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Contemporary Frequentist Views of
the 2 × 2 Binomial Trial
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Abstract. The 2 × 2 table is the simplest of data structures yet it is of im-
mense practical importance. It is also just complex enough to provide a the-
oretical testing ground for general frequentist methods. Yet after 70 years
of debate, its correct analysis is still not settled. Rather than recount the en-
tire history, our review is motivated by contemporary developments in likeli-
hood and testing theory as well as computational advances. We will look at
both conditional and unconditional tests. Within the conditional framework,
we explain the relationship of Fisher’s test with variants such as mid-p and
Liebermeister’s test, as well as modern developments in likelihood theory,
such as p∗ and approximate conditioning. Within an unconditional frame-
work, we consider four modern methods of correcting approximate tests to
properly control size by accounting for the unknown value of the nuisance
parameter: maximisation (M), partial maximisation (B), estimation (E) and
estimation followed by maximisation (E + M). Under the conditional model,
we recommend Fisher’s test. For the unconditional model, amongst standard
approximate methods, Liebermeister’s tests come closest to controlling size.
However, our best recommendation is the E procedure applied to the signed
root likelihood statistic, as this performs very well in terms of size and power
and is easily computed. We support our assertions with a numerical study.

Key words and phrases: Approximate conditioning, binomial trial, condi-
tional test, exact tests, Fisher test, Liebermeister test, mid-p test, parametric
bootstrap, unconditional test.

1. INTRODUCTION

Testing for a treatment effect in the 2 × 2 binomial
trial is a seminal topic in Statistics, founded on the
original contributions of renowned statisticians, Karl
Pearson, Jerzy Neyman and Ronald Fisher. Not only
is the design of great practical importance, notably in
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clinical trials, but the admittedly simple model is still
rich enough to expose some of the tensions and lim-
itations of frequentist statistics. Consequently, there
are now literally dozens of test procedures that have
been proposed. Reviews have appeared at regular in-
tervals; see Gart (1969), Yates (1984), Martin Andres
(1991), Agresti (1992, 2001) and Lydersen, Fagerland
and Laake (2009). Why is it worth discussing tests for
2 × 2 tables at all and why again now?

First, the 2 × 2 table is the basic data structure in
clinical trials with binary outcome. Modern adaptive
designs allow changes to treatments, sample sizes and
even hypotheses, but their analysis relies on combining
the evidence from different arms, stages and hypothe-
ses. The p-values from each 2 × 2 table are fed into a
more complex p-value (using combination functions,
multiple comparison adjustments and the closed test-
ing principle) whose statistical properties are inherited

600

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/17-STS627
http://www.imstat.org
mailto:enrico.ripamonti@unimib.it
mailto:c.lloyd@mbs.edu
mailto:piero.quatto@unimib.it


CONTEMPORARY FREQUENTIST VIEWS OF THE 2 × 2 BINOMIAL TRIAL 601

from the component p-values. So, while the 2×2 table
might appear a “toy example”, it is the building block
of various modern methods/designs.

Second, over the past ten years, there has been con-
siderable progress in the foundational theory of exact
or almost exact frequentist inference as well as meth-
ods of implementation. Some of these methods require
complex computations. Amongst unconditional meth-
ods, there are several ways of correcting an approx-
imate test to be exact; see Lloyd (2008b). For con-
ditional methods, the seminal test of Fisher (1935)
is limited by discreteness which can be mitigated by
the well-known mid-p correction (Lancaster, 1961).
Further developments include so-called approximative
conditioning (Pierce and Peters, 1992, 1999) as well as
the famous p∗ formula (Barndorff-Nielsen, 1983).

The objective of this paper is to present a de-
tailed discussion of tests based on the 2 × 2 bino-
mial trial with an emphasis on more contemporary
theories and proposals. We include unconditional and
conditional perspectives without taking a definite po-
sition on which is better. We do not study Bayesian
methods, even though one of the methods we include
(Liebermeister, 1877) was originally motivated from a
Bayesian approach. Our overall aim is to place the dif-
ferent methods within a coherent framework, to assess
and compare their properties, both theoretically and
numerically and to arrive at clear recommendations.

In assessing the tests, we focus on four main crite-
ria. First, we require the test to be based on a p-value
which measures, possibly approximately, the probabil-
ity of some observed event. Second, does the test exag-
gerate the evidence against the null? This is based on
comparing the nominal size with the actual size profile
but also the quoted p-value with its true profile (see
Lloyd, 2008a). Third, we look at the extent to which the
test under-estimates the evidence against the null, com-
monly called conservatism. Conservative tests tend to
have lower power and we confirm this with a numer-
ical study. Lastly, we impose certain natural mono-
tonicity constraints (Barnard, 1947, Röhmel and Mans-
mann, 1999, Skipka, Munk and Freitag, 2004) on the
test statistics. These constraints also have favourable
computational implications.

The plan of the article is as follows. In the next sec-
tion, we establish the basic model, the notation and the
theoretical framework for assessing the different meth-
ods. In Section 3, we present the conditional approach
and in Section 4 the unconditional approach, in both
cases emphasising modern perspectives and develop-
ments. In Section 5, we assess conditional and uncon-

ditional tests within their own frameworks and in Sec-
tion 6 we report the results of a numerical study on
the size and power of 28 different unconditional tests,
where some clear conclusions do emerge. Our final rec-
ommendations are articulated in Section 7.

2. THEORY RELEVANT TO EXACT TESTS

2.1 Notation

We suppose that n0 patients are given a comparison
treatment, y0 of whom respond positively with proba-
bility p0, and n1 are given a new treatment, y1 of whom
respond positively with probability p1. We henceforth
call a positive response a success. Provided patients re-
spond independently, we have the standard binomial
model

(2.1)
Y0 ∼ Bi(n0,p0) and

Y1 ∼ Bi(n1,p1) with Y0 ⊥⊥ Y1.

We mainly focus on one-sided hypotheses

(2.2) H0 : p1 ≤ p0 vs. H1 : p1 > p0

though the theory in this section applies to two-sided
tests without modification. We denote the total number
of successes by S = Y0 +Y1 and the proportion of suc-
cesses under treatment and control as p̂1 = y1/n1 and
p̂0 = y0/n0.

For the sake of giving general definitions and results,
we will refer to the data (Y0, Y1) as Y , taking values in
a sample space Y and the parameter as ω = (θ, ϕ),
where θ is the interest parameter and ϕ a nuisance pa-
rameter vector. We wish to test the null hypothesis that
θ ∈ �0 without specifying the value of the nuisance
parameter ϕ. For the binomial trial, θ can be taken as
any contrast of p1 and p0 (such as the difference, or the
log-odds ratio), the nuisance parameter is ϕ = p0 and
for the hypotheses in (2.2) the null parameter space is
�0 = {θ : θ ≤ 0}.
2.2 Size and Power

All tests can be expressed in the form reject the null
if P(Y ) is less than or equal to α, where α is the nom-
inal size of the test and P(Y ) is called a p-value. The
probability of rejecting the null hypothesis is

(2.3) β(θ,ϕ) := Pr
[
P(Y ) ≤ α|θ,ϕ

]
.

The size of the test is typically defined as a(ϕ) =
supθ∈�0

β(θ,ϕ) and the test is valid if a(ϕ) is less than
α for all ϕ (Lehmann, 1959). The power of the test is
the probability of rejecting the null when θ /∈ �0 and is
desired to be as large as possible, subject to validity.
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2.3 What Is an Exact Test?

Ideally, we would want the size to equal α but for
discrete models a(ϕ) is a polynomial and can never
equal a constant. If we further maximise with respect
to ϕ, then a bound can be given but again, because of
discreteness, this bound almost never equals α exactly.
In summary, if we define an exact test to have “exact
size α” then such tests almost never exist for discrete
models.

For this reason, Lloyd (2008a) instead looks at the p-
value, specifically at the so-called profile of a p-value
which is defined as

(2.4) π(y,ϕ) = sup
θ∈�0

Pr
[
P(Y ) ≤ P(y); θ,ϕ

]
.

The putative property of a p-value is that an observed
value of say 0.042 means that something unusual has
happened and the probability of it happening under the
null is 0.042. Thus we would like π(y,ϕ) to equal
P(y) for all ϕ. Again, because of discreteness this is
impossible, so again it appears as if no exact p-value
can exist. However, if supϕ π(y,ϕ) ≤ P(y) for all y in
Y we call the p-value guaranteed. This is identical to
P(Y ) being stochastically no smaller than uniform for
all θ ∈ �0. It is the analog of a test being valid and a
guaranteed p-value does imply a valid test. However,
the advantage of basing the theory on p-values rather
than test size is that there always exists a p-value for
which

(2.5) sup
ϕ

π(y;ϕ) = P(y) ∀y ∈ Y

as proven by Röhmel and Mansmann (1999). Such a p-
value is called exact. It is further shown that amongst
p-values that impose the same ordering on the sample
space there always exists a smallest p-value and that
this p-value is exact. The construction of this p-value
is simple and will be given in Section 4.1. The theory
is completely general and applies to the conditional or
unconditional model, as well as to one-sided or two-
sided tests.

2.4 Most Powerful Tests

Lehmann (1959) established the existence of both
exact and optimal tests, which is relevant to our pur-
poses. The main class of models where a most power-
ful test exists is the natural exponential family, where
the joint density or probability function of the data Y

can be written as

(2.6) fθ,ϕ(y) = exp
{
θT (y) + S′(y)ϕ + ς(θ,ϕ)

}
,

where T (y) is a scalar and S(y) is the sufficient statis-
tic for ϕ. For model (2.6), uniformly most powerful un-
biased (UMPU) tests exist for both one and two-sided
alternatives. These procedures are based on tail proba-
bilities of the conditional distribution of T given S but
their UMPU properties are also unconditional.

For the binomial trial, the model is of exponen-
tial form with θ = logit(p1) − logit(p0), the statistic
T (Y ) = Y1 and its distribution given S = Y0 + Y1 = s

is

(2.7)

Pr(Y1 = y1; s, θ)

= eθy1

(
n1

y1

)(
n0

s − y1

)/
κ(θ, s),

where max{0; s − n0} ≤ y1 ≤ min{s;n1} and κ(θ, s) is
a normalising constant. When θ = 0, the distribution is
hypergeometric. However, this model is discrete.

For discrete exponential models, Lehmann’s UMPU
tests involve randomisation. This also arises in certain
nonexponential continuous models, such as uniform
when the support depends on the parameter value. In
any case, randomisation is never used in practice. The
lack of an optimal test explains the many alternative
tests of the 2 × 2 table that have been proposed in the
literature. Nevertheless, a key insight that comes from
the theory is that optimal tests should be based on the
conditional distribution of T given S and that for fixed
S there is more evidence against the null hypothesis
when T is larger.

2.5 Monotonicity Properties

For some models, there are basic logical proper-
ties that we expect any procedure to have. For in-
stance, any statistical procedure for assessing reliabil-
ity should produce a less favorable assessment if you
add any errors to the dataset. Such conditions can be
expressed mathematically (see Harris and Soms, 1991
and Kabaila, 2005) and come down to test statistics
having certain monotonicity properties. For the 2 × 2
table, the evidence for p1 > p0 is stronger if Y1 is
larger for fixed Y0 and if Y0 is smaller for fixed Y1.
Equivalently, the p-value should be nonincreasing in
Y1 for fixed S = Y0 + Y1 and nondecreasing in S

for fixed Y1, as noted by Berger and Sidik (2003).
While the condition may appear obvious, standard ap-
proaches, such as the standard Z-test can violate it.
Likelihood ratio tests typically satisfy any required
monotonicity conditions.

These monotonicity properties have two important
consequences. First, the maximum probability a(ϕ) =
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supθ∈�0
β(θ,ϕ) of rejecting the null is achieved at the

boundary point θ = θ0 (Röhmel, 2005). This not only
ensures that the test is unbiased, but facilitates com-
putations. Hence, there is no need to search over θ .
Second, the tail set {P(T ,S) ≤ P(t, s)} can be simply
determined using the fact that P(T ,S) is a nonincreas-
ing function of T for fixed S, as noted by Finner and
Strassburger (2002).

The above conditions mention nondecreasing rather
than strictly increasing. What about ties? For discrete
data, it is never advantageous to have ties. It was shown
by Röhmel and Mansmann (1999) that if a guaranteed
p-value has any ties then breaking the ties appropri-
ately can often make the p-value smaller while still
being guaranteed. Similar results for confidence limits
were demonstrated in Kabaila and Lloyd (2006).

2.6 Criteria for Comparison

There are several different criteria that can be used
to assess the effectiveness of a test. If prior informa-
tion summarised as a distribution is available on the
unknown parameters then an exact Bayesian solution
immediately follows. The frequentist properties of the
Bayes tests are rarely poor, but neither are they exact.
In decision theoretic approaches, various loss functions
can be defined and minimised within a specified space
of decision functions.

Even within the pure frequentist paradigm that we
assume here, there is no nonrandomised test with max-
imum power and controlled size for discrete models. It
seems unsatisfactory that this paradigm does not sup-
port an optimal analysis for a simple data structure like
the 2 × 2 table. However, based on the four criteria to
be listed below, we will find that there is indeed a prac-
tically optimal approach.

We now state four criteria that we will use to assess
the different tests. The first two relate to their statistical
accuracy, that is, to the test size and power. These two
descriptors are central to frequentist theory and also to
all trial regulation authorities. Tests should firstly be
valid, or equivalently the p-value should be guaran-
teed. Gross violations of the size restriction is a serious
defect of any test in our review. Ideally, the p-value
should also be exact. This means that the test does not
under-estimate the evidence against the null and will
tend to lead to higher power. Restricting attention to
valid tests means that the power achieved by different
tests can be compared, without the complicating possi-
bility that any extra power is purchased by size viola-
tions.

The other two criteria are more foundational. Tests
should be based on a p-value that measures the prob-
ability of an observed event. This not only leads to a
transparent test decision but provides quantitative in-
formation about how unusual the data is under the null
hypothesis. Finally, where the model supports it on log-
ical grounds, tests should satisfy certain monotonicity
conditions. For the 2 × 2 table, these conditions were
listed in the previous section.

3. MODERN PERSPECTIVES ON CONDITIONAL
TESTS

It was argued by Fisher (1935) that the number of
successes S should be treated as fixed; see Choi, Blume
and Dupont (2015) for an overview and historical per-
spective. We evaluate the merits of this key modelling
decision in Section 5.

3.1 Fisher’s Exact Test

If we treat S = s as fixed, then the model is given by
(2.7). The distribution is stochastically increasing in θ

and so we reject H0 : θ ≤ 0 for larger values of y1, and
the p-value is Pr[Y1 ≥ y1|S = s] calculated from (2.7)
maximised over θ ≤ 0. Because of stochastic mono-
tonicity, the maximum occurs when θ = 0. Fisher’s p-
value PF (y1;n1, n0, s) is this tail sum of hypergeomet-
ric probabilities:

(3.1)

PF (y1;n1, n0, s)

= ∑
y≥y1

(
n1

y

)(
n0

s − y

)/(
n0 + n1

s

)
.

The test is exact, in the sense that no approxima-
tion or estimation of unknown parameters is involved.
Fisher’s p-value is also exact in the technical sense of
equation (2.5), assuming the model for Y1 given s. The
test generated by this p-value is therefore valid within
this same conditional model.

The size of the test can be calculated exactly, since
the hypergeometric distribution has no unknown pa-
rameters. For given values of n0, n1, s and target size
α, let cs be the smallest integer value c such that
PF (c;n1, n0, s) ≤ α. So the test rejects the null exactly
when y1 ≥ cs . It follows that the size of Fisher’s test is

(3.2) αs = sup
θ≤0

Pr(Y1 ≥ cs |s) = PF (cs;n1, n0, s).

In words, the true size αs is equal to the largest observ-
able p-value less than α. So the test is not exact in the
sense of having exactly the correct size. The smaller
the support of the distribution the less likely it is that
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αs will be close to the chosen α. The support is smaller
when the observed value of s is more extreme. In the
extreme cases where s = 0 or s = n, the conditional
test never rejects the null and the true size is αs = 0.

3.2 Randomised Version of Fisher’s Exact Test

Based on the earlier mentioned theory of Lehmann
(1959), there is a randomised version of Fisher’s ex-
act test which is UMPU for the one-sided test (see also
Tocher, 1950) and for the two-sided alternative. For the
one-sided alternative, this comes down to using the ran-
domised p-value

(3.3)

PR(y1,U ;n0, n1, s)

= PF (y1;n1, n0, s)

− U Pr(Y1 = y1;n0, n1, s),

where U is a uniformly distributed random number
in the interval (0,1) (e.g., Cox and Hinkley, 1974,
page 101). At the expense of introducing the random
number U into the inference, we obtain a p-value with
exact uniform distribution and a test with exact size α.
Apparently, this p-value is always smaller than PF

and so is less conservative. In fact, the test is UMP
amongst unbiased tests that are functions of (T , S,U)

(Lehmann, 1959) which suggests that the shortcom-
ings of Fisher’s test are all due to discreteness. Of
course, randomisation is almost never used in prac-
tice because we feel that conclusions should not de-
pend on the random number u. If one takes the data to
be (T , S,U), then the sufficiency principle states that
inference should not depend on U . The conditionality
principle would also recommend conditioning on the
value of U which, since U is independent of (T , S),
again means just using (T , S). There are alternative de-
cision theoretic perspectives where the inference can
be a distribution and randomisation is used to generate
from this distribution. In this approach, U is not con-
sidered part of the data. However, this paper takes a
frequentist approach.

3.3 Lancaster’s and Liebermeister’s p-Value

Lancaster (1961) proposed an alternative solution to
the problem of conservatism of any discrete test, which
has seen a fair degree of application. Lancaster’s mid-
p-value only counts half of the observed null proba-
bility of the observed sample point in the tail proba-
bility. Equivalently, it is obtained by subtracting half
the observed probability from the usual tail probability.
Referring to (3.3), the mid p-value Pmid(Y1;n0, n1, s)

is given explicitly by replacing U by its mean value

of 0.5. While not uniformly distributed like the ran-
domised p-value, it has the exact mean (0.5) and vari-
ance of a uniform distribution (Agresti, 2002). Stronger
theoretical justification for the one-sided mid-p are
provided by Hwang and Yang (2001) and recently by
Wells (2010).

Another test closely related to Fisher’s was proposed
by Liebermeister (1877). It is based on a Bayesian ar-
gument and turns out to equal Fisher’s p-value but with
a fictitious success added to the treatment group and
a failure to the control group so it can be expressed
as PF (y1 + 1;n0 + 1, n1 + 1, s + 1). It was shown
by Seneta and Phipps (2001) that it is always between
PF (y1 + 1;n0, n1, s) and PF (y1;n0, n1, s), though not
necessarily half way between. Like Lancaster’s p-
value, tests based on Liebermeister’s p-value are less
conservative than those based on Fisher’s p-value.

3.4 Modern Approximations

During the 1980s, new developments in likelihood
theory led to the proposal of the p∗ formula by
Barndorff-Nielsen (1983). The theory is complex but
is based on a saddlepoint approximation to the density
of the maximum likelihood estimator, conditional on a
very generally formulated approximate ancillary statis-
tic. Suppose we want to test a null hypothesis that the
parameter δ = p1 −p0 is less than or equal to δ0. Until
this point, the null value δ0 has been zero. A general
form for the p∗ test statistic is

(3.4) r∗(δ0) = r(δ0) + r(δ0)
−1 log

(
q(δ0)

r(δ0)

)
,

where r(δ0) is the signed root likelihood ratio statis-
tic for testing δ ≤ δ0 and q(δ0) is very complex in its
general formulation but for the 2 × 2 table reduces to

(3.5)

q(δ0) = ({
w̃0

(
logit(p̃1) − logit(p̂1)

)
− w̃1

(
logit(p̃0) − logit(p̂0)

)})
/
(√

w̃1/n1 + w̃0/n0
)
,

where w̃j = p̃j (1 − p̃j ) and p̃j is the ML estimate
of pj under the null, as shown in Lloyd (2010b).
The corresponding p-value is denoted p∗(δ0) = 1 −
�(r∗(δ0)). An advantage of this approach is that it is
available in closed form. The normal approximation is
held to be accurate to O(n−1) in the medium deviation
range (Davison, Fraser and Reid, 2006).

The appeal of p∗ is that it depends continuously on
the null value δ0. Amongst other consequences, this
means we can invert the test to get a confidence inter-
val for δ. In contrast, Fisher’s method only works for
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testing δ0 = 0, since no conditional distribution free of
unknown nuisance parameters exists as δ0 moves away
from 0. The p∗ method gives an answer close to the
exact conditional solution when one exists but gener-
alises, albeit approximately, to models and hypotheses
where no exact conditional inference is possible. The
p-value based on r∗ is an approximation to the prob-
ability of a well-defined event, unlike the Lancaster or
Liebermeister p-values.

The approach does present several problems, how-
ever. First, the formula for r∗ breaks down when ei-
ther r = 0 or q = 0. So to properly investigate its exact
frequentist properties, it must be redefined. We define
r∗ = r whenever the absolute value of r is less than 0.1
or when q = 0. These problems are completely ignored
in the literature.

Another lesser problem is that, even with these mod-
ifications, p∗ is not necessarily guaranteed (which is
a fundamental criterion in our review) and further nu-
merical work is required to evaluate its degree of lib-
eralism. Second, for some quite natural models such
as logistic regression with interest on the intercept, the
conditional p-value becomes degenerate, even though
p∗ does not. In this case, what is the relation between
the conditional degenerate p-value and p∗, which is
supposed to approximate it? According to Pierce and
Peters (1999), in such cases p∗ is an “approximately
conditional” p-value.

3.5 Approximately Conditional p-Values

One novel proposal to mitigate conservatism is to
use a less discrete conditional distribution by condi-
tioning on a range of values for the conditioning statis-
tic rather than the exact value. This leads to a distri-
bution with finer support. On the other hand, the nui-
sance parameter is no longer eliminated. Consider the
p-value P(t, s) = Pr[T ≥ t |S = s] calculated under the
null. In the current context, this would equal Fisher’s
p-value. Define a neighbourhood Nr(s) around the ob-
served value of S = s, for example, {s − r, . . . , s + r}.
Then an approximately conditional p-value is defined
as

(3.6)

Pr
(
P(T ,S) ≤ P(t, s)|S ∈ Nr(sobs)

)
= ∑

s∈Nr(sobs)

Pr
[
P(T , s) ≤ pobs|S = s

]

· Pr
[
S = s|s ∈ Nr(sobs);ϕ]

When the size r of the neighbourhood equals zero, this
gives the conditional p-value P(t, s) since there is only
one term in the sum. When r > 0, it is approximately

conditional. Residual dependence on the nuisance pa-
rameter could in principle be handled by any of the
methods that we will explain in Section 4.1 below.

The main problem is a lack of recommendation for
the size of the neighbourhood Nr(s) as well as its
shape when S is higher dimensional. Certainly, a dif-
ferent choice of the neighborhood leads to a differ-
ent p-value. A second problem is that the p-value still
depends on the nuisance parameter ϕ. A third logical
problem is a phenomenon known as spurious deflation;
see Lloyd (2010a). It is too early to dismiss approx-
imately conditional p-values though theoretical prob-
lems remain. They are at least based on the probability
of a well-defined event and can be guaranteed by max-
imising with respect to the nuisance parameter.

3.6 Unconditional Assessment of Conditional
Tests

The tests just described are based on the distribu-
tion of T (Y ) given S(Y ). When S really is fixed by
design, it seems pertinent to assess the size and power
treating it as fixed. When S is not fixed by design, it
is still sometimes argued that conditional assessment
is appropriate. Certainly though, in future hypothetical
repetitions the value of S will vary and to allow for
this we have to use the unconditional model. So both
conditional and unconditional assessment have plausi-
ble arguments in their favour. But how are the two ap-
proaches related?

The conditional probability of rejection we will de-
note by

(3.7) β(θ |s) := Pr
[
P(T , s) ≤ α|θ, S(Y ) = s

]
,

where we have used the fact that the distribution of
T given S(Y ) = s does not depend on ϕ. With slight
abuse of notation, the unconditional probability of re-
jection is the mean value

(3.8) β(θ,ϕ) = ∑
s

β(θ |s)Pr(S = s; θ,ϕ)

of β(θ |S) with respect to the distribution of S which
depends again on (θ, ϕ). For the 2 × 2 table, S = Y0 +
Y1 has the distribution of a sum of two binomials and
the summation is from s = 0, . . . , n0 + n1.

When θ = θ0, β(θ0|s) is the conditional size which
we earlier denoted αs . The unconditional size is the
mean value of αS with respect to S. For the Fisher test,
αs is almost always strictly less than α for all values
of s and so unconditional size is also less than α. So
Fisher’s test is unconditionally conservative by design.
For the Lancaster or Liebermeister test, their condi-
tional size αs is typically less than α for some values of
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s and larger than α for others. The unconditional size
is the mean value which is typically quite close to α

because of the averaging, though it can exceed α.

4. MODERN PERSPECTIVES ON UNCONDITIONAL
TESTS

For testing the null hypothesis θ ≤ 0 against θ > 0,
there are several commonly used test statistics based
on the unconditional joint binomial model.

From a historical point of view, the best known is
the chi-squared statistic (Pearson, 1900). Alternatively,
tests can be based on the difference p̂1 − p̂0 divided by
a standard error. When this standard error is estimated
under the null hypothesis (i.e., assuming p1 = p0) it
gives rise to the so-called pooled statistic. This can be
shown to be a particular case of the Rao’s score statistic
and is identical to a one-sided version of the chi-square
statistic. When the standard error is estimated without
any restrictions on p1 and p0, it is called the unpooled
statistic, which is the Wald statistic based on the in-
terest parameter θ = p1 − p0. There are other Wald-
type statistics that can also be used, for instance based
on the difference between the logarithm or the logit of
the estimated success rates p̂1 and p̂0 but they are not
in common use. The main alternative to these statis-
tics is the likelihood ratio test, or its one-sided version
known as the signed root likelihood ratio (SRLR) test.
Formulas for these well-known statistics are in Ap-
pendix 1 (see the Supplementary Material, Ripamonti,
Lloyd and Quatto, 2017).

The problem is that none of these tests are exact.
Suppose we start with an approximate p-value P(Y )

based on test statistic Z(Y ). We remind the reader of
the definition of the profile π(y,ϕ) of a p-value P(Y )

given in equation (2.4). In words, it is the null prob-
ability of the p-value being equal or smaller than its
observed value P(y), the true significance if you will.
Ideally, it should equal P(y). It is worth noting that the
tail set {P(Y ) ≤ P(y)} in the definition of π(y,ϕ) can
equally be expressed as {Z(Y ) ≥ Z(y)} and it is partly
a matter of taste how the formulas below are presented.

There are several methods of using the profile func-
tion to define either an exact or almost exact version
of the original p-value P(Y ). These ideas are mostly
quite recent and can be implemented with modern
computational resources.

4.1 The Maximisation Procedure

The “worst case” p-value is P ∗(y) = supϕ π(y,ϕ).
While this is a completely general method, with gen-

eral optimality properties stated below, the seminal pa-
per recommending maximising out nuisance parame-
ters was Barnard (1945). For the 2 × 2 table, we take
the nuisance parameter ϕ to be the common value of
p1 = p0 under the null, and this becomes

(4.1)
P ∗(y1, y0) = sup

0≤p≤1
Pr

[
Z(Y1, Y0) ≥ Z(y1, y0);

p0 = p1 = p
]

computed by enumerating all pairs (y1, y0) in the tail
set {Z(Y1, Y0) ≥ Z(y1, y0)}, summing their null proba-
bilities based on the independent binomial distribution
and then maximising with respect to p. We will call
this adjustment the M-step. The maximised p-value
has the following incredibly strong optimality prop-
erty: amongst all statistics that are nonincreasing func-
tions of Z(Y ), P ∗(Y ) is the smallest function that is
a guaranteed p-value. It is also exact in the sense of
(2.5). So, if a test is not expressible as an M p-value
based on some test statistic, then it can be improved by
the M-step.

The test statistic Z(Y1, Y0) may be any of the three
mentioned in the previous section. Since P ∗(y1, y0)

only depends on the way Z(y1, y0) ranks the sample
space, dependence on the choice of Z is modest, so
long as it is chosen to be one of the standard test statis-
tics. Moreover, while slightly different answers can be
obtained, each p-value is exact in the sense of equation
(2.5). The maximization procedure can even be applied
to any of the conditional p-values from the previous
section, thus converting a conditional test into an exact
unconditional test (Boschloo, 1970, McDonald, Davis
and Milliken, 1977, Mehrotra, Chan and Berger, 2003).

We remind the reader that when Z(y1, y0) does not
satisfy the monotonicity properties, the tail probability
in (4.1) should in principle be maximised over {p1 ≤
p0}, as first pointed out by Röhmel (2005). Fisher’s
p-value, as well as Lancaster and Liebermeister are
monotonic. Among the three standard statistics, only
the SRLR statistic is necessarily monotonic.

4.2 The Restricted Maximization Procedure

Maximising the profile function over the entire nui-
sance parameter space seems extreme when many nui-
sance parameter values will be very unlikely in light
of the data. This might lead to unnecessarily conser-
vative inference. When this occurs, it can be traced to
the existence of spikes in the profile, often at values
of ϕ far from its estimated value. Such problems may
be avoided by using the procedure proposed by Berger
and Boos (1994), which narrows the set of values in the
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domain of the parameter ϕ to a confidence set before
taking the maximum:

PBB(Y ) = sup
ϕ∈Cγ

Pr
[
Z(Y ) ≥ Z(y); θ0, ϕ

] + γ,

where Cγ is a 100(1 − γ ) percent confidence interval
for ϕ. In the present case, probability on the right-hand
side is calculated under p1 = p0 = p and a confidence
interval for ϕ = p is the well-known Clopper–Pearson
interval. Normally, γ is taken to be very small, for ex-
ample, 0.001. Again, the tail set could be expressed in
terms of the p-value instead of the test statistic. This
restricted maximization, which we will call the B-step,
produces a guaranteed p-value and typically a smaller
p-value than using the M-step.

4.3 The Estimation Procedure

A cruder alternative to accounting for the nuisance
parameter by maximization is to replace it with an esti-
mate (Storer and Kim, 1990). In its most general form,
this gives what we will call the E p-value

(4.2) PE(y) = π(y, ϕ̂0),

where ϕ̂0 is an estimator of ϕ under the null hypothesis.
This is a parametric bootstrap p-value if the bootstrap
is viewed as a general recommendation to use the data
to estimate the null distribution of the test statistic. For
simple models, like the 2 × 2 table, no simulation is
required. The value of the E p-value is obtained from
equation (4.1) but, rather than maximise with respect

to p, it is replaced by the estimate p̂. The main prob-
lem of this approach is that the resulting p-value is not
necessarily guaranteed (Berger and Boos, 1994).

The E-step can be performed more than once by iter-
ating the construction of the significance profile in 2.4.
The three methods, M-step, B-step and E-step can also
be combined. Lloyd (2008a) proposed applying the M-
step to PE(y), known as the the E + M p-value. More
explicit formulas for all these methods are given in Ap-
pendix 2.

4.4 Numerical Illustration

To clarify exactly how these three adjustments work,
we illustrate their application when Z(Y1, Y0) is the
pooled z-test. The fictitious data is y1 = 13 responses
out of n1 = 100 and y0 = 2 responses out of n0 = 50.
The observed value of the test statistic is Z(y0, y1) =
1.732. Practitioners would typically quote the observed
p-value 1 − �(1.732) = 0.0416. How accurate is this?
Figure 1 displays the true significance, as measured
by the profile π(y = (2,13);p), with the quoted value
0.0416 as a horizontal line. It deviates from the quoted
value, mainly for larger values of p but also for p =
0.5. The nuisance parameter ϕ here is again the as-
sumed common value p of p1 = p0 under the null.

The maximum of the profile is P ∗ = 0.0677 and
occurs at p = 0.968. On the basis of this M-step,
we quote the p-value 0.0677 instead of the original
0.0416. This value is much larger because of the pres-
ence of a spike in the profile but considering that p̂ =
15/150 = 0.1, one might wonder about taking account

FIG. 1. Left. Profile for pooled Z p-value for data (y1 = 13, n1 = 100; y0 = 2, n0 = 50), illustrating the M (in red), B (in green) and E-step
(in blue) p-values that this profile generates. Right. Profile of the E p-value for the same data set.
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of the possibility that p = 0.968. This motivates the
alternative B-step. With γ = 0.01, an exact 99% con-
fidence interval for p is (0.0471,0.1796) marked on
the plot as dashed green vertical lines. The maximum
over this restricted range is 0.0429. After adding the
penalty γ = 0.01, we quote PBB = 0.0529. The E-step
involves estimating p by p̂ = 0.1 and the value of the
profile at this point, marked by a vertical blue line, is
PE = 0.0424.

It was noted previously that estimated p-values may
not be guaranteed. In the right panel of Figure 1, we
have calculated the profile of PE(Y ) [which required
calculating all possible values of PE(y)] as well as
the quoted value as a horizontal line. In such cases,
the quoted p-value is extremely close to the true sig-
nificance profile. This behaviour is typical for E p-
values in this context (Lloyd, 2008b). The E + M p-
value is the maximum of this profile and equals 0.0427,
achieved at p = 0.42. The latter M-step removes the
practically tiny amount of conservatism or liberality
that may be present, and the resulting p-value is exact.

4.5 Two-Sided and Multi-Dimensional Tests

One-sided tests (such as superiority or noninferiority
trials) are very common in biomedical contexts, which
is why the theory presented to this point is oriented
towards one-sided tests. However, the tail set {Z(Y ) ≥
Z(y)} could be based on a two-sided test statistic Z if
desired. This is perhaps even clearer when the theory
is expressed in terms of the equivalent p-value, where
the tail set is {P(Y ) ≤ P(y)}.

Also suppressed in the theory is the dimension of the
nuisance parameter ϕ, which is unspecified. In princi-
ple then, the theoretical framework is completely gen-
eral. The M-step, B-step and E-steps are applied in
exactly the same way for one or two-sided tests and
for any number of nuisance parameters. The M-step
retains the same optimality properties stated in Sec-
tion 4.1 and the B-step always produces a guaranteed
p-value. But both these methods become computation-
ally infeasible for many nuisance parameters. Only the
E-step maintains the same computational burden as the
dimension of ϕ increases. In the context of 2×2 tables,
all three methods are computable for realistic sample
sizes.

5. STRUCTURED ASSESSMENT OF COMPETING
TESTS

In this section, we review the main arguments for
and against the conditional and unconditional model,

without taking a position on which is better. We then
compare proposed tests within the conditional frame-
work and come to a clear recommendation. Within
the unconditional framework, there are literally dozens
of plausible tests. We assess these by their theoretical
properties as detailed in Section 2.6, as well as their
computational burden. Moreover, we support our final
recommendation with a numerical study.

5.1 Conditional or Unconditional?

All statistical models involve some conditioning;
those things we consider incidental to the data, for in-
stance the sample size, do not have their distributions
modeled but, rather, are considered fixed. The dispute
between the use of conditional or unconditional tests
has a long history and many of the battles have been
fought around the 2 × 2 table (see Agresti, 1992, 2001
for a review).

In Fisher’s famous tea-tasting experiment, the total
number of positive responses s was fixed by design.
However, Fisher later argued that it should be consid-
ered fixed regardless, arguing that S has much in com-
mon with the sample size. Conditioning on the total
successes was later proposed not only for compara-
tive trials (e.g., Gail and Gart, 1973, Gart, 1969) but
also in matched case-control studies (e.g., Hirji, Mehta
and Patel, 1988) and for tables of higher dimension
(see Hirji, 2006). The theory extends naturally to gen-
eralised linear models with canonical link. For non-
canonical link, conditioning on approximate ancillary
statistics has led to the p∗ formula discussed earlier.
The argument for conditioning in 2 × 2 tables cannot
be understood without reference to this wider context.

In the narrower context of 2 × 2 tables, the condi-
tional model has a single free variable y1 and a single
parameter θ and the theory is very simple. The uncon-
ditional model has two free variables (y1, y0) and an
additional nuisance parameter. Even though the model
is still very simple, it is rich enough to expose all of
the difficulties and limitations of frequentist inference.
There are plausible arguments for either model, which
we now elucidate.

5.2 Arguments for Conditional Inference

The first argument for conditional inference is based
on Lehmann’s theory. He showed that in full rank expo-
nential families the use of conditioning, with randomi-
sation, leads to an unconditional test. This suggests
that the conditional likelihood contains all the relevant
information with respect to the parameter of interest.
While seldom used in practice, randomisation reveals
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this basic structure, just as embedding real numbers
within the complex number system brings insights into
solving polynomials.

A second argument is that the total number of suc-
cesses S has the same germane properties as the sample
size. However, S differs from the sample size in that its
distribution depends on the parameters. More refined
arguments were based on the idea that S, by itself, is
uninformative about the interest parameter θ . Formal-
ising this notion leads to various definitions of approx-
imate ancillarity and sufficiency (Barndorff-Nielsen,
1973, Cox, 1980, Godambe, 1980). However, all these
definitions have unsatisfactory implications for some
statistical models and it is fair to say that no consen-
sus emerged. There is also debate about the ancillarity
argument itself (Berkson, 1978).

A third argument, due to the second author, points to
an epistemologically undesirable property of uncondi-
tional inference. Consider the most extreme outcome,
when there are all successes for treatment and all fail-
ures for control; the p-value equals the probability of
this single most extreme outcome yE = (n1,0). The un-
conditional p-value can then be decomposed as

Pr(Y = yE) = Pr(Y1 = n1|S = n1) × Pr(S = n1;p).

The first factor is Fisher’s p-value; the second fac-
tor is a pure probability about S which depends on p

but whose maximum value is small. Why should the
event S = n1 be counted against the null hypothesis?
In words, why should a total of n1 successes out of
n0 +n1 trials be counted as evidence that the treatment
works? Unconditional inference commits us to this in-
ference.

The fourth and last argument for conditioning is sim-
plicity and convenience: conditioning on S eliminates
ϕ from the model and provides an incredibly simple
model (2.7) with a single variable y1 depending on the
parameter of interest θ . All good statistical modelling
involves treating incidental aspects of the data gener-
ating mechanism as fixed so that we can focus on the
issue at hand. While eliminating ϕ from the model is
attractive, there are other methods that do not involve
conditioning, as detailed in Section 4 (see also Basu,
1977, for an earlier inventory of methods). So condi-
tioning, while one option, is not necessary to account
for the nuisance parameter.

5.3 Comparison of Tests Under the Conditional
Model

In this section, let us accept the conditional model
(2.7) as the model for the number of treatment suc-
cesses y1 given the total successes s.

Fisher’s p-value is the probability of an observed
event. It answers the question: out of y1 + y0 = s suc-
cesses, how often would at least y1 of them be in the
treatment group if the treatment has no effect? It also
decreases in y1 for fixed s and increases in s for fixed
y1, which are the key monotonicity properties in Sec-
tion 2.5. So the key logical hurdles are passed. On the
other hand, for a fixed target nominal size α, the test
size as given in 3.2 is less than nominal, sometimes
much less. This is the source of the common claim that
Fisher’s test is conservative. The claim is spurious.

Within the conditional framework, some size con-
servatism is an inevitable consequence of discreteness
but an exact p-value still exists, as explained in Sec-
tion 2.3. Fisher’s p-value is exact in this strong techni-
cal sense. It is the smallest possible valid p-value that
is monotone increasing in y1. So within the conditional
framework, Fisher’s test is not unnecessarily conserva-
tive. Indeed, any other test that is valid will be even
more conservative and any test that is less conservative
will be invalid.

The mid-p and Liebermeister proposals are both at-
tractive, but their conditional size can exceed nomi-
nal (Hirji, Tan and Elashoff, 1991, Seneta and Phipps,
2001) and the p-values are never guaranteed. Seneta
and Phipps (2001) compared the size attained by
Fisher’s, Liebermeister’s and Lancaster’s test. These
authors showed that Liebermeister’s test is the closest
to the nominal level (even though it is not valid, ex-
ceeding the nominal level) followed by Lancaster’s and
Fisher’s test. So if closeness of attained size, rather than
validity, were our key criterion we might be moved to-
wards Liebermeister’s test. However, we consider va-
lidity of the test and the guaranteed property of a p-
value a key criterion.

In addition, both mid-p and Liebermeister suffer
from the drawback that they are not the probability of
any observed event. While we might consider approx-
imations to a guaranteed test, neither is an approxima-
tion to the Fisher p-value. Certainly, neither can be jus-
tified within the conditional model. Evaluated uncondi-
tionally, their performance may be acceptable and we
will present some numerical results in Section 6. How-
ever, there are competing tests within the unconditional
framework that we will ultimately prefer.

Finally, the randomised version of Fisher’s test is
UMPU. So Fisher’s test may be thought of as the clos-
est valid discrete approximation to the UMPU test.
Thus, any conservatism of Fisher p-value is an in-
evitable artifact of discreteness. In summary, within the
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conditional framework there appears to be no alterna-
tive to Fisher’s test. As we shall see later though, the
criticisms of Fisher’s test are mainly made from an un-
conditional perspective.

An area for future research is to clarify the prop-
erties of p∗ and approximately conditional p-values.
The former are not necessarily valid and their degree
of liberalism should be better assessed. For the latter, it
remains unresolved how to determine a general neigh-
borhood for conditioning.

5.4 Arguments for Unconditional Inference

The most persuasive argument for the unconditional
model is that in future repetitions of the experiment the
value of S will vary. If we want practical assessment
of the future performance of the test—which is the key
aim of frequentist inference—then we should allow S

to vary. At the very least, this suggests augmenting any
conditional test with a statement of its unconditional
properties.

There are two specific arguments against the con-
ditional model. The first is that conditional inference
does not easily generalise to noncanonical parameters.
In the context of 2 × 2 tables, we can perform condi-
tional tests of the log-odds ratio but not of the risk dif-
ference, as pointed out in Section 3.4. Moreover, even
with canonical parameters the relevant conditional dis-
tribution can be degenerate, leading to a test with zero
size and power. While p∗ methods were developed to
address these problems, the fact that it gives a nonde-
generate answer in this latter case is problematic.

The second argument against the conditional model
is conservatism. Basing tests on the unconditional
model allows greater unconditional power. This is
partly because the distributions involved are much less
discrete but also because the conditional size as of a
test need not be less than α for all s, so long as its
mean value is less than α. It is worth noting though
that there are cases where conditional tests are more
powerful; see Mehrotra, Chan and Berger (2003). Ex-
tending the investigation to the case of three binomials
(which arises in a three-arm clinical trials), the con-
ditional and unconditional approach seem to achieve
similar power (Mehta and Hilton, 1993).

There does not exist a conclusive argument for or
against conditioning, either in general or for 2 × 2 ta-
bles. Many might argue that this dilemma reveals a fun-
damental weakness in frequentist inference. For 2 × 2
tables, if the conditioning argument is accepted, then
Fisher’s exact p-value is exact in the sense of equation
(2.5). If the conditioning argument is not accepted, then

there is a much wider field of candidate tests which
have to be compared. This includes ostensibly condi-
tional tests that are made unconditional by the M, B or
E steps.

5.5 Comparison of Tests Under the Unconditional
Model

There are many tests in current use: Fisher, mid-
p, Liebermeister, pooled-Z, unpooled-Z, the likelihood
ratio and various Wald tests. All of these can be as-
sessed within the unconditional model. None of them
are exact. All can be adjusted using the M-step, B-step
or E-step. A numerical study below will illuminate the
properties of the basic and adjusted tests. However, we
can say quite a lot about the three adjustments based
on theoretical considerations. The example and figure
in Section 4.4 serves as an excellent heuristic.

First, all M-step p-values are exact in the sense of
(2.5) and subject to the ordering of the sample space
induced by the initial test cannot be improved. If there
is a spike in the profile then the maximised p-value will
tend to be larger and power will be degraded. If there
is no spike, then maximisation will just recalibrate the
test to remove its conservatism or liberality.

Partially maximised p-values tend to be smaller
when there is a spike and pay an insurance premium γ

to achieve this, even if there is not a spike. From their
definitions, it can be asserted that PB(y) < PM(y) + γ

but when there is a spike PB(y) will be much smaller
than PM(y). The B-step p-value is guaranteed but is
not exact: only M p-values can be exact, and applying
the M-step to the B p-value will reduce it slightly (but
by no more than γ ). For more complex models where
ϕ is a vector, construction of the confidence region Cγ

is left unspecified and so partial maximisation is not
a well-defined procedure. Indeed, for many models no
exact confidence region for ϕ exists and the method
cannot be formally applied.

The estimated p-value is the smallest of the three. It
can be easily shown that PE(y) < PB(y)−γ < PM(y).
The cost is that PE(y) is not guaranteed and tests
based on it can be invalid. However, empirically it is
found that the profile of PE(y) is very flat, much closer
than any asymptotic argument might suggest (Lloyd,
2008b). Consequently, PE+M(y) ≈ PE(y). This sup-
ports the use of PE+M(y) in principle and PE(y) in
practice. Of course, when the original profile is quite
flat, all the p-values will be close. However, for all of
the standard tests the profile can be far from flat.
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A final issue worth mentioning is the choice of ini-
tial test to generate the profile. Maximised p-values de-
pend quite a lot on this choice, partially maximised p-
values much less and estimated p-values hardly at all.
This is a very attractive feature of PE(y), as it effec-
tively removes any consequences of the user’s choice
of initial test. All these assertions will be verified in
the numerical study below.

We now turn to computational issues. All three ad-
justments require the set {P(Y ) ≤ P(y)} to be enu-
merated. Potentially, this requires evaluation of the
generating p-value for all possible data sets. So a sim-
pler generating p-value has great computational ad-
vantages. Amongst the simplest are Fisher’s exact p-
value and the maximised version was recommended by
Boschloo (1970). The M and B steps require similar
computation, while the E-step is faster, since the nui-
sance parameter ϕ is estimated rather than maximised.
For 2 × 2 tables, all three can be calculated in a few
seconds for sample sizes up to 1000.

The theoretically attractive E + M p-value requires
computing all possible values of PE(y). This is cur-
rently limited to modest sample sizes of a few 100.
Nevertheless, if computation were not an issue we
would recommend the E+M p-value, based on the LR
test because of its monotonicity properties and consis-
tently high power of the resulting E + M p-value.

For more complex models where ϕ is a vector, the
M and B-steps are not practical to compute. The E-
step is not adversely affected by the dimension of ϕ

and can be implemented for generalised linear models
using importance sampling; see Lloyd (2012).

6. A NUMERICAL STUDY

To illustrate, verify and compare the unconditional
performance of the tests reviewed in this article, we

conducted a numerical study. Full details are provided
in the online Appendix but it is pertinent to give repre-
sentative results here. We considered eight test statis-
tics: pooled, unpooled, log Wald, SRLR, p∗, Lieber-
meister, mid-p and Fisher. Only the last of these is
guaranteed and the others can all be liberal for some
parameter values. We calculated the unconditional size
and power of the tests using five different versions of
the basic statistics: raw, M, B (with γ = 0.001), E, and
E + M. We fixed the nominal size α = 0.05, the con-
trol sample size n0 = 40 and the treatment sample size
n1 = 60. This choice is broadly representative of the
patterns we have observed across all unbalanced de-
signs.

In Table 1, we report the exact size of the 40 tests
using two measures: maximum size with respect to
p0 (upper section) and mean size with respect to p0
(lower section). In the max part of the table, violations
over 0.051 are highlighted in red (over 0.06 is bold).
Amongst the raw tests, mid-p is very close to exact but
this is not the always case for other sample sizes. M,
B and E + M tests are all theoretically valid (which is
confirmed numerically in the table), whereas the E test
does occasionally violate size by a nontrivial amount,
but only when the original statistic is the unpooled or
Fisher.

In the lower part of the table, we use colour coding to
highlight the largest possible mean size subject to va-
lidity. This would imply a flatter profile and would typ-
ically lead to higher power. The B procedure is never
worse than the M procedure, but is occasionally only
slight advantageous. By contrast, the E and E + M pro-
cedures are very stable across test statistics, and the
advantage is more pronounced.

In Table 2, we show the power results for three se-
lected values of p0, and corresponding values of p1

TABLE 1
Maximum size (above) and mean size (below) calculated for 8 test statistics with 5 methods; n0 = 40, n1 = 60, α = 0.05
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TABLE 2
Power for three different combinations of p0 and p1, for 8 test statistics and 5 methods; n0 = 40, n1 = 60, α = 0.05

chosen so that the power is in a practically interest-
ing range. As previously reported in the literature, it
emerges that the B procedure leads to more powerful
tests than the M procedure. E and E + M tests are al-
ways best or the equal best tests; the added value of
these procedures is that they seem to work well across
all circumstances. The E procedure should be recom-
mended in applications, with the caution that it can
occasionally lead to very slight violation of size when
sample sizes are unbalanced. The E + M procedure is
guaranteed, at the cost of a higher computational bur-
den.

7. CONCLUSIONS

In this paper, we have reviewed both the conditional
and unconditional approach to the 2 × 2 table. Both
approaches lead to valid frequentist inference within
their own different model frameworks.

Fisher originally suggested that the statistical model
should depend on the study design. Indeed, when the
total sum of successes in a binomial trial is fixed by
design, it seems natural to consider the conditional ap-
proach and to evaluate power conditionally. When the
sum is not naturally fixed by design, as is more often
the case, it seems at least pertinent to adopt an uncon-
ditional perspective. Treating the sum of successes as
fixed when it is not is defensible, but is based on gen-
eral conditionality arguments whose application to the
2 × 2 table is not completely clear.

Thus, rather than conclusively support one approach
against the other, we have reviewed and assessed alter-
native procedures within the conditional and uncondi-
tional models separately.

From the conditional perspective, there does exist an
optimal test, namely the randomised version of Fisher’s

test. This test would be the gold standard for bino-
mial endpoints, but cannot be recommended in prac-
tice, because randomisation introduces extra variation
into the analysis. It is worth observing that within a
decision theory framework randomised tests do not vi-
olate the sufficiency principle (e.g., Lehmann and Ro-
mano, 2005, page 58) since the randomisation distribu-
tion is the same for all data that give the same value of
a sufficient statistic. At the point where a random num-
ber is drawn to complete the test and reject or accept
the null hypothesis, the classical Fisherian sufficiency
principle is contradicted. Regardless of these theoreti-
cal arguments, however, randomisation is almost never
used in practice.

The unrandomised version, which is Fisher’s exact
test, has long been criticised for its conservatism, both
conditionally and unconditionally. However, Fisher’s
test is valid and satisfies our definition of exactness.
In addition, if one accepts the conditional model, then
conservatism is an inevitable consequence of the dis-
creteness. Fisher’s p-value is exact and is the smallest
possible valid p-value that is monotone increasing in
y1. By contrast, both Lancaster’s and Liebermeister’s
tests mitigate the conservatism of Fisher’s exact test,
but both are necessarily liberal within the conditional
framework. Moreover, neither is the probability of any
observed event. Hence our recommendation is clear:
within the conditional framework, Fisher’s is really the
only test to recommend.

The newest methods that are motivated from a condi-
tional approach are p∗ p-values and approximate con-
ditional p-values, which follow recent developments
in likelihood theory. These approaches have the virtue
of extending conditional methods to models where ex-
act conditioning is not possible, and provide close ap-
proximation to conditional procedures when it is pos-
sible. However, for the 2 × 2 table an optimal exact
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approach is available and there is no need to approxi-
mate it. More generally, the validity of such p-values
is not guaranteed and they are not easy to write down
explicitly or compute.

Amongst unconditional methods, we have explicated
four methods for constructing p-values with good size
control. From the least to the most computationally in-
tensive these methods are E, M, B and E + M. The last
three are guaranteed to be valid, while the first is very
close to valid in practice.

M p-values account for the worst possible scenario
and represent the most classical approach to handling
the nuisance parameter, which is the key difficulty in
the unconditional approach. Maximisation is a straight-
forward procedure and relatively easy to compute, at
least for models with a single nuisance parameter; it
guarantees exactness and validity, but allowing for the
worst case often leads to unnecessarily low power.

B p-values are a simple method for overcoming the
power loss of accounting for an unlikely worst case,
especially for highly unbalanced designs. Though not
exact, they are necessarily valid, while typically being
smaller than M p-values. The difficulty of extending
to more general and higher dimensional models and the
lack of specification for the level of confidence is a the-
oretical weakness. However, for 2×2 tables, there is no
practical impediment to their use and we would recom-
mend B p-values over M p-values (with γ = 0.001).
B p-values are today available in some statistical soft-
wares.

The easiest p-value to compute (even for sample
sizes of several 1000) is the E p-value, which leads to
a flat profile. It is very close to exact and could be rec-
ommended in practice, provided that tiny violations of
the size constraint are acceptable. The method extends
to general models in a straightforward manner.

E + M tests combine the use of a flatter significance
profile (E step) with guaranteeing validity (M step).
They are typically slightly more powerful than B p-
values and they do not require user choice of a level
of confidence. Another attractive feature is that E + M
(and E) methods lead to almost the same final infer-
ence, regardless of the choice of the test statistic. The
only weakness of the E + M method is its computa-
tional burden. R-code for all these methods is available
from the authors.

This paper has reviewed contemporary approaches
to the 2 × 2 table from a frequentist point of view. One
reason of this choice is practical, as the clinical trials
regulators mainly employ frequentist protocols. How-
ever, for the sake of comparison, we briefly mention
Bayesian methods.

The Bayesian paradigm introduces a priori informa-
tion in the inferential framework, and the plausibility
of a hypothesis based on the data is assessed in terms
of a posteriori probabilities. The key idea is treating
parameters as random variables, so that, unlike the fre-
quentist approach, one can integrate out any nuisance
parameters. By imposing a continuous distribution on
the parameters, the problem of discreteness is naturally
solved, and, in case of the 2×2 table, computations are
very simple.

Since conclusions are dependent on the prior spec-
ification, the frequentist properties of Bayesian meth-
ods cannot be stated in general. Nevertheless, there
are links between Bayesian and frequentist inference
for 2 × 2 tables. For instance, Liebermeister’s test
can be generated from a Bayesian argument and has
quite good unconditional properties. The one-sided p-
value from the pooled z-test can also be derived as the
posterior probability of the null hypothesis based on
independent Jeffries priors for (p0,p1); see Howard
(1998). Confidence intervals, which is not a topic we
have touched on, can be replaced by highest posterior
density intervals; see Brown, Cai and DasGupta (2001)
and Brown, Cai and DasGupta (2002).

SUPPLEMENTARY MATERIAL

Supplement to “Contemporary Frequentist Views
of the 2 × 2 Binomial Trial” (DOI: 10.1214/17-
STS627SUPP; .pdf). We provide formulas for standard
approximate statistics and adjusted p-values. We illus-
trate in detail the numerical study.
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