimators. By the pointwise behavior, we mean
the distribution of the LSE f̂n at a fixed point (say t),
properly normalized. Developing asymptotic distribu-
tion theory for the LSEs turns out to be rather non-
trivial, mainly because there is no closed form simple
expression for the LSEs; all the properties of the esti-
mator have to be teased out from the general character-
ization (8).

The LSEs exhibit nonstandard asymptotics: The lim-
iting distributions that arise are nonnormal (and the
rates of convergence are slower than n−1/2) and in-
volve many nuisance parameters (that are difficult to
estimate). As before, analyzing the isotonic LSE is
probably the simplest, and we will work with this ex-
ample in Section 4.1. In Section 4.2, we develop boot-
strap and likelihood based methods for constructing
(asymptotically) valid pointwise confidence intervals,
for the isotonic regression function f , that bypass esti-
mation of nuisance parameters. Section 4.3 deals with
the case when f is convex—we sketch a proof of the
pointwise limiting distribution of the convex LSE. Not
much is known in this area beyond d = 1 for any of the
shape-restricted LSEs discussed in the Introduction.

4.1 Pointwise Limit Theory of the LSE in Isotonic
Regression

Let us recall the setup in (1) where f is now an un-
known nondecreasing function. Further, for simplicity,
let xi = i/n, for i = 1, . . . , n, be the ordered design
points and we assume that ε1, . . . , εn are i.i.d. mean
zero errors with finite variance σ 2 > 0. The above as-
sumptions can be relaxed substantially, for example,
we can allow for dependent, heteroscedastic errors and
the xi ’s can be any sequence whose empirical distribu-
tion converges to a probability measure on [0,1]; see,
for example, [4] and [135], Section 3.2.15.

We start with another useful characterization of the
isotonic LSE ([17], Theorem 1.1). Define the cumula-
tive sum diagram (CSD) as the continuous piecewise
affine function Fn : [0,1] → R (with possible knots
only at i/n, for i = 1, . . . , n) for which

(43)
Fn(0) := 0, and Fn

(
i

n

)
:= 1

n

i∑
j=1

yj

for i = 1, . . . , n.

For any function g : I →R, where I ⊂R is an interval,
we denote by g̃ the greatest convex minorant (GCM)
of g (on I ), that is, g̃ is the largest convex function
sitting below g. Thus, F̃n denotes the GCM of Fn (on
the interval [0,1]). Let f̂n : (0,1] → R be defined as
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FIG. 2. The left panel shows the scatter plot with the fitted function f̂n (in red) and the true f (in blue) while the right panel shows the
CSD (dashed) along with its GCM (in red). Here, n= 10, f (x)= x and ε ∼Nn(0, σ 2In) with σ = 0.5.

the left-hand derivative of the GCM of the CSD, that
is,

f̂n := [F̃n]′ ≡ F̃ ′n,

the left-hand slope of F̃n. Then it can be shown that
(see, e.g., [115], Chapter 1) the isotonic LSE θ̂ is given
by θ̂i = f̂n(i/n), for i = 1, . . . , n. Figure 2 illustrates
these concepts from a simple simulation.

Fix 0 < t < 1 and suppose that f has a positive con-
tinuous derivative f ′ on some neighborhood of t . The
following gives the asymptotic distribution of f̂n(t),
properly normalized:

(44) 
n := n1/3{f̂n(t)− f (t)
} d→ κC,

where C := arg minh∈R{W(h) + h2} has Chernoff’s
distribution (here W(·) is a two-sided Brownian mo-
tion starting from 0) and κ := [4σ 2f ′(t)]1/3; see, for
example, [24, 139, 54, 55]. In Section A.10 of the Sup-
plementary Material [68], we give an outline of a proof
of (44). The first result of this type was derived in
[112] for the Grenander estimator—the maximum like-
lihood estimator of a nonincreasing density in [0,∞)

(see [53]). Note that the Chernoff’s random variable C

is pivotal and its quantiles are known; see, for example,
[36, 65].

4.1.1 Other asymptotic regimes. Observe that the
assumption f ′(t) �= 0 is crucial in deriving the limiting
distribution in (44). One may ask, what if f ′(t) = 0?
Or even simply, what if f is a constant function on
[0,1]? In the latter case, we can easily show that, for
t ∈ (0,1),

√
n
{
f̂n(t)− f (t)

} d→ σ [B̃]′(t),
where B is the standard Brownian motion on [0,1].
The above holds because of the following observations.
First, note that

√
n{f̂n(t)− f (t)} is the left-hand slope

of the GCM of
√

n(Fn − F) at t (as F is now linear).
As
√

n(Fn−F) converges in distribution to the process
σB on D[0,1], we have

√
n
{
f̂n(t)− f (t)

}=√n[F̃n − F ]′(t) d→ σ [B̃]′(t).
The above heuristic can be justified rigorously; see, for
example, [59], Section 3.2. In the related (nonincreas-
ing) density estimation problem, [55, 25] showed that
if f (t) lies on a flat stretch of the underlying func-
tion f then the LSE (which is also the nonparamet-
ric maximum likelihood estimator, usually known as
the Grenander estimator) converges to a nondegenerate
limit at rate n−1/2, and they characterized the limiting
distribution.

If one assumes that f (j)(t)= 0, for j = 1, . . . , p−1,
and f (p)(t) �= 0 (for p ≥ 1), where f (j) denotes the
j th derivative of f , then one can derive the limiting
distribution of f̂n(t), which now converges at the rate
n−p/(2p+1); see, for example, [139, 86]. Note that all
the above scenarios illustrate that the rate of conver-
gence of the isotonic LSE f̂n(t) crucially depends on
the the behavior of f around t ; this demonstrates the
adaptive behavior of the isotonic LSE from a pointwise
asymptotics standpoint.

4.2 Constructing Asymptotically Valid Pointwise
Confidence Intervals

Although (44) gives the asymptotic distribution of
the isotonic LSE at the point t , it is not immediately
clear how it can be used to construct a confidence in-
terval for f (t)—the limiting distribution involves the
nuisance parameter f ′(t) that needs to be estimated.
A naive approach would suggest plugging in an estima-
tor of f ′(t) in the limiting distribution in (44) to con-
struct an approximate confidence interval. However, as
f̂n is a piecewise constant function, f̂ ′n is either 0 or
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undefined and cannot be used to estimate f ′(t) consis-
tently. This motivates the use of bootstrap and likeli-
hood ratio based methods to construct confidence in-
tervals for f (t). In the following, we just assume that
ε1, . . . , εn i.i.d. mean zero errors with finite variance.

4.2.1 Bootstrap based inference. Let us revisit (44)
and consider the problem of bootstrapping f̂n to esti-
mate the distribution of 
n ∼ Hn (say). Suppose that
Ĥn is an approximation of Hn (which will be obtained
from bootstrap in this subsection) that can be com-
puted. Then an approximate 1 − α (0 < α < 1) con-
fidence interval for f (t) would be[

f̂n(t)− q̂1−α/2n
−1/3, f̂n(t)− q̂α/2n

−1/3],
where q̂α denotes the αth quantile of Ĥn.

In a regression setup, there are two main bootstrap-
ping techniques: “bootstrapping pairs” and “bootstrap-
ping residuals.” Bootstrapping pairs refers to drawing
with replacement samples from the data {(xi, yi) : i =
1, . . . , n}; it is more natural when we have i.i.d. bivari-
ate data from a joint distribution. The residual boot-
strap procedure fixes the design points xi’s and draws

y∗i := f̌n(xi)+ ε∗i , i = 1, . . . , n

(the ∗ indicates a data point in the bootstrap sample),
where f̌n is a natural estimator of f in the model, and
ε∗i ’s are i.i.d. (conditional on the data) having the dis-
tribution of the (centered) residuals {yi − f̌n(xi) : i =
1, . . . , n}. Let f̂ ∗n denote the isotonic LSE computed
from the bootstrap sample. The bootstrap counterpart
of 
n (cf. (44)) is


∗n := n1/3{f̂ ∗n (t)− f̌n(t)
}
.

We now approximate Hn by Ĥn, the conditional distri-
bution of 
∗n, given the data. Note that a natural candi-
date for f̌n in isotonic regression is the LSE f̂n.

Will this bootstrap approximation (by Ĥn) work?
This brings us to the notion of consistency of the boot-
strap. Let d denote the Levy metric or any other met-
ric metrizing weak convergence of distributions. We
say that Ĥn is weakly consistent if d(Hn, Ĥn) → 0
in probability. If the convergence holds with proba-
bility 1, then we say that the bootstrap is strongly
consistent. If Hn has a weak limit H , then consis-
tency requires Ĥn to converge weakly to H , in prob-
ability; and if H is continuous, consistency requires
supx∈R |Ĥn(x)−H(x)| → 0 in probability.

It is well known that both the above bootstrap
schemes—bootstrapping pairs and bootstrapping resid-
uals with f̌n = f̂n — yield inconsistent estimators of

Hn; see [1, 119, 80, 122, 56]. Intuitively, the incon-
sistency of the residual bootstrap procedure can be at-
tributed to the lack of smoothness of f̂n. Indeed a ver-
sion of the residual bootstrap where one considers f̌n

as a smoothed version of f̂n (that can approximate the
nuisance parameter f ′(t) consistently) can be shown
to be consistent; see, for example, [122]. Specifically,
suppose that f̌n is a sequence of estimators such that

(45) lim
n→∞ sup

x∈I

∣∣f̌n(x)− f (x)
∣∣= 0,

almost surely, where I ⊂ [0,1] is an open neighbor-
hood of t , and

(46)
lim

n→∞ sup
h∈K

n1/3∣∣f̌n

(
t + n−1/3h

)− f̌n(t)

− f ′(t)n−1/3h
∣∣= 0

almost surely for any compact set K ⊂ R. It can be
shown, using arguments similar to those in the proof
of [122], Theorem 2.1, that if (45) and (46) hold then,
conditional on the data, the bootstrap estimator 
∗n
converges in distribution to κC, as defined in (44), al-
most surely. Thus, this bootstrap scheme is strongly
consistent.

A natural question that arises now is: Can we con-
struct a smooth f̌n such that (45) and (46) hold
w.p. 1? We briefly describe such a smoothed boot-
strap scheme. Let k(·) be a differentiable symmetric
density (kernel) with compact support (e.g., k(x) ∝
(1 − x2)21[−1,1](x)) and let K(x) := ∫ x

−∞ k(s) ds be
the corresponding distribution function. Let h be a
smoothing parameter. Note that h may depend on
the sample size n but, for notational convenience, we
write h instead of hn. Let kh(x) := k(x/h)/h and
Kh(x) := K(x/h). Then the smoothed isotonic LSE
of f is defined as (cf. [63])

f̌n(x)≡ f̌n,h(x) :=
∫

Kh(x − s) df̂n(s), x ∈ [0,1].

It can be easily seen that f̌n is a nondecreasing func-
tion (if t2 > t1, then Kh(t2− s)≥Kh(t1− s) for all s).
Observe that f̌n is a smoothed version of the step func-
tion f̂n. In [122] it is shown that the obtained boot-
strap procedure is strongly consistent, that is, 
∗n =
n1/3{f̂ ∗n (t) − f̌n(t)} converges weakly to κC, condi-
tional on the data, almost surely.

It is natural to conjecture that a (suitably) smoothed
bootstrap procedure would also yield (asymptotically)
valid pointwise confidence intervals for other shape-
restricted regression functions (e.g., convex regres-
sion). Moreover, it can be expected that the naive “with
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replacement” bootstrap and the residual bootstrap us-
ing the LSE would lead to inconsistent procedures.
However, as far as we are aware, there is no work that
rigorously proves these claims.

4.2.2 Likelihood ratio based inference. Banerjee
and Wellner [15] proposed a novel method for con-
structing pointwise confidence intervals for a mono-
tone function (e.g., f ) that avoids the need to estimate
nuisance parameters; also see [13, 60]. Specifically, the
strategy is to consider the testing problem H0 : f (t)=
φ0 versus H1 : f (t) �= φ0, where φ0 ∈ R is a known
constant, using the likelihood ratio statistic (LRS), con-
structed under the assumption of i.i.d. Gaussian er-
rors. If one could find the limiting distribution of the
LRS under the null hypothesis and show that the limit
is pivotal (as is the case in parametric models where
the limiting distribution turns out to be χ2) then that
would provide a convenient way to construct a confi-
dence interval for f (t) via the method of inversion: an
asymptotic level 1− α confidence set would be given
by the set of all φ0’s for which the null hypothesis
H0 : f (t)= φ0 is accepted.

To study the form of the LRS, we first need to un-
derstand the constrained isotonic LSE. Consider the
setup introduced in the beginning of Section 4.1 and
suppose that l := �nt�, so that l/n≤ t < (l+1)/n. Un-
der H0 : f (t)= φ0, the constrained isotonic LSE f̂ 0

n is
given by{

f̂ 0
n (i/n) : i = 1, . . . , n

}
:= arg min

θ∈Rn:θ1≤···≤θl≤φ0≤θl+1≤···≤θn

n∑
i=1

(Yi − θi)
2.

Note that both functions f̂n and f̂ 0
n are identified only

at the design points. By convention, we extend them
as left-continuous piecewise constant functions defined
on the entire interval (0,1]. The hypothesis test is
based on the following LRS:

Ln :=
n∑

i=1

(
Yi − f̂ 0

n (i/n)
)2 − n∑

i=1

(
Yi − f̂n(i/n)

)2
.

As shown in [13, 14] (in the setting of random design,
which can be easily generalized to cover the uniform
grid design; see [7]), if f (t)= φ0 and f ′(t) �= 0, then

Ln
d→ σ 2L,

where L is a nonnegative random variable express-
ible as a functional of two-sided Brownian motion plus
quadratic drift {W(h)+h2 : h ∈R}, and σ 2 is the com-
mon variance of the errors. An important feature of

this limiting distribution is that it is pivotal—free of
the parameters of the problem. This readily yields con-
fidence sets for f (t) (obtained by the method of in-
version) that do not need estimation of the nuisance
parameter f ′(t)—a challenging quantity to estimate
in practice. However, an estimate of σ 2 is required,
which can be easily obtained: The natural estimator
‖Y − θ̂‖2/n of σ 2 is asymptotically normal with mean
σ 2 and variance 2σ 4/n (see [100], Proposition 3). This
methodology has been applied successfully in several
monotone function estimation problems; see, for exam-
ple, [15, 13, 60]. The method, and extensions thereof,
also applies to both short- and long-range dependence
regimes for the errors; see [7]. Also see [16, 7] for il-
lustrations and examples of the superior performance
of the LR based method over plug-in methods for con-
structing confidence intervals for f (t), especially when
the estimation of the derivative f ′(t) is difficult.

Not much is known about the (asymptotic) distri-
bution of the LRS beyond monotone function estima-
tion problems. However, in the recent papers [40, 41]
the authors study the LRS for testing the location of
the mode of a log-concave density f using the uncon-
strained/constrained maximum likelihood estimator of
a log-concave density (also see [11]) and show that,
under the null hypothesis which fixes the value of the
mode of f (and assumes strict curvature of − logf at
the mode), the LRS is asymptotically pivotal.

4.3 Pointwise Limit Theory of the LSE in Convex
Regression

We assume that we have data from (1) where f :
[0,1] → R is now assumed to be convex (see Ex-
ample 1.3). In this section, we study the pointwise
asymptotic theory for the convex LSE. For simplic-
ity, as before, we consider equi-spaced design points.
Let us first describe the characterization of the con-
vex LSE that will drive the asymptotic analysis. Given
the convex LSE θ̂ , let �̂ = (�̂1, . . . , �̂n) denote the
vector of its cumulative sums (divided by n), that is,
�̂i := n−1∑i

j=1 θ̂j , for i = 1, . . . , n, and recall Fn, as

defined in (43). Then θ̂ has the following characteriza-
tion: θ̂ is the unique vector such that �̂n = Fn(1) and

(47)
j−1∑
i=1

�̂i

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

≥
j−1∑
i=1

Fn(i/n) for j = 2, . . . , n,

=
j−1∑
i=1

Fn(i/n) if θ̂ has a kink at

j/n or j = n;
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this follows from the characterization of projection on
the closed convex set K (as defined in (6)); see [61],
Lemma 2.6, for a complete proof. We define the convex
LSE f̂n : [1/n,1] → R of f as the piecewise linear
interpolation of the points {(i/n, θ̂i) : i = 1, . . . , n}.

Fix t ∈ (0,1) and consider the estimation of f (t) us-
ing the convex LSE f̂n(t) under the assumption that
f ′′ is continuous and nonzero in a neighborhood of t .
If the errors are i.i.d. sub-Gaussian with mean zero and
f ′′(t) �= 0, the rate of convergence of f̂n(t) is known
to be n−2/5 (see [92]). The pointwise asymptotic dis-
tribution of the convex LSE (properly normalized) is
derived in [61]. In Groeneboom et al. [61], the authors
show that

(48) 
n := n2/5{f̂n(t)− f (t)
} d→H′′(0),

where H is the “envelope” of integrated Brownian mo-
tion with quartic drift (+h4), and H′′(0) is the second
derivative of H at 0 (which exists w.p. 1). The enve-
lope is a cubic spline lying above and touching inte-
grated Brownian motion +h4; compare this with the
“envelope” of Brownian motion with a parabolic drift
(+h2) that appears when analyzing the isotonic LSE
(see Section A.10). Although a rigorous proof of the
above weak convergence is long and delicate (see [61],
Theorem 6.3), the main intuition for such a limit can
be gotten from looking at the characterization given in
(47). We describe some of the main ideas below. The
first step is to show that the characterization in (47)
can be “localized” in an appropriate sense. Then we
show that the right-hand side of the inequality in (47),
appropriately localized and normalized, converges to a
limiting process involving integrated Brownian motion
+h4. Then a continuous mapping-like result, where we
look at the limiting version of the localized (47), yields
the convergence of 
n. A slightly more detailed sketch
of the main steps is provided in Section A.11 of the
Supplementary Material [68].

REMARK 4.1 (Multiscale inference in shape-re-
stricted problems). The pointwise asymptotic theory
for isotonic and convex regression is developed under
suitable smoothness assumptions on f , for example,
(44) needs f ′(t) �= 0 whereas the weak convergence of
(48) assumes f ′′(t) �= 0. In [42], utilizing suitable mul-
tiscale tests, the author constructs confidence bands for
f that are locally adaptive in a certain sense (to the un-
derlying smoothness in f ) and have guaranteed cov-
erage, assuming that f is isotonic or convex. These
confidence bands are computationally feasible and are
also shown to be asymptotically sharp optimal in an

appropriate sense. Also see the recent paper [141] for
another method of constructing finite-sample locally
adaptive confidence bands in isotonic regression.

5. COMPUTATION OF THE LSE

In this section, we discuss the computation of the
LSE θ̂ in nonparametric shape-restricted regression
problems. Note that in most cases (see, e.g., Exam-
ples 1.1–1.5) the LSE θ̂ is the projection of Y onto
C, a (finite union of) closed convex set(s) in Rn. If C
is a polyhedral convex set, then the computation of
θ̂ involves solving a quadratic program with a bunch
of linear constraints. Many off-the-shelf solvers (e.g.,
CPLEX, MOSEK, Gurobi) can solve these quadratic
programs easily even for moderately large sample sizes
(e.g., n≈ 105). In the following, we consider the main
examples in the Introduction and discuss some prob-
lem specific algorithms that are computationally more
efficient.

Isotonic and Unimodal Regression

For the monotone regression problem [17] presented
a graphical interpretation of the isotonic LSE (defined
in (11)) in terms of the GCM of the CSD; see Sec-
tion 4.1. The method of successive approximation to
the GCM can be described algebraically as the pool-
adjacent-violators algorithm (PAVA); see, for example,
[115], pages 9–10. Roughly speaking, PAVA works as
follows. We start with y1 on the left. We move to the
right until we encounter the first violation yi > yi+1.
Then we replace this pair by their average, and back-
average to the left as needed, to get monotonicity. We
continue this process to the right, until finally we reach
yn. If skillfully implemented, PAVA has a computa-
tional complexity of O(n); see [128] for a compari-
son of various algorithms to solve isotonic regression
in �p-metrics, for p ≥ 1. The isoreg command in
the stats package in the R programming language im-
plements the isotonic LSE. Further, see [127] for an ef-
ficient (requiring only O(n) time) computation of the
unimodal LSE (Example 1.4).

Order Preserving Regression on a Partially
Ordered Set

Given a partial order � on the design points xi ’s we
can compute the LSE θ̂ of the isotonic (order preserv-
ing) θ∗ by solving (7). Here, C, the space where Y is
projected onto to obtain θ̂ , is a closed convex cone and
can be represented as

C := {(θ1, . . . , θn) ∈Rd : θi ≤ θj if xi � xj ,

for some i �= j
}
.
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Thus, the computation of θ̂ involves solving a quadratic
program with O(n2) linear constraints (although for
some special situations, like isotonic regression in d =
1, C can be represented by O(n) linear constraints).
The computation of the order preserving LSE on a par-
tially ordered set (Example 1.2) has received quite a
bit of attention recently; see, for example, [85, 129] and
the references therein. In particular, https://github.com/
sachdevasushant/Isotonic gives an implementation of
the isotonic LSE using interior point methods. The spe-
cial case of the matrix isotonic LSE defined in (26) can
be computed efficiently by an iterative algorithm (see,
e.g., [51] and [115], Chapter 1).

Once we obtain θ̂ = (θ̂1, . . . , θ̂n) we can then easily
construct an estimate f̂n of the order preserving f at
any x (not necessarily a design point) by taking a max-
imum over a selected number of coordinates of θ̂ : We
can define f̂n as

f̂n(x) := sup
j :xj�x

θ̂j for x ∈Rd,

where we take the convention that sup(∅) = −∞.
Note that f̂n is indeed order preserving — for u, v with
u � v we have f̂n(u) = supj :xj�u θ̂j ≤ supj :xj�v θ̂j =
f̂n(v), as in the right-hand side the supremum is taken
over a bigger set.

Convex Regression

Algorithms for the computation of the convex LSE
(Example 1.3) when d = 1 can be found in [45, 48, 62]
and the references therein. When d > 1, the problem
is substantially harder: Due to the lack of a natural or-
dering of points in Rd (for d > 1), the constraint set
C is not easy to express (cf. (6)). In fact, in this case
C can be expressed as the projection of the higher-
dimensional polyhedron{

(ξ, θ) ∈Rdn+n : ξ = [ξ
1 , . . . , ξ
n
]


,

θj + ξ
j (xi − xj )≤ θi,∀i, j = 1, . . . , n
}

onto the space of θ ; see [34]. The above characteri-
zation can be seen as a consequence of the subgradi-
ent inequality for convex functions; see [116], Theo-
rem 25.1, page 242. Thus the computation of the con-
vex LSE θ̂ involves solving a quadratic program with
n(d + 1) variables and n(n− 1) linear constraints; see
[118] for the characterization, computation and con-
sistency of the convex LSE where off-the-shelf inte-
rior point solvers (e.g., cvx, MOSEK, etc.) were used
to compute θ̂ . However, these off-the-shelf solvers do
not scale well and become prohibitively expensive for

n ≥ 300 mainly due to the presence of O(n2) linear
constraints. In [99], exploiting problem specific struc-
ture, the authors propose a scalable algorithmic frame-
work based on the augmented Lagrangian method to
compute the convex LSE θ̂ . This iterative algorithm
can compute the LSE with n∼ 5000 and d ∼ 10 within
moderate accuracy (i.e., 4 significant digits) in around
30 minutes in a laptop.

Shape Constrained Additive Models

The computation of the additive shape-restricted
(Example 1.5) LSE is discussed in [104, 35]. As this
reduces to solving a quadratic program with O(n) lin-
ear constraints, off-the-shelf solvers can be effectively
used for computing the LSE. The shape-restricted LSE
can also be computed efficiently by the back-fitting al-
gorithm ([22])—a simple iterative procedure used to fit
a generalized additive model—which involves fitting
one function at a time (out of the d many univariate
nonparametric functions).

Shape-Restricted Single Index Model

Let us now look at Example 1.6. Here, interest fo-
cuses on estimating the nonparametric (shape-restrict-
ed) function m and the finite-dimensional parameter
β∗. Although single index models are well studied in
the statistical literature (see, e.g., [111, 87, 37] and the
references therein), estimation and inference in shape-
restricted single index models are not very well devel-
oped, despite their numerous applications. The LSE in
the monotone single index model is defined as

(49) (m̂, β̂) := arg min
ψ,β

n∑
i=1

(
yi −ψ

(
x
i β

))2
,

where the minimization is over all nondecreasing func-
tions ψ : R→ R and over β ∈ Rd (with ‖β‖ = 1, for
identifiability). As the above LSE solves a nonconvex
problem, its computation is nontrivial. A version of the
following alternating minimization scheme is typically
applied to compute the LSE. For a fixed β , the sum-of-
squared errors can be easily minimized over all non-
decreasing functions (as this reduces to the problem
to univariate isotonic regression). However, the min-
imization of the profiled least squares criterion (over
β), for a fixed ψ , is nonsmooth and nonconvex; see
[78, 57] and the references therein for some strategies
to find β̂ . A similar strategy is employed in computing
the maximum likelihood estimate in the related prob-
lem of current status regression; see, for example, [57].
Also see [82] and the R package simest for the re-
lated computation in a convex single index model.

https://github.com/sachdevasushant/Isotonic
https://github.com/sachdevasushant/Isotonic
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6. SOME OPEN PROBLEMS

In this section, we state and motivate a few open re-
search problems and some possible future directions.

Beyond i.i.d. Gaussian Errors

We have mentioned in Section 2 that risk bounds
for isotonic regression do not assume that the errors
ε1, . . . , εn are Gaussian. Indeed, the worst-case risk
bound (12) as well as the adaptive risk bound in The-
orem 2.1 work under no distributional assumptions on
the errors (it is only assumed that the errors are i.i.d.
with mean zero and finite variance σ 2; even the i.i.d.
assumption can be relaxed considerably; see [143]).
However, the risk bounds for other shape-restricted re-
gression problems (including convex regression, iso-
tonic regression on partially ordered sets such as mul-
tivariate isotonic regression, unimodal regression, etc.)
assume Gaussian (or sub-Gaussian) errors. Based on
the results for the univariate isotonic LSE, we believe
that the assumption of Gaussianity should not really be
necessary for these other problems as well. However,
the existing proof techniques for these risk bounds
strongly rely on the assumption of sub-Gaussianity. It
will be very interesting to prove risk bounds in these
problems without Gaussianity. We believe that new
techniques will need to be developed for this.

Beyond �2-Loss

Most of the risk results available in the shape con-
strained literature apply only to the �2-loss. A notable
exception is the case of isotonic regression where risk
bounds are available under the �p-loss for every p ≥ 1
(as already described in Section 2.2.1). It will be in-
teresting to develop risk results for �p-losses in prob-
lems such as convex regression and multivariate shape-
restricted regression. The results for isotonic regression
(see Theorem 2.2 and the following discussion) indi-
cate that adaptation risk bounds for LSEs have a dif-
ferent relationship with oracle risk bounds for p �= 2.
For example, for p < 2, the isotonic LSE is suboptimal
only by a constant factor in comparison to the oracle
while for p > 2, the isotonic LSE is significantly sub-
optimal. We believe that it is quite nontrivial to study
risk of the LSEs under �p-loss functions for p �= 2.
The existing abstract theory for studying LSEs seems
to give risk results only under the �2-loss function.

Minimax Results

The risk of a LSE R(θ̂, θ∗) in a shape-restricted re-
gression problem usually varies quite significantly as
θ∗ varies over the parameter space. For example, in

isotonic regression, the risk behaves as n−2/3 when
V (θ∗) is bounded and as (k/n) log(n/k) when θ∗ is
piecewise constant having k constant pieces. Minimax
lower bounds over these parameter classes allow the
assessment of optimality of the LSE compared to other
estimators. We mentioned in Remark 2.3 that the iso-
tonic LSE is minimax optimal over {θ ∈ I : θn − θ1 ≤
V } for a wide range of values of V . In an interest-
ing recent paper [50], the authors characterized the
minimax risk over the class of all monotone vectors
with at most k constant pieces. Their results imply
that the risk (k/n)(log(n/k)) achieved by the isotonic
LSE over this class is only suboptimal by a factor of
(logn)/(log logn) in comparison to the minimax risk.
Minimax lower bounds exist for other shape-restricted
regression problems (see, e.g., [67, 28, 19, 69, 31])
which suggest that the LSE is nearly minimax optimal
but some of these results are not as tight as the cor-
responding results for univariate isotonic regression. It
will be interesting to develop tight minimax results for
other shape-restricted regression problems which will
allow a precise evaluation of the minimaxity properties
of the LSEs.

Estimation of Other Shape Constrained
Regression Functions

In recent years, there has been quite a bit of interest
in studying different shape-restricted regression func-
tions, beyond d = 1. We have already seen a few such
examples in this paper (e.g., Examples 1.2, 1.3 and
1.5). What are other useful shape-restrictions in mul-
tidimension? In the following, we mention a few such
shape constraints (that have many real applications):
(i) unordered weak majorization, (ii) quasiconvexity
and (iii) supermodularity.

Unordered weak majorization. In Example 1.2, we
discussed the problem of estimating an order preserv-
ing regression function (with respect to a partial order).
Robertson et al. [115], Chapter 1, gives a nice overview
of the properties of the LSE in this problem. As an ex-
ample, we introduced a generalization of monotonicity
beyond d = 1, namely, coordinatewise monotonicity.
In the following, we introduce and characterize another
related (and slightly stronger) notion of monotonicity
in multidimensions that is closely tied to the concept
of majorization and Schur convexity (see, e.g., [97]).
We define the unordered weak majorization partial or-
der � as

(u1, . . . , ud) � (v1, . . . , vd) if and only if
i∑

k=1

uk ≤
i∑

k=1

vk for i = 1,2, . . . , d.
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The following result characterizes all functions that
preserve the ordering �.

THEOREM 6.1. Let f :Rd →R be a continuously
differentiable function. Then f preserves the partial
order � if and only if, for any z ∈Rd ,

(50) f(1)(z)≥ f(2)(z)≥ · · · ≥ f(d)(z)≥ 0,

where f(i) denotes the partial derivate of f with re-
spect to the ith coordinate.

The above result shows that in a regression setup if
f can be assumed to obey (50), that is, the influence of
the predictor variables is ordered, LS estimation under
the unordered weak majorization partial order can be
used to estimate f . Constraints like (50) appear quite
often in econometrics; see, for example, [142] and the
references therein.

Quasiconvexity. A function f : Rd → R is quasi-
convex if and only if its sub-level sets Sα(f ) = {u ∈
Rd : f (u) ≤ α} are convex for every α ∈ R; see [21],
Section 3.4. Alternatively, a function f is quasiconvex
if and only if f (αu + (1 − α)v) ≤ max{f (u), f (v)},
for all u, v ∈ Rn, and α ∈ [0,1] (cf. (5)). Quasiconvex
functions extend the notion of unimodality to multidi-
mensions and have applications in mathematical opti-
mization and economics. The computation of f using
the method of least squares is likely to be a nonconvex
problem.

Supermodularity. A function f : Rd → R is su-
permodular if f (u ∨ v) + f (u ∧ v) ≥ f (u) + f (v)

for all u, v ∈ Rd , where u ∨ v and u ∧ v denote the
componentwise maximum and minimum of u and
v, respectively, that is, (u1, . . . , ud) ∨ (v1, . . . , vd) :=
(max{u1, v1}, . . . ,max{ud, vd}) and (u1, . . . , ud) ∧
(v1, . . . , vd) := (min{u1, v1}, . . . ,min{ud, vd}). The
concept of supermodularity is used in the social sci-
ences (economics and game theory). If f is twice con-
tinuously differentiable, then supermodularity is equiv-

alent to the condition ∂2f (u)
∂ui∂uj

≥ 0 for all i �= j ; see, for
example, [125].

In all the above problems, computation of the LSE,
its theoretical properties (consistency, rates of conver-
gence, etc.) are unknown.

Connection to Nonnegative Least Squares

In many shape-restricted regression problems the
LSE θ̂ is defined as the projection of Y onto a closed
convex polyhedral cone C; see Examples 1.1–1.3 and
1.5. As every closed convex polyhedral cone C in Rn

can be represented in terms of its generators (i.e., there
exists a finite subset of C, whose elements are referred
to as generators of C, such that every vector θ ∈ C is a
nonnegative linear combination of the generators; see,
e.g., [117], Corollary 7.1a), θ̂ can be thought of as solv-
ing a nonnegative least squares problem. Moreover, in
the examples mentioned above, C is generated by at
least O(n) vectors (which form the design matrix) that
are highly correlated; see, for example, [101] for the
exact form of the generators of some of the examples
discussed. In fact, for isotonic and convex regression in
d = 1 there are exactly n+ 1 and n+ 2 generators, re-
spectively. However, for their higher dimensional ana-
logues (i.e., d > 1) it is not clear what the generators
are. We think this is an open problem. More generally,
one can ask how does one construct the design matrix
(or the generators) corresponding to any closed convex
polyhedral cone expressed in terms of linear inequali-
ties, for example, C := {θ ∈ Rn : Aθ ≤ 0} where A is
an m × n matrix (m being the number of linear con-
straints) and the “≤” is interpreted coordinatewise.

As the number of generators (or the columns of
the design matrix) is increasing with n, we are essen-
tially solving a “high-dimensional” nonnegative least
squares problem; see, for example, [126]. A general
open question is: Can a theory be developed on the
estimation accuracy of the LSE θ̂ based solely on the
properties of the design matrix? It may be noted here
that the generators can be highly correlated.

Boundary Behavior of Shape-Restricted LSEs

It is well known that the isotonic LSE is inconsistent
at the boundary of the covariate domain, that is, f̂n(0+)

does not consistently estimate f (0+) (see, e.g., [138,
83, 10] for detailed discussions on the properties of the
LSE for a nonincreasing density near 0). Intuitively,
this inconsistency is because there are very few “con-
straints” near the boundary (of the covariates). This
phenomenon is expected to persist for other shape con-
strained LSEs, especially in multidimensional prob-
lems. However, not much is known about the boundary
behavior of these LSEs. Even in one-dimensional con-
vex regression, as far as we are aware, whether f̂n(0+)

is a Op(1) random variable is not known; see [52] for
some results on f̂n(0+) and its derivative (also see [8]).
This has motivated the study of bounded/penalized
shape-restricted LSEs; see, e.g., [34, 140, 82].

Shape-Restricted Single Index Models

Although several smoothing based methods have
been proposed and investigated in single index models
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(see, e.g., [106, 57] and the references therein) to ob-
tain

√
n-consistent and efficient estimators of β∗ (see

[108] for a brief overview of the notion of semipara-
metric efficiency), not much is known for just shape-
restricted single index models. Durot et al. [9] studied
the LSE in a monotone single index model (see (49))
and showed the n1/3-consistency of the LSEs of m and
β∗; also see [106] and [57]. However, many open ques-
tions remain. The limiting distribution of the LSE β̂ of
β∗ is unknown; in fact, it is not known whether β̂ is√

n-consistent.
In a convex single index model (i.e., m is convex),

[82] shows that the Lipschitz constrained convex LSE
(where we minimize the least squares criterion over
the class of all L-Lipschitz convex functions, for L

fixed) yields a semiparametrically efficient estimator
of the index parameter β∗. However, the behavior of
the convex LSE (without the Lipschitz assumption) is
unknown.

As mentioned above, the computation of the shape-
restricted LSEs is nontrivial. Usually an alternating
minimization scheme is used to compute the LSEs.
However, no convergence guarantees (to a local opti-
mum) exist for such an alternating minimization pro-
cedure.
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