
Statistical Science
2018, Vol. 33, No. 3, 358–385
https://doi.org/10.1214/17-STS641
© Institute of Mathematical Statistics, 2018
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Abstract. For decades, national statistical agencies and other data custo-
dians have been publishing frequency tables based on census, survey and
administrative data. In order to protect the confidentiality of individuals rep-
resented in the data, tables based on original data are modified before re-
lease. Recently, in response to user demand for more flexible and responsive
table publication services, frequency table publication schemes have been
augmented with on-line table generating servers such as the US Census Bu-
reau FactFinder and the Australian Bureau of Statistics (ABS) TableBuilder.
These systems allow users to build their own custom tables, and make use of
automated perturbation routines to protect confidentiality. Motivated by the
growing popularity of table generating servers, in this paper we study con-
fidentiality protection for perturbed frequency tables, including the trade-off
with analytical utility, focusing on a version of the ABS TableBuilder as a
concrete example of a data release mechanism, and examining its proper-
ties. Confidentiality protection is assessed in terms of the differential privacy
standard, and this paper can be used as a practical introduction to differential
privacy, to calculations related to its application, to the relationship between
confidentiality protection and utility and to confidentiality in general.

Key words and phrases: Differential privacy, statistical disclosure control,
contingency tables, utility.

1. INTRODUCTION

Sharing data for statistical purposes is increasingly
important. National statistical agencies and other pub-
lic and private institutions collect data from individuals
on economic, health, social and other variables. This
paper focuses on frequency tables, which are the most
common form of releasing data for use by researchers
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and the public. The data custodians are obliged to keep
such information strictly confidential, not sharing or re-
leasing any data in an identifiable form. The potential
for breaches of confidentiality is real; see, for example,
Sweeney (1997), Narayanan and Shmatikov (2008),
Homer et al. (2008), Gymrek et al. (2013). Therefore,
a key constraint on data sharing is the need to pro-
tect the confidentiality of the individuals or other enti-
ties to which the data refer. A canonical confidentiality
protection problem can be formulated as follows. For
given data, denoted D, how can we determine a (pos-
sibly stochastic) transformation M(·), called a pertur-
bation mechanism (or simply mechanism), such that if
M(D) is disseminated then confidentiality will be pro-
tected and also the value of D for statistical analysis,
called utility, will be preserved in M(D)?

A key issue in the development of solutions to this
problem is how to define confidentiality and utility. The
basic idea of utility should be more familiar territory to
statisticians. If the data are being disseminated for sta-
tistical purposes, for example for estimation of various
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parameters, then the reduction in utility arising from
releasing M(D) rather than D might be measured in
terms of increases in the bias and variance of the re-
sulting estimators. For further discussion and a general
framework for evaluating utility, see Karr et al. (2006).
The question of how to measure confidentiality has his-
torically been a more specialised topic in statistics and
has been considered mainly within the field of statisti-
cal disclosure control (SDC), which has developed in
association with a long tradition of data dissemination
practice by government statistical offices (see Duncan,
Elliot and Salazar-Gonzàlez, 2011, Hundepool et al.,
2012, Willenborg and de Waal, 2001).

To protect the confidentiality of individuals in a data
set D, de-identification, that is, removing identifiers
such as names, addresses and identification numbers
from D before its release, is standard. However, this
may not prevent a knowledgeable intruder from obtain-
ing information about individuals in D (O’Keefe and
Chipperfield, 2013). Here is a simple example: let D

represent a t-way frequency table with counts of indi-
viduals having certain combinations of t attributes in
a certain population, or a sample from the population.
Suppose an intruder knows that there is an individual
in the population with a given combination of r of the
attributes for some r < t , and that this individual is the
only one with this combination. If this individual is in
D, and D is released, the intruder can locate the indi-
vidual on the basis of the r known attributes, and then
learn all other t − r attributes.

Although there are measures of disclosure risk that
have been used in practice and studied in the SDC liter-
ature cited above and references therein, all of them are
based on contestable assumptions about an intruder’s
prior knowledge of the data and type of confidentiality
attacks which they might employ. With the evolution of
approaches to data dissemination and the recognition
that protecting confidentiality of respondents is becom-
ing increasingly more difficult in the era of data deluge,
data custodians need to look for stricter definitions of
disclosure risk and a more systematic and quantifiable
approach to protecting confidentiality.

In this paper, we focus on differential privacy
(Dwork et al., 2006) as a way of defining confidential-
ity, measuring confidentiality protection and compar-
ing perturbation mechanisms. Differential privacy has
recently been attracting much attention in the computer
science literature; see, for example, the recent mono-
graph by Dwork and Roth (2014) and its references.
The idea was introduced in a mathematically rigor-
ous framework designed to give a well-defined quan-
tification of the confidentiality protection guarantee.

By employing a “worst-case” approach and avoiding
strong assumptions about which variables are sensi-
tive to disclosure, intruders’ prior knowledge and at-
tack scenarios, differential privacy has the potential
for wide application. This worst-case approach may be
deemed overprotective of confidentiality; for example,
even sufficient statistics which are usually preserved in
SDC approaches need to be perturbed. However, under
differential privacy the worst-case approach is inten-
tional as it is designed to protect against a potentially
sophisticated adversary who may take advantage of a
rare weakness of the release mechanism. Only time
will tell whether differential privacy as a risk measure,
or some of its relaxations, will be generally adopted by
official agencies. In any case, we find it very illuminat-
ing as a framework of thinking about SDC.

Our goal in this paper is to explore and describe
the application of differential privacy under a realistic
and popular dissemination scenario and, on the way,
to provide a practical introduction to differential pri-
vacy for statisticians. We shall focus on the dissemina-
tion of frequency tables in a government statistical set-
ting, where the underlying data D are cross-classified
tables of frequencies. Further, in order to keep our dis-
cussion realistic, where possible we shall model our
system requirements and objectives (but not our pertur-
bation mechanism) on the existing Australian Bureau
of Statistics (ABS) TableBuilder system (Chipperfield,
Gow and Loong, 2016).

We shall derive the results from the theory of differ-
ential privacy that are useful to us in the most direct
ways in order to keep this paper almost self-contained
and, therefore, will not present the theory in full gen-
erality. We shall also present numerical work to assess
the trade-off between confidentiality protection, mea-
sured via differential privacy parameters and utility,
measured in different ways, but taking account of the
kinds of analyses undertaken.

In order to help to put our work in its historical
context, we now give a brief review of disclosure risk
assessment and confidentiality protection methods for
frequency tables; see Duncan et al. (2001), Hundepool
et al. (2012), Shlomo (2007). Disclosure risk assess-
ment typically focuses on small cell counts where in-
dividuals may be identified (identity disclosure) and on
the possibility that information on one classifying vari-
able can be learnt about an individual for whom values
of other classifying variables are known (attribute dis-
closure) (Shlomo, 2007). The occurrence of counts of
one in the table may be treated as a potential problem
of identity disclosure in itself but can also magnify the
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threat of attribute disclosure if a second table is avail-
able cross-classifying these variables with a further
variable, leading to what may be called residual dis-
closure (Fellegi, 1972) or inferential disclosure. Tra-
ditionally, this latter type of disclosure risk was dealt
with by manual control of tables that were released.

There are two main classes of confidentiality protec-
tion methods for frequency tables, namely, pre-tabular
methods that modify microdata before aggregation into
a table, and post-tabular methods that modify a table
directly. Any method for protecting confidentiality in
microdata can be used as a pre-tabular confidential-
ity protection method, including: rounding, suppres-
sion of variables or variable values, variable recod-
ing, sampling, data swapping, perturbation and post-
randomisation methods. Synthetic data (Little, 1993,
Rubin, 1993) methods could also be used (Drechsler,
2012, Drechsler and Reiter, 2011). In this approach, the
original process that generated the microdata is mod-
elled, and synthetic microdata are generated from this
model with a view to preserving the statistical proper-
ties of the implied table.

Post-tabular methods include table redesign, cell
suppression, rounding or addition of noise directly on
the cell counts of the frequency table. Table redesign
typically refers to the combining of categories of clas-
sifying variables but it also includes releasing only
marginal and conditional tables corresponding to sub-
sets of the cross-classifying variables (Fienberg and
Slavković, 2008). Shlomo and Young (2008) devel-
oped a method of post-randomisation directly on cell
counts based on a probability transition matrix which
is related to the differential privacy approach presented
in this paper. Perturbing the entire original data is of-
ten called input perturbation in the differential privacy
literature, whereas perturbing responses to queries is
called output perturbation.

Recently, there has been a growing demand for
flexible on-line table generating servers (Thompson,
Broadfood and Elazar, 2013, Shlomo, Antal and Elliot,
2015). Typically such systems provide a menu-driven
interface for producing confidentiality-protected user-
defined frequency tables of counts. These on-line so-
lutions of table generation increase the risk of infer-
ential disclosure since tables can be manipulated and
differenced, and hence only a few statistical agencies
have developed such systems. The server first assesses
whether a table can be released based on a set of ad
hoc rules, such as thresholds on the population size
and number of small cells, and then implements a con-
fidentiality protection routine to each nonzero cell of

the table prior to its release. With the increased dis-
closure risks, such confidentiality protection typically
involves a perturbative method, such as rounding or ad-
ditive noise to the cell count which leads us to consider
the differential privacy framework.

In the differential privacy framework, a mechanism
M(·) operating on datasets is required to be stochas-
tic, and it is this stochasticity that provides the con-
fidentiality protection, as we shall explain. From the
utility perspective, a common assumption is that statis-
tical analysis will generally be conducted on M(D)

as if it were D itself, (however, see Section 6 and
references therein, showing the risk involved in do-
ing this) and so utility is often measured in terms
of some kind of discrepancy measure between D

and M(D) (Wasserman and Zhou, 2010). Such mea-
sures include the information-theoretic Hellinger’s dis-
tance, and simply average absolute difference per cell
(Gomatam and Karr, 2003, Shlomo, 2007).

It is a property of differential privacy that the con-
fidentiality protection guarantee does not rely on hid-
ing the parameters of the perturbation. This fact is
reminiscent of Kerckhoffs’ principle in cryptography,
that a cryptosystem should be secure even if every-
thing about the system, except the key, is public knowl-
edge (Auguste, 1883) and Shannon’s maxim in infor-
mation theory, that one ought to design systems under
the assumption that the enemy will immediately gain
full familiarity with them (Shannon, 1949). As a conse-
quence, in contrast to common practice in some official
agencies, in the differential privacy framework the full
description of the mechanism M can be made avail-
able along with M(D). The advantage of this practice
is that knowledge of the mechanism allows the user to
take the perturbation distribution into account in their
analysis for data independent algorithms like those ex-
amined here, thereby avoiding potentially misleading
conclusions that might arise from ignoring the pertur-
bations.

Methods for correcting for perturbation have been
considered for microdata on both continuous and cate-
gorical variables (Fuller, 1993, van den Hout and van
der Heijden, 2002) but do not appear to have been con-
sidered for the dissemination of frequency tables. A ba-
sic general idea is that the likelihood for a parametric
model for D may be naturally extended, in principle,
to the likelihood for M(D) and so valid likelihood-
based inference could be conducted (Karwa, Kifer and
Slavković, 2015). This idea will be illustrated in Sec-
tion 6.
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The differential privacy literature distinguishes be-
tween what are called interactive and noninteractive
data dissemination settings. In the interactive setting,
the data custodian agency provides a system interface,
typically on-line, through which users may pose a se-
ries of queries say f1, f2, . . . about a dataset D and
receive a series of confidentiality-protected responses
M1(f1(D)), M2(f2(D)), . . . . The system monitors
the queries, and decides based on the outputs already
released, whether to stop dissemination altogether,
whether to answer the particular query, and if so then
the amount of perturbation to be applied. The interac-
tive setting is flexible and may require smaller pertur-
bations, making the released data more useful. On the
other hand, it requires monitoring of all queries from
all users for the whole time the data in question is in
use, a task that may be too burdensome for most official
agencies. In the noninteractive setting, for a dataset D,
the whole data set is perturbed off-line to produce a
confidentiality-protected dataset M(D). The protected
dataset can be released as a whole, or in parts as re-
sponses to queries that can be answered as functions of
M(D). If only parts of the data are requested, then it
may be possible and efficient for the agency to perturb
only relevant parts of the data.

In this paper, we consider only the noninteractive set-
ting, which is closer to the model table generating sys-
tems of interest to us. Therefore, we assume that the
whole data set is perturbed, and then the whole or re-
quested parts are released.

If the frequency table data D is treated simply as
a set of frequency counts of disjoint cells, then this
is analogous to a histogram with disjoint bins and
is a core field of application of differential privacy
methodology (Dwork et al., 2006, Dwork and Roth,
2014, Wasserman and Zhou, 2010). The extension of
this methodology to handle the case where D also in-
cludes table margins, consisting of sums of cell counts,
and more generally, cells that pertain to overlapping
groups, will be considered in Section 7, along with rel-
evant literature, such as Barak et al. (2007).

The rest of the paper is structured as follows. Sec-
tion 2 presents some features of perturbations for a ta-
ble generating server, which bear resemblance to those
recommended by the ABS TableBuilder system, with
an example table presented in Section 3. Section 4 in-
troduces some aspects of differential privacy theory for
the dissemination of frequency tables. In Section 5, we
define and compare different perturbation mechanisms
and present some results illustrating the trade-off be-
tween disclosure risk and data utility on the example

table from Section 3 and other simulated tables. In Sec-
tion 6, we demonstrate how to carry out correct sta-
tistical inference when the perturbation mechanism is
known to the analyst. In Section 7, we address the issue
of overlapping cells (where two cells overlap if there is
at least one individual appearing in both) and marginal
counts in frequency tables and conclude with Section 8.

2. PERTURBATION OF FREQUENCY TABLES

Frequency tables are important data products in gov-
ernment statistical settings, and recently various dis-
semination schemes in addition to the publication of
pre-specified collections of confidentiality-protected
tables have appeared. One flexible on-line table gen-
erating system is the ABS TableBuilder (Chipperfield,
Gow and Loong, 2016, Fraser and Wooton, 2005,
Thompson, Broadfood and Elazar, 2013). This system
has attracted interest from other agencies in the context
of the protection of census outputs (Andersson, Jans-
son and Kraft, 2015, Jansson, 2012, Longhurst et al.,
2007). While we refer to the requirements and objec-
tives of the TableBuilder system to motivate our as-
sumptions, we do not attempt to replicate its properties
exactly nor do we seek to replicate its confidentiality
protection methods.

We suppose in this paper that the frequency tables
contain population counts, from a census, survey, or
administrative sources. Differential privacy treats the
dissemination of census data and data arising from
samples in the same way. However, in the latter case
other considerations may arise, in particular due to the
fact that when government agencies produce tables of
estimated population counts based on sample survey
data, an estimated cell count is typically the sum of sur-
vey weights across the sample units in the cell. There
are somewhat different considerations in the potential
application of differential privacy ideas to such survey-
based tables and we shall only return to comment on
this possible extension in the final section of the paper.

2.1 Some Terminology and Notation

In this section, we introduce some terminology and
notation. First, we remark on our use of the terms con-
fidentiality and privacy. This paper deals with the con-
fidentiality of data held by a national statistical agency
or other data custodian, as described in the SDC litera-
ture, and we use the term confidentiality in that context.
In the computer science literature, the term differential
privacy is used to mean a particular way of defining a
standard of confidentiality protection, and the term pri-
vacy is used in association with that. To be consistent
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with the differential privacy literature, we will use the
term privacy in the context of the differential privacy
theory.

Consider a data set in the form of a frequency table
or a set of tables, where each cell is defined by val-
ues of a given fixed set of attributes. The collection of
all frequencies that could be released is arranged in a
list a = (a1, . . . , aK) consisting of K cells in some or-
der, where ak denote the frequency in cell k, that is,
the number of individuals taking the attribute values
corresponding to the cell, for k = 1, . . . ,K . The list a
will be released after undergoing a perturbation in or-
der to preserve confidentiality. If, for example, the data
consists of a 10-way table, the list may include all inte-
rior cells, and also some marginal tables, or only some
marginal tables. Marginal tables are computed by ag-
gregating interior cells, and we shall see later why both
marginal and interior cells may be included in the list.
It is thus possible that different cells in a list might re-
fer to overlapping subsets of individuals, that is, some
individuals may appear in more than one cell. A typical
example is a situation where an agency holds a 10-way
table, say, but will release only 3-way marginals, and
the cells of these marginals (unperturbed) will com-
prise the list to be perturbed and released. In this case,
the list a will consist of all K = (10

3

) = 120 three-way
tables formed as marginals of the 10-way table. The
set A of possible or potential lists a = (a1, . . . , aK) is
called the universe and may include lists with differ-
ent values of K . We shall suppose that all elements of
lists in A are nonnegative integers. The universe is de-
termined by the agency’s decision on which parts of
the data are to be released. If the agency knows the
whole population from which the table to be released
is drawn, and the way the data were collected, then the
nature of the universe is clear. If not, then the agency
has to rely on known ranges of the attributes and pos-
sible cell sizes, and perhaps some other information,
when considering the universe. The universe plays a
major role in providing privacy to microdata, and the
case of histograms or tables is much simpler.

We consider a mechanism M(·) on a universe A that
replaces the list a = (a1, . . . , aK) by the perturbed list
to be published M(a) = b = (b1, . . . , bK) containing
perturbed frequencies bk . In this paper, we consider
mechanisms that are random functions. The mecha-
nism can be represented by a conditional probability
distribution, denoted p(a,b), the conditional probabil-
ity that the list a is perturbed to b. In general, we shall
assume that different cells are perturbed independently
and by the same conditional distribution p(ak, bk) for
k = 1, . . . ,K , and then p(a,b) = ∏

k p(ak, bk).

2.2 Some Properties of the ABS TableBuilder

The ABS TableBuilder, which we use as a model for
table generating servers, has been evolving and its de-
scription varies in different papers. Chipperfield, Gow
and Loong (2016) describe a list as a above. In prin-
ciple, all perturbations of a could be applied in ad-
vance, and the whole perturbed list could be released;
however, for efficiency’s sake perturbations may be ap-
plied when users submit queries, using a lookup ta-
ble whose random values are drawn in advance. There
is no monitoring of queries, and from the differential
privacy point of view which holds in this paper, this
is a noninteractive setting. According to Fraser and
Wooton (2005), different cells are perturbed indepen-
dently, unless the cell counts are associated with the
same underlying set of individuals. If two cell counts
do in fact correspond to the same group of individu-
als, then the ABS TableBuilder requires that the per-
turbed value is also the same. In this method, this
“same-participants-same-perturbation” property is im-
plemented in a straightforward manner by attaching
a random key drawn from some continuous distribu-
tion to each individual in the population underlying the
data, and a cell’s key being the sum of the keys of its
members. This cell key is used as a seed for the ran-
dom perturbation mechanism. This guarantees that two
cells based on the same group of individuals will be
perturbed by the same seed to the same value, and in
particular that if a cell is requested by two different
users, they will receive the same perturbed output.

The “same-participants-same-perturbation” property
is aimed at preventing repeated queries on the same
group with independent perturbations, which can be
averaged to reduce the noise, and thus leak informa-
tion. However, as we shall see, the “same-participants-
same-perturbation” property will have to be abandoned
if differential privacy is adopted. We explain it here in-
formally by demonstrating a scenario of confidentiality
breach that results from this principle. As often hap-
pens, the scenario below may seem extreme, but it can
be made to seem more realistic, as can be seen in ex-
amples in Willenborg and de Waal (2001) such as Ta-
ble 6.3 on page 148.

The worst-case approach of differential privacy
avoids having to consider different kinds of scenar-
ios and how realistic they are. Suppose our data D is
about a given group, say workers in a factory, and an
intruder wishes to obtain information about the salary
of a particular person, say Bob, the only worker hired
today. Suppose the following two queries are allowed:
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1, the frequency of workers whose salary exceeds s,
and 2, the frequency of workers whose salary exceeds
s, and who have been working for more than one day.
Suppose the responses (with perturbation) to the two
queries are different. Under the “same-participants-
same-perturbation” principle Bob’s salary must exceed
s, and thus new information was obtained due to Bob’s
participation in D. We will demonstrate the breach of
differential privacy later, after defining it formally in
Section 4.1. In the above scenario, we obtained the in-
formation only because the two groups defined by 1
and 2 above could have been the same (which was not
the case here, since we assumed different responses to
the two queries). This is one indication why the uni-
verse A must be taken into account, and not just the
realised data or list.

This breach can be avoided if two queries with dif-
ferent descriptions as shown in 1 and 2 above are
perturbed independently, and the principle is modified
to “same-participants and description-same-perturba-
tion”. A similar scenario appears in Chipperfield, Gow
and Loong (2016), leading them to the above modifica-
tion of the principle. However, this modification opens
the possibility of submitting queries for the same group
in different ways, and averaging to cancel the perturba-
tion noise. It may perhaps be possible to circumvent the
whole problem, and in particular such an averaging at-
tack, by setting rules on the structure of the list a and
queries’ formulations which prevent the possibility of
referring to the same group in different ways. An exam-
ple of such a rule is a restriction on the structure with
respect to sparseness, for example, the number of zeros
(and sometimes also ones and twos) that may cause a
margin to equal an internal cell.

Some additional properties of a protection method
for a frequency table dissemination server that are sim-
ilar to those of the ABS TableBuilder are set out below.
The first three properties address disclosure risk con-
cerns, via either avoiding small cells, such as counts of
one, and setting a criterion to minimize risk for given
utility. The remaining five properties address utility, via
being broadly concerned with either preserving impor-
tant features of the original table or reducing differ-
ences between the original and perturbed tables.

1. The perturbation does not produce values below a
specified threshold, that is, p(ak, bk) = 0 if bk ≤ c for
a specified value c > 0, for any value of ak .

2. The distribution of bk given ak has maximal en-
tropy subject to constraints on the range and variance
of the perturbation.

3. Sparse tables according to given thresholds are
not published.

4. The perturbed frequencies are nonnegative inte-
gers, that is, bk ≥ 0.

5. Structural zeros, that is, counts of attribute com-
binations that are impossible to observe in the popula-
tion, are not perturbed.

6. The perturbations are unbiased, that is, the ex-
pected value of bk given ak equals ak .

7. The variance of bk given ak is constrained not to
exceed a given value.

8. The distribution of bk given ak is truncated by
imposing a bound on |bk − ak|, the absolute difference
between the perturbed and original values.

We remark that these properties are not all consis-
tent, for example, properties 4 and 6 are generally con-
tradictory. As discussed later, some of these properties,
such as 1, 2 and 4 above, may not be advantageous un-
der the differential privacy framework. They may well
be justifiable if other risk measures are considered.

3. EXAMPLE OF FREQUENCY TABLE

In order to provide a realistic example, we selected
the following variables used in data from the 2001 cen-
sus in the United Kingdom (UK):

• NUTS2 Region—11 regions,
• Gender—2 categories,
• Age in banded 5-year age groups—21 categories,
• Current Employment Status—5 categories,
• Occupation—12 categories,
• Educational attainment—9 categories,
• Country of birth—5 categories.

Here, the NUTS (Nomenclature of Territorial Units for
Statistics) is a hierarchical system for dividing up the
economic territory of the European Union and NUTS2
comprises basic regions for the application of regional
policies, defined for the purpose of socio-economic
analyses. We generated a 7-way frequency table by
multiplying each of the UK 2001 census proportions
by N = 1,500,000 to obtain a table that mimics a real
population of size N .

In Table 1, we present a realistic example of a sub-
table of the 7-way frequency table that might be re-
quested by a user. The sub-table is defined by fixing
NUTS2 Region = 1 and Country of birth = rest of Eu-
rope, and requesting a 2-way frequency table of counts
for occupation, and age groups from 15 to 74.

Table 1 has some small cells, that normally have high
associated disclosure risks. We will use this table (in
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TABLE 1
Typical user-specified sub-table of a larger frequency table (interior cells only) for NUTS2 Region = 1 and Country of birth = rest of

Europe. The variables of interest are Age in banded 5-year groups from 15 to 74, and Occupation classified as one of A, . . . ,K

Occupation

Age group A B C D E F G H I J K

15–19 2 2 8 7 31 0 7 2 20 0 80
20–24 55 68 110 54 134 0 23 13 138 2 129
25–29 115 147 132 78 83 0 19 15 45 0 18
30–34 191 129 127 89 68 0 18 8 33 4 10
35–39 153 113 119 74 49 1 34 15 44 4 9
40–44 102 70 78 70 43 1 20 21 24 3 8
45–49 94 65 55 72 47 2 29 16 36 4 14
50–54 92 81 75 80 65 1 43 17 36 1 8
55–59 74 51 56 64 72 2 49 21 67 2 13
60–64 63 41 40 70 53 3 22 22 56 4 59
65–69 12 5 7 3 12 0 6 4 8 2 287
70–74 4 4 1 5 4 0 2 1 4 0 307

addition to some simulated tables) later, in order to il-
lustrate the implementation of our confidentiality pro-
tection approach.

4. DIFFERENTIAL PRIVACY FOR
FREQUENCY TABLES

4.1 Basic Ideas and Definitions

We review the basic definitions of differential pri-
vacy associated with releasing data sets consisting of
lists of counts. As indicated in Section 1, privacy loss
occurs when an intruder can learn from the perturbed
list M(a) about an individual contributing to the origi-
nal list a. We consider a randomized mechanism M(a)

that produces a random value b, the perturbed value of
a, with probability P(M(a) = b) depending only on
the mechanism M. Roughly speaking, differential pri-
vacy requires that the distribution of M(a) remains al-
most unchanged when any single individual is removed
from the list a. This guarantees that a user of M(a)

cannot infer the presence of any particular individual in
the data set and, therefore, nothing can be learnt about
any individual. We denote the range of the perturba-
tion of a ∈ A by B(a), that is, B(a) = {b : P(M(a) =
b) > 0}. Then B(a) ⊆ B, the range of M, and when
B(a) does not depend on a, we have B(a) = B. In this
paper, A = B is assumed, that is, the perturbed list of
frequencies has the same structure as the original one.
For lists a, a′, we write a ∼ a′ and refer to a and a′ as
neighbours, if a′ can be obtained from a by adding or
removing exactly one individual.

We may measure how much can be learnt about
individuals by the likelihood ratios P(M(a) = b)/

P(M(a′) = b) for a ∼ a′. It is the ratio of the intruder’s
likelihoods for observed b under a or a′ considered
as parameters. The use of likelihood ratios to measure
how much can be learnt about individuals after their
data are perturbed by a randomized mechanism may
be viewed as a generalization of the method of ran-
domized response proposed by Warner (1965) to pro-
tect the privacy of a respondent’s answer in a survey.
The likelihood ratio could alternatively be viewed as a
posterior odds ratio, or Bayes factor, from a Bayesian
perspective (Berger, 1985).

Placing a bound on this likelihood ratio motivates the
definition of ε-differential privacy, which we denote by
DP(ε). We specialise the definition to lists as follows.

DEFINITION 1 (Dwork et al., 2006). A mechanism
M satisfies ε-differential privacy if for all neighbour-
ing lists a, a′ in A, and all subsets S ⊆ Range(M) = B,
we have

(4.1) P
(
M(a) ∈ S

) ≤ eε
P

(
M

(
a′) ∈ S

)
.

Since in our setting Range(M) is discrete, we can
use the simpler condition that M satisfies ε-differential
privacy if for all neighbouring lists a, a′, and all lists b
we have

(4.2) P
(
M(a) = b

) ≤ eε
P

(
M

(
a′) = b

)
.

As the neighbourhood relation is symmetric, we can
equivalently say that the mechanism M satisfies ε-
differential privacy if for all perturbed lists b and
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neighbouring a and a′

(4.3) e−ε ≤ P
(
M(a) = b

)
/P

(
M

(
a′) = b

) ≤ eε.

For small ε, this guarantees that the distribution of
the released data is not affected by the data of a sin-
gle participant in the data set and, therefore, he can
feel safe that his participation and his particular pro-
file is not reflected in the released data. In the words
of Dwork (2006), “A mechanism satisfying this defini-
tion addresses concerns that any participant might have
about the leakage of her personal information: even if
the participant removed her data from the data set, no
outputs (and thus consequences of outputs) would be-
come significantly more or less likely”.

If there is a very large or small value of the ra-
tio P(M(a) = b)/P(M(a′) = b) for given a ∼ a′ and
some observed b, then a typical, albeit extreme sce-
nario for a confidentiality breach is the following: sup-
pose an intruder knows the whole original unperturbed
list except for one targeted individual. Suppose the in-
truder wants to know on the basis of M(a) whether
the targeted individual is in the given list a and if so,
in which cell. Denoting the known (to the intruder) list
without the target by a∗, the intruder computes the dis-
tribution of all M(a′

k) where a′
k is the list a∗ with the

targeted individual added to cell k in the list. Note that
the intruder is computing the distribution of the output
of M on lists that are known to him. Under DP(ε) with
a small ε, all these distributions will be approximately
the same, making inference on whether and where the
target is in D difficult. Otherwise, an output M(a) that
is very likely if a = a′

k suggests that the targeted indi-
vidual is in cell k, and his privacy is violated.

Note that “all S” in the DP(ε) definition refers to all
possible subsets S of B. Thus, the definition does not
only refer to the realised outcome b observed by the
intruder but rather to all possible outcomes of the per-
turbation in B. In this sense, DP(ε) can be viewed as
a “worst-case” requirement, and the definition refers to
the mechanism and is applicable at the stage of design-
ing the mechanism before the perturbation has taken
place.

We briefly discuss the example of Bob from the sec-
ond paragraph of Section 2.2. We consider a mech-
anism with nondegenerate independent perturbations
for cells representing different sets of individuals, and
satisfying the principle of “same-participants-same-
perturbation”. Consider the list a containing cells that
contain Bob, and let a1 be the frequency of workers
whose salary exceeds s, and a2 the frequency of work-
ers whose salary exceeds s, and who have been work-
ing for more than one day, so it differs from a1. Let

b = M(a) where the coordinates of b correspond to
the perturbed coordinates of a. Since the groups per-
taining to a1 and a2 are different, the latter frequen-
cies are perturbed independently, and as we obviously
consider nondegenerate perturbations, it is easy to see
that P(b1 	= b2) > 0. Let a′ represent the same list apart
from Bob, and set b′ = M(a′). Then the corresponding
cells satisfy a′

1 = a′
2 and the “same-participants-same-

perturbation” principle implies P(b′
1 	= b′

2) = 0. For the
set S = {b : b1 	= b2}, we see that (4.1) does not hold,
and differential privacy does not hold for any ε.

As we shall discuss, a key challenge with the dif-
ferential privacy requirement is the possible effect on
utility. We introduce two relaxations of differential pri-
vacy that seek to reduce confidentiality protection in a
controlled way, in order to gain utility. Both of these
relaxations will be used later in the paper.

The most widely known relaxation of the definition
of differential privacy for M, which may result in en-
hanced utility, is (ε, δ)-differential privacy, or DP(ε, δ)

(Dwork and Roth, 2014, Definition 2.4), under which

(4.4) P
(
M(a) ∈ S

) ≤ eε
P

(
M

(
a′) ∈ S

) + δ

for all subsets S of the range of M and neighbouring a
and a′ in A. The parameter δ adds flexibility by allow-
ing the randomly perturbed list to have a probability of
δ of having an undesirable likelihood ratio with associ-
ated higher disclosure risk. Clearly, DP(ε,0) = DP(ε).
An alternative relaxation of DP(ε) requires the like-
lihood ratio to be bounded by eε , as in (4.1), across
a set of possible outcomes with probability at least
1 − δ. As a definition, (ε, δ)-probabilistic differential
privacy is satisfied if P(M(a) ∈ G(a,a′)) > 1 − δ for
all a ∼ a′ ∈ A, where

G = G
(
a,a′)

= {
b ∈ B(a) :
P

(
M(a) = b

)
/P

(
M

(
a′) = b

) ≤ eε},
(4.5)

and 0/0 is defined to be 0. Closely related definitions
can be found in Gotz et al. (2012), Machanavajjhala
et al. (2008). We give the proof of the following lemma
for completeness, since it will be used later in the pa-
per.

LEMMA 1 (Gotz et al., 2012). If a mechanism M
satisfies (ε, δ)-probabilistic differential privacy, then it
also satisfies DP(ε, δ).

PROOF. Suppose M satisfies (ε, δ)-probabilistic
differential privacy, and let C denote the complement
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of G in B(a). For a subset S of the range of M and for
neighbouring lists a ∼ a′, we have

P
(
M(a) ∈ S

) = ∑
b∈S∩G

P
(
M(a) = b

)

+ ∑
b∈S∩C

P
(
M(a) = b

)

≤ ∑
b∈S∩G

eε
P

(
M

(
a′) = b

)

+ ∑
b∈S∩C

P
(
M(a) = b

)

≤ eε
P

(
M

(
a′) ∈ S

) + δ,

where the first inequality follows from the definition of
the set G and the second from the definition of (ε, δ)-
probabilistic differential privacy. �

In the differential privacy literature, it is stated that
δ should be smaller than 1/N where N is the total
number of individuals in the protected data (Dwork
and Roth, 2014). The reason is that if δ = 1/N then a
mechanism that chooses one individual at random and
just releases her data without any perturbation, would
satisfy DP(ε, δ) for any ε. Releasing the data of a sin-
gle individual is indeed inappropriate, but a realistic
perturbation mechanism, even with δ > 1/N , would
not really enable this. Indeed, δ > 1/N means that the
probability that the likelihood ratio of (4.3) will be out-
side the defined desirable interval is larger than 1/N .
If this happens, then testing whether the data set in
question is a or a neighbouring a′ may have a higher
power than we would like, but that does not necessarily
amount to releasing the unperturbed data of some indi-
vidual. Extending this reasoning to the need to avoid
releasing the records of a small number of database
participants, typically it is desirable to have the value
of δ smaller than the inverse of any polynomial in the
size of the database (Dwork and Roth, 2014, page 18).
See Steinke and Ullman (2016) for consideration of
some utility implications of reducing the value of δ.
Another implication of (4.4) is that with probability δ,
the whole data set may be released unperturbed. This
can be considered a drawback in the definition (4.4) of
DP(ε, δ), suggesting that δ should be small, and again,
the DP(ε, δ) mechanisms described in this paper never
release the whole unperturbed data set.

We refer to ε and δ as the DP parameters. The choice
of their values should take into account a balance be-
tween confidentiality and utility, and perhaps the sen-
sitivity of the information in data; for example, certain

health variables may be much more sensitive to disclo-
sure than, say, height and weight, and sensitive vari-
ables may require more protection, reflected by smaller
DP parameters. Values like ε = 0.1 and δ = 0 guaran-
tee a likelihood ratio of e0.1 = 1.1 making it very hard
to tell whether a particular individual is in the data set.
However, it seems that in practice, larger values of the
parameters will be required if we are to preserve the
data utility. In some settings, the data custodian may
consider that it is sufficient for the mechanism to en-
sure that no adversary could have more than limited
evidence that a target individual’s data is in the dataset.
Evett et al. (2000) propose verbal summaries of ranges
of values of a likelihood ratio, in particular interpret-
ing values between 1 and 10 as “limited evidence”.
A threshold of 10 for the likelihood ratio, implying a
value of ε of ln(10) = 2.3, would therefore ensure that
such an objective is met, that is, that no adversary could
have more than limited evidence that a target individ-
ual’s data is in the dataset.

Machanavajjhala et al. (2008) consider data on com-
muting patterns of the population of the United States.
In their experiments, they use δ = 0.00001 and ε > 4,
which seem rather large. The Netflix dataset is consid-
ered by McSherry and Mironov (2009), where for ap-
plication of the Laplace mechanism ε is chosen to be of
the order of 1, and δ is zero. In all cases, the selection
of ε (or δ) is a policy decision, not a statistical decision.
However, policy makers are not experienced in choos-
ing DP parameters in practical contexts, which points
to the need for additional research. Our view regarding
DP parameters is that even in cases where they are not
small enough to guarantee privacy at a desirable level
due to a compromise with utility, they are still useful in
comparing different perturbation schemes and select-
ing an efficient one.

Recall that two lists a and a′ in A are neighbours
if a′ can be obtained from a by adding or removing a
single individual. Given a universe A, let d denote the
maximum number of cells in which two neighbours, a
and a′ can differ. If each individual appears only in a
single cell, then d = 1, as one cell frequency decreases
by one when an individual is removed from the cell,
and increases by one if an individual is added to the
cell. The number d will play a role in utility computa-
tion (see Section 7) with a larger d leading to smaller
utility. Other than in Section 7, we assume throughout
that d = 1, which occurs, for example, if the data to
be released consist of the interior cells of a standard
frequency table.
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Since the presence of an individual in a data set is
unlikely to be inferred under small DP parameters, par-
ticipation in any past or future data set is unlikely to in-
crease the individual’s risk. In other words, the data en-
vironment in which the perturbed data set is released is
irrelevant to the confidentiality guarantees under differ-
entially private release with small parameters. On the
other hand, if an intruder can learn certain attributes of
an individual with high probability, he can later try to
use these attributes to find the individual in other data
sets and obtain further information about them. In this
case, the environment may matter, and if individuals
in the data set appear in other data sets, past or future,
the risk may increase. If the DP parameters of differ-
ent perturbation schemes are not small, and they are
used for comparing confidentiality protection in differ-
ent data sets, one has to take the environments into ac-
count, and compare only files which have similar en-
vironments. In this paper, we focus on using the DP
parameters to compare different perturbation mecha-
nisms operating on the same file, thus avoiding this ad-
ditional issue.

4.2 Utility/Loss Functions and the Exponential
Mechanism

As mentioned above, differential privacy is defined
as a property of a mechanism. Various candidates
for differentially private mechanisms M(·) have been
proposed in the literature; see, for example, Dwork
and Roth (2014). We shall consider some alterna-
tive choices that might be suitable for implementa-
tion in table-generating servers, specifically those that
are cases of the general “exponential mechanism”
(McSherry and Talwar, 2007). Informally, the expo-
nential mechanism is defined with respect to some util-
ity function u which assigns a utility score to possible
perturbed values so that the mechanism is more likely
to produce values with higher utility scores (see Dwork
and Roth, 2014).

The exponential mechanism includes the perturba-
tion mechanisms which we shall apply in the remain-
der of this paper. The approach starts by specifying a
utility function u(a,b), measuring the utility of the per-
turbed list b given the original list a. Following Dwork
and Roth (2014), we shall generally consider additive
utility functions of the form u(a,b) = ∑K

k=1 v(ak, bk).
As we shall see, this additive form enables us to specify
a mechanism which ensures that the K cells in the list
are perturbed independently. Statisticians are familiar
with loss functions, so we start with examples of those,

and then transform them to utilities by a sign change.
The loss functions we shall use are

�1 = �1(a,b) =
K∑

k=1

|ak − bk|,

�2 = �2(a,b) =
K∑

k=1

(ak − bk)
2,

�3 = �3(a,b) =
K∑

k=1

|√ak − √
bk|.

The utility functions considered in this paper are ui =
−�i for i = 1,2,3.

As loss functions, �1 and �2 are natural and standard.
The loss �3 is reminiscent of Hellinger distance. It has
the intuitively appealing property that the loss varies
with the size of the perturbed cell: for example, the
same loss of 2 is incurred by perturbing 0 to 4, 100
to 144 and 10,000 to 10,404. This is in contrast to �1
for which the perturbation from 10,000 to 10,404 has a
higher loss. Although as a loss function �3 seems very
reasonable, and we use it to demonstrate some points,
we shall see that it does not turn out to be very use-
ful in practice when using the exponential mechanism
for protecting frequency tables. Note that the Hellinger
distance, (

∑K
k=1(

√
ak − √

bk)
2)1/2, proposed as a loss

function in Shlomo (2007), is not of an additive form.
To describe the exponential mechanism, consider

mechanisms where the range of b, denoted by B as be-
fore, does not depend on a, that is, every b ∈ B satisfies
P(M(a) = b) > 0 for all a. This assumption will be
modified later. The exponential mechanism is defined
by

(4.6)
given a choose b ∈ B with probability

proportional to eηu(a,b)/�u,

where η is a specified value, depending on the DP pa-
rameter ε, and the scale factor �u is

(4.7) �u = max
b∈B max

a∼a′∈A
∣∣u(a,b) − u

(
a′,b

)∣∣.
It is easy to see that this mechanism attaches higher

probability to perturbed lists which have higher utility.
In this paper, we consider only additive utility func-
tions of the form u(a,b) = ∑K

k=1 v(ak, bk), and the
case where the K cells in the list are perturbed inde-
pendently and the probability that list a is perturbed to
b is

P(a,b) =
K∏

k=1

p(ak, bk) ∝
K∏

k=1

eηv(ak,bk)/�u

= eηu(a,b)/�u,
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where p(ak, bk) is the probability of a cell of size ak

being perturbed to bk . Independent perturbations are
simple to apply and to analyse, and we focus on such
perturbations in order to keep the discussion within the
framework of the ABS TableBuilder. We provide some
references on dependent perturbations in Section 7. For
example, implementation of the method proposed in Li
et al. (2015) requires additional work from the releas-
ing agency and/or the data user, which may be pro-
hibitive in practice. Moreover, in Section 6 we dis-
cuss data analysis that takes the perturbations into ac-
count, assuming their distribution is known. Such an
analysis, which is usually nontrivial, is facilitated by
the assumption of independent perturbations and may
become too complex otherwise. However, independent
perturbations may have a negative effect on utility. For
example, if one cell in the list to be perturbed con-
sists of a marginal count, that is, the sum of some
other cells, then this additive relationship will gener-
ally not hold after independent perturbations have been
applied.

A key property of the exponential mechanism is that
DP(ε) holds for a suitable η depending on ε in a simple
way. The following result is Theorem 3.10 in Dwork
and Roth (2014), where the proof is given. We mention
again that in Theorem 4.1 we assume that the range of
M(a), denoted by B, does not depend on a. This result
shows that under any such exponential mechanism we
obtain DP(ε) by choosing η = ε/2.

THEOREM 4.1. Let u be a utility function and M
a perturbation mechanism such that P(M(a) = b) is
proportional to eεu(a,b)/2�u for all possible lists a ∈ A
and perturbed lists b ∈ B. Then M is DP(ε).

PROOF. For a,a′ ∈ A and b ∈ B, we have

P(M(a) = b)

P(M(a′) = b)

=
{

eεu(a,b)/2�u∑
b∈B eεu(a,b)/2�u

}/{
eεu(a′,b)/2�u∑

b∈B eεu(a′,b)/2�u

}

=
{

eεu(a,b)/2�u

eεu(a′,b)/2�u

}{∑
b∈B eεu(a′,b)/2�u∑
b∈B eεu(a,b)/2�u

}

≤ eε.

Using |u(a,b) − u(a′,b)| ≤ �u, it is easy to see that
each of the two terms in the latter product is bounded
by eε/2, and the result follows. �

Recalling that d denotes the maximum number of
cells in which two neighbours, a and a′ can differ, con-

sider, for example, the case that all cells pertain to dis-
joint sets of individuals, as in a standard frequency ta-
ble and, therefore, d = 1. As shown in Section 5, we
have for u1 and u2, as defined above, �u1 = �u1 = 1
and with perturbations truncated by m we have �u2 =
2m + 1. Therefore, apart from the assumption that
d = 1, the exponential mechanism under these ui does
not depend on the structure of the data list, such as the
cell sizes and the number of cells. This holds for any d

with a suitable adjustment of �ui .

4.3 Truncated Cell Perturbations

Recall from Section 2.2 that it can be desirable in
terms of increased utility to truncate cell perturbations
by setting |ak − bk| ≤ m for some m, for all k. In this
case, the range of M(a), denoted by B(a), will de-
pend on a. Theorem 4.2, a variant of Theorem 4.1,
demonstrates that the increased utility provided by the
truncation is achieved at the cost of relaxing DP(ε) to
DP(ε, δ) with δ > 0 depending on the truncation bound
m and the utility function u. With an additional as-
sumption on the utility u in Theorem 4.2, which holds
for the examples considered in this paper, the exponent
is not divided by 2 (η = ε rather than ε/2 as in The-
orem 4.1) implying a smaller spread of the perturba-
tion in addition to the truncation by m. Consistent with
these adjustments, the definition (4.7) is replaced by

(4.8)
�u = �u(a)

= max
b∈B(a′)

max
a∼a′∈A

∣∣u(a,b) − u
(
a′,b

)∣∣.
Note that (4.7) is a special case of (4.8) where for all a
we have B(a) = B.

THEOREM 4.2. Let u be a utility function of the
form u(a,b) = g(a − b) for some g, and M a per-
turbation mechanism such that P(M(a) = b) is pro-
portional to eεu(a,b)/�u for all possible lists a ∈ A and
perturbed lists b such that |ak − bk| ≤ m ≤ ∞ for all
k, and otherwise P(M(a) = b) = 0, and �u is given in
(4.8). Assume also that for all a ∼ a′, P(M(a′) = b) =
0 implies P(M(a) = b) < δ. Then M is DP(ε, δ), with
δ = 0 when m = ∞.

PROOF. Let a ∼ a′ be neighbouring lists and let
b ∈ Range(M). Clearly, we can assume b ∈ B(a) as
otherwise P(M(a) = b) = 0 and (4.9) holds trivially.
If P(M(a′) = b) = 0, then P(M(a) = b) < δ so that
P(M(a) = b) ≤ eε

P(M(a′) = b) + δ as required. If
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P(M(a′) = b) > 0, then

P(M(a) = b)

P(M(a′) = b)

=
{

eεu(a,b)/�u∑
b eεu(a,b)/�u

}/{
eεu(a′,b)/�u∑
b eεu(a′,b)/�u

}

= eεu(a,b)/�u

eεu(a′,b)/�u
≤ eε,

(4.9)

where the second equality follows from the fact that
the two sums in the denominators cancel since∑

b:|b−a|≤m ecg(b−a) = ∑m
z=−m ecg(z) does not depend

on a, and the last inequality follows from |u(a,b) −
u(a′,b)| ≤ �u. Thus M(a) = b ∈ G(a,a′), where
G(a,a′) is defined in (4.5). It follows that P(M(a) ∈
G(a,a′)) > 1 − δ, and the result follows from
Lemma 1. �

We now demonstrate the calculation of the value δ

when applying Theorem 4.2. Suppose we wish to im-
pose a bound m on |b − a|, the difference between the
perturbed and original value so that p(a, b) = 0 for
|b − a| > m. Here and in all our applications, we as-
sume also that p(a, b) > 0 for |b − a| ≤ m. For neigh-
bouring a, a′, P(M(a′) = b) = 0 and P(M(a) = b) >

0 occurs when the value in a particular cell, say j , of
a is a + 1 and that of a′ is a, and all other cells of a,
a′ are equal. We have p(a + 1, a + 1 + m) > 0 and
p(a, a + 1 + m) = 0 and, therefore, if cell j of b has
the value a + 1 + m then P(M(a′) = b) = 0. With a
similar argument for p(a, a −m), we claim that the ex-
ponential mechanism of Theorem 4.2 is DP(ε, δ), with

(4.10)

δ = max
{
max

a
p(a + 1, a + 1 + m),

max
a

p(a, a − m)
}

= p(m),

where the p(m) = p(a, a +m), the probability that the
perturbation takes its maximal value m, which for the
symmetric utilities we consider equals the probability
of −m. In fact, in the above case, if a, a′ differ as above
in cell j , and bj = aj + 1 + m, then

(4.11) P(a,b) ≤ δ
∏
k 	=j

p(ak, bk) ≤ δ.

Thus for any such b we have P(M(a) = b) < δ as re-
quired in the theorem. Note that there may be a consid-
erable slack in the second inequality of (4.11), imply-
ing that the δ parameter in differential privacy could be
much better, that is, smaller than stated.

4.4 Post-Processing and Negative Perturbed
Values

In general, agencies will be reluctant to disseminate
perturbed tables with negative frequencies. However,
as our brief discussion below shows, this policy should
be reconsidered if differential privacy is to be adopted.
Our proofs of DP allow negative values, but as we shall
see, the same DP level continues to hold if all nega-
tive values are replaced by zeros. We show below that
negative values may be useful and informative in vari-
ous ways and that information may be lost by replacing
negative values by zero.

If the perturbations are unbounded, as in Theo-
rem 4.1, then M(a) may have negative cells for any
a depending on the utility u. This is the case for
our main examples, u1 and u2 under the exponential
mechanism. If the perturbations are truncated by m as
in Theorem 4.2, then cells with a < m may be per-
turbed to a negative b. Negative values are required to
achieve unbiasedness of the perturbed data. Unbiased-
ness is clearly desirable on its own, and when comput-
ing marginals as sums of perturbed interior cells, un-
biasedness implies that the perturbation would cancel
rather than accumulate. Therefore, it seems reasonable
to allow release of negative values, and advise users to
consider replacing them by zeros at a suitable stage of
their analysis, for example after computing marginals
or merged cells from interior cells.

However, if publishing data with negative perturbed
frequencies is not acceptable for some reason, the data
releasing agency can just report all negative values as
zeros. This will effectively replace the perturbed value
b by a value closer to the original count a since counts
obviously satisfy a ≥ 0. More generally, if for some
reason an agency wishes the released entries of the
list to satisfy some constraints such as b ≥ c for some
c, it can replace all smaller values by c. Such post-
processing preserves differential privacy; see Proposi-
tion 2.1 in Dwork and Roth (2014). To see this in the
current context, let M(·) be a DP(ε, δ) mechanism and
let f be any function not depending on the unperturbed
data, such as the function that maps negative values to
zero. Then f (M(·)) is DP(ε, δ), since

P
(
f

(
M(a)

) ∈ S
) = P

(
M(a) ∈ f −1(S)

)
≤ eε

P
(
M

(
a′) ∈ f −1(S)

) + δ

= eε
P

(
f

(
M

(
a′)) ∈ S

) + δ.

Another common post-processing step performed on
perturbed tables is the application of an algorithm to
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ensure that each marginal cell value equals the sum of
the corresponding cell values. This would occur if the
marginal cell value is perturbed separately from the in-
ternal cell values (see Section 7). Such post-processing
after a DP perturbation would not affect the differential
privacy property of the table.

4.5 Zero Cells

Structural zeros are cells representing combinations
of attributes that are known to be impossible and have
an expected value of zero, for example, in Table 1, chil-
dren under the age of 14 are not in the labour force.
There is no need to publish them since their value of
zero is known a priori, and hence there is no need to
perturb them if published. We shall simply assume that
our lists do not contain structural zeros.

In the case of nonstructural zeros, there may be an
impression that such zero cells do not constitute a dis-
closure risk, since an empty cell cannot reveal infor-
mation about anyone. However, consider the follow-
ing scenario: suppose the intruder wishes to know the
health status of a targeted individual, who lives in a
certain area and is in a known age group. Suppose the
intruder knows that excluding the targeted individual,
there is no individual having the given disease in this
area and age group. If nonstructural zeros are not per-
turbed, and if the targeted individual does not have the
disease then the corresponding cell would be empty in
the released data. Observing a zero in this cell, the in-
truder can conclude that the targeted individual does
not have the disease. This is reflected in differential
privacy as follows. Consider only the cell in question,
as if this is the whole list. If zeros are not perturbed,
then P(M(0) = 1) = 0 while P(M(1) = 1) > 0. Tak-
ing S = {1} in (4.4), we can have P(M(1) = 1) ≤
eε
P(M(0) = 1) + δ only with δ = P(M(1) = 1), and

in general there is no reason for this value to be small.
Note that neighbouring lists can differ in the above way
in a given cell.

Therefore, we conclude that nonstructural zeros
should be perturbed. Constraining the perturbed values
to be nonnegative can introduce statistical bias. Unless
p(0,0) = 1, there is a positive bias, and p(0,0) = 1
implies that zeros are not perturbed. It is straight-
forward to verify that DP(ε) cannot be satisfied if
p(0,1) = 0 and p(1,1) > 0. On the other hand, if
we relax to DP(ε, δ) then we need a condition such as
p(1,1) ≤ δ which seems very undesirable for small δ.
Thus differential privacy and unbiasedness are contra-
dictory, unless release of negative values is allowed.

4.6 Summary of Implications of the Structural
Constraints Discussed

The implications of the three different types of struc-
tural constraints considered in this section are summa-
rized as follows.

First, it may be desirable to truncate the cell pertur-
bations, as in Section 4.3. However, the increase in util-
ity provided by the truncation is achieved at the cost
of relaxing the confidentiality protection standard from
DP(ε) to DP(ε, δ), where δ > 0 depends on the trunca-
tion bound m and the utility function u.

As described in Section 4.5, structural zeros need not
be published, and hence do not need to be perturbed.
We have demonstrated that nonstructural zeros may be
informative to intruders and, therefore, must be per-
turbed.

Finally, consider the treatment of cells that become
negative after perturbation, as in Section 4.4. Such neg-
ative values should be released since they may be in-
formative, and replacing them by zeros will introduce
bias. Users should be advised to consider replacing
them by zeros at a suitable stage of their analysis.

5. EXAMPLES OF EXPONENTIAL
PERTURBATION MECHANISMS

In this section, we study in more detail three spe-
cial cases of the general exponential mechanism intro-
duced in Section 4.2. We discuss the nature of these
mechanisms, compare their differential privacy proper-
ties and illustrate numerically the utility consequences
of the different choices of differential privacy parame-
ters. The three special cases are easy to explain and im-
plement in practice. For an alternative “optimal” per-
turbation mechanism that may perform better than the
Laplace and Gaussian mechanisms, but is more com-
plex, see Geng and Viswanath (2016).

5.1 Laplace Perturbations

Corresponding to �1 in Section 4.2, we have the util-
ity function u1 = u1(a,b) = −∑K

k=1 |ak −bk|. We first
consider perturbation without truncation. To construct
an exponential mechanism as in equation (4.6), we
need to determine �u1. Assume for now that each indi-
vidual appears in the list only in one cell and, therefore,
when one individual is removed or added relative to the
list, only one cell count changes by 1. This assumption
will be removed later. In terms of d defined above as
the maximal number of cells in which two neighbours,
a and a′ can differ, we have d = 1. It follows readily
that �u1 = 1. We remark that the maximum appearing
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in (4.7) is attained in the case of �u1 for all a, a′, b so
here the worst case is typical. This is one explanation
why the exponential mechanism constructed from u1 is
very efficient for frequency tables.

Under this choice of utility function, the exponential
mechanism becomes a discretised Laplace perturba-
tion distribution, or a symmetric geometric distribution
having probability p(a, b) of perturbing a cell count a

to b given by

(5.1)
p(a, b) = 1

C
e−ε|b−a|,

a = 0,1, . . . , b = 0,±1,±2, . . . ,

where the normalizing constant is C = ∑∞
k=−∞ e−εk =

1 + 2e−ε/(1 − e−ε). Theorem 4.2 implies DP(ε).
Clearly, one can view this perturbation as adding to

each cell count a an independent random variable X

satisfying P(X = x) = 1
C

e−ε|x| for all integers x, so the
perturbed cell is a + X. More generally, it is easy to see
that any of the perturbations based on the exponential
mechanism and additive utilities such as the above ui ,
i = 1,2,3, results in adding to the data counts noise
which is statistically independent of the data, and its
distribution does not depend on the data and their dis-
tribution, as pointed out at the end of Section 4.2. In the
case of u1, the added noise has the Laplace distribution,
and in the case of u2, the normal, both discretised.

We can impose truncation of the type |ak − bk| ≤
m as above to improve utility, and the conditions of
Theorem 4.2 hold. In this case, we have

(5.2)
p(a, b) = 1

Cm

e−ε|b−a|

for b satisfying − m ≤ |b − a| ≤ m,

where Cm = ∑m
k=−m e−ε|k| = 1 + 2(e−ε − e−(m+1)ε)/

(1 − e−ε). In this case, it follows from (4.10) that
δ = e−εm/Cm and by Theorem 4.2 we obtain DP(ε, δ).
Again, negative perturbed values can be replaced by
zero, maintaining the same level of differential privacy.
For ε = 1 and m = 10, we obtain δ = 0.00002 and for
ε = 0.5 and m = 10, δ = 0.0016. It is readily seen that
δ decreases in m for each ε, so in terms of the differen-
tial privacy parameters the larger m the better.

A strong universal optimality property of the dis-
crete Laplace (two-sided geometric) perturbation for
the case of perturbing a single cell appears in Ghosh,
Roughgarden and Sundararajan (2012). They show that
without truncation, the Laplace perturbation of a single
cell is optimal relative to a wide class of loss functions
that includes the ones we consider, provided some post

processing of the kind we do, for example, replacing
negative outputs by zero, is performed. More specif-
ically, they show that Laplace with DP(ε) minimizes
Eb[∑a �(a, b)] = ∑

a
∑

b P(M(a = b)�(a, b) among
all DP(ε) mechanisms having the same range, provided
�(a, b) is nonnegative and nondecreasing in |a − b| for
all a, the frequency in the single cell. This was fol-
lowed by Brenner and Nissim (2010) where it is shown
such universality does not extend beyond a single cell
and, therefore, does not apply for tables as in this pa-
per. Still, the Laplace perturbation seems to be a very
efficient choice, better than the normal perturbations of
the next section, in the sense of providing higher utility
for a given DP level, as indicated also by our simula-
tions and those of Liu (2017).

5.2 Normal Perturbations

As a further example of the exponential mechanism,
consider the utility function u2. We show below that
without truncation we have �u2 = ∞. Therefore, in
order to determine a finite �u2, we truncate the pertur-
bations by m so that |ak −bk| ≤ m for all k. This forces
us to consider DP(ε, δ) with δ > 0.

Making the same assumption as in the previous sec-
tion that d = 1, we have �u2 = 2m + 1, since in
cells that differ between neighbouring lists we have
(a + 1 − b)2 − (a − b)2 = 2(a − b) + 1 and likewise if
+1 is replaced by −1. Clearly, �u2 can be finite only
if m is finite. The probability p(a, b) is now given by
the proportionality relation

(5.3)
p(a, b) = 1

Dm

e−ε(b−a)2/(2m+1)

for b satisfying |b − a| ≤ m,

where Dm = ∑m
k=−m e−εk2/(2m+1). This is a discretised

and truncated normal normal distribution. Theorem 4.2
guarantees DP(ε, δ) with δ = e−εm2/(2m+1)/Dm. For
ε = 1 (ε = 0.5) and m = 10, we have δ = 0.001 (δ =
0.008).

5.3 Maximum Entropy Perturbation

One of the desiderata of frequency table dissemina-
tion mechanisms noted in Section 2.2 is that the distri-
bution of the perturbations has maximum entropy, sub-
ject to the range and first two moments (see Andersson,
Jansson and Kraft, 2015, Marley and Leaver, 2011).
This may be intuitively appealing, and if one takes the
variance of the perturbation as being indicative of its
confidentiality protection performance, then maximum
entropy subject to variance makes sense, although we
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are not aware of a formal statement regarding its ad-
vantage.

The normal distribution is well known to have max-
imum entropy subject to a given variance and range
on the real line. Numerical calculations show that a
discretised version as used above has approximately
maximum entropy. An exact calculation of the discrete
maximum entropy perturbation distribution subject to
variance and range constraint requires a calculation us-
ing Lagrange multipliers. The Laplace distribution has
a similar characterization, if the range and expecta-
tions are prescribed. In fact, the principle of maximum
entropy in statistics goes back to Laplace. Again the
discrete version inherits an approximate maximum en-
tropy property; see, for example, Cover and Thomas
(2006), Chapter 12, for a discussion of maximum en-
tropy distributions. The fact that Laplace perturbations
seem to perform better than Normal, suggests that the
ABS TableBuiler principle of maximum entropy sub-
ject to variance should be reconsidered.

5.4 Hellinger-Type Perturbations

Turning to the utility function u3 = u3(a,b) =
−∑K

k=1 |√ak − √
bk|, easy calculations show that

�u3 = 1, assuming again that d = 1. However, in this
case the maximum in (4.7) is attained in the extreme
case of small a, a′ due to the concavity of

√
x, so here

the worst case is not typical unless all cells are very
small. In other words, for large cells, the value of �u

in the exponential mechanism is too large, making the
inequalities in the proof of Theorem 4.1 crude and,
therefore, leading to over-perturbation and loss of util-
ity. For the exponential mechanism with u3, we have

(5.4) p(a, b) ∝ e−ε|√b−√
a|/2, a, b = 0,1, . . . ,

and Theorem 4.1 implies DP(ε).
Although the loss function �3 that corresponds to u3

has very attractive properties, the worst-case aspect ex-
plained above implies that as a perturbation mechanism
the scheme defined in (5.4) performs very poorly in
terms of data utility. It is a somewhat interesting lesson
that a loss function that appears so natural leads to a
poor mechanism.

5.5 Comparisons of Perturbation Mechanisms

Since small cells are considered to be particularly
risky, we first compare the utility of the Laplace and
Normal perturbations for a given DP level, when neg-
ative values are replaced by zero (and, therefore, the
resulting perturbation depends on the original value).
In Table 2, we calculate the probability of obtaining a
perturbed value in an interval range of ±0 to ±4 of
the original value, when the original values are 0 to 5
and over, ε = 1.5 and ε = 0.5. In order to compare the
two perturbation mechanisms, we fix the value of δ for
each ε. For ε = 1.5 and δ = 0.00002, Laplace perturba-
tions are truncated at m = 7 and Normal perturbations
are truncated at m = 12. For ε = 0.5 and δ = 0.008,

TABLE 2
Probability of range for Laplace and Normal perturbations with negative values replaced by zero

Range for ε = 1.5 and δ = 0.00002 Range for ε = 0.5 and δ = 0.008

Original value ±0 ±1 ±2 ±3 ±4 ±0 ±1 ±2 ±3 ±4

Laplace m = 7 Laplace m = 7

0 0.82 0.96 0.99 1.00 1.00 0.63 0.78 0.87 0.93 0.96
1 0.64 0.96 0.99 1.00 1.00 0.25 0.78 0.87 0.93 0.96
2 0.64 0.92 0.99 1.00 1.00 0.25 0.55 0.87 0.93 0.96
3 0.64 0.92 0.98 1.00 1.00 0.25 0.55 0.74 0.93 0.96
4 0.64 0.92 0.98 1.00 1.00 0.25 0.55 0.74 0.85 0.96
≥5 0.64 0.92 0.98 1.00 1.00 0.25 0.55 0.74 0.85 0.92

Normal m = 12 Normal m = 10

0 0.57 0.70 0.81 0.89 0.94 0.54 0.63 0.71 0.78 0.84
1 0.14 0.70 0.81 0.89 0.94 0.09 0.63 0.71 0.78 0.84
2 0.14 0.40 0.81 0.89 0.94 0.09 0.26 0.71 0.78 0.84
3 0.14 0.40 0.62 0.89 0.94 0.09 0.26 0.42 0.78 0.84
4 0.14 0.40 0.62 0.78 0.94 0.09 0.26 0.42 0.57 0.84
≥5 0.14 0.40 0.62 0.78 0.88 0.09 0.26 0.42 0.57 0.69
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Laplace perturbations are truncated at m = 7 and Nor-
mal perturbations are truncated at m = 10. The choice
of the above parameters for the purpose of this intro-
ductory article is somewhat arbitrary, as our goal is
to demonstrate how perturbation mechanisms can be
compared and not to provide a comprehensive study.
However, we chose values which demonstrate well the
privacy utility balance and may be considered reason-
able choices.

From Table 2, it is clear that the Laplace perturba-
tions are smaller (in probability), and thus have higher
utility under differential privacy with the given ε and δ.
These results are consistent with those in Liu (2017).
All perturbed values are within ±3 for ε = 1.5 and
δ = 0.00002 and over 92% of the perturbed values are
within ±4 for ε = 0.5 and δ = 0.008. The correspond-
ing probabilities for the normal perturbations are be-
tween 6% and 25% lower. Note that replacing all neg-
ative perturbed values by zero impacts on the perturba-
tion ranges when a zero is included in the interval.

A similar calculation for Hellinger-type perturba-
tions shows that they are considerably worse than the
other perturbation mechanisms, and the probabilities
are very small compared to those in Table 2. Therefore,
we will not include the Hellinger-type perturbations in
further analyses.

5.6 Risk-Utility Analysis

5.6.1 Utility of the Laplace and normal perturba-
tions. We begin by presenting some expressions for
the expected loss under these mechanisms. Beginning
with Laplace perturbation and setting α = e−ε , we
have

E
(|b − a|) =

m∑
k=−m

|m|e−εk

= 2α
(
mα(m+1) − (m + 1)αm + 1

)
/Cm(α − 1)2,

where Cm is defined in (5.2). Letting m → ∞, we ob-
tain for the untruncated case, E(|b − a|) = e−ε/C ·
(e−ε −1)2 with C = 1+2e−ε/(1− e−ε). If we replace
negative outputs by zero, the loss improves.

Turning to normal perturbations, we have

E
(|b − a|2) =

m∑
k=−m

|m|2e−εk2/(2m+1)/Dm,

where Dm is defined after (5.3). Again, if we replace
negative outputs by zero, this utility improves.

5.6.2 Risk-utility plots. In this section, we shall
present risk-utility plots for the real Table 1 and for
additional two-way tables that were generated assum-
ing independence of the two attributes, in order to
assess the impact of the perturbation mechanisms on
statistical inference. Risk is measured in terms of
the value of ε, from ε = 0.1 to ε = 3.0, for both
the Laplace and Normal perturbations. The trunca-
tion of m is fixed at m = 7 for the Laplace perturba-
tions and allowed to vary for the Normal perturba-
tions to ensure the same value of δ for each ε. For
ε = 0.1,0.5,1.0,1.5,2.0,3.0, the corresponding val-
ues of m for the Normal perturbations are 8, 10, 12,
12, 13, 14, respectively. Utility is measured using the
loss functions �1, �2 and �3 defined in Section 4.2 as
well as by the accuracy of the Cramér’s V-statistic and
the associated p-value for the Chi-square test for inde-
pendence.

Figure 1 presents results of applying perturbations
to Table 1. For each ε, the table was perturbed 100
times in order to produce the box plots. The real table is
highly dependent, and hence p-values (not shown) for
testing independence were close to zero for the origi-
nal table and all perturbations and the inference did not
change. The true value of Cramér’s V is represented by
the horizontal line and we can see that under both per-
turbation mechanisms, the inter-quartile range of the
statistic is less than 0.005. The three loss functions are
also included in Figure 1 where the smaller the value,
the higher the utility. It is clear that utility improves as ε

increases. In all cases, the Laplace perturbations show
higher utility and in fact out-performs the Normal per-
turbations even for the �2 loss function which defines
the exponential mechanism for Normal perturbations.

In order to assess the impact of the perturbations on
statistical inference when testing for independence on
the perturbed data as if they were true data, we gen-
erated two tables having two independent attributes,
both with a population size of N = 10,000, a large
table with 1000 cells (average cell size of 10) and a
small table with 100 cells (average cell size of 100).
The marginal probabilities of the tables were gener-
ated by the Dirichlet distribution. From the marginal
probabilities, we define the internal probabilities under
the assumption of independence pij = pi.p.j . Finally,
we generated the counts in the table by random draws
from Mult(N,pij ). We carried out 100 perturbations
on each table and under each ε for the Laplace and
Normal perturbations using the same settings of m as
described above to ensure equal δ.
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FIG. 1. Values of Cramér’s V and three loss functions over 100 perturbation repetitions for each ε for Table 1.
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Figures 2 and 3 show the risk-utility plots for the
two tables. The horizontal lines for the p-value and
Cramér’s V-statistic show the true values obtained from
the original tables. We see that utility improves as ε in-
creases and the Laplace perturbations out-perform the
Normal perturbations as expected by now. Under both
perturbation mechanisms we rarely change the infer-
ence from independence to dependence for the small
table (with large counts) but this is not the case for
the large table (with small counts). For the latter ta-
ble under the Normal perturbations, we are unable to
obtain correct inference for any of the ε whilst under
the Laplace perturbations we would need ε over 2.0
in order not to reject independence. For the Cramér’s
V-statistic the Normal perturbations in the large table
show greater discrepancies than the small table, and
compared to the Laplace perturbations. The three loss
functions are also shown in the figures for comparison.

6. DATA ANALYSIS TAKING THE PERTURBATION
DISTRIBUTION INTO ACCOUNT

Poisson and multinomial distributions of counts and
log-linear models are standard in the analysis of fre-
quency tables; see, for example, Bishop, Fienberg and
Holland (1975), Section 3.2 for a classical reference.
Under such models, with additive perturbations having
a known distribution, it is natural for the data user to
test hypotheses using the model and the perturbation
distribution. The example of testing independence in
Section 6.1 shows how this can be done with a valid
significance level and a power that varies with the DP
parameters. On the other hand, it is shown here and in
Figures 2 and 3 that applying a standard (“naïve”) Chi-
square test to the data as if it were not perturbed may
lead to a very wrong level of significance, and hence
to wrong conclusions, even when the sample sizes are
such that standard asymptotic theory (with no pertur-
bations) applies. Unfortunately, since agencies release
perturbed tables which have an appearance similar to
that of the original table (and this is why the agency
may avoid releasing negative cells, e.g.), it is tempt-
ing to ignore the perturbations and analyze the released
data “naïvely”. A further example of a goodness-of-fit
test for a single binary attribute is given in Section 6.2.

Uhler, Slavković and Fienberg (2013) and Fienberg,
Rinaldo and Yang (2010) have shown that perturba-
tions can lead to unreliable conclusions in the analy-
sis of tables if their presence is ignored, and proposed
methods to overcome this problem. Methods of im-
proving the performance of tests of independence in

two-way tables under such perturbation have been pro-
posed by Wang, Lee and Kifer (2017). Karwa, Kifer
and Slavković (2015) considered working with the true
likelihood as we shall do, but they consider that in
most cases the likelihood is intractable and that ap-
proximate computational methods are needed. Karwa
et al. (2016) develop a likelihood-based approach to in-
ference for a particular model of an undirected graph.
Charest (2010) suggests a Bayesian approach that ac-
counts for the effects of additive noise on inferences in
the context of differential privacy. This area seems to
be open to further research.

6.1 Testing for Independence

Consider an r × c frequency table a that is to be
released with truncated Laplace perturbation Lij ap-
plied independently to each cell, where −m ≤ Lij ≤
m. Assume that the table consists of independent
Poisson(μij ) entries, a standard model in frequency
table analysis. Specifically, we assume that the data a
consists of a table of independent Poisson(μij ) entries.
With additive Laplace noise [see the comment in the
paragraph following (5.1)] the released table is X =
a + L where L is a r × c matrix of truncated indepen-
dent Laplace variables. Independence of the attributes
amounts to the hypothesis H0 : logμij = η + αi + βj .

The standard Chi-square or the asymptotically equiv-
alent likelihood ratio test remain correct asymptotically
when applied “naïvely” to the table with perturbations,
when the counts of the original tables increase to infin-
ity (and as pointed out in Sections 4.2 and 5.1 above,
the noise distribution remains the same). However, as
pointed out in Wang, Lee and Kifer (2017) and refer-
ences therein “the p-values produced by this method
are extremely biased and will often lead to false con-
clusions”. In particular, using a standard test and ignor-
ing the noise in finite samples may lead to tests with a
much higher significance level than could be claimed
by asymptotic theory. The simulations below show that
this is indeed the case, and here we discuss a very natu-
ral approach: to compute the likelihood ratio test taking
the perturbation distribution into account. Our simula-
tions show that in this case the asymptotic distribution
leads to a correct significance level, and that the tests
have a reasonable power for certain DP parameters,
close to that of the standard tests on the original data
under reasonable conditions (depending of course on
the data, and the noise parameters).

Our goal is to test the above H0, taking the perturba-
tion distribution into account. The likelihood ratio test
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FIG. 2. p-values, Cramér’s V and three loss functions over 100 perturbation repetitions for each ε for the small independent table (average
cell size = 100).
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FIG. 3. p-values, Cramér’s V, and three loss functions over 100 perturbation repetitions for each ε for the large independent table (average
cell size = 10).
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statistic is the ratio of two maximized likelihoods

(6.1) max
μij

LX
({μij })/ max

logμij=η+αi+βj

LX
({μij }),

where apart from a constant the likelihood LX({μij })
is defined by

(6.2)

LX
({μij })

= ∏
ij

min{xij ,m}∑
�ij=−m

Pμij
(xij − �ij )e

−ε|�ij |,

and Pμ(x) = e−μ μx

x! is the Poisson probability that
arises from the model on the data; also, xij are the
entries of the released perturbed table, and e−ε|�ij | the
(unnormalized) Laplace probabilities. In the numerator
of the likelihood ratio statistic (6.1), the max is over
all μij , and in the denominator we need to maximize
the function of (6.2) over the parameters η, αi and βj ,
where we set

logμij = η + αi + βj and α1 = β1 = 0.

For our example, we generate 10 × 10 tables, so we
have 19 parameters to estimate. The maximization was
done numerically using SAS procedure NLP. We first
generated 1000 10×10 tables under H0 with αi and βj

drawn each time from the Uniform(−0.5,0.5) distribu-
tion, and η = 4, and then added to each table indepen-
dent Laplace noise with ε = 0.1 or 0.5 with truncation
between −m and m for m = 10 and 7. The values of

δ are obtained from formulas of Section 5.1 leading to
DP(ε, δ). The average cell size was about 50, which is
not a small sample.

We also generated 1000 10 × 10 tables where the
attributes are dependent, using the Poisson model
with μij = η + αi + βj + 0.7γij where also γij ∼
Uniform(−0.5,0.5). The results for both independent
and dependent attributes are presented in Table 3,
where “Original” refers to applying a standard likeli-
hood ratio test to the unperturbed table, “Naïve” stands
for applying the same likelihood ratio test to the per-
turbed data and ignoring the perturbations and “LR
test” is the likelihood ratio test of (6.1) that takes the
perturbation distribution into account.

Out of 1000 repetitions for each set of parameter
values, the table provides the percentage of test statis-
tics whose p-value according to the (asymptotic) Chi-
square distribution with 81 degrees of freedom is below
0.05. For example, for independent attributes, ε = 0.1
and m = 10 the Original gave exactly 5% below criti-
cal value so here the asymptotic significance level was
attained perfectly by the simulations. The naïve test
showed almost 87% below 0.05, meaning that its level
of significance is about 0.87, which is extremely high,
rendering this test very unreliable for the given sample
size. The LR test of (6.1) showed a level of significance
of 3%, suggesting that the approach that takes the per-
turbation distribution into account is reliable with the
present sample size. The power of the test on the un-
perturbed data under the dependence model we chose

TABLE 3
Simulation results for testing independence

Mean (S.E.) Mean (S.E.)

% p-value ≤
0.05

% p-value ≤
0.05Table type Parameters Test statistic p-value Parameters Test statistic p-value

Independent Original ε = 0.1 5.0 81.6 (0.395) 0.487 (0.009) ε = 0.1 6.0 81.7 (0.423) 0.487 (0.009)
Attributes Naïve m = 10 86.7 124.5 (0.616) 0.027 (0.002) m = 7 53.3 105.1 (0.524) 0.123 (0.006)

LR test δ = 0.0283 3.0 78.6 (0.388) 0.555 (0.009) δ = 0.0470 4.0 80.1 (0.400) 0.521 (0.009)

Dependent Original 79.3 118.8 (0.587) 0.044 (0.003) 87.3 124.8 (0.620) 0.027 (0.003)
Attributes Naïve 99.6 162.1 (0.792) 0.001 (0.000) 98.3 149.2 (0.742) 0.004 (0.001)

LR test 51.0 103.6 (0.526) 0.140 (0.006) 73.3 114.5 (0.583) 0.066 (0.004)

Independent Original ε = 0.5 5.8 81.7 (0.414) 0.485 (0.009) ε = 0.5 4.7 81.4 (0.395) 0.485 (0.009)
Attributes Naïve m = 10 25.4 92.9 (0.476) 0.274 (0.008) m = 7 18.7 90.8 (0.435) 0.299 (0.008)

LR test δ = 0.0017 6.9 82.5 (0.419) 0.467 (0.009) δ = 0.0076 5.3 82.0 (0.391) 0.473 (0.009)

Dependent Original 82.1 118.3 (0.551) 0.041 (0.003) 81.3 119.6 (0.591) 0.040 (0.003)
Attributes Naïve 91.3 129.3 (0.601) 0.017 (0.002) 91.0 128.6 (0.627) 0.018 (0.002)

LR test 76.3 114.8 (0.532) 0.054 (0.004) 76.9 116.2 (0.567) 0.051 (0.003)
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was 79% whereas the LR test had a smaller power of
51% showing that the perturbations reduce the power.
When changing ε to 0.5, the significance level of the
naïve test was 0.25 which is still unreliable. The LR
test had a significance level of 0.058, and the power
was 0.76, very close to that of the original unperturbed
data of 0.82.

Clearly, more extensive simulations and theoretical
study is required; however, from these and related sim-
ulations not presented here we conclude that when the
sample sizes are such that the standard asymptotic the-
ory applies for unperturbed data, it also applied to the
proposed LR test of (6.1) in determining the correct
significance level. However, the naïve test that applies
standard theory and ignores perturbations is useless un-
less the sample size is very large. Simulations show,
for example, that with ε = 0.1, m = 10, and an average
count of about 400 per cell, the naïve test still has a
significance level of about 0.12, rather than the asymp-
totic value of 0.05, while the LR test achieved a level
of about 0.05.

6.2 Testing Goodness-of-Fit for a Binomial
Distribution

Consider a list consisting of a single cell, with a =
a1, a1 ∼ Binomial(N,p) and N known. If a1 is the
number of individuals having a certain property, then
�u1 = 1. The perturbed data released is X = a1 + L,
where L is a Laplace perturbation truncated by m as in
(5.2). The likelihood of an observation X is a function
of p:

Lx(p) = P(X = x) = P(a1 = x − L)

=
min{x,m}∑

�=max{−m,x−N}

(
N

x − �

)
px−�(1 − p)N−x+�

· e−ε|�|∑m
k=−m e−ε|k| .

The likelihood ratio statistic for the goodness-of-fit of
the parameter value p0 given X = x is

max
p

Lx(p)/Lx(p0),

and we reject H0 : p = p0 if the statistic is large.
Figure 4 shows histograms of 500 values of 2 ·

log(likelihood ratio) statistic obtained by simulation
when the data comes from p = 0.5 and we test H0 :
p = 0.5 and H0 : p = 0.7, with N = 80 and for the per-
turbation we have ε = 0.5 and m = 5. In this case, the
formulas below (5.2) show that δ = 0.02 so we have
DP(0.5,0.02). The plot on the left of Figure 4 shows
that for testing H0 : p = 0.5 the statistic values are
mostly small, and when testing H0 : p = 0.7, the plot
on the right shows that most values of the statistic are
large, and H0 : p = 0.5 is rejected. For numerical rea-
sons, if twice the likelihood ratio exceeded 50, it was
set as 50.

Of the 500 values for testing H0 : p = 0.5, 95% are
below the (empirical) critical point of c = 3.36. This
should be compared with the critical value of 3.84 for
the Chi-square with df = 1 asymptotic distribution. For
testing H0 : p = 0.7, the proportion of statistics out of
the simulated 500 that are above c = 3.36 is 0.95. Thus
the power of our test, at level of significance α = 0.05
is 0.95, whereas the power of the same test without the
Laplace noise is 0.96. The added noise did not reduce

FIG. 4. Histogram of 500 2 log(likelihood ratio) tests when N = 80, p = 0.5, ε = 0.5 and H0 : p = 0.5 (left), and H0 : p = 0.7 (right) is
tested.
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the power by much in the present case. If one uses the
asymptotic critical value of 3.84, rather than the empir-
ical 3.36, the empirical power and level of significance
change very little, implying that the asymptotic theory
of the likelihood ratio statistic applies at this sample
size.

For m = 10 with other parameters as above, we ob-
tain c = 3.82, the empirical power for testing H0 : p =
0.7 with α = 0.05 is 0.92, and δ = 0.00166 as can be
seen from Table 3. Thus, allowing a larger perturbation
range, that is ±10 rather than ±5, improves (reduces)
δ, at the cost of some reduction in the power of the test.

From the histograms (for m = 5), one can obtain
the power of the test for any given significance level
by choosing a point on the x-axis and looking at the
percentage of values below the point in the left his-
togram (level of significance) and above in the right
one (power). A comparison to the case of no noise
shows that the loss of power is not very significant,
and the left histogram resembles a Chi-square distri-
bution with 1 degree of freedom, to which it converges
with N .

7. COMPLEX LISTS WITH OVERLAPPING CELLS

In this section, we deal with lists in which an indi-
vidual may appear in more than one cell. This arises,
for example, if the list includes margins as well as in-
terior cells in a multi-way frequency table, or when the
list contains several tables drawn from the same popu-
lation or overlapping populations. Margins (perturbed)
can be computed by summing perturbed interior cells,
however, such aggregation results in a standard devia-
tion (SD) that becomes larger with the number of sum-
mands. If some marginal cells are of special interest,
the agency can release them with their own perturba-
tion, which may have a smaller SD than that obtained
by aggregation. Overlapping cells affect the number d

of cells in which two neighbouring lists can differ. For
example, if the list consists of a t-way table and all its
marginal tables except for the total which is almost al-
ways known, then it is easy to see that each individual
appears in 2t −1 cells and, therefore, two neighbouring
lists can differ in d = 2t − 1 cells.

An attractive property in the release of nonoverlap-
ping cell counts using the perturbations schemes of this
paper is that if DP(ε) holds for each cell, when per-
turbed independently, then DP(ε) also holds for the
whole table, irrespective of the number of cells in the
table. To see this, note that when cells are nonoverlap-
ping, removing or adding an individual affect only one

cell and, therefore, d and �ui are determined by a sin-
gle cell. This is no longer the case for overlapping cells,
when achieving DP(ε) for the whole table will, gener-
ally, require greater noise for each entry in the table,
with the amount of required noise increasing with d .
We now focus on the case where the list a includes
both interior cells and some margins so that d ≥ 2,
and Laplace perturbation is applied to the whole list.
We have �u1 = d and the exponential mechanism will
now perturb according to p(a, b) ∝ e−ε|b−a|/d , which
is equivalent to replacing ε by ε/d , in order to obtain
DP(ε). For large d , this results in large perturbations
and reduced utility. In fact, the discrete Laplace per-
turbation distribution of (5.1) with ε replaced by ε/d

has SD approximately
√

2d/ε, which will apply to all
released cells.

In this section, we shall consider various ways of
“spending” a privacy budget of ε if DP(ε) is to hold
for the whole table. Given our focus on the scenario
of an official agency implementing an online flexible
table generator, we shall only consider straightforward
and practical approaches of applying Laplace pertur-
bation independently to the table entries, with possi-
bly varying levels of noise applied to different parts
of the table. There is further literature on algorithms
which do enable reduced levels of noise to be applied
for a given privacy budget by perturbing the interior
cells and margins in dependent ways, using the fact
that the margins are linear combinations of the inte-
rior cells. Several such proposed algorithms are exam-
ples of a matrix mechanism (Li et al., 2015). Barak
et al. (2007) is an early example, where the perturba-
tion is applied to a transformation of the list using a
Fourier basis. Hay et al. (2016) find that the multiplica-
tive weights exponential mechanism of Hardt, Ligett
and McSherry (2012) out-performed a number of in-
stances of the matrix mechanism, although this algo-
rithm produces synthetic rather than perturbed tables.
Gaboardi et al. (2016) propose a related Dual Query
approach for practical applications with high dimen-
sional tables. We shall not pursue such alternative op-
tions here, however, due to our focus on flexible table
generators. A further potential concern that we shall
consider in the perturbation of overlapping cells is that
the released table may be inconsistent in the sense that
the perturbed margins do not coincide with the relevant
sums of the perturbed interior cells, though they will
generally be close. In further literature on algorithms
which perturb overlapping cells in dependent ways, it
is found that the objectives of consistency and reduced
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levels of noise need not conflict and can be achieved
jointly (Barak et al., 2007, Hay et al., 2010).

Consider a t-way table where each of its t attributes
has C categories, say, and the user computes marginals
by summing over interior cells. In this case, consis-
tency of interior cells and marginals is obvious and
each cell in a k-dimensional marginal table is obtained
as the sum of Ct−k frequencies. If only interior cells
are released, then d = 1, and if each cell is perturbed
by Laplace noise with a given ε [see (5.1)], we have
DP(ε) and the perturbations have a SD close to

√
2/ε.

In this case, the standard deviation of the sum of the
perturbations in a k-dimensional marginal table will
be proportional to

√
2Ct−k/ε. Consider a 4-way ta-

ble with C = 10, for example. If only interior cells
are perturbed, then d = 1 and the perturbation SD in
each cell is

√
2/ε. Suppose now that the agency re-

leases all 2-dimensional marginal tables. If they are
obtained by summing perturbed interior cells, the SD
of the perturbation for each cell of a 2-dimensional
marginal is proportional to

√
2C2/ε = √

2 · 102/ε ≈
14/ε. If only 2-dimensional marginal are perturbed,
then it is easy to see that d = 6 and the SD of each
cell in these marginals is

√
2d/ε = √

26/ε = 8.5/ε.
If all cells and marginals are perturbed and released,
then d = 24 − 1 and then the perturbation SD in
each released cell, including cells of 2-dimensional
marginals is

√
2d/ε = √

2(24 − 1)/ε ≈ 21/ε, so for
such marginals the scheme that perturbs only inte-
rior cells is preferable to perturbing all cells in the
sense of having a smaller SD, and the smallest SD is
achieved by perturbing only 2-dimensional marginals.
When considering the release of a table, the importance
of some marginals relative to others and interior cells
should be considered when deciding on the perturba-
tion scheme, and in many situations, perturbing only
interior cells, and letting users compute marginals from
those perturbed cells, is efficient.

It may also be useful to perturb interior cells and
different marginal tables with different values of ε,
depending on the importance of these marginals. We
can allow smaller perturbation for some marginals and
compensate by larger perturbations in others. In this
case, we consider several mechanisms Mi for i =
1, . . . , k and apply them on the same data, and release
(M1, . . . ,Mk)(a) := (M1(a), . . . ,Mk(a)) which is
known in the differential privacy literature as composi-
tion. To assess whether such schemes satisfy differen-
tial privacy, the composition Theorem 3.16 in Dwork
and Roth (2014) is relevant. We bring a proof in order
to keep the paper as self-contained as possible.

THEOREM 7.1. Let Mi be independent DP(εi, δi)

mechanisms for i = 1, . . . , k. Then (M1, . . . ,Mk) is
DP(

∑k
i=1 εi,

∑k
i=1 δi).

PROOF. It suffices to consider k = 2, and then pro-
ceed by induction. Let the ranges of Mi be Bi for
i = 1,2 and S = S1 × S2 ⊆ B := B1 × B2 and denote
S1(s2) = {s1 : (s1, s2) ∈ S}. Below, the first inequality
uses the differential privacy property of M1 and the
second uses (c + δ) ∧ 1 ≤ c ∧ 1 + δ. The third inequal-
ity uses the differential privacy property of M2 and the
last one and the first equality are obvious. We have

P
((
M1(a),M2(a)

) ∈ S
)

= ∑
s2∈S2

P
(
M1(a) ∈ S1(s2)

)
P

(
M2(a) = s2

)

≤ ∑
s2∈S2

[{
eε1P

(
M1

(
a′) ∈ S1(s2)

) + δ1
} ∧ 1

]

· P(
M2(a) = s2

)
≤ ∑

s2∈S2

[{
eε
P

(
M1

(
a′) ∈ S1(s2)

)} ∧ 1
]

· P(
M2(a) = s2

) + δ1

≤ ∑
s2∈S2

[{
eε1P

(
M1

(
a′) ∈ S1(s2)

)} ∧ 1
]

· [
eε2P

(
M2

(
a′) = s2

) + δ2
] + δ1

≤ eε1+ε2P
((
M1

(
a′),M2

(
a′)) ∈ S

) + δ1 + δ2. �
Theorem 3.20 in Dwork and Roth (2014) provides

a more advanced composition result, where instead
of obtaining DP(kε) when composing k mechanisms
with DP(ε), as in Theorem 7.1, a composition with
DP(ε′, δ) is obtained with ε′ of order

√
kε but with

constants depending on δ that make it useful only for
rather large values of k. Other more sophisticated com-
position results can be found in Dwork, Rothblum and
Vadhan (2010), Dwork and Rothblum (2016), Abadi
et al. (2016), Kairouz, Oh and Viswanath (2017).

As an example consider now a 3-way table {Xijk},
and suppose we wish to perturb independently all inte-
rior cells and marginals. In this case, the list a consists
of 7 tables:(

{Xijk},
{∑

i

Xijk

}
,

{∑
j

Xijk

}
,

{∑
k

Xijk

}
,

{∑
ij

Xijk

}
,

{∑
ik

Xijk

}
,

{∑
jk

Xijk

})
.

For the whole list a, we have d = 23 − 1 = 7, and we
can apply (5.1) with ε replaced by ε/7 to obtain DP(ε).
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Alternatively, we can apply Theorem 7.1. Each of the
above 7 tables has d = 1, and if we apply a Laplace
perturbation with ε/7 for each of the 7 tables of the
above a, we naturally obtain again DP(ε).

However, one can release the r th table of a with
DP(εr), r = 1, . . . ,7, using the corresponding Laplace
perturbation, and by Theorem 7.1, the whole list will be
released with DP(

∑7
i=1 εi). Suppose we expect users to

be more interested in 2-dimensional tables, and less in
others. For example, if the attributes are Income, Ed-
ucation and Ethnicity, then it may be that the releas-
ing agency or the data users consider Ethnicity to be
of lesser importance, and the important table might be
Income by Education, and the table of interior cells,
so that one can see the Income by Education table for
each fixed Ethnicity. In this case, {Xijk} and {∑k Xijk}
could be released with DP(ε/3), say, and the other 5
tables with DP(ε/15). The latter tables may be quite
perturbed, much more than the important ones, and the
whole release will satisfy DP(ε). It should be noted that
large high-dimensional tables, which arise in certain
surveys, will often be very sparse, and it does not seem
useful to perturb every cell. In fact, a common prac-
tice of agencies in this situation is to merge cells and to
reduce the dimension, and hence sparseness, and then
to perturb the resulting list. Obviously, this incurs loss
of information. The development of practical methods
for the confidentiality-protected release of such tables
seems to be a worthwhile direction for research.

The above discussion indicates that the data releas-
ing agency has a great amount of flexibility in deciding
on the construction of the list and the amount of per-
turbations of different parts according to the number of
categories of the attributes, the expected interest in par-
ticular marginals (which are often more relevant than
interior cells), and the dimension of the table and the
marginals of interest.

8. CONCLUSIONS

In this paper, we have considered practical pertur-
bation schemes that resemble ones currently used by
some official agencies when releasing frequency ta-
bles, with the goal of assessing how random pertur-
bations, along with other common practices of these
agencies, protect confidentiality in terms of the dif-
ferential privacy standard. We have seen how this
approach can highlight specific issues, such as the
effect of truncation, not perturbing zeros, or “same
participants-same perturbation” schemes. We focused
on a few alternative perturbation mechanisms and the

Laplace perturbation seems to have a clear advantages
in terms of the utility of the resulting tables for a given
level of confidentiality protection. The extent to which
the perturbations damage the value of tables for anal-
ysis will depend on user needs and it is hard to draw
any general conclusions. Our numerical work in Sec-
tion 5 compared the properties of a small number of
algorithms that we believe would be likely candidates
for practical implementation by an official agency. See
Hay et al. (2016) for a framework for undertaking a
comprehensive evaluation of differentially private al-
gorithms and for the findings of such an evaluation of
a broader range of algorithms for answering 1- and 2-
dimensional range queries over 27 datasets.

Maximum entropy perturbation subject to variance
constraints is one existing criterion for selecting per-
turbations in statistical disclosure control, but the im-
plied approximately normal perturbations did not per-
form well in our assessment. We found that insisting on
releasing only nonnegative perturbed frequencies may
result in loss of utility, without a well-defined gain in
confidentiality protection. Other desiderata that have
been proposed for perturbation, for example, that per-
turbed frequencies be unbiased for the true frequen-
cies and that perturbations be truncated by a speci-
fied bound, may be contradictory, and compromises of
these criteria may be desirable.

We have studied the trade-off between different val-
ues of the two parameters ε and δ governing differen-
tial privacy and the utility of the resulting tables, and
seen how compromises in the former values can make
a considerable difference to the level of utility. We have
noted the desirability of making the perturbation mech-
anism and its parameters available to users and the pos-
sibility that users could take account of this knowledge
when analysing the data. Thus, in principle, given a
specified model for the data and a perturbation mecha-
nism, it may be feasible to determine a likelihood func-
tion for the perturbed data, and make inference on the
parameters of the data model. We demonstrated this
procedure in simple examples. In practice, the com-
putational challenges may be severe for the kinds of
tables released by national statistical agencies, but this
is an area for further research. We also noted that test-
ing independence on perturbed data using “naïve” test
statistics that ignore the perturbations will be wrong for
reasonable sample sizes, even if asymptotically justi-
fied.

Another area needing further research relates to ta-
bles based on sample data rather than on population
counts. The cells in tables based on sample data may
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contain sample-based estimated counts, consisting of
sums of survey weights. In this case, adding or re-
moving a sample unit from the dataset will change
the estimated count by the value of the corresponding
survey weight. If d = 1 and w is the maximal possi-
ble weight, then �u1 = w, and the differential privacy
methodology applies. In this paper, we did not pursue
this direction, the practicality of which seems to be
worthwhile of investigation. Confidentiality consider-
ations for sample-based tables may also take account
of the potential confidentiality protection afforded by
sampling, when sample membership can be assumed
unknown (e.g., Chaudhuri and Mishra, 2006). Further
protection may arise from the fact that sampling error
considerations often lead official agencies to design ta-
bles that do not include cell estimates based on small
numbers of sample units.

This paper focused on the noninteractive setting,
where the list and all perturbations are prepared in ad-
vance to satisfy a given level of DP (although the per-
turbations can be applied only to the data actually re-
quested). If some cells in the list are never requested,
then their contribution to d or ε (and δ) can be seen as
over-protection. The differential privacy literature pro-
poses interactive query submission and monitoring for
all users online, responding to queries with a certain
level of DP which accumulates as in Theorem 7.1, and
allocating a “budget” of a certain εj to user j so that the
total of all ε’s (and δ’s) achieves the required DP level.
Such monitoring is quite demanding of the agencies,
but could potentially be automated. Further research
on interactive dissemination by official agencies and
its implications seems to be needed.
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