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How the Instability of Ranks Under Long
Memory Affects Large-Sample Inference
Shuyang Bai and Murad S. Taqqu

Abstract. Under long memory, the limit theorems for normalized sums of
random variables typically involve a positive integer called “Hermite rank.”
There is a different limit for each Hermite rank. From a statistical point of
view, however, we argue that a rank other than one is unstable, whereas, a
rank equal to one is stable. We provide empirical evidence supporting this
argument. This has important consequences. Assuming a higher-order rank
when it is not really there usually results in underestimating the order of
the fluctuations of the statistic of interest. We illustrate this through vari-
ous examples involving the sample variance, the empirical processes and the
Whittle estimator.
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1. INTRODUCTION

Suppose that D is a data set, and one has a statistical
model for D which involves a random stationary se-
quence {X(n)}, referred to as noise. Let T = T (D) be
a sample statistic of interest. Deriving the asymptotic
distribution for the statistic T as the sample size tends
to infinity is a standard practice in large sample infer-
ence. The asymptotic distribution is useful for report-
ing confidence intervals, conducting hypothesis tests,
etc.

When the construction of the statistic T involves
summing the data and if the stationary noise {X(n)} is
weakly dependent, then the asymptotic distribution of
T is typically Gaussian in view of the central limit the-
orem. This asymptotic distribution can also be a func-
tional of a Gaussian process.

The situation, however, is much more intricate when
the strength of dependence in the noise increases sig-
nificantly. This strong-dependence regime, often called
long memory or long-range dependence, is typically
characterized by the following behavior of the variance
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of partial sums:

(1) Var

[
N∑

n=1

X(n)

]
≈ N2H as N → ∞,

where ≈ means asymptotic equivalence up to some
positive constant, the parameter H ∈ (1/2,1) is called
the Hurst index.1 Normally when the dependence is
weak, one expects H = 1/2 in (1), that is, the growth
of the variance is linear. The superlinear growth in (1)
is typically due to the slow decay of the covariance of
{X(n)}:
(2) Cov

[
X(n),X(0)

] ≈ n2H−2 as n → ∞,

where −1 < 2H − 2 < 0. In fact, (2) is also a common
characterization of long memory. We refer the reader to
the recent monographs Beran et al. [9], Giraitis, Koul
and Surgailis [36], Samorodnitsky [69] and Pipiras and
Taqqu [64] for comprehensive introductions to the no-
tion long memory.

In view of (1), when deriving the asymptotic distri-
bution of the sum, one needs to associate the stronger

1The term “Hurst index” is also frequently used for the self-
similarity parameter of self-similar processes arising from the nor-
malized limit of the sum of X(n) (see Pipiras and Taqqu [64]).
It is also common to introduce the so-called memory parameter d

in the context of (2), re-expressed as Cov[X(n),X(0)] ≈ n2d−1

(d = H − 1/2). We will use H throughout in order not to switch
between parameters and thus to avoid confusion.
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normalization N−H to
∑N

n=1 X(n) rather than the stan-
dard N−1/2 normalization. These limit theorems have
been applied in many statistical studies. See Section 3
below.

This paper makes the following basic argument:
while these limit theorems are definitely of probabilis-
tic interest, their immediate application to statistical
inference can lead to problems. This is because these
limit theorems can be unstable, that is, they often cease
to hold when {X(n)} is slightly perturbed. In partic-
ular, the limit theorems under long memory often de-
pend critically on an integer quantity called rank, for
example, the Hermite rank in the Gaussian context.
We will show that the rank is unstable when it takes
value greater than one, and it easily collapses to rank
one when there is a slight perturbation.

The notion of rank, however, is not relevant when
the data is weakly dependent. We indicate that under
weak dependence, limit theorems are robust against,
for example, a transformation of the data. We illus-
trate this by considering various types of weak depen-
dence, such as strong mixing, Gaussian subordination
and Bernoulli shifts.

The paper is organized as follows. The rank insta-
bility issue is discussed in Section 2. In Section 3, we
provide some examples on how the instability of rank
can affect statistical results. In Section 4, we carry out
an empirical study which supports the instability argu-
ment. In contrast, we show in Section 5 that the central
limit theorems under weak dependence are not subject
to such instability issues. Section 6 contains conclu-
sions and suggestions. Some technical extensions are
found in the Appendix.

2. THE INSTABILITY OF RANKS UNDER LONG
MEMORY

In this section, we introduce the notion Hermite rank
and point out its instability. We focus on the simple
scenario of instantaneous transformation of a Gaus-
sian stationary process. (The noninstantaneous case is
somewhat technical and is deferred to the Appendix.)
We then address the case where the model involves a
non-Gaussian linear (moving-average) process, where
the corresponding notion of Hermite rank is called the
Appell rank or the power rank.

Throughout the paper, the notation a(n) ≈ b(n)

means limn→∞ a(n)/b(n) = c for some generic con-
stant 0 < c < ∞ that can change from expression to
expression. We note that in many places, one can in-
clude a slowly varying function in the asymptotic re-
lation, for example, a logarithmic function (see, e.g.,

Bingham, Goldie and Teugels [14]), but for simplicity
we do not do that.

2.1 Transformation of Gaussian Processes

We want to consider possibly nonlinear finite-
variance transformations of Gaussian random vari-
ables. To do so, let Z be a standard normal random
variable, γ (dx) be the standard Gaussian measure
(2π)−1/2e−x2/2 dx on R, and let

L2(γ ) = {
G(·) : EG(Z)2 < ∞}

.

It is well known (see, e.g., Pipiras and Taqqu [64],
Proposition 5.1.3) that { 1√

m!Hm(·),m ≥ 0} forms an or-

thonormal basis of L2(γ ), where {Hm(·),m ≥ 0} are
Hermite polynomials defined as H0(x) = 1 and

(3) Hm(x) = (−1)mex2/2 d

dxm
e−x2/2 for m ≥ 1.

Thus, H1(x) = x, H2(x) = x2 − 1 and H3(x) = x3 −
3x, etc. We can now define the Hermite rank of a func-
tion G ∈ L2(γ ).

DEFINITION 2.1. Suppose that G(·) ∈ L2(γ ). Let
Z be a standard Gaussian random variable. The Her-
mite rank k of G(·) is defined as

k = inf
{
m ≥ 1 : EG(Z)Hm(Z)

(4)

=
∫
R

G(x)Hm(x)γ (dx) �= 0
}
,

where Hm(·) is the mth order Hermite polynomial.

REMARK 2.2. An alternative way of defining the
Hermite rank k is through the starting index of the Her-
mite expansion of G(·) −EG(Z), namely,

(5) G(·) −EG(Z) =
∞∑

m=k

cmHm(·), k ≥ 1,

for some sequence cm satisfying ck �= 0, where the se-
ries converges in the L2(γ )-sense. By the orthonormal-
ity of { 1√

m!Hm(·)}, we have

(6) cm = E[G(Z)Hm(Z)]
m! for m ≥ 0.

Note that c0 = EG(Z) since H0(Z) = 1. Furthermore,
since the Hermite polynomials {Hm(·),0 ≤ m ≤ k}
form a basis for polynomials of degree less than equal
to k, the definition (4) can be re-expressed as

(7) k = inf
{
m ≥ 1 : E[(

G(Z) −EG(Z)
)
Zm] �= 0

}
.
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REMARK 2.3. The Hermite rank of G(x) is the
same as that of G(x) + a, for any a ∈ R, since rela-
tion (5) involves centering.

Now suppose that {X(n)} is a long-memory station-
ary Gaussian process satisfying (2). We may assume
without loss of generality that it is standardized, that is,
EX(n) = 0 and Var[X(n)] = 1 The following lemma
explains the role that the Hermite rank plays in deter-
mining the asymptotic behavior of the covariance of
the transformed sequence {G(X(n))} (see page 223 of
Beran et al. [9]).

LEMMA 2.4. If G(·) has Hermite rank k, then

Cov
[
G

(
X(n)

)
,G

(
X(0)

)]
≈ Cov

[
X(n),X(0)

]k(8)

≈ n(2H−2)k.

REMARK 2.5. Comparing (8) and (2), we note that
for functions G(·) that have Hermite rank k = 1, the
Hurst index of {G(X(n))} is the same as the Hurst in-
dex of {X(n)}. In general, since 2H −2 < 0, the higher
the Hermite rank k is, the faster the covariance de-
cays as n → ∞. Note that in view of (2) and (8), for
{G(X(n))} to have long memory, one needs

(2H − 2)k > −1 ⇐⇒ H > 1 − 1

2k
.

This is natural because when k > 1, the covariance of
{G(X(n))} decays faster than that of {X(n)} and thus
H must be greater than 1 − 1/(2k) in order to ensure
that {G(Xn)} has long memory.

2.2 Asymptotic Behavior

Now returning to the theme of the introduction: sup-
pose that in order to derive the asymptotic distribution
of the statistics T of interest, one first needs to obtain
the distributional limit as N → ∞ of

(9)
1

A(N)

[Nt]∑
n=1

(
G

(
X(n)

) −EG
(
X(n)

))
, t ∈ [0,1],

where G(·) ∈ L2(γ ), A(N) is a suitable normalization,
and [·] stands for the integer part.

THEOREM 2.6 (Dobrushin and Major [31], Taqqu
[76], Breuer and Major [15], Major [57]). Suppose
that G has Hermite rank k. Then the following conclu-
sions hold.

• Central limit case: suppose that

H < 1 − 1

2k
.

Then {G(X(n))} has short memory in the sense that

σ 2 :=
∞∑

n=−∞
Cov

[
G

(
X(n)

)
,G

(
X(0)

)]
converges absolutely and

1

N1/2

[Nt]∑
n=1

(
G

(
X(n)

) −EG
(
X(n)

))
f.d.d.−→ σB(t), t ≥ 0,

(10)

where
f.d.d.−→ denotes convergence of the finite-

dimensional distributions and B(t) is the standard
Brownian motion.

• Noncentral limit case: suppose that

H > 1 − 1

2k
.

Then {G(X(n))} has long memory with Hurst index:

(11) HG = (H − 1)k + 1 ∈
(

1

2
,1

)
.

Furthermore, as N → ∞, we have2

1

NHG

[Nt]∑
n=1

(
G

(
X(n)

) −EG
(
X(n)

))
f.d.d.−→ cZHG,k(t),

(12)

for some c �= 0, and

ZHG,k(t)

=
∫ ′
Rk

[∫ t

0

k∏
j=1

(s

− xj )
γ
+ ds

]
B(dx1) · · ·B(dxk),

γ = H − 3

2
= HG − 1

k
− 1

2
,

(13)

is the so-called kth order Hermite process, where∫ ′
Rk [·]B(dx1) · · ·B(dxk) denotes the k-tuple Wiener–

Itô integral with respect to the standard Brownian mo-
tion B(·). The prime ′ indicates that one does not inte-
grate on the diagonals xi = xj .

2In fact, we have weak convergence in the space D[0,1] with
uniform metric.
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REMARK 2.7. When the Hermite rank k = 1, one
has

HG = H

and the limit ZHG,k(t) in Theorem 2.6 is the fractional
Brownian motion BH(t), namely, the centered Gaus-
sian process determined by the following covariance
structure:

Cov
[
BH(s),BH (t)

]
= 1

2

(|s|2H + |t |2H − |s − t |2H )
.

The preceding covariance is shared by all the other
Hermite processes. When the Hermite rank k = 2,
ZHG,2(t) is called the Rosenblatt process (see Rosen-
blatt [68] and Taqqu [75]). The Hermite process
ZHG,k(t) in (13) admits different representations. See
Pipiras and Taqqu [63].

REMARK 2.8. The boundary case H = 1− 1
2k

typ-
ically falls in the central limit theorem regime (con-
vergence to Brownian motion) after modifying the
normalization N−1/2 to include some slowly vary-
ing functions (Theorem 1′ of Breuer and Major [15]).
In general, the convergence of finite-dimensional dis-

tributions
f.d.d.−→ in the short-memory case cannot be

strengthened to weak convergence ⇒ in D[0,1] un-
less some additional assumption is imposed on G, for
example, G being a polynomial (Chambers and Slud
[17]).

The long-memory Gaussian {X(n)} may be directly
used as a model for the long-memory stationary noise.
For statistical theory, however, it is often desirable to
allow departure from Gaussianity, for example, to ac-
commodate the situations where the noise distribution
is skewed or heavy-tailed. Within the same framework,
a way to achieve such flexibility is as follows. Suppose
that there is an underlying long-memory Gaussian sta-
tionary process {Y(n)}. Assume without loss of gener-
ality that {Y(n)} is standardized. Now suppose that the
noise sequence {X(n)} in the model is given by

(14) X(n) = F
(
Y(n)

)
.

REMARK 2.9. There are different perspectives to
interpret (14). First, note that when F(·) is nonlinear,
X(n) is non-Gaussian. So F(·) can represent the depar-
ture from the ideal Gaussian assumption. Hence, when
the noise X(n) is modeled by (14) with an unknown
F(·), this provides great model flexibility. Note that a
proper choice of F(·) can match any marginal distribu-
tion for X(n). Second, from the perspective of analysis

of robustness, one may view X(n) as a perturbed ver-
sion of Y(n), where X(n) is close to Y(n), that is, F(·)
is close to the identity function.

Following the same statistical inference procedure
that leads to (9), we then focus on the distributional
limit of

1

A(N)

[Nt]∑
n=1

(
G ◦ F

(
Y(n)

) −EG ◦ F
(
Y(n)

))
as N → ∞.

REMARK 2.10. We emphasize the different roles
played by F(·) and G(·). The function F(·) accounts
for an unknown and uncontrollable departure from the
Gaussian Y(n). On the other hand, the function G(·)
depends on the statistical procedure of interest and is
therefore typically precisely known. For example, G is
typically the identity transformation for inference of
the mean EX(n) = EF(Y (n)).

2.3 Basic Claim

We are now ready to make the following claim which
will be justified below. The case of noninstantaneous
(multivariate) F (and also G) will be addressed in the
Appendix (the issues remain essentially the same).

CLAIM 2.11. It is typically the case that:

(a) the function G ◦ F has Hermite rank 1;
(b) the process {X(n)} has long memory with the same

Hurst index H as {Y(n)} in (14).

JUSTIFICATION OF THE CLAIM. Let Z be standard
Gaussian. Since H1(Z) = Z, requiring the function G◦
F to have Hermite rank k ≥ 2 is equivalent to

(15) E
[
(G ◦ F)(Z)Z

] = 0.

This requirement is very restrictive, and is, moreover,
unrelated to the usual size or smoothness conditions
typically imposed on the perturbation F . Unlike the
precisely known G(·) which is related to the method
of inference considered, one has no control nor accu-
rate knowledge of the function F(·). There is thus no
a priori reason that F(·) be such that (15) holds. But if
(15) does not hold, then the Hermite rank of G◦F is 1,
which justifies part (a) of the Claim 2.11.

Applying the same reasoning, the perturbation func-
tion F(·) is also very likely to be such that

E
[
F(Z)Z

] �= 0

and hence to have Hermite rank 1. Then in view of
Lemma 2.4 and Remark 2.5, this justifies part (b) of
the Claim 2.11. �
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REMARK 2.12. The Claim 2.11 indicates not only
the instability of a Hermite rank higher than 1, but also
the stability of the Hermite rank 1 and hence the Hurst
index of the noise model. Then, as suggested by the
Claim 2.11, if G ◦ F has Hermite rank 1, by Theo-
rem 2.6 and Remark 2.7, one has

1

NH

[Nt]∑
n=1

(
G ◦ F

(
Y(n)

) −EG ◦ F
(
Y(n)

))
⇒ cZH,1(t) = cBH (t)

(16)

for some c > 0, where BH(t) is the fractional Brown-
ian motion with Hurst index H . The theorem thus also
implies the stability of fractional Brownian motion as
the limit.

REMARK 2.13. In statistics, one sometimes needs
limit theorems for functionals other than the sum.
A typical example is the quadratic form

∑N
n,m=1 a(n −

m)X(n)X(m). Limit theorems in this case depends
on the not only the “memory” of {X(n)} but also the
“memory” of the coefficient a(n) (see, e.g., Avram [2]
and Terrin and Taqqu [79]). Instead of discussing in
general the instability of such quadratic forms, we shall
focus in Section 3.3 below on an important statistical
application, namely, Whittle estimation.

2.4 The Level Shift Case

One may consider making Claim 2.11 a genuine
mathematical statement by, for example, considering
F(·) as a random element in a suitable function space
with a “prior probability model,” as long as that model
assigns a small probability to the set of F(·) on which
(15) happens.

In the following theorem, we consider the simple
case where the perturbation is given by a level shift
of size z, namely, if F(y) = z + y so that G ◦ F(·) =
G(· + z). To understand the assumptions, note that we
want to exclude the case where G(·) is constant, since
then G(· + z) remains equal to G(·). We also want
G(· + z) to be in L2(γ ).

THEOREM 2.14. Suppose that the function G(·) ∈
L2(γ ) has an arbitrary Hermite rank, G(·) is not con-
stant a.e., and assume that there exists δ > 0, so that
G(· + z) ∈ L2(γ ) for all |z| < δ. Then there exists
ε ∈ (0, δ), such that the Hermite rank of G(· + z) is
1 for all z ∈ (−ε,0) ∪ (0,+ε).

The proof can be found in Bai and Taqqu [6]. In that
paper, we also study what happens when the shift tends
to zero as the sample size tends to infinity, which is

analogous to the near integration analysis of unit roots
(see Phillips [62]). In Bai and Taqqu [6], we also con-
sider transformations other than the shift, for example,
the scaling F(z) = zy so that G ◦ F(y) = G(zy).

2.5 Transformation of Linear Processes

Another popular class of models for a stationary,
not necessarily Gaussian, noise {Y(n)} is the so-called
(causal) linear process:

(17) Y(n) =
∞∑
i=0

an−iεi,

where εi ’s are assumed to be i.i.d. random variables
(not necessarily Gaussian) with mean 0 and variance 1
and

∑
n a2

n < ∞. When

(18) an ≈ nH−3/2, 1/2 < H < 1 as n → ∞,

one has Cov[Y (n),Y (0)] ≈ n2H−2, and thus Y(n) has
long memory with Hurst index H . The well-known
fractionally-integrated noise model (see, e.g., Granger
and Joyeux [40]) satisfies (18). We shall assume (18)
throughout this section.

Theorem 2.6 can be extended to linear processes. In
this case, the larger class of polynomials called Appell
polynomials (Avram and Taqqu [3]) plays an analo-
gous role to that of the Hermite polynomial in Sec-
tion 2.1. One can define the so-called Appell rank of
a function G(·) as in (5), with Hermite polynomials
replaced by the Appell polynomials, given that the ex-
pansion is valid [e.g., when G(·) is a finite-order poly-
nomial]. However, in this framework (Surgailis [73]),
the class of functions G(·)’s that can be treated is
rather restrictive. Ho and Hsing [45] greatly extended
the allowable G(·)’s through a martingale difference
approach and introduced a more convenient notion of
rank, which we shall call the power rank. See also
Lévy-Leduc and Taqqu [56].

Given a function G(·) and a random variable Y sat-
isfying EG(Y)2 < ∞, let

(19) G∞(y) = EG(Y + y)

given that the expectation exists and suppose that
G∞(·) has derivatives of order sufficiently high. The
power rank of G(·) with respect to Y is defined as

(20) inf
{
m ≥ 1 : G(m)∞ (0) �= 0

}
,

where G
(m)∞ (y) denotes the mth derivative of G∞(y).

In fact, the power rank in (20) coincides with the Her-
mite rank (4) if Y is Gaussian. This was stated in Ho
and Hsing [45], and see Bai and Taqqu [6] for a proof.
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The case where G is a polynomial was treated in Lévy-
Leduc and Taqqu [56].

Now we can state the following limit theorems (for
simplicity we omit the inclusion of some technical con-
ditions, see Ho and Hsing [45] and Pipiras and Taqqu
[64]):

THEOREM 2.15 (Ho and Hsing [45]). Suppose
that EG(Y(0))2 < ∞ and G(·) has power rank k ≥ 1
with respect to Y(0) in the sense of (20). Under
some additional technical conditions, statements ex-
actly analogous to Theorem 2.6 hold with the role of
the Hermite rank replaced by the power rank.

REMARK 2.16. Using similar arguments as Sec-
tion 2.1, one sees that a power rank higher than 1 is also
unstable to perturbation: to get a power rank higher
than 1, one needs the restrictive condition

G(1)∞ (0) = d

dy
EG(Y + y)|y=0 = 0.

which can be easily perturbed by compositing G with a
transformation before. So an analog of Claim 2.11 may
be stated in this context.

Below we provide some further remarks on the in-
stability phenomenon.

REMARK 2.17. We mention that Surgailis [74]
established some results which can be interpreted as
the “robustness” of Theorem 2.15 against additive
noise. Roughly speaking, Surgailis [74] showed that if
the long-memory linear process Y(n) is replaced by
Y ′(n) = Y(n) + U(n) with U(n) specified as some
short-memory models, then the noncentral conver-
gence in Theorem 2.15 still holds, where the power
(or Appell) rank is now with respect to the distribu-
tion of Y ′(n). Nevertheless, the instability discussed
earlier still applies. First, the rank can still be unstable
under a transformation. Second, even without consid-
ering a transformation perturbation, one has typically
no accurate knowledge of the marginal distribution of
Y ′(n). A change in the distribution will affect the rank
defined through (20).

REMARK 2.18. It is important to consider not only
the limit distribution that one obtains, but also the nor-
malization since the latter corresponds to the magni-
tude of the fluctuations of the partial sum. When the
true rank (Hermite or power) is indeed 1, but one as-
sumes a higher-order Hermite rank from some statisti-
cal consideration, this will lead to underestimation of
the magnitude of the fluctuations of the partial sum
since HG < H in Theorem 2.6.

3. EXAMPLES IN STATISTICS

In this section, we review statistical problems in the
literature related to limit theorems involving differ-
ent ranks. We shall elaborate on some examples: sam-
ple variance, empirical processes, Whittle likelihood,
and nonparametric estimation, to demonstrate how the
asymptotic statistical theories are affected by the insta-
bility discussed in Section 2.

3.1 Sample Variance

In the context of long memory, with the complex-
ity introduced by the limit theorems, scale estimation
becomes a problem. We only discuss the case where
the data {X(n)} is a Gaussian process, but everything
can be extended to a linear process {X(n)} (see Sec-
tion 2.5).

Assume then that {X(n)} is a long-memory station-
ary Gaussian process with Hurst index H ∈ (1/2,1),
unknown mean μ and unknown variance σ 2. Consider
the estimation of σ 2 using the sample variance

(21) σ̂ 2
N := 1

N

N∑
n=1

(
X(n) − X̄N

)2
,

where X̄N = (X(1) + · · · + X(N))/N is the sample
mean. In the short-memory situation, say if X(n) were
i.i.d., it is well known that σ̂ 2

N is asymptotically normal.
The situation is, however, delicate. Indeed, express (21)
as

σ̂ 2
N = 1

N

N∑
n=1

(
X(n) − μ

)2 + (X̄N − μ)2

=: UN + VN.

(22)

We can write

UN − σ 2

= 1

N

N∑
n=1

(
X(n) − μ

)2 − σ 2

= N−1/2

[
1√
N

N∑
n=1

((
X(n) − μ

)2 − σ 2)]
(23)

and

VN = (X̄N − μ)2

= N2H−2

[(
1

NH

N∑
n=1

(
X(n) − μ

))2]
.

(24)

Note that the term X(n) − μ has Hermite rank k = 1,
and the term (X(n) − μ)2 has expectation σ 2 and Her-
mite rank k = 2, since E(X(n) − μ)2X(n) = 0.
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Thus when H < 3/4, in view of Theorem 2.6, the
term in the brackets in the right-hand sides (23) and
(24) converge as N → ∞. Since H < 3/4 implies
N2H−2 � N−1/2, the term VN is asymptotically negli-
gible, compared to UN −σ 2, and hence N1/2(σ̂ 2

N −σ 2)

has the same limit as N1/2UN as N → ∞. Thus,

N1/2(
σ̂ 2

N − σ 2) d→ N
(
0, s2

1
)

for some s1 > 0.
When H > 3/4, in view of Theorem 2.6 with k = 2,

we write

UN − σ 2

= N2H−2

[
1

N2H−1

N∑
n=1

((
X(n) − μ

)2 − σ 2)]
,

and VN is as in (24). Now both UN and VN contribute
to the limit, where we have by a multivariate version of
Theorem 2.6 (see, e.g., Bai and Taqqu [4])

N2−2H (
σ̂ 2

N − σ 2)
d→ aHZ2H−1,2(1) + bHZH,1(1)2,

(25)

where Z2H−1,k(t), k = 1,2 are the Hermite processes
in (13) defined by the same Brownian integrator B(·).
for some constants aH ,bH > 0. See also Dehling and
Taqqu [29].

We now suppose that {X(n)} is perturbed by a trans-
formation in the spirit of Claim 2.11, which leads to
consider the case where both X(n) and [X(n) − μ]2

have Hermite rank 1. Then writing

UN − σ 2 = NH−1

[
1

NH

N∑
n=1

((
X(n) − μ

)2 − σ 2)]
and

VN = N2H−2

[
1

NH

N∑
n=1

(
X(n) − μ

)]2

,

we can apply Theorem 2.6 with k = 1. Since H < 1,
we have N2H−2 � NH−1, and thus only the term UN

contributes to the limit. Then N1−H (σ̂ 2
N − σ 2) has the

same limit as

N1−H (
UN − σ 2) = 1

NH

N∑
n=1

[(
X(n) − μ

)2 − σ 2]
,

namely, cHZH,1(1) for some cH > 0, where ZH,1 is
the fractional Brownian motion. Hence,

(26) N1−H (
σ̂ 2

N − σ 2) d→ cHZH,1(1),

which is different from (25).

REMARK 3.1. Under the above perturbation con-
sideration, there is no dichotomy between H < 3/4
and H > 3/4 in (26), and the normalization is always
N1−H , which is of smaller order than both N1/2 and
N2H−2. In the case H < 3/4, however, we get a Gaus-
sian limit with or without perturbation. Hence with-
out the perturbation consideration, there is the dan-
ger of underestimating the fluctuation magnitude of the
sample variance, namely, taking the fluctuation to be
of the order N−1/2 when H < 3/4 and N2H−2 when
H > 3/4, whereas they are of the order NH−1. We
also mention that similar considerations also apply to
the study of the asymptotic behavior of sample au-
tocovariance/correlation (see, e.g., Hosking [48], Wu,
Huang and Zheng [83] and Lévy-Leduc, Boistard and
Moulines [54]).

3.2 Empirical Processes

Empirical processes play important roles in many
statistical problems. We refer the reader to Dehling,
Mikosch and Sorensen [25] for an introduction to em-
pirical processes of dependent data. Let {X(n)} be a
stationary process with marginal cdf F(x). The corre-
sponding centered empirical process is defined as

FN(x) = 1

N

N∑
n=1

[
I
{
X(n) ≤ x

} − F(x)
]
.(27)

When {X(n)} is i.i.d., it is well known that N1/2FN(x)

converges weakly in D(−∞,∞) to B0(F (x)) =
B(F(x)) − F(x)B(1), where B0(t) = B(t) − tB(1) is
a Brownian bridge and B(t) is a Brownian motion. Un-
der some weak dependence conditions on {X(n)}, the
process N1/2FN(x) converges weakly in D(−∞,∞)

to a centered Gaussian process G(x) with covariance
structure given by

EG(x)G(y)

=
∞∑

n=−∞
Cov

[
I
(
X(0) ≤ x

)
, I

(
X(n) ≤ y

)];(28)

see, for example, Theorem 4.1 of Dehling and Philipp
[26].

When X(n) has long memory, the corresponding
weak convergence results become rather different in
nature. Indeed, assume that X(n) = G(Y(n)) where
{Y(n)} is a standardized stationary Gaussian process
with Hurst index 1/2 < H < 1. We define the deter-
ministic function

Jm(x) = 1

m!EI
{
G

(
Y(0)

) ≤ x
}
Hm

(
Y(0)

)
,
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where Hm(·) is the mth order Hermite polynomial.
Note that for any fixed x ∈ R, Jm(x)’s are the coef-
ficients of the Hermite expansion (5) of the function
�x(y) = I {G(y) ≤ x} − F(x). We have the following
result.

THEOREM 3.2 (Theorem 1.1 of Dehling and Taqqu
[28]). Let

k = inf
{
m ≥ 1 : Jm(x) �= 0

(29)
for at least one x ∈R

}
,

and assume that H > 1 − 1
2k

. Then we have the follow-
ing weak convergence in D(−∞,+∞)

(30) N1−HkFN(·) ⇒ cJm(·)ZHk,k(1),

where ZHk,k(·) is the Hermite process as in (13), and
Hk = (H − 1)k + 1 as in (11).

REMARK 3.3. It is interesting to note that in the
long-memory case, the limit process{

Jm(x)ZHk,k(1), x ∈R
}

is quite degenerate, namely, it has correlation 1 be-
tween any different points x1, x2 ∈R, in contrast to the
weak dependence case where the limit Gaussian pro-
cess G(x) admits a rich correlation structure [see (28)].

By the perturbation argument, one may assume that
the rank k = 1, regardless of the choice of G(·) in a
statistical application of Theorem 3.2. In fact, the def-
inition of rank (29) makes the assumption k = 1 even
more appealing in this context, because J1(x) �= 0 for
just one point x would make k = 1. From this point of
view, the only practically relevant convergence in (30)
is

(31) N1−HFN(·) ⇒ cZJ1(·),
where Z is a standard Gaussian variable, and thus the
fluctuation of the empirical process is practically al-
ways of the order NH−1. The convergence (30) can be
applied to study the asymptotic behavior of U-statistics
and V-statistics (see Corollary 1 of Dehling and Taqqu
[28]). It is also applied to develop the asymptotic theo-
ries of estimation of the probability density function
f = F ′ (see Csörgő and Mielniczuk [23] and Sec-
tion 3.5).

3.3 Whittle Likelihood

In the parametric estimation for time series, the
so-called Whittle pseudo-likelihood is a computation-
ally efficient approximation to the Gaussian likelihood,

which bypasses the inversion of a covariance matrix
in the latter. The resulting Whittle estimator and its
semiparametric extensions are found particularly use-
ful in the long-memory context for the estimation of
the Hurst parameter H . For more details on the back-
ground and motivation, we refer to Section 5.5 of
Beran et al. [9] or Chapter 10 of Pipiras and Taqqu
[64]. We shall focus on the rank instability issue in
the asymptotic theory developed in Giraitis and Taqqu
[39]. The asymptotic theory in this context depends on
the limit theorem for quadratic forms, which is more
delicate than the limit theorems for sums. The instabil-
ity issue in this context exhibits some distinct features
compared with the previous cases.

Suppose a stationary time series {X(n)} has spectral
density (see, e.g., Chapter 1 of Pipiras and Taqqu [64])
f (λ; θ, σ ) = σ 2gθ (λ) > 0, λ ∈ (−π,π) so that

Cov
[
X(n),X(0)

] =
∫ π

−π
einxfθ (λ; θ, σ ) dλ,

where σ and θ = (θ1, . . . , θp) are unknown parameters.
Assume that the normalization condition (scale identi-
fiability) holds: ∫ π

−π
loggθ (λ) dλ = 0,

under which σ 2 becomes the mean squared error of the
one-step prediction by the Kolmogorov’s formula (see,
e.g., Section 5.8 of Brockwell and Davis [16]). Sup-
pose that we want to estimate the unknown parameter
θ . Under long memory, the choice of θ typically in-
cludes H . Define

(32) aθ (n) =
∫ π

−π
einλ 1

gθ (λ)
dλ

and

wθ(m,n) =
∫ π

−π
gθ (λ)

∂2

∂θm∂θn

[
gθ (λ)

]−1
dλ.

The so-called Whittle estimator θ̂N of θ is given by

θ̂N = argmin
θ

N∑
m,n=1

aθ (m − n)X(m)X(n).

If {X(n)} is a Gaussian or a linear long-memory pro-
cess, it was established under some regularity condi-
tions that (see, e.g., Fox and Taqqu [35] and Giraitis
and Surgailis [38])

(33) N1/2(θ̂N − θ)
d→ N

(
0,4πW−1

θ

)
,

where the matrix Wθ = (wθ(m,n))1≤m,n≤p . Note
that the standard N1/2-convergence rate appears even
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though {X(n)} has long memory. This is due to the
dependence cancellation effect from the quadratic co-
efficient aθ (n).

On the other hand, Giraitis and Taqqu [39], consid-
ered X(n) = G(Y(n)), where {Y(n)} is long-memory
Gaussian and the transformation G(·) is restricted to be
a polynomial by Giraitis and Taqqu [39] to avoid some
technical difficulties. Define

ρk = 1

k!
∞∑

n=−∞
E

[
dk

dxk
G

(
x + Y(0)

)
· G(

x + Y(n)
)]∣∣∣∣

x=0
∇aθ (n)

= ∑
m,n≥0,m+n=k

1

m!n!
∞∑

r=−∞
E

[
G(m)(Y(r)

)
· G(n)(Y(0)

)]∇aθ (r),

where ∇ denotes the gradient with respect to θ . In par-
ticular,

(34) ρ1 = 2
∞∑

n=−∞
E

[
G′(Y(n)

)
G

(
Y(n)

)]∇aθ (n).

Note that in the case G(x) = x, namely, the Gaussian
case, ρk = 0 for all k = 1,2, . . . .

It was established in Corollary 2.1 of Giraitis and
Taqqu [39] that under some regularity conditions, if
ρ1 �= 0, then as N → ∞, we have

(35) N1−H (θ̂N − θ)
d→ Z

for some centered normal random vector Z. Note that
in (35) the convergence rate is the same as that of the
sample mean in view of (1). Giraitis and Taqqu [39]
also showed that if ρ1 = 0 but some ρk �= 0, then (35)
needs to be modified resulting in limit theorem with
a central and noncentral dichotomy similar to Theo-
rem 2.6. See Theorem 2.3 and 3.1 of Giraitis and Taqqu
[39].

Now we consider the instability issue. Here the role
of Hermite (or power) rank is instead played by

(36) k = inf{m ∈ Z+ : ρm �= 0}.
There is instability even in the Gaussian case where
G(·) is the identity, namely, G(x) = x, and where then
all ρk = 0. In that case, we would have (33), but by
perturbing G(·) slightly, we would get ρ1 �= 0 in (34),
and thus we would have (35) instead of (33).

The preceding observation raises a question on the
applicability of (33) in statistical inference. It turns out
that the achievement of the parametric rate N1/2, or say

the cancellation effect of the quadratic coefficient in
(32), critically depends on the Gaussian or linear data-
generating assumption, while a disturbance of such an
assumption yields instead the rate N1−H , which is the
usual slower rate of convergence under long memory.
It is unclear whether similar instability issues occur in
the semiparametric extensions of the Whittle estimator,
for example, the local Whittle estimator (Künsch [53],
Robinson [66]).

3.4 Nonparametric Estimation

In this section, we review briefly some nonpara-
metric statistical studies under long memory involv-
ing the Hermite or power rank. Assume throughout that
{X(n)} is a stationary long-memory process, typically
specified by a Gaussian process, or a linear process, or
a transformation of either (we call the model a Gaus-
sian or linear subordination).

In the kernel smoother type nonparametric estima-
tion procedures, a nonlinear transformation of the data
is naturally involved. For example, the kernel density
estimator of the probability density function f (x) is
defined as

(37) f̂ (x) = 1

Nh

N∑
n=1

K

(
x − X(n)

h

)
, x ∈ R,

where N is the sample size, h > 0 is the bandwidth
parameter, and K(·) is a kernel satisfying∫
R

K(x)dx = 1. A number of studies have consid-
ered the asymptotic behavior of the estimator f̂ (x)

as N → ∞ and h → 0. See, for example, Cheng and
Robinson [18], Csörgő and Mielniczuk [23] and Ho
[47], Wu and Mielniczuk [84]. Another typical class of
statistical procedures involving kernel smoothers are
the nonparametric local regressions (e.g., Nadaraya–
Watson estimator and local polynomial estimators).
Some relevant work involving the ranks are Hidalgo
[44], Csörgö and Mielniczuk [24], Masry and Miel-
niczuk [59], Guo and Koul [41].

We mention that under long memory, the asymp-
totic behavior of kernel smoothers can be quite differ-
ent from the short-memory case. In particular, an inter-
esting dichotomy phenomenon appears in the asymp-
totics depending on how fast the bandwidth bn tends
to 0 with respect to the Hurst index H of X(n). If bn

tends to 0 relatively slowly, one can have a very de-
generate behavior such as the kernel density estimate
f̂ (x) at different points of x becomes asymptotically
perfectly correlated. See, for example, Csörgő [22] as
well as Chapter 5.14 of Beran et al. [9].
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Asymptotic results involving applying limit theo-
rems with different ranks when studying these kernel
smoother procedures are due more often to the assump-
tion that X(n) is a transformation of a Gaussian or
linear process, than due to the nonlinear transforma-
tion produced by K(·) in (37). To obtain a higher-order
rank for f̂ (x) when X(n) is Gaussian or linear, one has
to be in very special situations, for example, when fo-
cusing on the asymptotic distribution of f̂ (x) in (37)
at a fixed point x = x0 while assuming that the true
density satisfies f ′(x0) = 0 (see, e.g., Theorem 3 of
Wu and Mielniczuk [84]). Similar considerations ex-
tend to other nonparametric procedures, for example,
the spline regression under long-memory noise (Beran
and Weiershäuser [12]).

3.5 Miscellaneous

Wavelets are useful tools for analyzing long-memory
data due to their natural adaptivity to scaling. Limit
theorems involving ranks were applied, for example,
in Clausel et al. [20, 21], who studied the asymptotic
behaviors of the wavelet coefficients and the wavelet
estimation of Hurst index of the Gaussian subordina-
tion data.

Some other statistical studies involving higher-order
ranks limit theorems are: bivariate U-processes (Lévy-
Leduc et al. [55]), change-point test (Zhao, Tian and
Xia [86], Dehling, Rooch and Taqqu [27]), goodness-
of-fit test in regression Koul and Stute [52], normal-
ity test (Beran and Ghosh [10]), sign test (Psaradakis
[65]), unit root test (Wu [82]).

4. EMPIRICAL EVIDENCE

In this section, we provide empirical evidence to sup-
port the preceding discussion of instability of ranks in
the limit theorems under long memory.

Consider the rank of the quadratic transformation

G(x) = x2.

It is always 2, in both the Gaussian and linear subor-
dination context. This means that if {X(n)} is exactly
a centered Gaussian or linear process with Hurst index
H > 1/2, then the Hurst index of the transformed se-
ries {X(n)2} should be

(38) HG = max
(

1

2
,2H − 1

)
< H,

in view of Theorem 2.6 and 2.15. Note that when
H < 0.75, the resulting Hurst index is always HG =
0.5 unless in the special case where the sum of covari-
ances of all orders is zero (anti-persistency).

Here is the question: if {X(n)} is a real-life cen-
tered stationary data in which displays long memory,
does one typically observe the decrease from H to
HG as in (38) when {X(n)} is replaced by {X(n)2}? If
our arguments in the previous sections make practical
sense, then the time series {X(n)2} should most likely
still possess rank 1, which means that (38) should
barely happen. To test this hypothesis, we design the
following empirical study which involves {X(n)} and
{X(n)2}. The design is explained in Remark 4.1 below.

Design of the study:

Suppose that we have a collection of M real-life sta-
tionary long-memory time series data{

Xm(n),n = 1, . . . ,Nm,m = 1, . . . ,M
}
,

where n is the time index, and m is the data set index.
For each m, we perform the following analysis.

Step 1 For each m = 1, . . . ,M , center the data:

Xm(n) ← Xm(n) − 1

Nm

Nm∑
n=1

Xm(n).

Step 2 For each m = 1, . . . ,M , obtain

the estimated Hurst index Ĥ (1)
m of{

Xm(n),n = 1, . . . ,Nm

}
and

the estimated Hurst index Ĥ (2)
m of{

Xm(n)2, n = 1, . . . ,Nm

}
.

Step 3 For each m = 1, . . . ,M , simulate R indepen-
dent sequences of fractional Gaussian noise
(increments of fractional Brownian motion):{

Gmr(n), n = 1, . . . ,Nm, r = 1, . . . ,R
}
,

all with Hurst index Ĥ
(1)
m . Obtain

the estimated Hurst index ĥ(1)
mr of{

Gmr(n), n = 1, . . . ,Nm

}
and

the estimated Hurst index ĥ(2)
mr of{

Gmr(n)2, n = 1, . . . ,Nm

}
,

for each r = 1, . . . ,R.
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Step 4 For each m = 1, . . . ,M , compute

δm = Ĥ (2)
m − max

(
1

2
,2Ĥ (1)

m − 1
)

from the data, and compute{
δmr := ĥ(2)

mr − max
(

1

2
,2ĥ(1)

mr − 1
)
,

r = 1, . . . ,R

}
from the simulated series. Then compute the
relative number of times (percentile) that δmr

is less than or equal to δm for r = 1, . . . ,R,
namely,

Pm = 1

R
#{δmr : δmr ≤ δm, r = 1, . . . ,R}

= F̂m,R(δm),

where F̂m,R is the empirical CDF of {δmr : r =
1, . . . ,R}.

Step 5 Construct the following contrast group: for
each m = 1, . . . ,M , simulate a fractional
Gaussian noise sequence{

X∗
m(n), n = 1, . . . ,N∗

m

}
with Hurst index randomly sampled from {Ĥ (1)

m ,

m = 1, . . . ,M}, and length N∗
m randomly sam-

pled from {Nm,m = 1, . . . ,M}.
Then perform the preceding steps 1–4 re-

placing {Xm(n)} by {X∗
m(n)}, from which one

gets Ĥ
(1)∗
m , Ĥ

(2)∗
m , δ∗

m and P ∗
m that correspond

to Ĥ
(1)
m , Ĥ

(2)
m , δm and Pm respectively.

In our study we set R = 200.

REMARK 4.1. We explain here the preceding
study design. Recall that Ĥ

(1)
m is the Hurst index es-

timate of the time series {Xm(n)} and Ĥ
(2)
m is the Hurst

index estimate of the squared time series {Xm(n)2}.
As mentioned before, the goal is to examine whether
Ĥ

(1)
m and Ĥ

(2)
m behave according to (38). If they behave

perfectly according to (38), then

δm = Ĥ (2)
m − max

(
1

2
,2Ĥ (1)

m − 1
)

should be zero. Both Ĥ
(1)
m and Ĥ

(2)
m are random and

thus fluctuate as m varies. To get a reference point,
we introduce a statistical contrast in Step 3, whereby
we simulate R fractional Gaussian noises series and

measure their Hurst indices ĥ
(1)
mr and ĥ

(2)
mr : the first in-

dex is for fractional Gaussian noise and the second is
for its square. Since these Hurst indices are obtained
from fractional Gaussian noises, they indeed obey (38).
We want to see how δm, which is measured from data,
compares to the δmr = ĥ

(2)
mr − max(1

2 ,2ĥ
(1)
mr − 1) cor-

responding to fractional Gaussian noise. This leads us
to focus on Pm instead of δm. One may view Pm as a
“standardized” version of δm with respect to the con-
trast distribution constructed from fractional Gaussian
noise, which makes comparison across different data
items (different m) more consistent. More technical ex-
planations are given below.

Let Fm(x) be the CDF of the random δm. Then
Fm(δm) follows exactly a uniform distribution on
[0,1]. If {Xm(n)} were indeed generated by fractional
Gaussian noise with true Hurst index Ĥ

(1)
m , then the

empirical CDF F̂m,R in Step 4 is a good approximation
of Fm. Therefore, if {Xm(n)} obeys (38) as the frac-
tional Gaussian noise does, and Ĥ

(1)
m is a reasonable

estimate, then Pm = F̂m,R(δm) in Step 4 is expected to
follow a uniform distribution on [0,1] approximately.
On the other hand, if the δm computed from the data
makes the distribution of Pm = F̂m,R(δm) skewed to-
ward 1, then this indicates that δm tends to be larger
than δmr .

To account for the potential bias due to the estima-
tion of the Hurst index, in Step 5 we replace our orig-
inal data {Xm(n)} by a second contrast group {X∗

m(n)}
made up of fractional Gaussian noise sequences with
similar lengths and Hurst indices. After repeating the
same procedure on this contrast group, we can then
compare the distribution (histogram) of {Pm} obtained
from the original data with the distribution of {P ∗

m} ob-
tained from the contrast group.

These designs may be regarded as simulation-
assisted statistical tests where the null hypothesis is
the relation (38).

Now we describe the data we use. The tree ring
width in chronological order has been identified as one
of the natural stationary time series data sets which
exhibit long memory (see Mandelbrot and Wallis [58]
and Pelletier and Turcotte [61]). Since the tree ring
width is largely affected by environmental factors,
which is explored in dendrochronology (see Schwe-
ingruber [70]), it also reflects the long-memory sta-
tionary fluctuation of the ecological systems. We shall
use the data compiled by The International Tree-Ring
Data Bank (ITRDB, ftp://ftp.ncdc.noaa.gov/pub/data/
paleo/treering/chronologies/) collected from Africa,

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/chronologies/
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/chronologies/
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FIG. 1. Up: Plot of the tree ring time series extracted from ca506.crn in ITRDB. Down: autocorrelation plot. The variance aggregation
estimate for the Hurst index of the data yields Ĥ (1) = 0.7182 and the Hurst index for the centered and squared data yields Ĥ (2) = 0.7217;
the local periodogram regression yields Ĥ (1) = 0.7569 and Ĥ (2) = 0.7801 respectively; the local Whittle estimate yields Ĥ (1) = 0.7024 and
Ĥ (2) = 0.7061 respectively.

Asia, Australia, Canada, Europe, Mexico, South Amer-
ica and USA, stored in the Standard Chronology File
(*.crn) format. For example, Figure 1 displays the time
series extracted from the file ca506.crn in the data bank
and its autocorrelation plot. We further select the data
according to the following criteria:

Criterion 1 The length of the time series is at least 300.
Criterion 2 The time series data is importable by

the Tree-Ring Matlab Toolbox3 (data is
usually importable if there is no missing
value).

Criterion 3 The estimated Hurst index Ĥ
(1)
m lies within

the interval [0.6,0.9].4
To be consistent, we also apply Criterion 1 and Crite-
rion 3 for to the contrast group {X∗

m(n), n = 1, . . . ,Nm}.
We shall use the following three popular estimators

of Hurst index:

• Variance aggregation estimator;
• Local periodogram regression estimator (also known

as GPH estimator);
• Local Whittle estimator.

For a description and empirical study of these esti-
mators, see Taqqu, Teverovsky and Willinger [78].
There are more sophisticated estimators, for example,

3http://www.ltrr.arizona.edu/dmeko/toolbox.html.
4Ideally we want the selected data to be stationary and long-range

dependent. When the estimate is close to 0.5, the data is likely to
have short memory; when the estimate is close to 1, it is likely to
be nonstationary.

the wavelet-type estimators (see, e.g., Faÿ et al. [34]).
To minimize finite-sample bias, these methods typ-
ically involve complicated choice of some tuning
parameters. Since our study design has taken into ac-
count the potential bias of the estimator, we shall
stick to the three more elementary estimators afore-
mentioned. For the variance aggregation estimator and
the local periodogram regression (GPH estimator), we
use the implementation by Chu Chen (http://www.
mathworks.com/matlabcentral/fileexchange/19148-
hurst-parameter-estimate, and we use the default pa-
rameter settings); For the local Whittle estimate, we
use the implementation by Katsumi Shimotsu (http:
//shimotsu.web.fc2.com/Site/Matlab_Codes.html), in
which case we choose the frequency cutoff threshold
to be [N2/3] with N being the length of the time se-
ries).

Observations:

The graphs in the right-hand side of Figures 2, 3 and
4 are as expected, namely, corresponding roughly to a
uniform distribution. This indicates that the procedure
described in the study is reasonable. In fact, the median
of P ∗

m is roughly 50% as it should be (see Table 1).
As mentioned below, there may be a small bias when
using the Local Periodogram Regression method [Fig-
ure 3 (right)]. See also Taqqu and Teverovsky [77] for
an empirical discussion of Whittle-type estimators.

Table 1 summarizes some key statistics of the analy-
sis based on the three different estimators. One can see
that for all three estimators, the median of δm is consis-

http://www.ltrr.arizona.edu/dmeko/toolbox.html
http://www.mathworks.com/matlabcentral/fileexchange/19148-hurst-parameter-estimate
http://shimotsu.web.fc2.com/Site/Matlab_Codes.html
http://www.mathworks.com/matlabcentral/fileexchange/19148-hurst-parameter-estimate
http://www.mathworks.com/matlabcentral/fileexchange/19148-hurst-parameter-estimate
http://shimotsu.web.fc2.com/Site/Matlab_Codes.html
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FIG. 2. Histogram of {Pm} (left) vs. {P ∗
m} (right) from the Variance Aggregation Estimator.

tently smaller than that of the contrast δ∗
m. The median

of Pm is significantly smaller than that of the contrast
P ∗

m. Figures 2, 3 and 4 plot the histograms of {Pm}
and {P ∗

m} obtained via the three different estimators.
Their results are similar: while {P ∗

m} are roughly uni-
formly distributed as expected, the histogram of {Pm}
is severely skewed toward 1. The contrast in the skew-
ness shows that the δm computed from the tree ring data
tends to be larger than the {δmr} computed from the
fractional Gaussian noise. In other words, in the case
of tree ring data, the Hurst index does not tend to de-
crease as much after squaring as the case of fractional
Gaussian noise.

As mentioned in Remark 4.1, if the Hurst index esti-
mate is unbiased, P ∗

m is expected to approximately fol-
low a uniform distribution on [0,1], so that the median
is close to 1/2. However, the estimation bias of Hurst
index could distort this uniformity. Indeed, in the Lo-
cal Periodogram Regression case, the median of P ∗

m is

63.5%. But this is still in sharp contrast with the cor-
responding median of Pm which is 86.25% and hence
significantly larger. This indicates that the data is not
behaving like fractional Gaussian noise. Thus our de-
sign is effective despite the bias inherent in the estima-
tion method.

REMARK 4.2. From the analysis above, we con-
clude that relation (38), or more generally (11), may
not make good prediction on real-life data. We note,
however, that the estimated Hurst index Ĥ

(2)
m of

{Xm(n)2} tends to be somewhat smaller than the es-
timated Hurst index Ĥ

(1)
m of {Xm(n)}, although for

the contrast group {X∗(n)} the decrease from Ĥ
(1)∗
m to

Ĥ
(2)∗
m is more significant. See Figure 5. A possible ex-

planation is that although {Xm(n)2} actually possesses
rank 1 and thus has the same Hurst index as {Xm(n)},
many of the {Xm(n)} may be close to a Gaussian (or
linear) process. So they tend to exhibit somewhat the

FIG. 3. Histogram of {Pm} (left) vs. {P ∗
m} (right) from the Local Periodogram Regression.
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FIG. 4. Histogram of {Pm} (left) vs. {P ∗
m} (right) from the Local Whittle Estimator.

relation (38) when the sample size is moderate. See Bai
and Taqqu [6] for an analysis of the interplay between
the rank instability effect and the sample size.

REMARK 4.3. As a reviewer pointed out, another
explanation of the observations found in the study is
that the data originally follows a model with a rank
higher than 1, in which case squaring does not nec-
essarily lead to a higher-order rank. Although this ex-
planation is allowable in theory, it is less natural than
the instability explanation. The reviewer’s explanation
relies on assuming a special model: the transformation
of a Gaussian or linear process with higher-order rank,
while ours indicates that a slight perturbation makes
the formula (38) unrealistic in practice.

5. STABILITY OF LIMIT THEOREMS UNDER WEAK
DEPENDENCE

In this section, we demonstrate that the instability
phenomenon appearing in the limit theorems under
long memory does not typically occur in the short-
memory case. This is important because it shows that
the transformation considered as “perturbation” in the
previous section usually does not make any qualitative
difference in short-memory situations and hence may
be safely negligible in large sample inference.

There are many ways to mathematically character-
ize weak dependence. For an introduction to various
notions of weak dependence of stationary processes
and corresponding limit theorems, we refer to Doukhan
[32]. In this section, we shall mainly look at the follow-
ing three as examples:

(1) Fast-decaying mixing coefficients under strong
mixing conditions;

(2) Fast decaying covariance function in Gaussian
subordination model (Theorem 5.2);

(3) Fast decaying physical dependence measure of Wu
[81] in Bernoulli shift models.

The first is by far the most widely used notion for weak
dependence which applies to very general stationary
processes. The second is mentioned due to its close
connection to the considerations in Section 2.1. The
third is a convenient criterion under the Bernoulli shift
framework which covers a wide range of concrete sta-
tistical models.

5.1 Strong Mixing Conditions

Suppose that {Y(n)} is a stationary process with
E[Y(n)] = 0 and Var[Y(n)] = 1. Define the σ -field
Fb

a = σ {Y(n) : a ≤ n ≤ b}, where −∞ ≤ a ≤

TABLE 1
Analysis Summary

Estimator Selected number M Median δm Median δ∗
m Median Pm Median P ∗

m

Variance Aggregation 1250 0.0786 0.0104 80.50% 51.00%
Local Periodogram Regression 658 0.0921 −0.0204 86.25% 63.50%
Local Whittle 908 0.0496 −0.0162 80.50% 52.50%
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FIG. 5. Top to bottom: variance aggregation estimator, local pe-
riodogram regression and local Whittle estimator. In each boxplot,

from left to right: Ĥ
(1)
m , Ĥ

(2)
m , Ĥ

(1)∗
m and Ĥ

(2)∗
m .

b ≤ +∞. Given two σ -fields A, B, one can define the
following measure of dependence

α(A,B) = sup
{∣∣P(A ∩ B) − P(A)P (B)

∣∣ :
(39)

A ∈ A,B ∈ B
}
.

Then the α-mixing coefficient of {X(n)}, first intro-
duced in Rosenblatt [67], is defined as

αY (n) = α
(
F0−∞,F∞

n

)
.

When αY (n) → 0 as n → ∞, we say that {Y(n)} is
strong mixing. If one assumes that αY (n) decays to
zero fast enough together with some other regularity
conditions, then a central limit theorem for X(n) can
be established. We state, as an example, the following
central limit theorem due to Ibragimov [49] and Herrn-
dorf [43].

THEOREM 5.1. If E|Y(n)|2+δ < ∞ for some δ > 0
and

(40)
∞∑

n=1

αY (n)δ/(2+δ) < ∞,

then

1√
N

[Nt]∑
n=1

(
Y(n) −EY(n)

) ⇒ σB(t),

where B(t) is a standard Brownian motion, ⇒ stands
for weak convergence in D[0,1], and

σ 2 =
∞∑

n=−∞
Cov

[
Y (n),Y (0)

]
.

Now consider the transformation

X(n) = F
(
Y(n), . . . , Y (n − l)

)
.

Let us compare αX and αY . Since X(n) ∈ Fn
n−l , it is

easily deduced that for n > l, the α-mixing coefficient
of {X(n)} satisfies

(41) αX(n) ≤ αY (n − l).

The relation (41) means that the dependence measured
by the α-mixing coefficient after the perturbing trans-
form F(·) cannot exceed that of the original process
Y(n) (up to a fixed lag l). In particular, relation (40)
holds for αX(n). One then only needs E|X(n)|2+δ <

∞ [which is the case if F(·) has at most linear growth]
for Theorem 5.1 to hold.
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There are different mixing coefficients than α(n),
obtained by modifying the measure of dependence be-
tween the σ -fields in (39), for example, the φ-mixing
coefficient defined through

φ(A,B) = sup
{∣∣P(A|B) − P(A)

∣∣ :
A ∈ A,B ∈ B,P (B) > 0

}
,

the ρ-mixing coefficient defined through

ρ(A,B) = sup
{
Corr(X,Y ) : X ∈ L2(A), Y ∈ L2(B)

}
,

and so on. In general, as long as a dependence mea-
sure m(·, ·) is nonincreasing with respect to set inclu-
sion and the mixing coefficient is defined as m(n) =
m(F0−∞,F∞

n ), then a relation such as (41) always
holds.

Hence, the central limit theorems under strong mix-
ing conditions is robust against a transformation per-
turbation.

5.2 Gaussian Subordination

Let {Y(n)} be a stationary Gaussian process, and let

X(n) = F
(
Y(n), . . . , Y (n − l)

)
.

When the covariance function of Y(n) decays fast
enough, a central limit theorem always holds for X(n).
In particular, we have the following result which is a
consequence of Ho and Sun [46].

THEOREM 5.2. Suppose that EX(n)2 < ∞ and

(42)
∞∑

n=−∞

∣∣Cov
[
Y (n),Y (0)

]∣∣ < ∞.

Then one has

1√
N

[Nt]∑
n=1

(
X(n) −EX(n)

) f.d.d.−→ σB(t),

where B(t) is a standard Brownian motion and

σ 2 =
∞∑

n=−∞
Cov

[
X(n),X(0)

]
.

Theorem 5.2 directly expresses the robustness of the
central limit theorem against transformation perturba-
tion when the short-memory condition (42) is imposed
on Y(n).

5.3 Bernoulli Shift

Let {εi} be an i.i.d. sequence of random variables
with mean 0 and variance 1. Consider the Bernoulli
shift model

(43) Y(n) = GY (εn, εn−1, . . .),

where GY is a nonrandom measurable function. This
specification covers not only the causal linear process
(17), but also many nonlinear time series models ob-
tained as solutions of difference equations involving εi .

Wu [81] introduced the following so-called physical
dependence measure for a process {Y(n)} specified by
(43). Let ε∗

0 be a random variable independent of {εi}
and having the same distribution as ε0. Define

δX
2 (n) = ∥∥GY (εn, . . . , ε1, ε0, ε−1, . . .)

(44)
− GY

(
εn, . . . , ε1, ε

∗
0, ε−1, . . .

)∥∥
L2(�).

If (43) is interpreted as a nonlinear system with input
{εn} and output {Y(n)}, then δY

2 (n) in (44) measures
the influence of the lag-n input ε0 on the current output
Y(n).

With δY
2 (n), one can state the following central limit

theorem, which is a consequence of Theorems 1 and 3
of Wu [81].

THEOREM 5.3. Suppose that
∞∑

n=1

δX
2 (n) < ∞.(45)

Then one has

1√
N

[Nt]∑
n=1

(
X(n) −EX(n)

) f.d.d.−→ σB(t), t ≥ 0,

where B(t) is a standard Brownian motion, and

σ 2 =
∞∑

n=−∞
Cov

[
X(n),X(0)

]
.

REMARK 5.4. The criterion (45) is typically easier
to check for a specific Bernoulli shift model than the
criteria based on strong mixing conditions (see Theo-
rem 5.1), while still providing numerous statistical ap-
plications.

Now we consider the transformation perturbation.
Let

X(n) = F
(
Y(n), . . . , Y (n − l + 1)

)
=: GX(εn, εn−1, . . .).

We need to assume some smoothness condition (com-
pare with the arguments of Claim 2.11) on the per-
turbation function F(x1, . . . , xl). In particular, suppose
that F(·) is Lipschitz, that is,∣∣F(x1, . . . , xl) − F(y1, . . . , yl)

∣∣
≤ CF

l∑
i=1

|xi − yi |
(46)

for some constant CF ≥ 0.
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Setting εn = (εn, . . . , ε1, ε0, ε−1, . . .) and ε∗
n = (εn,

. . . , ε1, ε
∗
0, ε−1, . . .), one has by (46) that∣∣GX(εn) − GX

(
ε∗

n

)∣∣
≤ CF

l−1∑
i=0

∣∣GY (εn−i) − GY

(
ε∗

n−i

)∣∣.
Therefore, if δX

2 (n) and δY
2 (n) are the physical de-

pendence measures of {X(n)} and {Y(n)} respectively,
then

δX
2 (n) = ∥∥GX(εn) − GX

(
ε∗

n

)∥∥
L2(�)

≤ CF

l−1∑
i=0

δY
2 (n − i).

Hence if {Y(n)} satisfies the short-memory condition
∞∑

n=1

δY
2 (n) < ∞,

then so does {X(n)}. This shows the robustness of The-
orem 5.3 against a perturbation by any Lipschitz trans-
formation.

REMARK 5.5. The proof of Theorem 5.3 is based
on a martingale difference approximation method and
resorts to the martingale difference central limit theo-
rem. We note, however, that the martingale difference
central limit theorem is itself not robust against trans-
formation, since the martingale difference structure in
general can be easily disturbed by a transformation. For
example, in the stochastic volatility-type models, for
example, the LARCH(∞) model (Giraitis et al. [37]),
the return sequence X(n) is a martingale difference,
while |X(n)| can exhibit long memory (see Beran et al.
[9], Chapter 4.2.8.).

REMARK 5.6. Using similar arguments, one can
show that the θ -weak dependence criterion (whose def-
inition involves bounded Lipschitz transformation) in-
troduced by Doukhan and Louhichi [33], enjoys a ro-
bustness against bounded Lipschitz transformations.

6. CONCLUSION AND SUGGESTIONS

In this paper, we discussed the instability issue of
Hermite rank and other related ranks appearing in limit
theorems under long memory. We argued that a rank
greater than 1 can be disturbed by a transformation and
only a rank equal to 1 is stable. We provided empirical
evidence supporting this argument. Such an instability
feature has important statistical implications. In partic-
ular, assuming a higher-order rank when it is really not

there may result in underestimating the order of fluctu-
ation of the statistic of interest.

To address this issue we briefly indicate here some
suggestions for performing valid inference. As illus-
trated, particularly in Section 3, one may adopt the
assumption that the rank is always 1, regardless of
any nonlinear transformation resulting from the statis-
tical procedure. Here the rank should be understood in
a generalized sense, taking into account situations as
(36). Some studies have implicitly done so, although
without giving an explanation (see, e.g., Beran [8] and
Shao [72]). Recently Beran, Möhrle and Ghosh [11]
designed a statistical test based on resampling to dis-
tinguish Hermite rank 1 and a higher-order Hermite in
the model (14).

Another appealing way out, is to redesign the statis-
tical procedure in a way as to avoid using the fixed-
rank limit theorems for inference directly. This may be
achieved by combining resampling method (see, e.g.,
Hall, Jing and Lahiri [42], Nordman and Lahiri [60],
Zhang et al. [85]), Bai and Taqqu [5]), together with
suitable self-normalization technique (see, e.g., Shao
[71, 72]). We refer the reader to Jach, McElroy and
Politis [50], Betken and Wendler [13] and Bai, Taqqu
and Zhang [7] for approaches of this type.

APPENDIX: NONINSTANTANEOUS
TRANSFORMATION OF THE GAUSSIAN

Let {Y(n)} be a standardized stationary long-memory
Gaussian process with Hurst index H . We extend here
the discussion on instantaneous transformation (14) to
the noninstantaneous transformation

(47) X(n) = F
(
Y (n),Y (n − 1), . . . , Y (n − l)

)
,

where X(n) ∈ L2(�) and l is a finite positive integer.
Since the noninstantaneous case is much less treated
in the literature, we shall introduce in this section the
relevant results in Dobrushin and Major [31], and show
that the arguments developed in Section 2.1 continue to
be valid.

It is well known that the Gaussian Y(n) admits the
spectral representation (see, e.g., Dobrushin and Major
[31])

(48) Y(n) =
∫
(−π,π ]

einxWY (dx),

where WY (dx) is a complex-valued Gaussian measure
satisfying

(49) E
∣∣WY (dx)

∣∣2 = FY (dx)



INSTABILITY OF RANKS UNDER LONG MEMORY 113

and FY (·) is the spectral distribution5 of Y(n). Then
X(0) has the following Wiener–Itô expansion (see Do-
brushin and Major [31], formula (6.1), or Janson [51],
Theorem 7.61):

X(0) −EX(0)

=
∞∑

m=1

∫ ′′
(−π,π ]m

αm(x1, . . . ,

xm)WY (dx1) · · ·WY (dxm),

(50)

where the double prime ′′ indicates the exclusion of the
hyper-diagonals xp = ±xq in the multiple stochastic
integral. Here αm(·)’s are a.e. unique complex-valued
functions in satisfying

αm(x1, . . . , xk) = αm(−x1, . . . ,−xm)

and
∞∑

m=1

m!‖αm‖2
L2((−π,π ]m,F⊗m

Y )
< ∞,

where

‖αm‖L2((−π,π ]m,F⊗m
Y )2

=
∫
(−π,π ]m

∣∣αm(x1, . . . , xm)
∣∣2FY (dx1) · · ·FY (dxm).

The Hermite rank of X(n) [or say the Hermite rank of
F(·) with respect to {Y(n)}] is defined as

(51) inf
{
m ≥ 1 : ‖αm‖L2((−π,π ]m,F⊗m

Y ) �= 0
}
.

The Hermite rank in (51) is also equal to (see Do-
brushin and Major [31], Remark 6.3)

inf
{
m ≥ 1 : E[(

X(0) −EX(0)
)
Y(n)m

] �= 0
(52)

for some n ∈ Z
}
.

This should be compared to (7).
By Remark 6.1 of Dobrushin and Major [31], the a.e.

unique function αm(·) can further be chosen to be con-
tinuous, which we shall assume throughout below. We
are now ready to state the following generalization of
Theorem 2.6, which follows from Dobrushin and Ma-
jor [31], Theorem 3, Remark 6.3 and Remark 6.4.

THEOREM A.1. Suppose that X(n) = F(Y (n),

. . . , Y (n− l)), and that the Hermite rank in the sense of
(51) is k, and that the Hurst index H of {Y(n)} satisfies

H > 1 − 1

2k
.

5Do not confuse FY in (49) with F in (47).

Suppose also that αk(·) in (50) satisfies

(53) αk(0, . . . ,0) �= 0.

Then {X(n)} has long memory with Hurst index

HF = (H − 1)k + 1 ∈
(

1

2
,1

)
.

Furthermore, as N → ∞, we have

1

NHF

[Nt]∑
n=1

(
X(n) −EX(n)

)
⇒ cαk(0, . . . ,0)ZHF ,k(t),

(54)

for some c �= 0, where ZHF ,k(t) is the Hermite process
in (13).

REMARK A.2. In contrast to Theorem 2.6 where
the constant c in (12) is always nonzero, in the non-
instantaneous case we need to assume in addition the
condition (53). If αk(0, . . . ,0) = 0, then (54) tells noth-
ing more than that the normalization N−HF is too
strong. In this case, terms with order greater than k

may contribute to the asymptotic distribution as well.
For example, if in (47) we let

X(n) = H1
(
Y(n)

) − H1
(
Y(n − 1)

) + H2
(
Y(n)

)
= Y(n) − Y(n − 1) + Y(n)2 − 1.

Using the spectral representation (48) and Major [57]
Theorem 4.3, we have

X(0) =
∫
(−π,π ]

(
1 − e−ix)

WY (dx)

+
∫ ′′
(−π,π ]2

WY (dx1)WY (dx2)

so that α1(x) = 1 − e−ix and α1(0) = 0. On the other
hand, the Hermite rank of X(n) is k = 1 in view of
(50). Now

N∑
n=1

X(n) = Y(N) − Y(0) +
N∑

n=1

H2
(
Y(n)

)
.

Since Y(n) is stationary, N−H [Y(N) − Y(0)] p→ 0,
and thus only the term

∑N
n=1 H2(Y (n)) contributes

to in the limit. Hence the limit of suitably normal-
ized

∑N
n=1 X(n) can be either a Brownian motion if

H ≤ 3/4 or a Hermite process of order 2 if H > 3/4 in
view of Theorem 2.6.

REMARK A.3. Now arguing as in Section 2.1, one
notes that a Hermite rank higher than 1 in this non-
instantaneous context is also unstable. Recall that the
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role of F(·) in (47), as in Section 2.1, is to account for
an uncontrollable perturbation of the Gaussian model.
Suppose that G(·) is a function determined by the sta-
tistical procedure of interest. Then one can formulate a
statement parallel to Claim 2.11. So the part of Theo-
rem A.1 which is most likely of statistical relevance
is just the case k = 1, where the limit is fractional
Brownian motion and the normalization is N−H . Note
that this noninstantaneous consideration includes not
only G(X(n)) with X(n) defined in (47), but also the
case where G(·) is a finite-dimensional multivariate
function of the observed time series {X(n)}, for exam-
ple, G(X(n), . . . ,X(n − p)) = X(n)X(n − p), a term
which appears in the sample covariance.

Arguing as in Claim 2.11, condition (53) should be
expected to typically hold in practice.

REMARK A.4. Using the full generality of Theo-
rem 3 of Dobrushin and Major [31], it is even possi-
ble to consider the case l = ∞ in (47), namely, includ-
ing dependence on the infinite past. In this case, how-
ever, one encounters major technical difficulties since
F(·) with l = ∞ may alter the long-memory property
of Y(n), for example, if F(·) is a linear filter with a
slow power-law decay (see, e.g., Section 2.5). On the
other hand, one may be satisfied with the restriction
to l < ∞ since F(·) has been introduced only to ac-
count for a small perturbation of the Gaussian model,
in which case the argument of F(·) is not expected to
stretch to the infinite past.

REMARK A.5. This discussion can also be ex-
tended to the case where Y(n) is a vector-valued Gaus-
sian stationary noise and X(n) is also vector-valued.
See, for example, Denaranjo [30] and Arcones [1].

REMARK A.6. We mention that the extension of
Theorem 2.15 to noninstantaneous transformation of
linear processes, that is, an analog of Theorem A.1
when X(n) is linear, is still open. Only central limit
theorems involving noninstantaneous filter of linear
processes have been considered (see Wu [80] and
Cheng and Ho [19]).

ACKNOWLEDGMENT

We thank an Associate Editor and two referees for
their insightful comments. This work was partially sup-
ported by NSF Grant DMS-13-09009 at Boston Uni-
versity.

REFERENCES

[1] ARCONES, M. A. (1994). Limit theorems for nonlinear func-
tionals of a stationary Gaussian sequence of vectors. Ann.
Probab. 22 2242–2274. MR1331224

[2] AVRAM, F. (1988). On bilinear forms in Gaussian ran-
dom variables and Toeplitz matrices. Probab. Theory Related
Fields 79 37–45.

[3] AVRAM, F. and TAQQU, M. S. (1987). Noncentral limit the-
orems and Appell polynomials. Ann. Probab. 15 767–775.
MR0885142

[4] BAI, S. and TAQQU, M. S. (2013). Multivariate limit theo-
rems in the context of long-range dependence. J. Time Series
Anal. 34 717–743. MR3127215

[5] BAI, S. and TAQQU, M. S. (2017). On the validity of re-
sampling methods under long memory. Ann. Statist. 45 2365–
2399. MR3737895

[6] BAI, S. and TAQQU, M. S. (2017). Sensitivity of the Hermite
rank. Preprint. Available at http://arxiv.org/abs/1710.01612.

[7] BAI, S., TAQQU, M. S. and ZHANG, T. (2016). A unified
approach to self-normalized block sampling. Stochastic Pro-
cess. Appl. 126 2465–2493. MR3505234

[8] BERAN, J. (1991). M estimators of location for Gaussian and
related processes with slowly decaying serial correlations.
J. Amer. Statist. Assoc. 86 704–708. MR1147095

[9] BERAN, J., FENG, Y., GHOSH, S. and KULIK, R. (2013).
Long-Memory Processes: Probabilistic Properties and Statis-
tical Methods. Springer, Berlin.

[10] BERAN, J. and GHOSH, S. (1991). Slowly decaying correla-
tions, testing normality, nuisance parameters. J. Amer. Statist.
Assoc. 86 785–791. MR1147106

[11] BERAN, J., MÖHRLE, S. and GHOSH, S. (2016). Testing for
Hermite rank in Gaussian subordination processes. J. Com-
put. Graph. Statist. 25 917–934. MR3533645

[12] BERAN, J. and WEIERSHÄUSER, A. (2011). On spline re-
gression under Gaussian subordination with long memory.
J. Multivariate Anal. 102 315–335. MR2739118

[13] BETKEN, A. and WENDLER, M. (2015). Subsampling for
general statistics under long range dependence. Preprint.
Available at arXiv:1509.05720.

[14] BINGHAM, N. H., GOLDIE, C. M. and TEUGELS, J. L.
(1989). Regular Variation. Encyclopedia of Mathematics
and Its Applications. Cambridge Univ. Press, Cambridge.
MR1015093

[15] BREUER, P. and MAJOR, P. (1983). Central limit theorems
for non-linear functionals of Gaussian fields. J. Multivariate
Anal. 13 425–441.

[16] BROCKWELL, P. J. and DAVIS, R. A. (1991). Time Series:
Theory and Methods, 2nd ed. Springer, Berlin. MR1093459

[17] CHAMBERS, D. and SLUD, E. (1989). Central limit theorems
for nonlinear functionals of stationary Gaussian processes.
Probab. Theory Related Fields 80 323–346. MR0976529

[18] CHENG, B. and ROBINSON, P. M. (1991). Density esti-
mation in strongly dependent non-linear time series. Statist.
Sinica 1 335–359.

[19] CHENG, T. and HO, H. (2008). On Berry–Esseen bounds
for non-instantaneous filters of linear processes. Bernoulli 14
301–321. MR2544089

[20] CLAUSEL, M., ROUEFF, F., TAQQU, M. S. and TUDOR, C.
(2012). Large scale behavior of wavelet coefficients of non-
linear subordinated processes with long memory. Appl. Com-
put. Harmon. Anal. 32 223–241. MR2880280

http://www.ams.org/mathscinet-getitem?mr=1331224
http://www.ams.org/mathscinet-getitem?mr=0885142
http://www.ams.org/mathscinet-getitem?mr=3127215
http://www.ams.org/mathscinet-getitem?mr=3737895
http://arxiv.org/abs/1710.01612
http://www.ams.org/mathscinet-getitem?mr=3505234
http://www.ams.org/mathscinet-getitem?mr=1147095
http://www.ams.org/mathscinet-getitem?mr=1147106
http://www.ams.org/mathscinet-getitem?mr=3533645
http://www.ams.org/mathscinet-getitem?mr=2739118
http://arxiv.org/abs/arXiv:1509.05720
http://www.ams.org/mathscinet-getitem?mr=1015093
http://www.ams.org/mathscinet-getitem?mr=1093459
http://www.ams.org/mathscinet-getitem?mr=0976529
http://www.ams.org/mathscinet-getitem?mr=2544089
http://www.ams.org/mathscinet-getitem?mr=2880280


INSTABILITY OF RANKS UNDER LONG MEMORY 115

[21] CLAUSEL, M., ROUEFF, F., TAQQU, M. S. and TUDOR, C.
(2014). Wavelet estimation of the long memory parameter for
Hermite polynomial of Gaussian processes. ESAIM Probab.
Stat. 18 42–76. MR3143733
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