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Elo Ratings and the Sports Model:
A Neglected Topic in Applied Probability?

David Aldous

Abstract.

In a simple model for sports, the probability A beats B is a spec-

ified function of their difference in strength. One might think this would
be a staple topic in Applied Probability textbooks (like the Galton—Watson
branching process model, for instance) but it is curiously absent. Our first
purpose is to point out that the model suggests a wide range of questions,
suitable for “undergraduate research” via simulation but also challenging as
professional research. Our second, more specific, purpose concerns Elo-type
rating algorithms for tracking changing strengths. There has been little foun-
dational research on their accuracy, despite a much-copied “30 matches suf-
fice” claim, which our simulation study casts doubt upon.
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1. INTRODUCTION

This article provides an overview of several topics
from an applied probability viewpoint: more details of
the mathematics can be found in Aldous (2017). A very
useful recent account of the technical statistical side of
the topic and further references to the statistical litera-
ture can be found in Kirdly and Qian (2017).

1.1 The Basic Probability Model

Each team A has some “strength” x 4, a real number.
When teams A and B play

IP(A beats B) = W (x4 — xB)

for a specified “win-probability function” W satisfying
the following conditions (which we regard as the min-
imal natural conditions):

W :R — (0, 1) is continuous, strictly increasing,

(D

W(=x)+Wkx)=1; xll)rglo Wx)=1.

Implicit in this setup:

e cach game has a definite winner (no ties);
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e no home field advantage, though this is easily
incorporated by making the win probability be of the
form W(xg —xp + A);

e strengths do not change with time.

A common choice for W is the logistic function
L(u)=¢€"/(1+¢€"),

We will take W = L as a default, though we inves-
tigate the likely errors from using the wrong W in
Section 2.6. With W = L, the model is (under the
reparametrization v = e") equivalent to the Bradley—
Terry model (Bradley and Terry, 1952), which has at-
tracted a large literature in statistics by virtue of its
“consensus ranking” interpretation. The basic statistics
theory (MLEs, confidence intervals, hypothesis tests,
goodness-of-fit tests) of that model is treated in Chap-
ter 4 of David (1988). See Cattelan (2012) for a recent
survey.

To use the model, we need to specify how matches
are scheduled. The following three formats are repre-
sentative of real-world sports and games:

— o <u<o.

e [eague format as in the English Premier League.

e Single-elimination tournament as in Wimble-
don.

e No centralized scheduling, as in online games.

The first almost always involves feams, the third in-
dividual players, the second either: we use the words
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FIG. 1. Probabilities of different-ranked players winning the tournament, compared with probability that rank-1 player beats rank-2 player

(top curve).

teams and players interchangeably in describing the
scheduling models in this paper, which are usually sim-
plified analogs of real-world scheduling.

Using W = L involves a “standard unit” of strength
difference, which can be interpreted as follows. Note
L'(0) = 1/4. So the effect of a small increase § in
strength is that the probability of beating an origi-
nally equal strength team increases from 0.5 to about
0.5 4+ §/4. See Section 2.2 for the transformation to
“unit of strength” implied by conventional Elo ratings.

1.2 Existing Literature

We emphasize that our focus is not upon statisti-
cal analysis of data from a particular sport, which has
a huge literature using more realistic modeling. In-
stead, analogous to use of the Galton—Watson model
as a rough guide to the behavior of more realistic
branching-style models, one can hope that the basic
model provides a rough guide to the consequences
of the stochastic nature of sports results. But there
has been surprisingly little “applied probability” style
mathematical treatment of the basic model. Indeed,
the only textbook mention we know in that field con-
cerns an algorithm (Lange, 2010, Example 3.4.1) for
finding MLEs in the Bradley—Terry model. As recent
examples of papers, Adler et al. (2016) gives upper
and lower bounds for each player to win a randomly-
matched tournament, in terms of the strengths x;. And
Chetrite, Diel and Lerasle (2017) considers the n — oo
limit probabilities that the best player wins a n-player

league, under different models of random strengths.
These papers cite scattered previous work, but the fact
that these are recent papers on very basic questions un-
derscores the lack of extensive literature. !

1.3 A Selection of Questions

The first objective of this article is to point out that
there is a much broader variety of questions one could
study within the basic model. We describe a few such
questions here.

Robustness of second seed winning probability. A
mathematically natural model for relative strengths of
top players is (B&;,i > 1) where 0 < 8 < oo is a scale
parameter and

§1>86 >8>

form the inhomogeneous Poisson point process on
R of intensity e™* arising in extreme value theory
(Resnick, 1987). So we can simulate a tournament,
in the conventional deterministic-over-seeds pattern
schedule (Wikipedia: Tournament), to see which seed
wins. Figure 1 gives data from simulations of such a
tournament with 16 players, assuming the seeding (or
rank) order coincides with the strength order. The in-
terpretation of the parameter f is not so intuitive, but
that parameter determines the probability that the top
seed would beat the second seed in a single match, and

11 iterature involving Elo ratings is discussed later.
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TABLE 1
Seed of winner, men’s and women’s singles, Grand Slam tennis
tournaments, 1968-2016

Seed of winner

1 2 3 4 5+  Total
Frequency 148 94 42 29 77 390
Percentage 38% 24% 11% 7% 20% 100%

Model, 8 = 0.65 41% 17% 11% 7% 24%  100%

this probability is shown (as a function of §) in the top
curve in Figure 1. The other curves show the probabili-
ties that the 16-player tournament is won by the players
seededas 1,2, 3, 5or9.

The results here are broadly in accord with intuition.
For instance, it seems intuitively obvious that the prob-
ability that the top seed is the winner is monotone in 8.
What is perhaps surprising and noteworthy is that the
probability that the second seed player is the winner
is quite insensitive to parameter values, away from the
extremes, at around 17%.

This kind of testable prediction is an appealing basis
for an undergraduate research project. Is this 17% pre-
diction in fact accurate? How robust is it to alternate
models? As a start, data from tennis tournaments® in
Table 1 shows a moderately good fit.

Annual changes in strength. In professional league-
based team sports, changes in a team’s winning per-
centages from year to year represent a combination
of chance and actual changes in strength. For a spe-
cific team, it will usually be difficult to separate these
effects, but for the league as a whole one can try to
measure an average “change in strength” between suc-
cessive years. It is not obvious how to formalize this
notion in a way that can be estimated from the data
of observed wins and losses, but our model suggests
a way. For n teams with each pair playing twice per
year, write N; and Ni/ for the number of wins of team i
in successive years. A natural statistic to consider is

1& n2
=~ (Ni = Nj)".

i=1

If the strengths (x;, 1 <i <n) do not change, then

2 n
ES = ;;V&I‘Ni

2Wwimbledon, and the U.S., French and Australian Opens form
the prestigious “Grand Slam.” tournaments.

and because varN; <2(n — 1) x }1 we obtain ES <

n — 1. So observing a value of § significantly larger
than n — 1 would confirm our common sense expecta-
tion that strengths overall do indeed change from year
to year. But a more challenging question arises if we
ask: how large would the change of strengths need to
be, to make the observed changes in outcomes from
last year to this year be statistically significant, for real-
istic size leagues? Figure 2 compares via simulation the
distribution of S for unchanged strengths with the dis-
tribution S; where team strengths change, with typical
(RMS) change® 0.4. Here, we took n = 20 teams and
2 games per year between each pair, and Normal(0, 1)
distribution of team strengths. The considerable over-
lap in Figure 2 implies that in this scenario, the ob-
served outcome changes in a given successive pair of
years might well not be statistically significant. What
would more realistic (incorporating draws) analysis of
Premier League data show?

Promotion and relegation. In promotion and relega-
tion schemes (Wikipedia: Promotion and relegation),
each year a specified small number of bottom teams
from a top division are exchanged with the top teams
from a second division. This is of course intended
to allow changes in strengths to be reflected in divi-
sion placement, and such changes could be modeled as
later in this article. But even with unchanging strengths
there is a question about how well the resulting divi-
sion placement reflects strength. For instance, for what
k is the true strength of the kth best-performing team
in the second division approximately equal to the true
strength of the kth worst-performing team in the top
division?

Large tournaments. How might one arrange a tour-
nament to choose a winner out of (say) 200 players,
given a constraint on the total number of matches to
be played? Optimal schemes involve weaker players
being eliminated progressively to allow more matches
between the better players. One simple implementation
(for the case of no prior information about strengths)
would be to split into 10 leagues of 20 teams, do league
play within each, then make a final league of 20 com-
prised of the top 2 teams from each original league.
How does this compare with other schemes?

3Implying a win-probability previously 50% changes by around
+10%.
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FI1G. 2.  Distributions of the statistic S for unchanged and changed strengths.

Elementary ranking schemes. The Langville and
Meyer (2012) textbook discusses simple rating and
ranking methods based on undergraduate linear alge-
bra. How accurate are these, under the basic probability
model?

2. ELO-TYPE RATING SYSTEMS

The particular type of rating systems we study are
known loosely as Elo-type systems* and were first used
systematically in chess. The Wikipedia page Elo rating
system is quite informative about the history and prac-
tical implementation. What we describe here is an ab-
stracted “mathematically basic” form of such systems.

Each player i is given some initial rating, a real num-
ber y;. When player i plays player j, the ratings of both
players are updated using a function Y (Upsilon):

if i beats j, then y; — y; + Y (y; — y;) and

yi =y — Y (i—yj),

(2)
if i loses to j, then y; — y; — Y (y; — y;) and
yi—=>yi+ Y —yi).

Note that the sum of all ratings remains constant. We
require the function Y (1), —00 < u < 00 to satisfy the

4Named after Arpad Elo; sometimes mistakenly written ELO as
if an acronym.

qualitative conditions

T :R — (0, 00) is continuous,
3) strictly decreasing,

and ull{lgo YT (u)=0.
We will also impose a quantitative condition

“4) kv :=sup| Y (u)| < 1.

To motivate the latter condition, we want the functions
x—=>x+YTx—y) and x—>x—"T(y—x),

that is the rating updates when a player with (variable)
strength x plays a player of fixed strength y, to be an
increasing function of the starting strength x.

Note that if T satisfies (3) then so does ¢Y for any
scaling factor ¢ > 0. So given any Y satisfying (3) with
Ky < oo we can scale to make a function where (4) is
satisfied. The complementary logistic function

X

1 e
L(-x)= =1- ;
14e* 14 e*
is a common choice for the “update function shape” in
Elo-type rating systems. That is, one commonly uses
Y (x) = cL(—x) for some scaling parameter c.

— <X <0

2.1 What Is the Connection Between Ratings and
the Probability Model?

Elo-type rating algorithms have nothing to do with
probability, a priori. But there is a simple heuristic
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connection between the probability model and the rat-
ing algorithm. This connection is “well known” in the
sense of being implicit in much discussion of Elo rat-
ings, but we have never seen a careful mathematical
discussion, so we will attempt one here.

Consider n teams with unchanging strengths x1, ...,
Xn, with match results according to the basic probabil-
ity model with some win probability function W, and
ratings (y;) given by the update rule with some update
function Y. When team i plays team j, the expectation
of the rating change for i equals

) YQi—yWxi —x;) =Y (y; —y)W(x; —x;).

So consider the case where the functions Y and W are
related by

©) Y)Y (—u)=W(—u)/ W),
—00 < U < 00.
In this case,

(™)If it happens that the difference y; — y;
in ratings of two players playing a match
equals the difference x; — x; in strengths,
then the expectation of the change in rating
difference equals zero

whereas if unequal then (because Y is decreasing) the
expectation of (y; — y;) — (x; — x;) is closer to zero
after the match than before.

Call (6) the balance relation. These observations
suggest that, under this balance relation, there will be
a tendency for player i’s rating y; to move towards” its
strength x; though there will always be random fluc-
tuations from individual matches. So if we believe the
basic probability model for some given W, then in a
rating system we should use an Y that satisfies the bal-
ance relation.

Now we have a mathematical question: given W,
what is the solution of the balance equation (6) for un-
known Y ? Curiously, this does not have a good answer.
The first observation is that Y (#) = W(—u) is a solu-
tion, so we can use

(7) T (u) = SW (—u)

with any scaling factor 0 < 6 < 1 we like. But there are
more general solutions. For symmetric ¢ [i.e., ¢ (u) =

¢(—u)] with ¢ (0) =1,
(8) T (u) =W (—u)$(|ul)

SMore precisely, we center both strengths and ratings.

is a solution, provided the qualitative conditions (3, 4)
remain satisfied. Other than simplicity, we know no ex-
plicit reason why choice (7) should be preferable to
some other choice of form (8). One approach to this
issue is to note that equation (6) arose from setting the
expectation of the rating change to equal zero when rat-
ings equal true strengths. The extra freedom of (8) al-
lows us to impose a second requirement, that the vari-
ance of the rating change should be constant, and this
leads to a specific “variance-stabilizing” form for the
update function

C)) T(u) =26y W(—u)/Wu).

Unfortunately, for logistic W the resulting Y does not
satisfy (4). But for the Cauchy distribution function the
resulting T does indeed satisfy (4). This suggests a
project: look at real-world Elo ratings based on the lo-
gistic, and see whether the alternative update function
(9) arising from the Cauchy gives better predictions.

However, the mathematics are clearer if we consider
the balance relation the other way round. Given an up-
date function Y there is a unique win-probability func-
tion W satisfying (6):

10)  Wr(u) =T (—u)/(Yw) + Y(—u)).

So when Elo ratings are derived from Y we can re-
gard this W+ as an associated implicit win-probability
function. In particular, the conventional use of a scaled
logistic Y (u) = 6 L(—u) is implicitly using the logistic
L as win-probability function.

2.2 Relating Our Mathematical Set-up to Published
Ratings

As mentioned before, what we discuss in this article
is the “mathematically basic” form of Elo ratings. In
practice, the algorithm is adapted in different ways to
different sports (see, e.g., Curiel, 2017 for international
football) so numerical values in this article would need
to be adjusted before attempting serious data analysis.

In published real-world data, ratings are integers,
mostly in range 1000-2000. For instance, at time of
writing the ratings for the England and Australian foot-
ball teams (Curiel, 2017) are 1909 and 1701. The con-
ventional implementation is that 1 standard unit (for lo-
gistic) in our model corresponds to 174 rating points.°
So the implicit probabilities for an upcoming match
would be

1701 — 1909
P(Australia beats England) = L (7)

174
=0.23.

6174 arises as 400/ log(10).
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By convention, a new player is given a 1500 rating. If
players never departed, the average rating would stay at
1500. However, players leaving (and no re-centering)
will make the average tend to drift. One can define “ex-
pert” in a given sport by a threshold rating, but the drift
makes it problematic to compare “expert” in different
sports, or in the same sport over long time periods.

In published data, the update scaling factor § (there
called the K -factor) varies; for international football
the factor depends on the significance of the match but
8 = 0.2 is typical. For tennis, United (2017) uses § =
0.12.

2.3 A Convergence Theorem

What can we do, in the setting above, via stan-
dard mathematical probability theory? Assume the ba-
sic probability model with nonchanging strengths, and
use Elo-type ratings—what happens? We need to spec-
ify how the matches are scheduled, so let us use the
mathematically simplest “random matching” scheme
in which there are n players and for each match a pair
of players is chosen uniformly at random. This gives a
continuous-state Markov chain

Y(t)=(Y;(t),1<i<n), t=0,1,2,...,

where Y;(¢) is the rating of player i after a total of ¢
matches have been played. Call this the update pro-
cess. Note that this process is parametrized by the func-
tions W and T, and by the vector x = (x;, 1 <i <n) of
player strengths. We center player strengths and rank-
ings: Y ;x; =0and }_; ¥;(0) =0.

The following convergence theorem is perhaps intu-
itively obvious; the main point is that no further tech-
nical assumptions are needed for W, Y.

THEOREM 1. Under our standing assumptions (1),
(3), (4) on W and Y, for each X the update process has
a unique stationary distribution Y (00), and for any ini-
tial ratings y(0) we have Y (t) — Y (00) in distribution
ast — oo.

This can be proved (Aldous, 2017) by standard
methods—coupling and Lyapounov functions. Note
here we are not assuming the balance relation (6) be-
tween W and Y. Note also that given nonrandom initial
rankings y(0) the distribution of Y(#) has finite support
for each ¢, so we cannot have convergence in variation
distance, which is the most familiar setting for Markov
chains on R? (Meyn and Tweedie, 2009).

Alas these techniques do not give useful quanti-
tative information about the stationary distribution.
Theorem 1 suggests a wide range of quantitative

questions—how close is Y(0co) to x?>—which we can-
not answer via theory, but for which we can hope to
gain insight via simulation.

A parallel analysis can be carried out in the “contin-
uum limit” framework of n — oo limits under Y, (1) =
8, W (—u). In this continuum framework, there is a den-
sity function of ratings at time ¢, which evolves accord-
ing to a dynamical system, and it is shown in Jabin and
Junca (2015) that analogous to Theorem 1, as t — oo
the density function of ratings does converge to the
density of the strengths.

2.4 How to Measure Error?

Within the basic probability model, we could mea-
sure ratings error directly as the difference between
rating and strength. But for real-world sports we can-
not measure true strengths, and (as explained below) it
seems more useful to consider errors in predicted win
probabilities.

Within our model, to any update function Y we as-
sociate the implied win-probability function W~ (1) at
(10). So when the Elo algorithm with Y gives ratings
(Y;(¢)) at the current time ¢, our implicitly predicted
probability of team i beating team j is

W (Yi (1) — Yj(1)).

In the model, the true probability is W (x; — x;). So
there is a “prediction error”

Wr (Yi (1) — Y (1)) — W(xi — x;)

and a natural way to measure the size of prediction er-
ror is via the “RMS prediction error” statistic

1
(Em D> (W (Yi) — Y, (0)

i i
N
—W(xi—xJ'))> .

We use this notion of error throughout. Note it is root-
mean-square, and so is directly interpretable as typical
additive error in estimating a probability.

an

2.5 The Prediction Tournament Paradox

Can one assess a person’s accuracy at estimating
probabilities of future real-world events, when the true
probabilities are unknown? To do so seems paradoxi-
cal, like saying one can grade exam answers to ques-
tions whose correct answers are unknown. But the key
point is that one can assess relative accuracy. If C and
D give estimates pc(i), pp(i) for events A(i) with
unknown true probabilities (¢(i),1 < i < m), then
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we can quantify their prediction MSE as error(C) =
m~' Y (pc(i) — q(i))* and similarly error(D). After
the events are determined, we can award a score to C
as score(C) =m =1 Y;(1a¢) — pc(i))?, and similarly
award score(D) to D. Decomposition of variance gives

(12) E(score(C) — score(D)) = error(C) — error(D).

So for large m the difference in accuracy, that is
error(C) — error(D), is well estimated by the observed
score difference, without assuming anything about the
unknown true probabilities.

The fascinating book (Tetlock, 2006) describes this
basic mathematics in the course of detailed study of the
accuracy of “expert judgement” in geopolitics. In our
sports context, this means that we can compare relative
accuracy of different win-probability forecasts for real-
world matches, whether from Elo-type ratings or from
more elaborate modeling or from gambling odds. See
Section 5.1 for further comments. Potential undergrad-
uate projects mentioned in this article would use this
methodology.

2.6 Mismatch Error

In the real world, we do not know the win-probability
function, so we cannot use an update function satisfy-
ing the balance relation. Is there much harm in using
the logistic regardless? Persi Diaconis (personal com-
munication) notes that, in the analysis of binary data,
statisticians use the logistic as a default and regard it as
quite robust; see, for example, Cox and Snell (1989),
Section 2.7. Is this true in our context?

We can study this question, in the nonchanging
strengths setting, by considering the “slow update”
limit in which we fix T but use a scaled update
function §Y. In the § — O limit, the (random) Elo
rating process, appropriately time-scaled, converges
to a deterministic dynamical system. The conclusion
(Aldous, 2017) is that, given (W, Y) and strengths
X = (x1,...,Xx,), the large-¢ Elo ratings Y(¢) will ap-
proximate, for small §, the solution y(x) of a certain
fixed-point equation y = I'yy. This solution is different
from x when the balance relation (6) does not hold—
call this mismatch error. As at (11), we quantify that as
RMS mismatch error

1
= (s 2 W (509 =3, 0)

i j#E

N\ 12
—W(x,-—xj))> )

TABLE 2
RMS mismatch error

w Logistic Logistic Cauchy Cauchy Linear Linear
Y Linear Cauchy Logistic Linear Logistic Cauchy

0=05 09% 1.1% 1.2% 2.4% 3.2% 6.4%
o=10 29% 2.9% 2.5% 5.4% 3.2% 6.0%

Even in this deterministic limit, giving theoreti-
cal bounds on mismatch error seems a hard prob-
lem. Table 2 shows some simulation results, in which
we averaged the RMS mismatch error vx over i.i.d.
Normal(0, 02) realizations of strengths x = (x;,1 <
i <n). We use 0 = 0.5 and 1 because the resulting
spreads of win-proportions in a season bracket those
of most real-world professional league sports. In the
table, Cauchy means W is the distribution function of
the standard Cauchy distribution, and linear means W
is the distribution function of the uniform [—1, 1] dis-
tribution, with corresponding names for update func-
tions Y (u) = W(—u).

Note that errors are unchanged if Y is “stretched”,
that is replaced by YOwW) =Y (u /c). Instead, what
matters is the spread of strengths (here represented
by o) relative to the spread of the distribution W.

Compared with the other sources of error described
later, the mismatch errors in Table 2 are surprisingly
small, except perhaps for the linear/Cauchy combina-
tions, which intuitively seem rather extreme possibili-
ties.

3. THE CENTRAL QUESTION: HOW WELL DOES
ELO TRACK CHANGING STRENGTHS?

The Elo rating algorithm is implicitly intended for
games where many individuals are to be rated but
where there is no systematic scheduling of matches.
Chess and tennis are longstanding examples, but nowa-
days these ratings are widely used in online games.
Ratings have several uses: enabling individuals to
know their relative strength, eligibility for advanced
tournaments, arranging matches to be between equally
strong players. A key point is that we expect strengths
to change with time. Indeed this is a vital feature of
both amateur and professional sport—players in the
former, and spectators in the latter, hope performance
will improve. Sports would be very dull otherwise.

At this point, we diverge from the analogy with
Bradley—Terry consensus rankings from a fixed data
set. In that context, given real world data, one can sim-
ply calculate MLEs (or Bayes analogs) of the strength
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parameters. In the sport context, to do this precisely
one would need to update all strength estimates af-
ter each single match. More importantly, the Bradley—
Terry set-up does not naturally allow strengths to vary
with time. Of course, one can make particular models
of time-varying strengths and study optimal estimation
procedures for the particular model (see, e.g., Cattelan,
Varin and Firth, 2013, Glickman, 2001, Knorr-Held,
2000) but it is hard to believe that any particular model
would be plausible across the range of sports where Elo
ratings are used.

To summarize, the plausible conceptual advantages
of Elo-type ratings over classical statistical parameter
estimation methods are:

e They are dynamic: a rating is updated only after
a match by that player, and in a very simple human-
interpretable way.

e They implicitly give more weight to recent
matches, and avoid needing to explicitly choose how
much past data to use.

e They provide a general purpose method of track-
ing strength changes without assuming any specific
model for changing strengths.

But can we go beyond rhetoric: how accurate are these
ratings, either in absolute terms or in comparison with
other methods?

The web site (Curiel, 2017) maintaining Elo ratings
for international football teams asserts:

ratings tend to converge on a team’s true
strength relative to its competitors after
about 30 matches.

A search engine finds this sentence verbatim in other
online venues, evidently copied from some original
source, but we have been unable to find its origin, or
any theoretical or empirical foundation. By analogy, a
search on “seven shuffles suffice” (to mix a deck of
cards) finds not only nontechnical discussion but also
an actual underlying theorem (Bayer and Diaconis,
1992). So, is there any foundation for the “30 matches
suffice” Elo assertion?’

Within our models, one can obtain various asymp-
totic mathematical results (Section 4.6) but such as-
ymptotic regimes are scarcely relevant to real world
sports. More informative results can be found via sim-
ulation, and such simulation study is the main focus of
this article.

7Several people have suggested this might arise from traditional
Statistics textbooks asserting that sample size 30 suffices for Nor-
mal approximation.

Conceptually, there are three sources of error in rat-
ings:

e Mismatch error caused by using an update
function not adapted to the win-probability function.

e Lag error caused by our data coming from past
results affected by past, rather than current, strength.

e Noise caused by the randomness of recent match
results.

In simulations, we use logistic W and Y, so there is no
mismatch error. As we shall see, in choosing the up-
date scaling ¢ there is an obvious tradeoff between lag
error (which increases as & decreases) and noise error
(which increases as § increases). The tables later show
the RMS prediction errors for the optimal value of §,
which is also shown. Note that these choices will tend
to make the simulation predictions better than real-
world predictions. We will use three different models
for time-varying strengths, each being a stationary ran-
dom process with the same long-run average strength
for each team (but Section 4.5 removes this rather unre-
alistic assumption) and each having a “relaxation time”
parameter 7 indicating the number of matches required
for a team’s strength to change substantially. So in each
model the errors depend on o and 7, where as earlier
o2 is the variance of strength over teams.

To jump to the bottom line, let us summarize the con-
clusion of our simulations as follows:

Under plausible models of time-varying
strengths, the typical error of predicted win-
probabilities will not be substantially less
than 10%, regardless of number of matches
played.

Readers may judge for themselves whether our models
and parameter values are indeed plausible. To us, this
contradicts the “30 matches suffice” assertion quoted
earlier, but again this is a matter of judgment.

4. SIMULATION RESULTS

The subsections below describe simulation results
for each of three models of time-varying strengths. In
these models, at each time step we randomly assign all
n teams into n/2 matches, so here time t =0, 1,2, ...
indicates the number of games that each team has
played. In the simulations, we use n = 20, but the re-
sults are insensitive to the exact value of .

Our models give a stationary process (X(z),t =
0,1,2,...) of team strengths X(#) = (X;(#),1 <i <
n), The Elo rating algorithm gives ratings Y(¢) =
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(Y;(#),1 <i <n), and our simulation results refer
to the jointly stationary process ((X(t),Y(?)),t =
0, 1,2, ...) for which initial ratings do not matter.

As before, our statistic for measuring the quality of
the Elo ratings is the root-mean-square error of the win-
probabilities predicted from the Elo ratings, in this con-
text the number p defined by
= ;EZZ(L(XN) - X;(®)

nn—1) <
i j#i
— L(Yi(t) — Y;(0)))?
for the jointly stationary process. Call this statistic
RMSE-p, where the p is a reminder that we are esti-
mating probabilities, not outcomes. Our strength mod-
els are exchangeable over teams, so

u2 =E(L(X1(1) — X2()) — L(Y1(1) = Y2(1)))*.

n
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In each model, we show “realization” figures, which
show the strengths and ratings of two teams over a 128-
game window, so one can see how well the ratings track
the changing strengths (labeled as “ability” here).

4.1 The Cycle Model

This first model is obviously unrealistic, but provides
a test of mathematical intuition. Strengths follow a de-
terministic cycle, with a random shift for each team:

X;(t) =2"%¢ sin(U,- + 1;),
2T

where U; is uniform on [0, 277]. So var X; (f) = o2, and
the “relaxation time” parameter t indicates the num-
ber of games required for strength to decrease from the
maximum to the average value.

The realizations in Figure 3 agree with intuition.
When the update scaling is comparatively small (left,

15

ability[1]
rating[1]
ability[2]
rating[2]

1.5}
— ability[1]
— rating[1]
1.0F — ability[2]
— rating[2]
0.5}
0.0+
-0.5
-1.0
-15 /\/\_

40 60 80 100 120

40 60 80

15F

1.0+

rating[1]

ability[2]
rating[2]

40

0 20

FiG. 3.
(optimal, bottom).

60

80 100 120

Realizations of the cycle model (o =1, T = 100, logistic W and Y) for 6§ = 0.17 (top left) 6 = 0.35 (top right) and § = 0.26
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TABLE 3
Cycle model: RMSE-p and (optimal §)

TABLE 4
Ornstein—Uhlenbeck model: RMSE-p and (optimal §)

T T
o 50 100 200 400 [ 50 100 200 400
0.5 13.4% 10.8% 8.6% 6.8% 0.5 12.9% 11.1% 9.5% 8.2%
(0.20) (0.14) (0.09) (0.06) (0.11) (0.09) (0.08) (0.07)
1.0 15.7% 12.5% 9.9% 8.0% 1.0 17.0% 14.6% 12.4% 10.4%
(0.40) (0.27) (0.17) (0.12) (0.28) (0.24) (0.16) (0.14)

8 = 0.17) the ratings follow a cycling curve fairly
closely (the “noise” from random wins/losses is small)
but lag in time behind the true strength curve. When the
update scaling is comparatively large (right, § = 0.35)
the ratings show larger noise but their averages track
strengths better. This bias-variance tradeoff is opti-
mized at some intermediate value, at § = 0.26.

Table 3 shows numerical values of RMSE-p for the
optimal values of ¢ in this cycle model, We will discuss
these numbers from the three models in Section 4.4.

4.2 The Ornstein—Uhlenbeck Strength Model

Here, we model strengths as a discretized Ornstein—
Uhlenbeck process (ARMA process). In the standard

process, for each team i the process (Xl.(T) (1), t =
0,1,2,...) of strengths evolves as

XPe+D=0-tHx0)

+1=(1=71)Z @),

where (Z;(¢),t > 1) are IID Normal(0, 1). This gives
a stationary process with Normal(0, 1) marginal. The

15}

ability[1]
rating[1]
ability[2]
rating[2]

1.0+

0 20 40 60 80 100 120

processes are independent for different teams, so for
a league of n teams we have a combined process
X® () = (Xi(f)(t), 0 <i < n). The parameter 7 > 1
is the relaxation time. Finally, we can scale by the
factor o to define a 2-parameter “Ornstein—Uhlenbeck
strength model”

X(®) = X" 1) = XD (1).

Figure 4 shows realizations, comparing t = 400
(left) with T = 50 (right), using the optimal values of
4 (0.16 and 0.28). Table 4 gives numerical values of
RMSE-p for the optimal values of §.

4.3 The Jump Model

In this model, for each team i the strength process re-
mains constant for a Geometric(1/7) time, then jumps
to an independent Normal(0, o%) value. Figure 5 shows
realizations, comparing t = 400 (left) with = 50
(right), using the optimal values of § (0.13 and 0.30).
Table 5 gives numerical values of RMSE-p for the op-
timal values of §.

ability[1]
rating[1]
ability[2]
rating[2]

0 20 40 60 80 100 120

FIG. 4. Realizations of the Ornstein—Uhlenbeck model: o = 1.
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15+
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— rating[1]
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15¢

ability[1]
rating[1]
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1.0

0.5}
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FIG. 5. Realizations of the jump model: o = 1.

4.4 Discussion of Simulation Results in These 3
Models

Of course, none of these three models is very plausi-
ble from a real-world viewpoint, but they serve to rep-
resent different “extreme” possibilities.

In relating the graphics to the tabled values, recall
that the maximum slope of the logistic function is
L'(0) = 1/4, so that a 10% error in estimating win
probability corresponds to a somewhat more than 0.4
error in strength difference.

As mentioned before, the optimal choice of § in-
volves a trade-off between lag—the fact that our data
arises from past strength, not current strength—and the
noise from the random outcomes of recent matches.
This type of bias-variance trade-off is of course very
familiar to statisticians.

As intuition suggests, increasing t make the Elo rat-
ings more accurate and decreases the optimal §. In-
creasing o, in the range 0.5-1.0 we consider, makes
them less accurate, which is less immediate intu-
itively. One might think that increasing the variability

TABLE 5
Jump model: RMSE-p and (optimal §)

o 50 100 200 400

0.5 12.8% 11.2% 9.8% 8.4%
(0.12) (0.09) (0.06) (0.05)

1.0 16.9% 14.5% 12.4% 10.5%
0.30 0.24 0.19 0.14

of strengths would make it easier to assess a team’s
strength. As regards assessing a given team’s strength
as a percentile amongst the league of teams, this in-
tuition is likely correct. However, the fact the typical
strength-differences are larger makes the effect of er-
rors on assessing strengths larger; also our parametriza-
tion makes the absolute rate of change of strength per
game proportional to o for fixed 7, so that changes in
strength are harder to track.

The numerical values in Tables 4 and 5 are remark-
ably close, which suggests that the prediction accuracy
of Elo ratings may be somewhat insensitive to the de-
tails of the model for time-varying strengths, and in-
stead determined mainly by the parameters o and 7 (in
our “no long term difference in average strength” set-
ting). On the other hand, one can easily give convinc-
ing heuristics for T — oo asymptotics in these models
(see Section 4.6 for the cycle and Ornstein—Uhlenbeck
models) and these show different asymptotic behavior
in the three models. So we cannot explain the coinci-
dence of numerical values via asymptotics.

Because RMSE-p is a smooth function of the update
scaling parameter §, its values must be almost constant
in some neighborhood of the optimal 4, and this neigh-
borhood can be quite large. For instance, for the jump
model with t = 50, 0 = 1.0 (Table 5) the value of
RMSE-p hardly varies over the range 0.24 < § < 0.36.
This suggests that accuracy of Elo ratings are not very
sensitive to choice of update scaling parameter.

For the cycle model, and the Ornstein—Uhlenbeck
model with larger T, we see numerically that the op-
timal value of § for o =1 is around twice the optimal
value for o = 0.5. We do not have a good explanation,



ELO RATINGS AND THE SPORTS MODEL 627

but it suggests how one might take into account the di-
versity of strengths in a real-world implementation.

Regarding the absolute values of RMS errors, if we
always predicted 50% win probabilities, the RMS er-
ror would be 15.9% (o = 0.5) or 26.1% (o = 1). The
tables show, very roughly, that in order for the Elo rat-
ings to cut this error in half, we need a relaxation time
T of order 150-200 games. This is larger than intuition
might suggest. At first sight, it might be a consequence
of the unrealistic “no long term difference in average
strength” setting, but in fact this has less effect than
one might think (Section 4.5).

Given any specific model for time-varying strengths,
there is in theory some optimal way to predict win-
probabilities, via some model-dependent rule involv-
ing the entire past of the win/lose process of all teams.
Where it is computationally feasible to calculate the
optimal prediction? This suggests another simulation
project:

How close to optimal—as regards RMSE-p
or some other criterion—is the Elo rating, in
a particular model?

4.5 Differing Long-Term Average Strengths

In the previous models, the long-run average strength
was the same for each team. Manchester United and the
New York Yankees remind us that for real-world pro-
fessional team sports, long-term average performance
has not been the same for all teams in a league. Let us
look at one model. Take 0 < o < 1 and suppose:

e Long-term average strengths of different teams
are independent Normal (0, ao?).

e Fluctuations of a team’s strength around its long-
term average follow the discrete Ornstein—Uhelnbeck
process as in Section 4.2, with relaxation time t and
stationary variance (1 — a)o 2.

So the team strengths have variance o2, with the rela-
tive contributions to variance being « from the diver-
sity of long-term averages and 1 — « from the shorter-
term fluctuations.

Intuition suggests that Elo ratings should be more ac-
curate as « increases (note that @ = 0 case is the “equal
long-term average strengths” model), and this is borne
out by simulations. Table 6 gives numerical values of
RMSE-p for the optimal values of §. But even in the
rather extreme case where 75% of variance is due to
different long-term strengths, the win-probability pre-
diction errors are not greatly reduced.

TABLE 6
RMSE-p and (optimal §) for the “differing long-term average
strengths” model: 0 = 1.0

P 50 100 200 400
0.0 17.0% 14.6% 12.4% 10.4%
(0.28) (0.24) (0.16) (0.14)
0.5 13.9% 12.0% 10.4% 8.8%
(0.20) 0.17) (0.13) (0.10)
0.75 11.2% 9.8% 8.5% 7.3%
(0.14) 0.11) (0.09) (0.07)

4.6 Scaling Laws for Slowly Varying Strengths

Consider a model of smoothly time-varying
strengths, and introduce the relaxation time t as a
“stretch” parameter, as in our cycle model. If 7 is large,
then the update factor § will be small. Here, we are
in a classical setting of Ornstein—Uhlenbeck approxi-
mations to stable dynamical systems with small noise
(Gardiner, 1983, Chapter 6). As outlined in Aldous
(2017) (informally, but could be readily be rephrased
as rigorous asymptotics), we find the following small
noise asymptotics:

In a model of smoothly time-varying
strengths, as T — oo the optimal update
factor § scales as T~2/3, and the resulting
RMSE-p error statistic scales as 7~ !/3.

And the data from Table 3 (the cycle model) is con-
sistent with this conclusion. Similarly, one can ana-
lyze the Ornstein—Uhlenbeck strength model from Sec-
tion 4.2 in the T — oo limit. Here, the informal calcu-
lations say:

the optimal update factor § scales as 7~ 1/2,

and the resulting RMSE-p error statistic
scales as 7 1/4,

Looking at the Table 4 data, this prediction works quite
well for the RMSE-p error but less well for the optimal
3, perhaps because of the next order terms.

5. FINAL REMARKS

5.1 Do Simulations Relate to Real Data?

It is important to remember that the simulations
above are within a model in which we know the true
win-probability for each match and then study the ac-
curacy of the win-probability implied by Elo ratings.
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For real world sports data, we do not know true win-
probabilities, so what can such simulations tell us?

There is some literature comparing Elo-type ratings
with other methods of predicting outcomes of matches.
See, for instance, the recent work of Kovalchik (2016)
for tennis, Hvattum and Arntzen (2010) for English
league football and Lasek, Szldvik and Bhulai (2013)
for international football.® The latter article shows dif-
ferent methods having outcome MSEs in the range
12%-15%, though because of the frequency of draws
in football these numbers are not directly comparable
to our win-or-lose setting.’ In the terminology of Sec-
tion 2.5, these outcome-MSEs are the scores in a pre-
diction tournament. Identity (12) shows that the differ-
ence in scores of two methods is a good estimate of the
difference in their accuracy in predicting probabilities,
defined as the difference in MSE-p, that is the square
of our RMSE-p.

To relate this to simulations, suppose we see out-
come MSE scores of 11.75% and 14% for two pre-
diction schemes S| and S;. This tells us that the dif-
ference in MSE-p is 2.25%, but is consistent with a
spectrum of possible absolute errors in predicting win-
probabilities:

e S1 has 0 RMS-p error and 7 has 15% RMS-p
error;

e S1 has 13% RMS-p error and > has 20% RMS-
p error;

e or S; has 20% RMS-p error and S has 25%
RMS-p error.

We cannot distinguish between these possibilities be-
cause we do not know the true win-probabilities.

As a criterion for accuracy in predicting probabilities
in our theoretical study, we invoked an arbitrary bench-
mark of 10% RMSE-p, that is 1% MSE-p, as a goal. If
that were achieved by Elo rankings on real data, that
would say'? that we could expect no other algorithm
based only on past results to beat Elo by more than
1% in outcome MSE, however accurate the stochastic
model of changing strengths.

Another project would be to treat the probabilities
derived from gambling odds as true probabilities, and
examine the accuracy of the probabilities derived from
Elo ratings.

8Such work usually finds that Elo-type rankings work better than
official rankings.
9MSEs would be larger in our setting.
10 After modifying for actual Elo implementations.

5.2 Statistical Analysis

This article has not attempted any substantial discus-
sion of statistical analysis of data, for several reasons
including lack of expertise by the author. Fortunately,
Kiraly and Qian (2017) provides a very recent lengthy
account of statistical methods related to the topics here.
As observed by a reviewer, a natural framework for
analysis of the basic time-static Bradley—Terry model
is provided by generalized linear models. To quote
Kirdly and Qian (2017):

Generalized linear models generalize both
linear and log-linear models (such as the
Bradley—Terry model) through so-called
link functions, or more generally (and less
classically) link distributions, combined
with flexible structural assumptions on the
target variable. The generalization aims at
extending prediction with linear function-
als through the choice of link which is most
suitable for the target (for an overview, see
McCullagh and Nelder, 1989). Particularly
relevant for us are generalized linear mod-
els for ordinal outcomes which includes the
ternary (win/draw/lose) case, as well as link
distributions for scores. Some existing ex-
tensions of this type, such as the ternary
outcome model and the score model, may
be interpreted as specific choices of suitable
linking distributions. How these ideas may
be used as a component of structured log-
odds models will be discussed later.

Readers may pursue these topics in Kirdly and Qian
(2017).

5.3 “Probability in the Real World”

This article is an extended write-up of a lecture in
the author’s “Probability in the Real World” course at
U.C. Berkeley. The course consists of around 20 lec-
tures on different topics, each (ideally) “anchored” by
contemporary data (here the Elo football ratings), and
each (ideally) offering scope for student projects based
on contemporary data. Two other extended write-ups
are available, one on martingales and prediction mar-
kets (Aldous, 2013) and one on a game-theoretic anal-
ysis of an online game which one can observe being
played (“by your grandmothers”) in real time (Aldous
and Han, 2017).
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