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On a General Definition of Depth
for Functional Data
Irène Gijbels and Stanislav Nagy

Abstract. In this paper, we provide an elaboration on the desirable proper-
ties of statistical depths for functional data. Although a formal definition has
been put forward in the literature, there are still several unclarities to be tack-
led, and further insights to be gained. Herein, a few interesting connections
between the wanted properties are found. In particular, it is demonstrated that
the conditions needed for some desirable properties to hold are extremely de-
manding, and virtually impossible to be met for common depths. We estab-
lish adaptations of these properties which prove to be still sensible, and more
easily met by common functional depths.
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1. INTRODUCTION

For univariate data the sample median is well known
to be appropriately describing the centre of a data
cloud. An extension of this concept for multivariate
data (say p-dimensional) is the notion of a point (in
R

p) for which a statistical depth function is maxi-
mized. A key issue is then to define what is a valid sta-
tistical depth function, and what are its desirable prop-
erties. Zuo and Serfling (2000a) clearly answer this
question by listing four properties that a depth function
should satisfy in R

p:

� Property ZS-1: Affine invariance; the depth of a
point should not depend on the coordinate system,
or on the measurement scales used.

� Property ZS-2: Maximality at the centre; the depth
function should attain its maximum value at the cen-
tre of symmetry of the data cloud, if the data cloud
is symmetric.
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� Property ZS-3: Monotonicity relative to the deepest
point; as a point moves away from the deepest point
(the “centre”), the depth should decrease monotoni-
cally.

� Property ZS-4: Vanishing at infinity; the depth of a
point should tend to zero, as the point moves to an
infinite distance from the data cloud.

For functional data, that is, data that are functions, it
is far more tricky to determine which properties should
a statistical depth function satisfy. Let us first intro-
duce some notation. For a compact set V ⊂ R

d , con-
sider the functions x : V → R, and denote this space
of functions by F. The function space F is a normed
vector space with norm ‖x‖ and with the correspond-
ing “distance” metric d(x, y) = ‖x − y‖, for x, y ∈ F.
Some examples are (i) F = C, the space of all continu-
ous functions with ‖x‖∞ = supv∈V |x(v)| the uniform
norm, or (ii) F = L2, the space of all square integrable

functions with ‖x‖L2 =
√∫

V x(v)2 dv. In this paper,
spaces C and L2 are always assumed to be equipped
with the norms ‖ · ‖∞ and ‖ · ‖L2 , respectively.

The set of all Borel probability measures on F is de-
noted by P . Denoting (�,B,P) the probability space
on which all the random variables are defined, a mea-
surable mapping X : � → F is called a random func-
tion taking values in F. A statistical depth functional is
then a mapping D : F×P →R : (x,P ) �→ D(x,P ).

In a recent paper, Nieto-Reyes and Battey (2016)
provide a general definition of a statistical depth func-
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tional (subsequently called just depth, or depth func-
tional) for data taking the form of random functions.
They list six key properties (denoted P-1–P-6) that a
reasonable depth functional D must satisfy:

� Property P-1: Distance invariance of D;
� Property P-2: Maximality of D at the centre;
� Property P-3: Monotonicity of D relative to the

deepest point;
� Property P-4: Upper semi-continuity of D in any

function x ∈ F;
� Property P-5: Receptivity of D to convex hull width

across domain;
� Property P-6: Continuity of D in P .

See Nieto-Reyes and Battey (2016) for formal defini-
tions of these properties. These properties are aimed
to be suitable modifications of Properties ZS-1–ZS-4
(established in the multivariate setting) to the infinite-
dimensional functional setting. Finding such modifica-
tions is far from evident, though, and simple general-
izations need to be investigated with a lot of care. Take,
for example, the notion of symmetry of a distribution
used in Property ZS-2. Even in the multivariate set-
ting, there is no unique concept of symmetry. This led
Nieto-Reyes and Battey (2016) to consider Property P-
2G: Maximality of D at a Gaussian process mean, in-
stead of Property P-2, which is a straightforward trans-
lation of Property ZS-2 towards functional data. In
Nieto-Reyes and Battey (2016), an extensive compar-
ative study—with respect to (w.r.t.) these properties—
of the most important representatives of existing depth
functionals, is given. Their findings are summarized in
Table 2 of that paper.

Such a coherent survey of theoretical properties of
depth functionals is highly relevant. The body of exist-
ing literature on the subject is substantial, though the-
oretical advances are rather scattered, and lack unity
of exposition. The overall aim of this paper is to con-
tribute further to the concept of data depth for general
infinite-dimensional, and complex data. Our contribu-
tion is two-fold: (i) we broaden the scope of the dis-
cussion generated in Nieto-Reyes and Battey (2016),
provide a close look at the desirable properties P-1–P-6
from an analytical point of view, and point out that for
some properties one needs to look for replacements or
adaptations; (ii) we extend the survey with several ad-
ditional depth functionals, and establish some impor-
tant theoretical properties of these depth functionals.

More specifically, for Properties P-1–P-6 (including
P-2G), we establish the following additional insights:

• Property P-1 turns out to be very demanding in func-
tional spaces. In full generality (i.e., without further
restrictions), it does not hold for any of the consid-
ered depth functionals (Section 2.1);

• Property P-2G is not valid for the band depth (Sec-
tion 2.2);

• Property P-3 does not represent a counterpart of the
monotonicity property ZS-3 for finite-dimensional
depths introduced in Zuo and Serfling (2000a). Ac-
tually, it is much stronger and no common finite-
dimensional, or functional depth satisfies this prop-
erty (Section 2.3);

• None of the investigated functional depths satisfies
Property P-5. In fact, that property seems to be void
in the functional setting (Section 2.5);

• Property P-6 is, arguably, rather weak in its formu-
lation, and in an already rich body of literature a
stronger version of it is studied for functional depths.
Moreover, P-6 is known not to be satisfied for some
functional depths considered in the exposition (Sec-
tion 2.6).

In view of these findings, we provide an extensive up-
date of the survey presented in Nieto-Reyes and Bat-
tey (2016), including a revision of some conclusions.
These amended results are presented in Table 1 be-
low. The majority of the new results are in the red bold
rows, as well as in the last four columns. For results
that are new, proofs are provided in the on-line Supple-
mentary Material document that accompanies this pa-
per (Gijbels and Nagy, 2017). That document also con-
tains several examples that illustrate the points made.

In addition, in Section 2.1 we provide a detailed
elaboration on various invariance properties of depths
in functional spaces. A novel and appealing, general
definition of symmetry for random functions, and Ba-
nach space-valued random variables, is presented in
Section 2.2.

From the contributions in this paper, it can be con-
cluded that: (a) it is possible to achieve a consent
on what the desirable properties of functional depths
should be; (b) a great caution should be taken when
making generalizations to a functional setting, and de-
riving theoretical results for this.

2. DISCUSSION ON STATISTICAL
DEPTH PROPERTIES

For convenience of the readers, we use the same no-
tation as in Nieto-Reyes and Battey (2016). In particu-
lar, we denote (see that paper for formal definitions)
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TABLE 1
A revised, expanded table of results summarizing which of the theoretical properties P-1–P-6 from Nieto-Reyes and Battey (2016) are
satisfied (indicated by ✓) or not (indicated by ✗) for the considered functional depths (standard rows). In red bold rows we indicate

adherence of the depths to the properties P-0–P-6U discussed in the present paper

Properties Depth Functionals

Dh DRT DJ DMJ DHR DMHR DT DS DL∞ DI

Functional space F L2 L2 C C C C L2 L2 C C

Nondegeneracy P-0 ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓1 ✗

Invariance
P-1 ✓2 ✗ ✗ ✗ ✗ ✗ ✗ ✓3 ✓2 ✗

P-1S ✓2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓2 ✓

P-1F ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

Maximality at centre
P-2G ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗

P-2C ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗

P-2H ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

Decreasing w.r.t. deepest point
P-3 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

P-3D ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓1 ✗

Vanishing at infinity P-3V ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Semi-continuity in x P-4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓4 ✓ ✓

Domain receptivity P-5 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Consistency/robustness
P-6 ✓ ✓5 ✗ ✓6 ✗ ✓6 ✗ ✓7 ✓8 ✓9

P-6U ✓ ✓5 ✗ ✓6 ✗ ✓6 ✗ ✓7 ✓8 ✓9

1Only if E‖X‖∞ < ∞ for X ∼ P .
2Only for af = 1 and a = 1 in P-1 and P-1S, respectively.
3Only for f surjective in P-1.
4For P nonatomic.
5For P such that the joint distribution (P〈u1,X〉, . . . ,P〈uk,X〉) for {u1, . . . , uk} = U (see Nieto-Reyes and Battey, 2016, Section 4.1.2) is
absolutely continuous, or for the sequence of empirical measures.
6For X ∼ P such that X(v) has no atoms for each v ∈ V , or for the sequence of empirical measures.
7Uniformly over compact sets in F, for the sequence of empirical measures, and for X ∼ P such that sup‖x‖L2 ≤C EP1 1/‖x − X‖L2 < ∞
for each C > 0, where P1 is the nonatomic part of P .
8Uniformly over compact sets in F, and for the sequence of empirical measures.
9For X ∼ P such that X(v) has no atoms for each v ∈ V .

Dh = the h-depth (Cuevas, Febrero and Fraiman,
2007);
DRT = the random Tukey depth (Cuesta-Albertos
and Nieto-Reyes, 2008);
DJ = the band depth (López-Pintado and Romo,
2009);
DMJ = the modified band depth (López-Pintado and
Romo, 2009);
DHR = the halfregion depth (López-Pintado and
Romo, 2011);

DMHR = the modified halfregion depth (López-
Pintado and Romo, 2011).

In addition to these depths, included in the initial sur-
vey of Nieto-Reyes and Battey (2016), we consider
four additional important depth functionals:

DT = (the functional version of) the Tukey depth
(Dutta, Ghosh and Chaudhuri, 2011);
DS = the spatial depth (Chakraborty and Chaudhuri,
2014b);
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DL∞ = the L∞ depth (Long and Huang, 2016);
DI = the infimal depth (or �-depth) (Mosler, 2013).

For definitions of these functional depths see the Ap-
pendix.

We will often consider finite-dimensional Euclidean
spaces R

p as special cases of the functional space F.
This is justified by restricting from F to its p-
dimensional linear subspace spanned by a sequence of
linearly independent (and possibly orthogonal) func-
tions b1, . . . , bp ∈ F. A point x = (x1, . . . , xp) ∈ R

p

can then be identified with a function
∑p

j=1 xjbj ∈ F,
and observations made in R

p can be translated into an
appropriate subspace of F.

We now discuss the desirable properties P-1–P-6
as stated in Nieto-Reyes and Battey (2016), and ex-
plore their relations with ZS-1–ZS-4. In the exposition,
the discussion on Property P-4 (Semi-continuity of the
depth) is omitted, as this is a rather standard assump-
tion, and this property is satisfied for most depth func-
tionals (Nieto-Reyes and Battey, 2016, Theorem 4.6).

To avoid various technical difficulties, before pro-
ceeding to the main conditions we start with an addi-
tional property that any reasonable depth function must
obey.

P-0 Nondegeneracy. For any P ∈ P we have
infx∈F D(x,P ) < supx∈F D(x,P ).

Technically, P-0 is new compared to ZS-1–ZS-4.
Although it can be found as part of P-2G in Nieto-
Reyes and Battey (2016), in a more restrictive setting
of Gaussian processes, see Section 2.2 below, it is im-
portant to consider it separately. In finite-dimensional
spaces, P-0 is trivially true for all recognized depths. In
the functional case, this is surprisingly no longer true,
and P-0 must be considered (Chakraborty and Chaud-
huri, 2014a, Kuelbs and Zinn, 2013, 2015).

Properties P-2, P-3 and P-5 from Nieto-Reyes and
Battey (2016) operate with the concept of the depth-
median, that is, a point (function) x ∈ F at which
the value of D(·,P ) is maximized over F. This no-
tion obviously lacks meaning if P-0 is not true for
P . Thus, in the sequel, whenever a condition requires
depth-medians, P-0 is a mandatory preliminary im-
posed on D.

2.1 P-1: Distance Invariance

To understand the importance of Property P-1 and its
relation to its intended counterpart ZS-1, four different
types of mappings between functional spaces must be
distinguished:

M1 Multiple of an isometry: A mapping g : F → F is
called an isometry on F if

d(x, y) = d
(
g(x), g(y)

)
for x, y ∈ F.

If a mapping f : F → F can be written as f (x) =
cg(x) for some c ∈R \ {0} for all x ∈ F, then f is
called a multiple of the isometry g on F.

M2 Affine mapping: A mapping f : F → F is called
affine if

f
(
(1 − α)x + αy

) = (1 − α)f (x) + αf (y)

for x, y ∈ F and α ∈ [0,1].
M3 Function-affine mapping: A mapping f : F → F

is called function-affine if

f (x) = ax + b for x, a, b ∈ F,

where a(v) �= 0 for all v ∈ V and ax ∈ F.

M4 Scalar-affine mapping: A mapping f : F → F is
called scalar-affine if

f (x) = ax + b for x, b ∈ F and a ∈ R \ {0}.
In P-1, mappings of type M1 are utilized as equiv-

alents of the affine mappings (type M2 for F = R
p)

used in ZS-1 for finite-dimensional depths. In the proof
of Theorem 4.1 of Nieto-Reyes and Battey (2016)
one relies on the equivalence, for functional spaces
(L2 and C), between M1 and M4, and consequently the
assertion of Theorem 4.1 is only shown for M4 map-
pings.

A crucial remark, however, is that this equivalence
is not valid—the relations between M1–M4 are more
complicated. First of all, recall the Mazur–Ulam the-
orem (see Väisälä, 2003). This result states that any
surjective isometry (but also any surjective mapping
of type M1) on a normed vector space over R is of
type M2. This somewhat justifies the use of M1 map-
pings instead of M2 mappings in functional spaces.
Nevertheless, it is not true that M2 mappings are the
same as M1. To see this take, for simplicity, F = R

2

and f : (x1, x2) �→ (x1,2x2). The mapping f is M2,
but not M1 (for d the Euclidean metric on R

2).
Therefore, imposing P-1 is in fact, already in finite-
dimensional spaces, to some extent weaker than ZS-1.
Subsequently, this raises the question of what should
then be imposed, as reasonable analogue to ZS-1, in
the functional data setting.

The assumption of surjectivity in the statement of the
Mazur–Ulam theorem cannot be omitted, as not every
mapping of type M1 is M2. To see this, consider F = C
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for V = [0,1] and a mapping f assigning to x ∈ C the
function

(1) f (x)(v) =

⎧⎪⎪⎨
⎪⎪⎩

x(2v) for v ∈ [0,1/2],
(2v − 1)‖x‖∞ + (2 − 2v)x(1)

for v ∈ (1/2,1].
The mapping f “shrinks” x from [0,1] to the inter-
val [0,1/2], and extends it linearly to the nonnegative
value ‖x‖∞ at v = 1 on the rest of the domain. It is M1
on C, but is not surjective. To see this, take x, y ∈ C and
write∥∥f (x) − f (y)

∥∥∞
= max

{‖x − y‖∞,
∣∣x(1) − y(1)

∣∣, ∣∣‖x‖∞ − ‖y‖∞
∣∣}

= ‖x − y‖∞.

Here, the first equality holds true by (1) and the fact
that for v > 1/2 the function f (x) is linear; the second
equality follows from the reverse triangle inequality.
Also, f is neither M2, M3, nor M4. To see that f is
not M2 write

f
(
x/2 + (−3x)/2

)
(1)

= f (−x)(1) = ‖−x‖∞ = ‖x‖∞
�= 2‖x‖∞ = 1/2‖x‖∞ + 1/2‖−3x‖∞
= (

f (x)/2 + f (−3x)/2
)
(1),

provided ‖x‖∞ �= 0, that is, M2 is not satisfied for α =
1/2 for any x ∈ C \ {0}, and y = −3x.

From what we showed, we see that M1 �⇐⇒ M2. If
F contains a constant function, then M4 =⇒ M3. For
other relations between the four concepts of affinity it
is easy to see that (recall that the metric d is defined
by the norm ‖ · ‖ on F) M3 =⇒ M2 and M4 =⇒
M1, but M3 �=⇒ M1. Consequently, the most gen-
eral way of rephrasing ZS-1 into the functional setup
would be imposing invariance of D w.r.t. all M2 map-
pings. Such a formulation is, however, very intractable,
as the structure of M2 mappings remains unclear in
functional spaces. Furthermore, it appears that in func-
tional spaces general affine invariance with respect
to M2 mappings is hardly a desirable trait. Therefore,
in the literature authors often resort to either type M3,
or M4 mappings. These were considered, for instance,
by López-Pintado and Romo (2009), and by Claeskens
et al. (2014), leading to the properties

P-1S Scalar-affine invariance. D(f (x),Pf (X)) =
D(x,PX) for any PX ∈ P , x ∈ F and f of
type M4.

P-1F Function-affine invariance. D(f (x),Pf (X)) =
D(x,PX) for any PX ∈ P , x ∈ F and f of
type M3.

Another sensible alternative to Condition P-1 is the
requirement of the depth D being invariant with respect
to all surjective mappings f from P-1. As can be seen
from Table 1 (and its footnotes), with such a restriction,
the spatial depth satisfies Property P-1.

To conclude the discussion on P-1, let us demon-
strate that indeed none of the considered depths satisfy
P-1 in its full generality. Take PX ∈ P for F = C and
V = [0,1] given by P(X ≡ 1) = 1/2, P(X ≡ −1) =
1/2, and x ≡ 0. Then, for instance for DJ (for J = 2)
we have DJ (x,PX) = 1/2, but DJ (f (x),Pf (X)) = 0
for f from (1). For depths defined on L2, more elab-
orate isometries (see Fleming and Jamison, 2003) lead
to the same negative results.

2.2 P-2 and P-2G: Maximality at Centre

Condition P-2 is indeed a straightforward transla-
tion of ZS-2, and P-2G surely should be valid for any
reasonable functional depth. However, the commonly-
used band depth DJ fails to meet both P-2 and P-2G,
as pointed out by Chakraborty and Chaudhuri (2014a),
Theorem 4.

One way of specifying a condition like P-2 arises us-
ing the standard technique of projections by means of
the functionals from the dual space F∗ of continuous
linear mappings ϕ : F → R (see Rudin, 1991). Con-
sider the following, straightforward notion of symme-
try for functional data.

DEFINITION. We say that the distribution PX ∈ P
in F is symmetric around θ ∈ F if and only if for any
ϕ ∈ F∗ the distribution of the random variable ϕ(X) is
symmetric around ϕ(θ).

Note that this definition depends on the univariate
notion of symmetry employed for the random variable
ϕ(X). This may be chosen w.r.t. the practical prob-
lem that one solves. Herein, we follow the approach
of Serfling (2006), and in the sequel we consider two
concepts of symmetry of random vectors:

• central symmetry, and
• halfspace symmetry.

Recall that a distribution X ∼ P on R
p is centrally

symmetric around θ ∈ R
p if and only if X − θ and

−(X − θ) have the same distribution. X is halfspace
symmetric around θ ∈ R

p if and only if P(H) ≥ 1/2
for all closed halfspaces H in R

p that contain θ . As
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argued by Serfling (2006), both central and halfspace
symmetry of random vectors are very natural con-
cepts. Halfspace symmetry is very broad—all other
standardly used notions of multivariate symmetry (cen-
tral, elliptical or angular) imply halfspace symmetry.

For F = C, the previous definition can be applied to
the subset of C∗ consisting of the Dirac functionals

ϕv : C →R : x �→ x(v) for v ∈ V.

Symmetry of PX then implies the symmetry of the
vectors of functional values: for any p = 1,2, . . . and
v1, . . . , vp ∈ V , the distribution of the random vec-
tor (X(v1), . . . ,X(vp)) must be symmetric around the
vector (θ(v1), . . . , θ(vp)) (as follows from Zuo and
Serfling, 2000b, Lemma 2.1 and Theorem 2.4).

For F = L2 [where we denote the inner prod-
uct of x, y ∈ L2 by 〈x, y〉 = ∫

V x(v)y(v)dv], PX

is symmetric around θ if and only if the random
vector (〈X,u1〉, . . . , 〈X,up〉) is symmetric around
(〈θ,u1〉, . . . , 〈θ,up〉) for all u1, . . . , up ∈ L2 and p =
1,2, . . . .

Our notion of symmetry for random functions is cer-
tainly natural. Any Gaussian process in C or L2 is ob-
viously centrally, and halfspace symmetric around its
mean function. For centrally symmetric functional dis-
tributions, the definition coincides with the usual defi-
nition of central symmetry in general spaces, as stated
in the following lemma, whose proof is provided in
the on-line Supplementary Material document, Sec-
tion S.1.

LEMMA 1. For a random function X ∼ P in F = C
or F = L2, X is centrally symmetric around θ ∈ F if
and only if X − θ = −(X − θ) in distribution.

Having at hand a reasonable notion of symmetry for
random functions, we can specify two alternatives for
P-2, stronger than P-2G.

P-2C Maximality at centre (central symmetry). For
any centrally symmetric P ∈ P we have that
D(θ,P ) = supx∈F D(x,P ) if and only if P is
centrally symmetric around θ ∈ F.

P-2H Maximality at centre (halfspace symmetry). For
any halfspace symmetric P ∈ P we have that
D(θ,P ) = supx∈F D(x,P ) if and only if P is
halfspace symmetric around θ ∈ F.

Obviously, P-2H =⇒ P-2C =⇒ P-2G. Note that
P-2H and P-2C are formulated in terms of equivalence:
the depth D must be maximized at, and only at the
centre of symmetry, as opposed to P-2G, where just
the “at” part of the statement is required.

The above approach towards functional symmetry in
the space C is adopted in Nagy et al. (2016), where
some discussion on uniqueness and other properties
of the centre of symmetry function can be found. In
that paper, it is also shown that, even though P-2H is a
stronger condition than both P-2C and P-2G, several
functional depths satisfy it, see also Table 1. There-
fore, both P-2C and P-2H constitute attainable refine-
ments of the weak condition P-2G, and represent sen-
sible analogues of ZS-2 to the functional setting.

2.3 P-3: Strictly Decreasing w.r.t. the Deepest Point

This condition is proposed as an extension of ZS-3 to
the functional data setting. To gain geometric intuition
for this concept, consider P and two points x, z ∈ F

such that only z maximizes D(·,P ) over F. The set

R(x, z) = {
y ∈ F : max

{
d(y, z), d(y, x)

}
< d(x, z)

}
then constitutes the intersection of two balls of fixed
diameter d(x, z) centred at x and z, respectively. Prop-
erty P-3 requires that the depth at any point in R(x, z)\
{x} attains a depth value strictly larger than D(x,P ),
regardless of the form of P .

This condition is surely stronger than the straightfor-
ward extension of ZS-3 (see P-3D below). However,
already for finite-dimensional depths Property P-3 ap-
pears to be too strict. To see this, consider F = R

2

equipped with the Euclidean norm, and take for D the
Tukey depth DT (Tukey, 1975). This depth, being the
prime example of a depth in R

p , satisfies all proper-
ties ZS-1–ZS-4. Now, take P to be a centred bivari-
ate Gaussian distribution with independent marginals
X1 and X2, with Var(X1) = 1, Var(X2) = 2, and set
x = (0,1). The centre of (elliptical, central and half-
space) symmetry is the unique point z = (0,0) maxi-
mizing DT , and the contours of DT coincide with the
density contours of P . As can be seen in Figure 1, P-3
is violated already in this, simplest nontrivial example,
because the set R(x, z) contains points with depth val-
ues lower than D(x,P ).

In a functional setting, despite Lemma 4.3 in Nieto-
Reyes and Battey (2016), the h-depth Dh does not sat-
isfy P-3. For a counterexample, define PX ∈ P for F =
L2 and V = [0,1] so that P(X ≡ 0) = 1/2, P(X ≡ 1) =
P(X ≡ −1) = 1/4 and take h = 1/4. Recall the defi-
nition of the h-depth: Dh(x,P ) = EKh(‖x − X‖L2),
where h > 0 is a fixed constant, and Kh(·) = K(·/h)/h

with K(·) the Gaussian kernel. Then Dh is maxi-
mized at a single function EX = z ≡ 0, Dh(z,P ) =
1/2Kh(0) + 1/2Kh(1) ≈ 0.798, but for x ≡ 1 we have
Dh(x/2,P ) = 3/4Kh(1/2) + 1/4Kh(3/2) ≈ 0.162 <
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FIG. 1. Left: Some contours of DT of a centred bivariate Gaussian distribution P (dashed), the point maximizing the depth z = (0,0), and
x = (0,1). The set R(x, z) is the area inside the solid curve passing through x and z. The points in R(x, z) far from x and z attain lower
depth values than D(x,P ), meaning that P-3 is not satisfied for DT . Right: Depth Dh of an atomic distribution P in R supported in three
points z = 0, x1 = 1 and x2 = −1. Here, z is the expectation of X ∼ P , and the sole maximizer of Dh over R. The set R(x1, z) is the interval
(z, x1). We see that Dh(1/2,P ) < Dh(x1,P ), meaning that Dh satisfies neither ZS-3, nor P-3.

Dh(x,P ) = 1/4Kh(0) + 1/2Kh(1) + 1/4Kh(2) ≈
0.399. This is due to the fact that already in R

p the h-
depth (for finite samples equivalent with kernel density
estimation) does not satisfy ZS-3. See also Figure 1.

We argue that the inclusion of P-3 to the list of desir-
able properties of depths is questionable. The follow-
ing straightforward extension of ZS-3 is a more plausi-
ble requirement.

P-3D Decreasing w.r.t. the deepest point. For any P ∈
P such that D(z,P ) = supx∈F D(x,P ) we have
that D(z,P ) > infx∈F D(x,P ) and D(x,P ) ≤
D(z + α(x − z),P ) holds for all x ∈ F and α ∈
[0,1].

As can be seen in Table 1, there are functional depths
that satisfy P-3D. As such, this condition presents the
minimal criterion distinguishing (global) depth func-
tionals as unimodal estimators, from other measures
of centrality, such as local depths (Paindaveine and
Van Bever, 2013), or (functional) density-like estima-
tors (Ferraty and Vieu, 2006). Geometrically, P-3D
means that the upper levels sets of the depth D are star-
shaped in F, relative to the depth-median (see, for in-
stance, Valentine, 1964). In particular, they are always
connected, and the depth induces a reasonable centre-
outwards ordering of the data, as required in applica-
tions.

2.4 Vanishing at Infinity

Unfortunately, the vanishing at infinity property
ZS-4 does not follow from P-3, despite (3.2) and

Lemma 3.4 in Nieto-Reyes and Battey (2016). To see
this, assume for simplicity F = R, and for x ∈ R and
P ∈P define

(2) D(x,P ) =
{

1/(1 + x) for x ≥ 0,

1/(2 − x) + 1/2 for x < 0.

Note that D does not depend on P , though still,
quite formally, it is a depth function on R. It satisfies
P-3 with z = 0, but limx→−∞ D(x,P ) = 1/2 > 0 =
limx→∞ D(x,P ) = infx∈F D(x,P ). Thus, ZS-4 is not
guaranteed by P-3 (or P-3D), and needs to be estab-
lished separately.

P-3V Vanishing at infinity. For any P ∈ P we have

lim‖x‖→∞D(x,P ) = inf
x∈FD(x,P ).

2.5 P-5: Receptivity to Convex Hull Width Across
the Domain

Nieto-Reyes and Battey (2016) stated that Prop-
erty P-5 holds for the h-depth Dh defined on L2. Sur-
prisingly, it turns out that Condition P-5 is void. To
see this, assume that F = L2 for V = [0,1] and define
PX ∈ P by P(X ≡ z) = P(X ≡ −z) = 1/2, where

z(v) =
{

1 for v ∈ [0,1/2)

0 for v ∈ [1/2,1].
For δ = 0 we have Lδ = [1/2,1]. For any function α as
in the statement of P-5 and

x(v) =
{

1/2 for v ∈ [0,1/2)

0 for v ∈ [1/2,1],



ON A GENERAL DEFINITION OF DEPTH FOR FUNCTIONAL DATA 637

P-5 implies D(x,PX) < D(αx,PαX) = D(x,PX), a
contradiction.

In addition, the finite-dimensional counterpart of P-5
conflicts with the basic affine invariance property ZS-1.
We verify this by considering P-5 in F = R

p for p ≥ 2.
It can be seen that P-5 follows if, for any x ∈ R

p ,
PX ∈ P , and a p×p diagonal matrix A given by its di-
agonal (α1, . . . , αp) ∈ (0,1]p it is true that D(x,PX) <

D(Ax,PAX). This contradicts with ZS-1 that requires
equality in the last formula.

By a similar argument, it is easy to see that in purely
functional settings P-5 contradicts with P-1F. More-
over, if P-1S is true for a depth D, then by taking
δ → d(L,U) and α(v) = 1/2 for v ∈ Lδ in P-5 neces-
sarily limδ→d(L,U) D(f (x),Pf (X)) = D(x,PX), if D

is appropriately (semi-)continuous. Thus, P-5 counter-
acts with the affine invariance properties of D.

2.6 P-6: Continuity in P

It is important to require continuity of D in the dis-
tributional argument. However, depth values at particu-
lar sample points are usually of little importance. From
inference point of view, it is more relevant that the
whole set of depth values [the depth surface {D(x,P ) :
x ∈ F}] is well approximated by its finite sample ver-
sion. Only this allows the study of depth-medians and
sets of depth contours, and enables correct addressing
of the problem of distribution-by-depth characteriza-
tion, necessary for successful construction of nonpara-
metric tests. Therefore, we propose an extension of P-6
to the uniform setting as follows.

P-6U Uniform continuity in P . For ε > 0, there
exists δ > 0 such that for any P,Q ∈ P ,
dP(P,Q) < δ, it is true that supx∈F |D(x,P ) −
D(x,Q)| < ε. Here, dP metricises the topology
of weak convergence in P .

Already in R
p condition P-6U is demanding in full

generality. This has to do with the fact that most
depths are only semi-continuous for discrete distribu-
tions (P-4), and some assumptions on absolute continu-
ity of the measure P must be included. Another com-
plication arising when extending P-6 to P-6U follows
from the proposed uniformity aspect, as in functional
spaces it is often too strict to assume uniform conver-
gence over the whole space F. Thus, possible restric-
tion to local uniformity (where convergence is taken
over compact sets in F) might be appropriate in P-6U.

Finally, we provide an example demonstrating that
P-6 is not valid for most of the depths considered
in Nieto-Reyes and Battey (2016), unless appropriate

continuity of the distributions is assumed. Take P ∈ P
concentrated in the constant zero function, and a se-
quence {Pν}∞ν=1 ⊂P , where each Pν is concentrated in
the constant 1/ν function. Then Pν converges weakly
to P as ν → ∞ and D(0,P ) > 0 for all studied func-
tional depths. Now for any D, with the exception of Dh

and DL∞ , D(0,Pν) = 0 for all ν = 1,2, . . . ; and P-6 is
true only for Dh (for DL∞ see Section S.10 in the Sup-
plementary Material). This disagrees with Theorem 4.8
in Nieto-Reyes and Battey (2016), as we show that P-6
is not true in general for none of the depths DMJ, DHR
and DMHR, and also not for DJ and F the space of
equicontinuous functions. The continuity assumptions
that need to be made in order to retrieve P-6 for these
depths are indicated in Table 1.

3. CONCLUSIONS

In Table 1, we summarize which properties listed
in Section 2 can be obtained for the considered depth
functionals. Proofs of the results not available in the
literature are given in the Supplementary Material doc-
ument, where also references to known results can be
found. Below we comment on overall findings for each
of the depths involved in the survey.

As can be seen, the h-depth Dh lacks unimodality.
This is a consequence of the fact that Dh takes the form
of a more general, kernel estimator for functional data
(see Ferraty and Vieu, 2006). On the other hand, Dh

pertains excellent continuity and robustness properties.
Thus, it appears that Dh is more of a good density-like
concept for random functions than a functional depth,
because of its localized behaviour.

When interpreting the results for the random Tukey
depth DRT, it is necessary to keep in mind that DRT
is inherently random, and the depth values for a sin-
gle distribution P may vary substantially with differ-
ent sets of projections U. Furthermore, note that the
initial step in the computation of DRT lies in project-
ing all the elements of the Hilbert space L2 onto its
finite-dimensional subspace spanned by U. This makes
DRT a random finite-dimensional depth, rather than
a functional depth. Furthermore, DT as the infinite-
dimensional analogue of DRT (obtained by drawing
an infinite number of projections), can be seen to be
burdened with substantial theoretical drawbacks. All
this makes it very difficult to compare the properties
of DRT with those of other, truly infinite-dimensional
depth functionals.

The band depth DJ , the halfregion depth DHR, and
the infimal depth DI share very similar features. For
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complex datasets they tend to degenerate, and they ex-
hibit difficulties with their robustness, and consistency
properties. The modified counterparts of DJ and DHR
appear to be better behaved. While the use of DMHR is
still limited by contrived theoretical issues (see Kuelbs
and Zinn, 2015), DMJ satisfies all the (newly) im-
posed conditions except for P-3V, vanishing at infin-
ity. Nevertheless, DMJ is only one representative of
a larger class of functionals called integrated depths
(Fraiman and Muniz, 2001, Cuevas and Fraiman, 2009,
Claeskens et al., 2014), and all the properties proved
here are true not only for DMJ, but rather simultane-
ously for the whole class of depth functionals of inte-
grated type (Nagy et al., 2016), under mild conditions.

The frequently overlooked depths DS and DL∞ also
prove to be highly competitive, in comparison to the
established depths. Additional research into the theory
and practice of these functional depths might be bene-
ficial.

Overall, it can be concluded that, apart from DS and
DL∞ , some integrated depths (and DMJ) appear supe-
rior to other studied functional depth concepts. This
claim can be supported also from the empirical point of
view by observing the great inclination of practitioners
performing data analysis using depths of the integrated
type. However, a proper choice of a functional depth
from the family of integrated depths still poses an in-
teresting problem worth investigation.

APPENDIX: DEFINITIONS OF NEWLY INCLUDED
FUNCTIONAL DEPTHS

A.1 Tukey Depth

For F = L2, (the functional version of) the Tukey
depth (Dutta, Ghosh and Chaudhuri, 2011) of x ∈ F

w.r.t. P ∈ P , X ∼ P is defined as

DT (x,P ) = inf
u∈F

(
min

{
P〈u,X〉

((−∞, 〈u,x〉]),
P〈u,X〉

([〈u,x〉,∞))})
.

A.2 Spatial Depth

For F = L2, the spatial depth (Chakraborty and
Chaudhuri, 2014b) of x ∈ F w.r.t. P ∈ P , X ∼ P is
defined as

DS(x,P ) = 1 −
∥∥∥∥E x − X

‖x − X‖L2

∥∥∥∥
L2

.

The expectation of the L2-valued random variable in
the definition is meant in the Bochner sense. In the ex-
pectation, the convention 0/0 = 0 is used.

A.3 L∞ Depth

For F = C, the L∞ depth (Long and Huang, 2016)
of x ∈ F w.r.t. P ∈ P , X ∼ P is defined as

DL∞(x,P ) = (
1 +E‖x − X‖∞

)−1
.

In this definition, we adhere to the convention
1/∞ = 0.

A.4 Infimal Depth

For F = C, the infimal depth (or �-depth) (Mosler,
2013) of x ∈ F w.r.t. P ∈ P , X ∼ P is defined as

DI(x,P ) = inf
v∈V min

{
PX(v)

((−∞, x(v)
])

,

PX(v)

([
x(v),∞))}

.
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tailed references to the results known from the litera-
ture, and several examples demonstrating the proper-
ties of the studied functional depths.

REFERENCES

CHAKRABORTY, A. and CHAUDHURI, P. (2014a). On data depth
in infinite dimensional spaces. Ann. Inst. Statist. Math. 66 303–
324. MR3171407

CHAKRABORTY, A. and CHAUDHURI, P. (2014b). The spatial dis-
tribution in infinite dimensional spaces and related quantiles and
depths. Ann. Statist. 42 1203–1231. MR3224286

CLAESKENS, G., HUBERT, M., SLAETS, L. and VAKILI, K.
(2014). Multivariate functional halfspace depth. J. Amer. Statist.
Assoc. 109 411–423. MR3180573

http://dx.doi.org/10.1214/17-STS625SUPP
http://www.ams.org/mathscinet-getitem?mr=3171407
http://www.ams.org/mathscinet-getitem?mr=3224286
http://www.ams.org/mathscinet-getitem?mr=3180573
http://dx.doi.org/10.1214/17-STS625SUPP


ON A GENERAL DEFINITION OF DEPTH FOR FUNCTIONAL DATA 639

CUESTA-ALBERTOS, J. A. and NIETO-REYES, A. (2008). The
random Tukey depth. Comput. Statist. Data Anal. 52 4979–
4988. MR2526207

CUEVAS, A., FEBRERO, M. and FRAIMAN, R. (2007). Robust
estimation and classification for functional data via projection-
based depth notions. Comput. Statist. 22 481–496. MR2336349

CUEVAS, A. and FRAIMAN, R. (2009). On depth measures and
dual statistics. A methodology for dealing with general data.
J. Multivariate Anal. 100 753–766. MR2478196

DUTTA, S., GHOSH, A. K. and CHAUDHURI, P. (2011). Some
intriguing properties of Tukey’s half-space depth. Bernoulli 17
1420–1434. MR2854779

FERRATY, F. and VIEU, P. (2006). Nonparametric Functional
Data Analysis: Theory and Practice. Springer, New York.
MR2229687

FLEMING, R. J. and JAMISON, J. E. (2003). Isometries on Banach
Spaces: Function Spaces. Chapman & Hall/CRC Monographs
and Surveys in Pure and Applied Mathematics 129. Chapman &
Hall/CRC, Boca Raton, FL. MR1957004

FRAIMAN, R. and MUNIZ, G. (2001). Trimmed means for func-
tional data. TEST 10 419–440. MR1881149

GIJBELS, I. and NAGY, S. (2017) Supplement to “On a gen-
eral definition of depth for functional data.” DOI:10.1214/17-
STS625SUPP.

KUELBS, J. and ZINN, J. (2013). Concerns with functional depth.
ALEA Lat. Am. J. Probab. Math. Stat. 10 831–855. MR3125749

KUELBS, J. and ZINN, J. (2015). Half-region depth for stochastic
processes. J. Multivariate Anal. 142 86–105. MR3412741

LONG, J. P. and HUANG, J. Z. (2016). A study of functional
depths. Preprint. Available at arXiv:1506.01332.

LÓPEZ-PINTADO, S. and ROMO, J. (2009). On the concept of
depth for functional data. J. Amer. Statist. Assoc. 104 718–734.
MR2541590

LÓPEZ-PINTADO, S. and ROMO, J. (2011). A half-region depth
for functional data. Comput. Statist. Data Anal. 55 1679–1695.
MR2748671

MOSLER, K. (2013). Depth statistics. In Robustness and Complex
Data Structures 17–34. Springer, Heidelberg. MR3135871

NAGY, S., GIJBELS, I., OMELKA, M. and HLUBINKA, D. (2016).
Integrated depth for functional data: Statistical properties and
consistency. ESAIM Probab. Stat. 20 95–130. MR3528619

NIETO-REYES, A. and BATTEY, H. (2016). A topologically valid
definition of depth for functional data. Statist. Sci. 31 61–79.
MR3458593

PAINDAVEINE, D. and VAN BEVER, G. (2013). From depth to
local depth: A focus on centrality. J. Amer. Statist. Assoc. 108
1105–1119. MR3174687

RUDIN, W. (1991). Functional Analysis, 2nd ed. McGraw-Hill,
New York. MR1157815

SERFLING, R. (2006). Multivariate symmetry and asymmetry. In
Encyclopedia of Statistical Sciences, Vol. 8, 2nd ed. 5338–5345.
Wiley, New York.

TUKEY, J. W. (1975). Mathematics and the picturing of data. In
Proceedings of the International Congress of Mathematicians
(Vancouver, B. C., 1974), Vol. 2 523–531. MR0426989

VÄISÄLÄ, J. (2003). A proof of the Mazur–Ulam theorem. Amer.
Math. Monthly 110 633–635. MR2001155

VALENTINE, F. A. (1964). Convex Sets. McGraw-Hill, New York.
MR0170264

ZUO, Y. and SERFLING, R. (2000a). General notions of statistical
depth function. Ann. Statist. 28 461–482. MR1790005

ZUO, Y. and SERFLING, R. (2000b). On the performance of some
robust nonparametric location measures relative to a general no-
tion of multivariate symmetry. J. Statist. Plann. Inference 84
55–79. MR1747497

http://www.ams.org/mathscinet-getitem?mr=2526207
http://www.ams.org/mathscinet-getitem?mr=2336349
http://www.ams.org/mathscinet-getitem?mr=2478196
http://www.ams.org/mathscinet-getitem?mr=2854779
http://www.ams.org/mathscinet-getitem?mr=2229687
http://www.ams.org/mathscinet-getitem?mr=1957004
http://www.ams.org/mathscinet-getitem?mr=1881149
http://dx.doi.org/10.1214/17-STS625SUPP
http://www.ams.org/mathscinet-getitem?mr=3125749
http://www.ams.org/mathscinet-getitem?mr=3412741
http://arxiv.org/abs/arXiv:1506.01332
http://www.ams.org/mathscinet-getitem?mr=2541590
http://www.ams.org/mathscinet-getitem?mr=2748671
http://www.ams.org/mathscinet-getitem?mr=3135871
http://www.ams.org/mathscinet-getitem?mr=3528619
http://www.ams.org/mathscinet-getitem?mr=3458593
http://www.ams.org/mathscinet-getitem?mr=3174687
http://www.ams.org/mathscinet-getitem?mr=1157815
http://www.ams.org/mathscinet-getitem?mr=0426989
http://www.ams.org/mathscinet-getitem?mr=2001155
http://www.ams.org/mathscinet-getitem?mr=0170264
http://www.ams.org/mathscinet-getitem?mr=1790005
http://www.ams.org/mathscinet-getitem?mr=1747497
http://dx.doi.org/10.1214/17-STS625SUPP

	Introduction
	Discussion on Statistical Depth Properties
	P-1: Distance Invariance
	P-2 and P-2G: Maximality at Centre
	P-3: Strictly Decreasing w.r.t. the Deepest Point
	Vanishing at Inﬁnity
	P-5: Receptivity to Convex Hull Width Across the Domain
	P-6: Continuity in P

	Conclusions
	Appendix: Deﬁnitions of Newly Included Functional Depths
	Tukey Depth
	Spatial Depth
	Linfty Depth
	Inﬁmal Depth

	Acknowledgements
	Supplementary Material
	References

