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a Stochastic Monotonicity Assumption
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Abstract. The instrumental variables (IV) method provides a way to esti-
mate the causal effect of a treatment when there are unmeasured confounding
variables. The method requires a valid IV, a variable that is independent of
the unmeasured confounding variables and is associated with the treatment
but which has no effect on the outcome beyond its effect on the treatment. An
additional assumption often made is deterministic monotonicity, which says
that for each subject, the level of the treatment that a subject would take is a
monotonic increasing function of the level of the IV. However, deterministic
monotonicity is sometimes not realistic. We introduce a stochastic mono-
tonicity assumption, a relaxation that only requires a monotonic increasing
relationship to hold across subjects between the IV and the treatments con-
ditionally on a set of (possibly unmeasured) covariates. We show that under
stochastic monotonicity, the IV method identifies a weighted average of treat-
ment effects with greater weight on subgroups of subjects on whom the IV
has a stronger effect. We provide bounds on the global average treatment ef-
fect under stochastic monotonicity and a sensitivity analysis for violations of
stochastic monotonicity. We apply the methods to a study of the effect of pre-
mature babies being delivered in a high technology neonatal intensive care
unit (NICU) vs. a low technology unit.

Key words and phrases: Causal inference, observational study, instrumen-
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1. INTRODUCTION

The instrumental variable (IV) method provides a
way to learn about the effect of a treatment when there
is unmeasured confounding under certain assumptions.
There are several approaches to using IVs and corre-
sponding definitions for an IV (e.g., Angrist, Imbens
and Rubin, 1996, Hernán and Robins, 2006), how-
ever, all the definitions include that an IV satisfies the
core assumptions of (1) the IV is associated with the
treatment; (2) the IV is independent of unmeasured
confounders; and (3) the IV only affects the outcome
through its effect on treatment received (the exclusion
restriction). In addition, two basic causal assumptions
that are commonly made are (i) there is no interfer-
ence between units; and (ii) there are no unrepresented
versions of the treatment, which means there are not
different ways of administering the same level of the
treatment that lead to different outcomes for a given
subject (Rubin, 1986). These core IV assumptions and
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basic causal assumptions provide bounds for the causal
effects of treatment, but additional assumption(s) are
needed to point identify a causal effect (Robins, 1989,
Manski, 1990, Balke and Pearl, 1997, Angrist, Imbens
and Rubin, 1996). Angrist, Imbens and Rubin (1996)
introduced two additional assumptions: (a) no unrepre-
sented versions of the IV—there are not different ways
of administering the same level of the IV that lead to
different treatment for a given subject and (b) deter-
ministic monotonicity—for a binary treatment and a
binary IV, there are no defier subjects who would take
the control if encouraged to take the treatment by the
IV but take the treatment if not encouraged by the IV
(the name deterministic monotonicity comes from that
for all subjects, the level of the treatment that a subject
would take is a monotone increasing function of the
IV). Under these additional assumptions as well as the
basic causal and core IV assumptions, Angrist, Imbens
and Rubin (1996) showed that the Wald estimate (the
difference in the mean outcome between subjects with
the encouraging level of the IV vs. the not encouraging
level divided by the difference in the proportion of sub-
jects taking the treatment with the encouraging level of
the IV vs. not the encouraging level) converges to the
average treatment effect for compliers, where the com-
pliers are the subjects who would take the treatment if
encouraged by the IV but not take the treatment if not
encouraged by the IV; the average treatment effect for
compliers is also called the local average treatment ef-
fect (LATE).

The additional assumptions of (a) no unrepresented
versions of the IV and (b) deterministic monotonic-
ity are plausible for a setting where the IV is deliv-
ered in a uniform way and the encouraging level of
the IV provides a clear incentive to take the treatment
with no disincentive (Imbens, 2014, Section 5.3). For
example, consider Finkelstein et al.’s (2012) study of
the effect of having the effect of having health insur-
ance on future health. Finkelstein et al. (2012) con-
sidered low-income adults in Oregon, where in 2008
a waiting list was opened for a state Medicaid expan-
sion program, which had been closed to new enroll-
ment since 2004. Because the waiting list exceeded the
number of spots available, the state drew names by lot-
tery to decide who would have the opportunity to en-
roll in Medicaid. Not all winners enrolled in Medicaid
either because they did not apply or were deemed ineli-
gible, and some non-winners obtained health insurance
through other means; however, winners had about a 25
percentage point higher chance of having health insur-
ance one year after the lottery. Finkelstein et al. (2012)

used winning the lottery vs. not winning as an IV and
inferred that health insurance improved self-reported
physical and mental health. The no unrepresented ver-
sions of the IV assumption is plausible because the IV
is delivered in a uniform way—if a person receives
the encouraging level (winning the lottery), she is pro-
vided the opportunity to obtain health insurance by
enrolling in Medicaid while if a person receives the
non-encouraging level (not winning the lottery), she
is denied the opportunity to enroll in Medicaid. The
deterministic monotonicity assumption is plausible be-
cause winning the lottery provides a clear incentive to
obtain health insurance (free enrollment in Medicaid)
with no disincentive.

Although the additional assumptions of (a) no unrep-
resented versions of the IV and (b) deterministic mono-
tonicity are plausible for some studies using an IV,
there are many studies for which they are not plausi-
ble, particularly when the high level of the IV provides
incentives to take the treatment but at the same time
provides certain disincentives. For example, consider a
study of the effect of mortality for premature babies
of being delivered in a high level neonatal intensive
care unit (high level NICU) vs. a low level NICU—
a high level NICU is a NICU that has the capacity
for sustained mechanical assisted ventilation and deliv-
ers at least 50 premature babies per year (Lorch et al.,
2012a). Yang, Lorch and Small (2014) used an IV ap-
proach where the IV was whether or not the mother’s
excess travel time from the nearest high level NICU
compared to the nearest low level NICU (under av-
erage traffic conditions) is less than or equal to 10
minutes. Excess travel time to a specialty care facility
compared to a normal facility has been used as an IV
for whether a person receives a certain type of care in
many health studies, for example, McClellan, McNeil
and Newhouse (1994). In the NICU study, living near
to a high level NICU strongly encourages a mother to
deliver at a high level NICU: in data from Pennsylva-
nia (see Section 8), 75% of mothers who live relatively
near to a high level NICU (excess travel time ≤10 min-
utes) deliver at a high level NICU whereas only 30% of
mothers who live relatively far from a high level NICU
(excess travel time >10 minutes) deliver at a high level
NICU. However, the excess travel time IV is not de-
livered in a uniform way. Excess travel time is a func-
tion of where a mother lives, which may influence the
choice of hospital in ways other than through excess
travel time, such as community, family and friends’
views of hospitals in the area. Different places that are
both relatively near to a high level NICU (excess travel
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TABLE 1
Comparison of four zip codes’ demographics, IV (excess travel time) values and proportion of deliveries at a high level NICU

Zip Code A B C D

Proportion High School Degree 0.80 0.77 0.86 0.84
Proportion College Degree 0.16 0.10 0.18 0.15
Average Income $33,914 $34,534 $34,802 $32,896
Rural Urban Continuum Code∗ 2 2 4 4

IV Z† 1 0 1 0
Proportion of deliveries at high level NICU 0.28 0.74 0.94 0.14

∗Code of 2 means zip code is in county that is part of metropolitan area of 200,000 to 1 million people; 4 means zip code is in county that is
adjacent to but not part of a metropolitan area and county has an urban population of at least 20,000.
†Z = 1(0) means excess travel time of ≤10 (>10) minutes.

time ≤10 minutes) are unrepresented versions of the
IV and there might be defiers with respect to some ver-
sions of the IV. For example, consider zip codes A and
B shown in Table 1. The two zip codes are demograph-
ically similar. Zip code A (a zip code in the Wilkes
Barre, PA area) is relatively near to a high level NICU
with an excess travel time of only 6 minutes while zip
code B (a zip code in the Erie, PA area) is relatively
far from a high level NICU with an excess travel time
of 30 minutes. With respect to the IV of ≤10 vs. >10
minutes excess travel time, if there are no defiers for the
versions of the IV given by zip codes A and B , then the
proportion of mothers delivering at a high level NICU
should be at least as high in A as in B . But in fact, only
28% of mothers in the near zip code A deliver at a high
level NICU whereas 74% of mothers in the far zip code
B deliver at a high level NICU (p-value from Fisher’s
exact test for high level NICU rate being lower in A

than B is <10−15). Thus, with respect to the versions
of the IV represented by these two zip codes, there ap-
pear to be defiers. However, a mother who was a defier
with respect to these two zip codes, that is, a mother
who would deliver at a low level NICU if she lived in
the near zip code A but would deliver at a high level
NICU if she lived in the far zip code B , might be a
complier with respect to two other zip codes. For ex-
ample, consider zip codes C (in Dubois, PA area) and
D (in Sugarcreek, PA) in Table 1. These two zip codes
are demographically similar, but C is a near zip code
and D is a far zip code. Almost all mothers in C deliver
at a high level NICU whereas almost all mothers in D

deliver at a low level NICU. Thus, almost all mothers
are compliers with respect to zip code C vs. zip code
D. In summary, there are unrepresented versions of the
IV and violations of deterministic monotonicity for the
NICU study.

1.1 Stochastic Monotonicity Assumption and Main
Results

We consider a weakening of deterministic mono-
tonicity called stochastic monotonicity. Informally, the
stochastic monotonicity assumption says that if we
stratify on all the measured and unmeasured con-
founders of the relationship between the treatment and
outcome, then within each stratum, the probability of
taking the treatment for subjects given the encouraging
level of the IV is at least as high as for subjects given
the non-encouraging level. Stochastic monotonicity
is weaker than deterministic monotonicity because it
does not require a monotonic relationship between IV
and treatment for each subject but only a monotonic
relationship between IV and probability of treatment
within strata.

We show that if an IV satisfies stochastic mono-
tonicity along with the basic causal and core IV as-
sumptions, the IV can be used to learn about certain
useful quantities even if deterministic monotonicity is
violated. First, we show that the Wald estimate identi-
fies a strength-of-IV weighted average treatment effect
(SIV-WATE), a weighted average of treatment effects
where conditionally on all possible confounders, the
weight for a group of subjects is proportional to the
size of the group times how much higher the proba-
bility of taking the treatment for subjects in the group
when given the encouraging level of the IV is com-
pared to the non-encouraging level (Proposition 1).
This implies the no sign reversal property—if the sign
of the treatment effects (+,0,−) is the same for all
subjects, then this sign is identified by the IV (Sec-
tion 4.3). Second, we show that the observable char-
acteristics of the weighted population in the definition
of the SIV-WATE are identified so the treatment effect
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underlying the Wald estimate can be understood un-
der stochastic monotonicity (Proposition 2). Third, we
show that the stochastic monotonicity assumption can
narrow bounds on the global average treatment effect,
that is, the average treatment effect for the whole pop-
ulation (Proposition 3). These results are comparable
to previous results that the deterministic monotonicity
assumption can narrow the bounds on the global av-
erage treatment effect obtained under the core IV as-
sumptions (Balke and Pearl, 1997). Fourth, we provide
a method of sensitivity analysis for bias from violations
of stochastic monotonicity that is analogous to Angrist,
Imbens and Rubin’s (1996) sensitivity analysis for bias
from violations of deterministic monotonicity.

1.2 Review of Literature and Contributions of This
Paper

Previous literature has considered relaxing some of
the assumptions of the Angrist, Imbens and Rubin
(1996) framework that are violated when the IV is not
delivered in a uniform way or deterministic monotonic-
ity is violated. Hernán and Robins (2006) and Chalak
(2017) have presented results for when the measured
IV is a proxy for an underlying, possibly continuous
IV; their results assume that the underlying IV satis-
fies deterministic monotonicity whereas we allow for
the underlying IV to violate deterministic monotonic-
ity and only satisfy the weaker condition of stochas-
tic monotonicity. When the IV is not a proxy and does
not have unrepresented versions, several authors have
presented results that identify the LATE or variants of
the LATE when deterministic monotonicity is violated.
DiNardo and Lee (2011) presented a stochastic mono-
tonicity condition. Brookhart and Schneeweiss (2007)
presented a similar formula when heterogeneity of
treatment effects is generated by an unmeasured vari-
able. Ramsahai (2012) presented bounds on the treat-
ment effect for a binary outcome under a stochastic
monotonicity condition. de Chaisemartin (2017) pro-
vided a relaxation of deterministic monotonicity un-
der which if there is a subgroup of compliers that ac-
counts for the same proportion as the defiers and that
has the same average treatment effect as the defiers
(called the “compliers-defiers” assumption), then the
Wald estimate captures the average treatment effect of
the remaining part of the compliers. Angrist, Imbens
and Rubin (1996) presented a formula for the sensi-
tivity of the Wald estimate to violations of determin-
istic monotonicity. Klein (2010) introduced local vio-
lations of deterministic monotonicity that are indepen-
dent of unmeasured confounders and showed that the

bias of the Wald estimate can be well approximated if
such violations are small. Huber and Mellace (2012)
considered a local monotonicity assumption which re-
quires that there be only compliers or defiers condi-
tional on each value of the outcome. Finally, Robins
(1994), Hernán and Robins (2006), and Tan (2010) de-
veloped an IV approach that does not assume deter-
ministic monotonicity but instead makes homogeneity
or parametric heterogeneity assumptions about causal
effects in different subgroups to achieve identification
of average treatment effects on the treated at different
instrument levels.

The contributions of this paper are that we provide a
unified framework, identification results and inference
methods that address simultaneously the problems that
arise when an IV may not be delivered in a uniform
way, the IV may be a proxy and the IV may violate
deterministic monotonicity. Previous literature to our
knowledge has not considered the presence of these
three problems simultaneously. We show that the Wald
estimator identifies a weighted average treatment ef-
fect, the SIV-WATE, even if deterministic monotonic-
ity is violated so long as stochastic monotonicity is
satisfied. In comparison to existing results on IV es-
timation without monotonicity, the stochastic mono-
tonicity assumption we consider does not require there
to be only compliers or defiers conditional on each
value of the outcome as in Huber and Mellace (2012)
or for the violations of deterministic monotonicity to
be independent of unmeasured confounders as in Klein
(2010). The stochastic monotonicity assumption we
consider implies the “compliers-defiers” assumption of
de Chaisemartin (2017); the advantage of the stochastic
monotonicity assumption when it holds is that further
insight into whom the Wald IV estimator pertains to is
available, see for example Section 6 for discussion of
different ways to interpret the SIV-WATE, the estimand
of the Wald IV estimator under stochastic monotonic-
ity.

Our paper is organized as follows. Section 2 pro-
vides notation and framework. Section 3 reviews the
deterministic compliance class framework and identi-
fication results. Section 4 presents the stochastic com-
pliance class framework, the stochastic monotonicity
assumption and identification results. Section 5 pro-
vides sensitivity analysis for violations of stochastic
monotonicity. Section 6 discusses interpretation of the
treatment effect estimated by the Wald estimator un-
der stochastic monotonicity. Section 7 discusses con-
ditioning on covariates. Section 8 presents an applica-
tion to the NICU study. Section 9 discusses stochas-
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tic monotonicity for another example, physician pre-
scribing preference IVs. Section 10 provides discus-
sion. The proofs are provided in the supplementary ma-
terials (Small et al., 2017).

2. NOTATION AND FRAMEWORK

Let Z be the measured IV, D the treatment and Y

the outcome. We will not consider covariates for the
moment but discuss them in Section 7. The IV Z and
the treatment D are assumed to be binary. We extend
the results to non-binary Z in the supplementary ma-
terials. We refer to level 1 of the IV Z as the encour-
aging level and 0 as the non-encouraging level, and we
refer to level 1 of D as the treatment and 0 as the con-
trol. There are N units (subjects). The notation A ⊥⊥ B

means the random variables A and B are independent
and A ⊥⊥ B|C means A and B are conditionally inde-
pendent given C.

We make the following commonly made basic causal
assumptions:

BA1 No interference: The observation on one sub-
ject is not affected by the assignment of treatments to
the other subjects (Cox, 1958, Rubin, 1986).

BA2 No unrepresented versions of treatment: The
treatment levels 1 and 0 adequately represent all ver-
sions of the treatment (Rubin, 1986). In other words, if
there are two different ways of receiving the treatment
that are both represented by level 1 (0), the potential
outcomes corresponding to these two different ways of
receiving the treatment are the same.

We will now state “core” assumptions for Z to be a
valid IV; we call these core assumptions because they
follow from the commonly used informal description
of an IV as a variable that affects the treatment (rel-
evance), but only affects the outcome by altering the
treatment (exclusion restriction) and is independent of
unmeasured confounders (effective randomness of the
IV) (Hernán and Robins, 2006, Rosenbaum, 2010). We
will state these core assumptions for three different set-
tings: (i) Z is a causal IV that has a causal effect on the
treatment; (ii) Z is an intensity preserving proxy for a
causal IV Z∗ that has a causal effect on the treatment;
(iii) Z or something that Z is a proxy for cannot eas-
ily be thought of as being manipulated. We will then
show in Section 2.4 that the three sets of core assump-
tions imply a set of common implications for the re-
lationship between Z and the treatment and potential
outcomes. Our subsequent results will only depend on
these common implications holding.

A reader interested in our main results about stochas-
tic monotonicity without the background on the various
scenarios in which they are plausible and how they re-
late to existing results could skip ahead to Section 2.4
and then Section 4.

2.1 Core Assumptions for Z Being a Causal IV

The following are the three core assumptions for Z

to be a valid causal IV (Hernán and Robins, 2006):

CA1-1 Positive Causal Effect of Z on Treatment:
Let Di(z) be the treatment that subject i would receive
if she were assigned level z of Z. Each subject has a
set of potential treatments, {Di(1),Di(0)}. The posi-
tive causal effect of Z on the treatment assumption is
that E[D(1)] > E[D(0)].

CA2-1 Exclusion Restriction: Let Yi(z, d) be the
potential outcome that subject i would experience if
the causal IV Z is set to level z and the treatment is set
to level d . The exclusion restriction is that Yi(0, d) =
Yi(1, d) for d = 0,1 and all i. In words, the causal IV
affects the outcome only through affecting the treat-
ment. Because of the exclusion restriction, we will in-
dex potential outcomes in terms of the treatment only
so that, for example Yi(1) = Yi(z, d = 1) is the out-
come that subject i would experience if she were as-
signed level 1 of the treatment.

CA3-1 Effective randomness of the IV: {Y(0), Y (1),

D(0),D(1)} ⊥⊥ Z, that is, the causal IV Z does not
share common causes with the outcome Y and the
treatment received D.

2.2 Core Assumptions for Z Being an Intensity
Preserving Proxy for a Causal IV Z∗

In some settings, the measured IV Z does not have
a causal effect on the treatment itself, but is instead a
proxy for an IV Z∗ that has a causal effect on the treat-
ment (Hernán and Robins, 2006). In the NICU study
from Section 1, Z is excess travel time under average
traffic conditions; Z∗ might be the actual excess travel
time the mother faces at the time she is ready to go to
the hospital. When Z does not have a causal effect on
the treatment itself, but is instead a proxy for a causal
IV Z∗, Hernán and Robins (2006) call Z a surrogate IV
and Z∗ the causal IV (Note: Hernán and Robins, 2006
use the notation U∗ instead of Z∗ for the causal IV).

Let Di(z
∗) be the treatment that subject i would re-

ceive if she were assigned level z∗ of Z∗. Each sub-
ject has a set of potential treatments, {Di(z

∗), z∗ ∈ Z∗}
where Z∗ is the set of possible values of Z∗.

We assume that the measured IV Z is an intensity
preserving proxy for Z∗:
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DEFINITION 1. Z is an intensity preserving proxy
for Z∗ ∈ R when:

(i) F(z∗|Z = 0) ≥ F(z∗|Z = 1) for all z∗ ∈ R and
F(z∗|Z = 0) > F(z∗|Z = 1) for at least one z∗ ∈ R,
where F denotes the c.d.f.; and

(ii) Z ⊥⊥ {{D(z∗), z∗ ∈ Z∗}, Y (0), Y (1)}|Z∗, where
Y(d) is the outcome the subject would experience if
her treatment level was set to d .

(i) says that the conditional distribution of Z∗|Z = 1
strictly stochastically dominates the conditional distri-
bution of Z∗|Z = 0. (ii) says that Z has no predictive
power for the potential treatment received or potential
outcomes once we control for Z∗. Note that since D is
a function of Z∗ and {D(z∗), z∗ ∈ Z∗}, (ii) implies that
Z ⊥⊥ {{D(z∗), z∗ ∈Z∗},D,Y (0), Y (1)}|Z∗.

The following are three sets of sufficient conditions
for Z to be an intensity preserving proxy for Z∗. First,
the intensity preserving proxy property is reflexive in
that if Z = Z∗, then Z is an intensity preserving proxy.
Second, if Z∗ is binary, then Z is an intensity pre-
serving proxy if (a) P(Z∗ = 1) > P (Z∗ = 1|Z = 0)

and (b) Z misclassifies Z∗ nondifferentially with re-
spect to the treatment and potential outcomes, that
is, P(Z∗ = 1|Z = z,Y (0) = y0, Y (1) = y1,D = d) =
P(Z∗ = 1|Z = z) for all z, y0, y1, d . Third, if Z =
I (Z∗ + W > 0) where W has a density function that is
log concave and W ⊥⊥ {Z∗,D,Y (0), Y (1)}, then Z is
an intensity preserving proxy for Z∗. This follows from
Lehmann (1966), Example 12; see the supplementary
materials for details and also Chalak (2017). Examples
of log concave density functions include the normal,
uniform, logistic and exponential densities (Bagnoli
and Bergstrom, 2005).

The following are “core” assumptions for Z∗ to be a
valid causal IV (Hernán and Robins, 2006):

CA1-2 Positive Causal Effect of Z∗ on Treatment:
The probability of taking the treatment is a strictly in-
creasing function of Z∗: E[D(z∗ = b)] > E[D(z∗ =
a)] for all b > a,a ∈ Z∗, b ∈ Z∗;

CA2-2 Exclusion Restriction: Let Yi(z
∗, d) be the

potential outcome that subject i would experience if
the causal IV is set to level z∗ and the treatment is set
to level d . The exclusion restriction is that for all units
i, Yi(z

∗ = a, d) = Yi(z
∗ = b, d) for all a ∈ Z∗, b ∈ Z∗

for d = 0 or 1. As discussed in Section 2.1, because of
the exclusion restriction, we will index potential out-
comes in terms of the treatment only, so that Yi(d) =
Yi(z

∗, d).

CA3-2 Effective randomness of the IV: {Y(0), Y (1),

{D(z∗), z∗ ∈ Z∗}} ⊥⊥ Z∗, that is, the causal IV Z∗ does
not share common causes with the outcome Y and the
treatment received D.

For a causal IV Z∗ that satisfies the core assumptions
(CA1-2)–(CA3-2) and an intensity preserving proxy Z

for Z∗, the following holds (proofs in supplementary
materials):

CA-Proxy-Implication-1: E(D|Z = 1) > E(D|
Z = 0).

CA-Proxy-Implication-2: Y(0), Y (1) ⊥⊥ Z.

2.3 Core Assumptions for Z to Be a Valid IV When
Neither Z Nor Something That Z Is a Proxy for
Can Be Manipulated

In some settings, the IV or something that the IV is
a proxy for cannot easily be thought of as being ma-
nipulated while keeping everything else about the unit
fixed. For example, Neal (1997) used whether a stu-
dent was Catholic as an IV for the effect of attend-
ing a Catholic secondary school vs. a public secondary
school on educational achievement. For many people,
growing up Catholic shapes their identities in ways
that are hard to imagine changing while keeping ev-
erything else about the person fixed (Cavolina et al.,
2000). Consequently, it is difficult to define poten-
tial treatment received, {Di(z = 1),Di(z = 0)}, since
this would require manipulating the person i’s religion
without changing anything else about the person. In-
stead, we consider Z fixed and non-manipulable for a
person, and let Yi(0) be the outcome that i would have
if her treatment was set to 0 and Yi(1) be the outcome
i would have if her treatment was set to 1. We define
Z as a valid non-manipulable IV if it is positively as-
sociated with the treatment and independent of poten-
tial outcomes, that is, Z satisfies the following core as-
sumptions:

CA1-3 Positive association between Z and the
treatment: E(D|Z = 1) > E(D|Z = 0).

CA2-3 IV is independent of potential outcomes:
{Y(0), Y (1)} ⊥⊥ Z.

The core assumptions CA1-3 and CA2-3 correspond
with the classical econometric view of IVs (Stock,
2001). For the Catholic school example of Neal (1997),
the being Catholic IV could fail CA2-3 if being
Catholic is directly relevant to the potential educational
achievement a person would have if she were to not go
(go) to a Catholic school or if being Catholic is asso-
ciated with a factor that affects potential educational
achievement.
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2.4 Common Features of the Core Assumptions
for the Three Different Types of IVs

For the core assumptions for the three different types
of IVs discussed in Sections 2.1–2.3, we have the fol-
lowing common features:

CF-CA-1 Yi(d) represents the outcome subject i

would have if she were to receive level d of the treat-
ment for d = 0,1.

CF-CA-2 The IV Z is positively associated with the
treatment, E(D|Z = 1) > E(D|Z = 0).

CF-CA-3 The IV Z is independent of potential out-
comes: {Y(0), Y (1)} ⊥⊥ Z.

The basic assumptions BA1–BA2 and the core as-
sumptions are not enough to identify causal effects, and
some additional assumption(s) is needed (Angrist, Im-
bens and Rubin, 1996, Hernán and Robins, 2006). We
review in the next section one such set of additional
assumptions, deterministic monotonicity in the deter-
ministic compliance class framework (Angrist, Imbens
and Rubin, 1996).

3. REVIEW OF DETERMINISTIC COMPLIANCE
CLASS FRAMEWORK AND IDENTIFICATION

RESULTS

3.1 Deterministic Compliance Class Framework
and Deterministic Monotonicity Assumption

The deterministic compliance class framework pre-
sented in Angrist, Imbens and Rubin (1996) assumes
Z is the causal IV and the core assumptions (CA1-1)–
(CA3-1) in Section 2.1. Furthermore, the framework
assumes a subject’s treatment received is a (subject
specific) deterministic function of the level of the sub-
ject’s IV Z and there are no unrepresented versions of
the IV,

DCC-IVA1 There are no unrepresented versions of
the IV. Regardless of how the IV is administered, Di(z)

is the treatment that subject i would receive if given
level z of the IV for z = 0,1.

A subject’s compliance class C is C = nt (never
taker) if D(0) = 0,D(1) = 0; C = at (always taker)
if D(0) = 1,D(1) = 1; C = co (complier) if D(0) =
0,D(1) = 1; and C = de (defier) if D(0) = 1,D(1) =
0. The additional assumptions for Z to be a valid IV
in the deterministic compliance class framework is the
deterministic monotonicity assumption:

DCC-IVA2 Deterministic Monotonicity. Di(1) ≥
Di(0) for all subjects i, that is, there are no defiers.

3.2 Identification Results Under the Deterministic
Compliance Class Framework

Imbens and Angrist (1994) and Angrist, Imbens
and Rubin (1996) showed that under (BA1)–(BA2),
(CA1-1)–(CA3-1) and (DCC-IVA1)–(DCC-IVA2), the
LATE, E[Y(1) − Y(0)|C = co], is identified:

E
[
Y(1) − Y(0)|C = co

]
(1)

= E[Y |Z = 1] − E[Y |Z = 0]
P(D = 1|Z = 1) − P(D = 1|Z = 0)

.

The denominator of (1) is the proportion of compliers,
P(C = co) = P(D = 1|Z = 1) − P(D = 1|Z = 0).

The average treatment effect for compliers (1) can
be estimated by the sample analogue of (1), which is
called the Wald or two-stage least squares estimator:

(2)
Ê(Y |Z = 1) − Ê(Y |Z = 0)

P̂ (D = 1|Z = 1) − P̂ (D = 1|Z = 0)
.

3.3 Deterministic Monotonicity with a Proxy IV

We consider that Z is an intensity preserving proxy
for a causal IV Z∗ that satisfies (CA1-2)–(CA3-2) as
described in Section 2.2. Following Hernán and Robins
(2006), suppose that the causal IV Z∗ has no unrepre-
sented versions and follows a deterministic monotonic-
ity assumption:

DCC-Proxy-IVA1 There are no unrepresented ver-
sions of the causal IV Z∗. Di(z

∗) is the treatment that
subject i would receive if she were given level z∗ of the
IV regardless of how the IV is administered.

DCC-Proxy-IVA2 Deterministic Monotonicity of
the causal IV Z∗. Di(z

∗) ≥ Di(z
∗′) for all z∗ > z∗′

for all subjects i.

Hernán and Robins (2006, Theorem 5) shows that
for an intensity preserving proxy Z for a binary causal
IV Z∗ satisfying (CA1-2)–(CA3-2) and (DCC-Proxy-
IVA1)–(DCC-Proxy-IVA2), the right hand side of (1)
(the Wald estimand) is equal to the average treatment
effect for compliers with respect to the IV Z∗, that is,
E[Y(1) − Y(0)|D(z∗ = 1) = 1,D(z∗ = 0) = 0]. In the
supplemental materials (Section H), we review results
of Hernán and Robins (2006) and Chalak (2017) that
show how for a continuous causal IV Z∗ satisfying
DCC-Proxy-IVA1 and DCC-Proxy-IVA2, the Wald es-
timand is a weighted average of treatment effects with
subjects whose treatment probability changes more
given Z = 1 vs. Z = 0 receiving larger weight.
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4. STOCHASTIC COMPLIANCE CLASS
FRAMEWORK AND IDENTIFICATION RESULTS

4.1 Stochastic Compliance Class Framework

In the stochastic compliance class framework, we
will introduce in this section, we do not assume that a
subject’s compliance behavior (treatment taken as the
level of the IV varies) is deterministic or even that it
is well defined. We allow for the IV to have unrepre-
sented versions, that is, violate DCC-IVA1 (or DCC-
Proxy-IVA1). We also allow for the IV to be an inten-
sity preserving proxy for a causal IV (Section 2.2) or
even for the IV to be non-manipulable (Section 2.3).
Furthermore, we allow for the IV to violate determinis-
tic monotonicity as long as it satisfies a weaker stochas-
tic monotonicity condition.

We assume that (BA1)–(BA2) hold as well as the
one of the IV frameworks in Sections 2.1–2.3 holds
so that the common implications (CF-CA-1)–(CF-CA-
3) hold. In order to explain the additional assumptions
needed to identify a causal effect in the stochastic com-
pliance class framework, we define U to be a sufficient
set of unmeasured common causes of D and Y if con-
ditional on U and Z, the effect of D on Y is uncon-
founded, meaning

(3)
{
Y(0), Y (1)

} ⊥⊥ D|Z,U

(VanderWeele and Shpitser, 2013). We always have
that U = {Y(0), Y (1)} satisfies (3) but there may be
additional U that satisfy (3), for example, under the de-
terministic compliance class model, U = {D(0),D(1)}
satisfies (3). See Section 6 below for discussion of the
choice of U.

The additional assumptions for Z to be a valid IV
in the stochastic compliance class framework are that
there exists a sufficient set of unmeasured common
causes U [i.e., U satisfying (3)] such that:

SCC-IVA1 IV is jointly independent of the potential
outcomes and U: {Y(0), Y (1),U} ⊥⊥ Z.

SCC-IVA2 Stochastic Monotonicity: P(D = 1|Z =
1,U = u) ≥ P(D = 1|Z = 0,U = u) for all u. This
means that the probability of having the treatment is at
least as high for subjects with the encouraging level of
the IV compared to the non-encouraging level of the
IV within all strata of U.

Regarding SCC-IVA1, note that for an IV satisfying
one of the sets of core assumptions in Sections 2.1–2.3,
so that CF-CA-3 holds which means {Y(0), Y (1)} ⊥⊥
Z, the role of furthermore having {Y(0), Y (1),U} ⊥⊥ Z

for identifying treatment effects in the stochastic com-
pliance class framework is similar to the role of hav-
ing the joint independence {Y(0), Y (1),D(0),D(1)}
⊥⊥ Z for identifying treatment effects in the deter-
ministic compliance class framework. As noted above,
there could be more than one sufficient set of unmea-
sured common causes U of D and Y satisfying (3)
(VanderWeele and Shpitser, 2013), but we say that Z

is a valid IV in the stochastic compliance class frame-
work if it satisfies (SCC-IVA1)–(SCC-IVA2) (in addi-
tion to BA1, BA2, CF-CA-1, CF-CA-2 and CF-CA-3)
for any sufficient set of unmeasured common causes
U. If Z is a valid IV in the stochastic compliance class
framework, then the causal effect we shall define in
Section 4.2 is the same for all sufficient sets of un-
measured common causes U for which (SCC-IVA1)–
(SCC-IVA2) are satisfied.

4.2 Identification Results Under the Stochastic
Compliance Class Framework

Let Q denote the weighted distribution from the pop-
ulation with the weight proportional to

w(u) = P(D = 1|Z = 1,U = u)

− P(D = 1|Z = 0,U = u)

for a unit with U = u. The distribution Q samples more
heavily from strata of U in which the IV is more asso-
ciated with treatment. Since Q weights each subject by
how strongly the IV is associated with the treatment
in that subject’s subgroup (which is defined by U), we
call the average treatment effect under Q, the Strength-
of-IV Weighted Average Treatment Effect (SIV-WATE):

EQ
[
Y(1) − Y(0)

]
(4)

=
∫

E[Y(1) − Y(0)|U = u]w(u) dF (u)∫
w(u) dF (u)

.

The following proposition and corollary show that
functions of potential outcomes under the weighted
distribution Q, in particular the SIV-WATE, are identi-
fied by a valid IV under the stochastic compliance class
framework.

PROPOSITION 1. Assume BA1, BA2, CF-CA-1,
CF-CA-2, CF-CA-3, SCC-IVA1 and SCC-IVA2 hold
for a U that satisfies (3). For any measurable function
g with E|g(Y (1))| < ∞,

EQ
[
g
(
Y(1)

)]
(5)

= E(Dg(Y )|Z = 1) − E(Dg(Y )|Z = 0)

P (D = 1|Z = 1) − P(D = 1|Z = 0)
,
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and for any measurable function g with E|g(Y (0))| <

∞,

EQ
[
g
(
Y(0)

)]
= −(

E
(
(1 − D)g(Y )|Z = 1

)
(6)

− E
(
(1 − D)g(Y )|Z = 0

))
/
(
P(D = 1|Z = 1) − P(D = 1|Z = 0)

)
.

As a result,

EQ
[
g
(
Y(1)

) − g
(
Y(0)

)]
(7)

= E(g(Y )|Z = 1) − E(g(Y )|Z = 0)

P (D = 1|Z = 1) − P(D = 1|Z = 0)
.

COROLLARY 1. Assume BA1, BA2, CF-CA-1,
CF-CA-2, CF-CA-3, SCC-IVA1 and SCC-IVA2 hold
for a U that satisfies (3). Then the SIV-WATE,
EQ[Y(1) − Y(0)], equals

EQ
[
Y(1) − Y(0)

]
(8)

= E(Y |Z = 1) − E(Y |Z = 0)

P (D = 1|Z = 1) − P(D = 1|Z = 0)
.

The right-hand side of (8) is the probability limit of
the Wald estimator (2). Thus, Corollary 1 shows that if
Z is a valid IV under the stochastic compliance class
framework and we use the usual Wald (two stage least
squares) estimator, then we obtain a consistent estimate
of the SIV-WATE.

In the supplementary materials (Section D), we
show that the deterministic compliance class results
reviewed in Section 3 are a special case of the stochas-
tic compliance class framework identification results
of this section.

4.3 No Sign Reversal Property Under Stochastic
Monotonicity

When treatment effects are heterogeneous, Imbens
and Angrist (1994) showed that the probability limit
of the Wald estimator (2) has a disturbing sign rever-
sal property: it is possible for the treatment effect to
be positive for every subject but for the Wald estimator
to converge in probability to a negative number. How-
ever, under deterministic monotonicity, if the sign of
the treatment effects (+,0 or −) is the same for every
subject in the population, then the sign of the treatment
effects is identified because the sign of the probability
limit of the Wald estimator (2) is equal to the average
treatment effect for compliers. Corollary 1 shows that
this no sign reversal property also holds under stochas-
tic monotonicity: if the sign of the treatment effects (+,

0 or −) is the same for every subject in the population,
then the sign of the treatment effects is identified be-
cause the identified SIV-WATE is a weighted average
of treatment effects.

4.4 Characterizing the Strength of IV Weighted
Population Q in Terms of Observed Covariates

The SIV-WATE is the average treatment effect for
the weighed population Q. To understand Q better,
it is useful to characterize how the distribution of the
observed covariates for Q relates to that of the un-
weighted population, for example, compare EQ[A] to
E[A] for an observed covariate A.

PROPOSITION 2. Assume that BA1, BA2, CF-CA-
1, CF-CA-2, CF-CA-3, SCC-IVA1 and SCC-IVA2
hold for a U that satisfies (3) and that the following
extended versions of SCC-IVA1 and (3) involving A

hold: {
Y(0), Y (1),A

} ⊥⊥ D|Z,U,(9) {
Y(0), Y (1),U,A

} ⊥⊥ Z.(10)

Then,

EQ[A]
(11)

= E(DA|Z = 1) − E(DA|Z = 0)

P (D = 1|Z = 1) − P(D = 1|Z = 0)
.

For an IV that is effectively randomly assigned, (10)
will hold. For potential choices of U for which (9) and
SCC-IVA2 may hold, see Section 6. Note that if we
condition on an observed covariate A as we discuss in
Section 7, then (9) will automatically hold for this A.
Proposition 2 is a generalization of results for deter-
ministic monotonicity that characterize the compliers
in terms of their distribution of observed covariates
(Angrist and Pischke, 2009).

4.5 Bounds on the Global Average Treatment
Effect

Under the stochastic monotonicity assumption, a
valid IV identifies a weighted average of treatment ef-
fects, the SIV-WATE (Corollary 1). The IV does not
identify the unweighted, global average treatment ef-
fect, E[Y(1) − Y(0)], but if a researcher is able to
put bounds on how much the average treatment ef-
fect varies as U varies, that is, denoting the range
supu E[Y(1)−Y(0)|U = u]− infu E[Y(1)−Y(0)|U =
u] by rangeuATE, the researcher puts a bound

(12) rangeuATE ≤ r,

then knowing the SIV-WATE will bounds the global
average treatment effect.
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PROPOSITION 3. Suppose (12) holds for some
positive r and that BA1-BA2, (CF-CA-1)–(CF-CA-3)
and (SCC-IVA1)–(SCC-IVA2) hold. Then, the follow-
ing are bounds on E[Y(1) − Y(0)]:
(13) a − rb ≤ E

[
Y(1) − Y(0)

] ≤ a + rb,

where

a = E(Y |Z = 1) − E(Y |Z = 0)

E(D|Z = 1) − E(D|Z = 0)
,

b = 1 − [
E(D|Z = 1) − E(D|Z = 0)

]
.

When there are no bounds or other constraints on the
outcome besides (12), the bounds in Proposition 3 are
sharp because they are attained for distributions of the
potential outcomes that are consistent with the observ-
able data and the deterministic compliance class model
holding; see the discussion below the proof of Propo-
sition 8 (the analogue of Proposition 3 with covari-
ates) in the supplemental materials. This also shows
that when there are no bounds or other constraints
on the outcome besides (12), the bounds under deter-
ministic monotonicity and stochastic monotonicity are
the same. When there are bounds on the outcome, for
example, the outcome is binary, then the bounds in
Proposition 3 can potentially be tightened. Section E
of the supplementary materials presents an algorithm
for finding the bounds for a binary outcome by ex-
tending the approach of Ramsahai (2012). For a binary
outcome, bounds under stochastic monotonicity can be
wider than under deterministic monotonicity; see Sec-
tion E of the supplementary materials.

The bounds from Proposition 3 can be considerably
tighter than the bounds for an IV that does not satisfy
stochastic monotonicity. Section F of the supplemen-
tary materials provides an example.

5. SENSITIVITY ANALYSIS FOR VIOLATIONS OF
STOCHASTIC MONOTONICITY

Regardless of whether stochastic monotonicity
holds, as long as the other conditions hold for Z to
be a valid IV in the stochastic compliance class frame-
work (BA1, BA2, CF-CA-1, CF-CA-2, CF-CA-3 and
SCC-IVA1), the quantity on the right-hand side of (7)
with g(Y ) = Y that we use to estimate the SIV-WATE
is equal to

E(Y |Z = 1) − E(Y |Z = 0)

P (D = 1|Z = 1) − P(D = 1|Z = 0)
(14)

= E[E(Y (1) − Y(0)|U)w(U)]
E[w(U)]

since the proof of Proposition 1 does not make use of
stochastic monotonicity. When stochastic monotonic-
ity is violated, (14) is not a weighted average of treat-
ment effects because some of the “weights” w(U)

are negative. In this case, we might be interested in
the strength of IV weighted average of treatment ef-
fects among subjects for whom the weights w(U) are
positive, which we call the positive strength of IV
weighted average treatment effect (PSIV-WATE). The
PSIV-WATE is equal to the following, where we let
A = {U : w(U) ≥ 0},

PSIV-WATE

= EQ
[
Y(1) − Y(0)|U ∈ A

]
(15)

= E

[
E

[
Y(1) − Y(0)|U] w(U)1{U ∈A}

E[w(U)1{U ∈ A}]
]
,

where 1{·} denotes the indicator function. When
stochastic monotonicity holds, the PSIV-WATE is the
SIV-WATE and equals the right hand side of (7) with
g(Y ) = Y . When stochastic monotonicity does not
hold, then the following theorem gives the asymp-
totic bias from using the sample analogue of the right-
hand side of (7) with g(Y ) = Y to estimate the PSIV-
WATE, where we define the negative strength of IV
weighted average treatment effect (NSIV-WATE) as
the weighted average treatment effect among subjects
for whom the w(U) are negative and the subjects are
weighted by the absolute value of w(U),

NSIV-WATE

= EQ
[
Y(1) − Y(0)|U ∈ AC]

(16)

= E

[
E

[
Y(1) − Y(0)|U] w(U)1{U ∈ AC}

E[w(U)1{U ∈AC}]
]
.

PROPOSITION 4. When BA1, BA2, CF-CA-1, CF-
CA-2, CF-CA-3 and SCC-IVA1 hold but the stochastic
monotonicity condition SCC-IVA2 may not hold,

E(Y |Z = 1) − E(Y |Z = 0)

E(D|Z = 1) − E(D|Z = 0)
− PSIV-WATE

(17)
= −λ(NSIV-WATE − PSIV − WATE),

where

λ = −E[w(U)1{U ∈AC}]
E[w(U)] .

Proposition 4 generalizes the formula in Angrist, Im-
bens and Rubin (1996), Proposition 3, for the bias from
using the Wald estimate to estimate the LATE when
there are defiers; when the deterministic compliance
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class framework holds, then (17) is equal to the bias
formula in Angrist, Imbens and Rubin (1996). The bias
due to violations of stochastic monotonicity is com-
posed of two factors. The first factor λ is related to the
proportion of subjects for whom stochastic monotonic-
ity is violated and is equal to zero under the stochas-
tic monotonicity assumption. The numerator of λ re-
lates to the proportion of subjects for whom stochastic
monotonicity is violated and the magnitude by which
stochastic monotonicity is violated for these subjects—
the smaller this proportion and magnitude, the smaller
the numerator will be. The denominator of λ is equal to
the overall strength of the association between the IV
and the treatment,

E
[
w(U)

] = E
[
P(D = 1|Z = 1,U)

− P(D = 1|Z = 0,U)
]

= P(D = 1|Z = 1) − P(D = 1|Z = 0)

[see (41) in the supplemental materials]. The stronger
the IV is, the less sensitive the IV estimate is to vi-
olations of stochastic monotonicity. The second fac-
tor in the bias formula, PSIV-WATE–NSIV-WATE, is
related to the difference in treatment effects between
those subjects for whom treatment is positively asso-
ciated with the IV and those subjects for whom treat-
ment is negatively associated with the IV. The less dif-
ference there is between treatment effects for these two
types of subjects, the less bias there is from violations
of stochastic monotonicity.

6. CHOICE OF U FOR INTERPRETING THE
SIV-WATE

Corollary 1 shows for any U satisfying (3) such that
the IV Z satisfies (SCC-IVA1)–(SCC-IVA2) for this U,
the probability limit of the Wald estimator (2) is equal
to a weighted average of treatment effects, where the
weight for the subgroup of units with U = u depends
on the size of the subgroup and how strongly the IV
is associated with the treatment among units in the
subgroup. There may be multiple U’s that satisfy (3)
such that Z satisfies (SCC-IVA1)–(SCC-IVA2), and
thus Corollary 1 may provide multiple interpretations
of what the Wald estimator is estimating. We now dis-
cuss various possible choices of U.

One choice of U is U = {Y(0), Y (1)}. This U always
satisfies (3) and (SCC-IVA1) simplifies to the IV being
independent of the potential outcomes {Y(0), Y (1)},
which is core assumption CF-CA-3. However, it may
not be easy to think about whether stochastic mono-
tonicity holds for this U because this U is not tied

closely to D. Similarly, interpreting the SIV-WATE in
terms of this U may be difficult because the values of
the weight

w
(
y(0) = a, y(1) = b

)
= P

(
D = 1|Z = 1, Y (0) = a,Y (1) = b

)
− P

(
D = 1|Z = 0, Y (0) = a,Y (1) = b

)
may be hard to think about since {Y(0), Y (1)} are
not tied closely to D. A further drawback to U =
{Y(0), Y (1)} is that the bounds given by Proposition 3
are the weakest possible; for example, if m1 is the
maximum possible value of Y and m0 is the mini-
mum possible value and if {Y(1) = m1, Y (0) = m0},
{Y(1) = m0, Y (0) = m1} both have positive probability
mass or probability density, then rangeuAT E is equal
to twice the range of Y .

When the deterministic compliance class frame-
work holds so that {D(0),D(1)} are well defined, the
choice of U = {D(0),D(1)} leads to the usual in-
terpretation of the Wald estimator as estimating the
complier average causal effect when deterministic
monotonicity holds. This U always satisfies (3) be-
cause {D(0),D(1),Z} together determine D under
the deterministic compliance class framework. Con-
dition (SCC-IVA1) requires that the IV be independent
not only of the potential outcomes {Y(0), Y (1)} but
also of the potential treatment received {D(0),D(1)}.
The stochastic monotonicity condition for U = {D(0),

D(1)} is equal to the deterministic monotonicity condi-
tion DCC-IVA2 that there are no defiers. An advantage
of the choice of U = {D(0),D(1)} is that it is rela-
tively easy to think about whether stochastic mono-
tonicity holds since one just has to think about, is there
anybody who would do the opposite of what the IV
encourages? Similarly, interpreting the SIV-WATE for
this U is relatively easy since the weights are 1 and
0, and the SIV-WATE is just the average treatment ef-
fect for compliers. Another advantage of the choice
of U = {D(0),D(1)} compared to U = {Y(0), Y (1)}
is that applying Proposition 3 to U = {D(0),D(1)}
may yield tighter bounds, especially if D and Y(0),
Y(1) are thought to be weakly correlated. However, if
we do not have a good understanding of the charac-
teristics of compliers vs. non-compliers, then we may
not feel comfortable choosing rangeuAT E to be that
much less than twice the range of Y and the bounds
from Proposition 3 will not be that much tighter than
for U = {Y(0), Y (1)}. Furthermore, if we do not have
a good understanding of the characteristics of compli-
ers vs. non-compliers, even though we know the SIV-
WATE is the average treatment effect for compliers, it
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will be hard to interpret the type of person the SIV-
WATE most applies to.

As discussed in the introduction, {D(0),D(1)} are
sometimes not well defined because there are unrep-
resented versions of the IV as in the NICU study and
the deterministic compliance class framework does not
hold. For such settings, a possible choice of U is the
average value that D would take over all versions of
the IV. For example, in the NICU study, we could let
Ui be the chance that mother i would deliver at a high
level NICU if she were assigned to live in a random
zip code with probability proportional to the number of
deliveries in the zip code. The stochastic monotonicity
condition here is that for each level of U, the chance
of delivering at a high level NICU is at least as great
when averaging over zip codes with excess travel time
≤ 10 minutes as when averaging over zip codes with
excess travel time > 10 minutes (where both averages
are weighted by the number of deliveries in the zip
code). Stochastic monotonicity allows for the possibil-
ity of “defier” zip codes like in Table 1 as long as the
“complier” zip codes outweigh the “defier” zip codes.
In order to use this U (average value that D would take
over all versions of the IV) to interpret the SIV-WATE
using the results in Section 4, in addition to stochas-
tic monotonicity (SCC-IVA2) holding, we need SCC-
IVA1 and (3) to hold. If the IV is effectively randomly
assigned, then SCC-IVA1 will hold. For (3) to hold, a
sufficient condition is that for any characteristic that is
associated with the potential outcomes, among subjects
whose proportions of D = 1 would be the same over
randomly assigned versions of the IV, the proportions
of D = 1 would be the same over randomly assigned
versions of the Z = 1 level of the IV for all strata of
the characteristic. For example, consider the character-
istic of a mother’s economic situation. If, among moth-
ers who would go to a high level NICU x% of the time
for any fixed x, poor mothers are equally likely to go
to a high level NICU when living far away from one
than not poor mothers, then (3) will be satisfied. But
if among these mothers who would go to a high level
NICU say 50% of the time, poor mothers are less likely
to go to a high level NICU when living far away from
one than not poor mothers and also correspondingly
less likely to go to a high level NICU when living close
to one, then (3) will be violated. In this case we could
append U with the mother’s economic situation and all
other characteristics that are associated with the po-
tential outcomes and for which among subjects whose
proportion of D = 1 would be the same over randomly
assigned versions of the IV, the proportions would be

different over randomly assigned versions of only the
Z = 1 level of the IV, and then (3) will be satisfied for
the appended U. Then, as long as the appended U still
satisfies SCC-IVA1 and stochastic monotonicity SCC-
IVA2, the appended U can be used to interpret the SIV-
WATE.

The choice of U as the average value of D over
the different versions of the IV is an analogue to U
being the compliance class [U = {D(0),D(1)}] that
allows for the deterministic compliance class frame-
work to not hold and has similar characteristics. With
the choice of U as the average value that D would
take over the different versions of the IV, we can in-
terpret the SIV-WATE as a weighted average of treat-
ment effects that puts more weight on subjects whose
treatment choice is more influenced by the IV and
applying Proposition 3 with this U may yield tighter
bounds than with U = {Y(0), Y (1)}, especially if D

and {Y(0), Y (1)} are thought to be weakly correlated.
Other choices of U that are in between {Y(0), Y (1)}

and {D(0),D(1)} but keep D and {Y(0), Y (1)} condi-
tionally independent can be considered. Section 9 con-
siders such a choice for a physician prescribing pref-
erence IV. Typically, choosing U to be something that
is as closely correlated to D as possible but still sat-
isfies stochastic monotonicity will lead to the tightest
bounds on the average treatment effect using Propo-
sition 3. Also, ideally, U would represent something
that in principle can be measured, so that we can know
how much the SIV-WATE weights a particular sub-
ject. For example, if the deterministic compliance class
model and deterministic monotonicity hold, and a sub-
ject knows herself well enough to know her compli-
ance class, then she knows whether the SIV-WATE ap-
plies to her (if she is a complier) or does not (if she
is a never taker or always taker). Similarly, if there
are different versions of the IV and the deterministic
compliance class model does not hold, but the IV sat-
isfies the stochastic compliance class model assump-
tions SCC-IVA1–SCC-IVA2 with U being the average
value of D over the different versions of the IV as in
the above paragraph, then a subject who knows she is
likely to take the treatment when assigned a version of
the IV with Z = 1 but not likely to take the treatment
when assigned a version of the IV with Z = 0 under-
stands that subjects like her are weighted heavily in the
SIV-WATE whereas a subject who is likely to take the
treatment whether assigned a version of the IV with
Z = 1 or Z = 0 understands that subjects like her are
weighted less in the SIV-WATE.
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7. CONDITIONING ON COVARIATES

In observational studies, a potential IV Z might only
be independent of potential outcomes and unmeasured
common causes of D and Y after conditioning on cer-
tain measured covariates X. For example, in the NICU
study, race is associated with the proposed IV, excess
travel time, and race is also thought to be associated
with infant mortality through mechanisms other than
NICU level that are not fully measured in our data such
as previous cesarean section, inadequate prenatal care,
and chronic maternal medical conditions (Lorch et al.,
2012b). Consequently, excess travel time is only plau-
sibly independent of potential outcomes and unmea-
sured common causes of D and Y after conditioning
on X = race. The IV method can still be used to learn
about a weighted average of treatment effects as long
as Z is a valid IV under the stochastic compliance class
framework within each strata of X, that is, Z satisfies
BA1, BA2, CF-CA-1, a conditional version of CF-CA-
2 that E(D|Z = 1,X) ≥ E(D|Z = 0,X) for all X with
strict inequality for at least one X, a conditional version
of CF-CA-3 and SCC-IVA1 that {Y(0), Y (1),U} ⊥⊥
Z|X and a conditional version of SCC-IVA2 that
E(D|Z = 1,X,U) ≥ E(D|Z = 0,X,U). This exten-
sion is formulated and analogues of Propositions 1,
2, 3 and 4 are proved in the supplemental materi-
als (Sections A and B). Such results are compara-
ble to various previous results under the deterministic
monotonicity assumption (Abadie, 2003, Tan, 2006,
Ogburn, Rotnitzky and Robins, 2015).

8. APPLICATION TO STUDY THE EFFECTIVENESS
OF HIGH-LEVEL NEONATAL INTENSIVE

CARE UNITS

We consider the study of the effect on mortality for
premature babies of being delivered in a high level vs.
low level NICU discussed in the introduction. The data
is from Pennsylvania from 1995–2005 (192,078 pre-
mature babies); see Lorch et al. (2012a) for full de-
scription. The data was collected from birth and death
certificates and the UB-92 form that hospitals use for
billing purposes. A baby’s health status before delivery
is an important confounder as mothers are more likely
to go to a high level NICU if a baby is considered to be
at high risk for complications or death. The data con-
tains some measures of the baby’s health such as ges-
tational age, but the data is also missing several impor-
tant measures available to the doctor and mother when
deciding where to deliver such as fetal heart tracing
results, the severity of maternal problems during preg-

nancy (e.g., the data contains an indicator for whether a
mother had pregnancy-induced hypertension but no in-
formation on the severity) and the mother’s adherence
to prenatal guidelines. Concern about these unmea-
sured confounders motivated Baiocchi et al. (2010),
Lorch et al. (2012a), Yang, Lorch and Small (2014)
and Guo et al. (2014) to use an IV approach. We fol-
low Yang, Lorch and Small (2014) in considering the
IV Z to be whether or not the mother’s excess travel
time from the nearest high level NICU compared to
the nearest low level NICU is less than or equal to 10
minutes (Z = 1 vs. Z = 0). The travel time is com-
puted using Dijkstra’s (Dijkstra, 1959) algorithm for
the shortest path between the centroid of the mother’s
zip code and the hospital under average traffic condi-
tions as implemented in ArcView software.

As discussed in the introduction, deterministic
monotonicity is not plausible for the excess travel time
IV because excess travel time is determined by the zip
code a mother lives in and other characteristics of the
zip code influence hospital choices (e.g., community,
family and friends’ views about the different hospi-
tals in the area) such that there is more encourage-
ment to go to high level NICUs in certain zip codes
which are far from high level NICUs than in certain
zip codes which are close to high level NICUs (see
Table 1). The excess travel time IV is also likely to
violate deterministic monotonicity because the travel
time computed from the ArcView software is the travel
time under average traffic conditions and may not accu-
rately represent the traffic conditions faced by a mother
at the time when she needs to decide where to de-
liver; also, if the mother uses public transportation,
the travel time depends on public transportation routes.
Although deterministic monotonicity is not plausible,
stochastic monotonicity is plausible. Consider Z∗

i to
be the actual excess travel time mother i faces at the
time she is ready to go to the hospital. Z is plausibly
an intensity preserving proxy for Z∗ since actual ex-
cess travel times are likely to be longer for mothers
whose ArcView measured travel times are greater than
10 minutes (Z = 1) than for mothers whose ArcView
measured travel time is ≤10 minutes (Z = 0), and the
actual NICU delivered at and potential outcomes pre-
sumably would not depend on Z if we knew the actual
excess travel time Z∗. Consider Ui to be the chance
that mother i would deliver at a high level NICU if she
were assigned to live in a random zip code with prob-
ability proportional to the number of deliveries in the
zip code. Z plausibly satisfies the stochastic compli-
ance class IV assumptions with this U for the following
reasons:
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• CA1-2: A mother typically obtains prenatal care
from and would prefer to deliver at a close by hospi-
tal so that a smaller excess travel time to the nearest
high level NICU makes a mother more likely to de-
liver at a high level NICU (Phibbs et al., 1993).

• CA2-2: Most mothers have time to reach either the
nearest high level or low level NICU before deliv-
ering so that the marginal travel time should not di-
rectly affect outcomes (Lorch et al., 2012a).

• (3): As discussed in Section 6, a sufficient condition
for (3) to hold for this U (proportion of D = 1 over
randomly assigned versions of the IV) is that condi-
tional on measured characteristics X, for any unmea-
sured characteristic C that is associated with poten-
tial outcomes, among subjects whose proportions of
D = 1 over randomly assigned versions of the IV
(zip codes, weighted by deliveries) is the same, the
proportions of D = 1 over randomly assigned Z = 1
versions of the IV (zip codes with excess travel time
≤10, weighted by deliveries) would also be the same
for all strata of the unmeasured characteristic C. We
are not aware of a reason to expect this sufficient
condition to be violated for the NICU study but also
do not have any supportive evidence for the condi-
tion holding.

• CA3-2 and SCC-IVA1: Women do not expect to
have a premature delivery, and thus conditional on
measured socioeconomic variables such as mother’s
education and measured zip code characteristics
such as average income levels and poverty rates,
women do not choose where to live based on dis-
tance to a high level NICU, making independence of
excess travel time from potential outcomes and Ui

plausible (Lorch et al., 2012a).
• SCC-IVA2. Within each strata of mother’s general

tendency to deliver at a high level NICU, it is plau-
sible that differences between the ArcView travel
time and actual travel time, and differences in factors
like community, family and friends’ beliefs about
the hospitals in the area average out between the
Z = 1 and Z = 0 mothers so that within each strata
of {U,X}, the mothers with Z = 1 (ArcView excess
travel time ≤ 10 minutes) are more likely to go to a
high level NICU than mothers with Z = 0 (ArcView
excess travel time > 10 minutes).

We estimated the SIV-WATE by (24) in the supple-
mentary materials using logistic regression to estimate
E(Y |Z,X) and P(D|Z,X); we also estimated the SIV-
WATE for three ranges of gestational ages—moderate
to late preterm (33–37 weeks), very preterm (28–32

TABLE 2
SIV-WATE estimates and confidence intervals for effect of

delivering in high level NICUs vs. low level NICUs on mortality
per 1000 premature births

Group Estimate 95% CI

All −6.0 (−8.7,−2.5)

Gestational Age, 33–37 wks −1.8 (−2.8,−0.7)

Gestational Age, 28–32 wks −26.0 (−38.5,−11.0)

Gestational Age, ≤27 wks −110.7 (−164.8,−45.4)

weeks) and extremely preterm (≤27 weeks) based on
(25) in the supplemental materials. Table 2 shows the
estimates. The estimates are expressed in terms of the
effect of delivering at a high level NICU vs. a low level
NICU on mortality per 1000 births. 95% confidence in-
tervals were computed using the percentile bootstrap,
with the resampling stratified on the three ranges of
gestational ages. The SIV-WATE estimate is that being
delivered in a high level NICU prevents 6 deaths per
1000 births with a 95% confidence interval of prevent-
ing 2.5 to 8.7 deaths; our analysis suggests that high
level NICUs are effective for the SIV-WATE popula-
tion. The effect of high level NICUs on reducing mor-
tality is estimated to be greater for more premature ba-
bies, with a particularly large effect for extremely pre-
mature babies (≤27 weeks).

Table 3 compares the distribution of characteristics
A in the strength of IV weighted population Q to the
unweighted population using the analogue of Propo-
sition 2 (Proposition 7 in the supplemental materials)
The strength-of-IV weighted population is similar to
the full population in terms of mother’s education, race
and comorbidities, but not in terms of gestational age.
The strength of IV weighted population has more mod-
erate to late premature babies (33–37 weeks) and less
very (28–32 weeks) or extremely (≤27 weeks) prema-
ture babies. Since the effect of high level NICUs ap-
pears to be greater among very and extremely prema-
ture babies (Table 2), the SIV-WATE for all babies may
underestimate the global average treatment effect for
all babies.

We now consider sensitivity to violations of stochas-
tic monotonicity using Proposition 9 in the supple-
mental materials, the analogue of Proposition 4 with
covariates. Proposition 9 provides information about
how much bias there is in the estimates in Table 2
as estimates of the PSIV-WATE, the strength of IV
weighted average treatment effect for subgroups of
subjects whose chance of delivering at a high level
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TABLE 3
Characteristics of SIV-WATE weighted population compared to unweighted population for NICU study

Prevalence of X Prevalence of X Ratio of Prevalence
in weighted in unweighted in Q to unweighted

Characteristic X population Q population population

Gestational age, 33–37 wks 0.90 0.87 1.03
Gestational age, 28–32 wks 0.08 0.10 0.84
Gestational age, ≤27 wks 0.02 0.03 0.58
Birthweight <1500 g 0.06 0.09 0.73
Mother College Graduate 0.26 0.26 0.99
African American 0.16 0.16 0.96
Gestational Diabetes 0.05 0.05 1.00
Diabetes mellitus 0.02 0.02 0.92
Pregancy-induced hypertension 0.10 0.10 0.95
Chronic hypertension 0.02 0.02 0.93

NICU is positively affected by living near to a high
level NICU. We consider, is it plausible that the PSIV-
WATE is zero or positive (high level NICUs are
equivalent or harmful compared to low level NICUS)
even though Table 2 suggests high level NICUs are
beneficial for the PSIV-WATE population? To use
Proposition 9 for a sensitivity analysis, we need to
choose a value(s) of λ. To do so interpretably, we
can estimate the denominator of λ (which is equal
to E[P(D = 1|Z = 1,X) − P(D = 1|Z = 0,X)]) by
1
N

∑N
i=1 P̂ (D = 1|Z = 1,X) − P̂ (D = 1|Z = 0,X),

which equals 0.40 for the data set. One way of in-
terpreting this quantity is that for a randomly drawn
baby and a random draw from that baby’s compliance
distribution, the difference between the probability of
being a complier and being a defier is 0.40. The numer-
ator of λ can be interpreted as the weighted average of
the probability of being a defier minus the probabil-
ity of being a complier among those strata of U for
which there are more defiers than compliers, weighted
by the size of the strata, times the probability of be-
ing in a strata of U for which there are more defiers
than compliers; an upper bound on this numerator is
the probability of being in a strata of U for which there
are more defiers than compliers. Denote the numer-
ator of λ by ξ . Suppose that the difference between
the PSIV-WATE and the NSIV-WATE is at most 24.2
deaths per 1000 births; this number is chosen because
it is the difference between the estimated SIV-WATEs
for gestational age of 33–37 weeks and gestational age
of 28–32 weeks in Table 2, two fairly different risk
groups. Then, by Proposition 4, the estimated over-
all PSIV-WATE could range from −6 − (ξ/0.4)24.2
to −6 + (ξ/0.4)24.2. The upper bound of the range

is below zero for ξ < 0.099 and the upper 95% con-
fidence bound (−2.5 + (ξ/0.4)24.2) is below zero
for ξ < 0.041. We consider a departure of stochas-
tic monotonicity of these magnitudes to be large as
we estimated the departure from stochastic monotonic-
ity if U were equal to the observed covariates but we
had not controlled for them to be 0.029 (we estimated
this by fitting logistic regressions of D on X for the
Z = 1 subjects and D on X for the Z = 0 subjects
and then applying the estimates to all subjects, seeing
for what proportion of subjects, the latter estimate was
higher). Thus, the inference that delivering at a high-
level NICU reduces mortality for the PSIV-WATE pop-
ulation is robust to at least a moderate departure from
stochastic monotonicity.

We now consider putting bounds on the global av-
erage treatment effect using Proposition 8 in the sup-
plemental materials, the analogue of Proposition 3
with covariates. Suppose that for fixed X and vary-
ing U, E[Y(1) − Y(0)|U = u,X = x] has a range
from (1/m) × EQ[Y(1) − Y(0)|X] to m × EQ[Y(1) −
Y(0)|X] depending on sensitivity parameter m so that
r = (m − 1

m
) × EQ[Y(1) − Y(0)|X] in Proposition 8.

Then, using Proposition 8, we estimate the bounds on
E[Y(1) − Y(0)|X] to be

ÊQ
[
Y(1) − Y(0)|X](

1 ± {
(m

− 1/m)
[
P̂ (D = 1|Z = 1,X)

− P̂ (D = 1|Z = 0,X) − 1
]})

.

We have E[Y(1) − Y(0)] = E[E[Y(1) − Y(0)|X]],
which we can estimate by 1

N

∑N
i=1 Ê[Y(1)−Y(0)|Xi].

Substituting the estimated lower and upper bounds
into this latter expression provides estimates of the
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TABLE 4
Bounds on global average treatment effect (mortality per 1000

births) when for fixed X and varying U,
E[Y (1) − Y (0)|U = u,X = x] has a range of

(m − 1
m) × EQ[Y (1) − Y (0)|X]

m Estimated Bounds 95% CI for bounds

1.1 (−9.5,−8.6) (−15.2,−3.7)

1.5 (−11.0,−7.1) (−17.7,−3.0)

2 (−12.6,−5.5) (−20.1,−2.3)

3 (−15.3,−2.8) (−24.8,−1.2)

5 (−20.4,2.2) (−32.9,3.6)

bounds on E[Y(1) − Y(0)]. Table 4 shows the esti-
mated bounds for m = 1.1,1.5,2,3,5 along with 95%
confidence bounds formed by bootstrap resampling
and using the Bonferroni method, which means taking
the 2.5th percentile of the bootstrapped lower bound
and 97.5th percentile of the upper bound (Horowitz and
Manski, 2000, Cheng and Small, 2006). For moderate
amounts of treatment effect heterogeneity, m = 1.1 to
3, the upper bound is below zero so that there is evi-
dence that delivering all premature babies at high level
NICUs compared to delivering all premature babies at
low level NICUs would reduce mortality.

9. PHYSICIAN PRESCRIBING PREFERENCE IV

For comparing the effectiveness or safety of two
drugs, physician’s prescribing preference has often
been used as an IV (Brookhart et al., 2006). Boef
et al. (2016) and Swanson et al. (2015) present evi-
dence that deterministic monotonicity can be violated
for physician prescribing preference IVs. Suppose Zi

is whether the ith patient’s physician last prescribed
the treatment or control, and that Zi is an intensity pre-
serving proxy for the proportion of patients that pa-
tient i’s physician would prescribe the treatment to,
which we denote by Z∗

i . The deterministic monotonic-
ity assumption for Z∗

i , DCC-Proxy-IVA2, implies that
if a physician with Z∗ = z∗ would give the patient
the treatment, then all physicians with Z∗ > z∗ would
also give the patient the treatment (Hernán and Robins,
2006). Swanson et al. (2015) considered prescription
of atypical versus conventional antipsychotic medica-
tion in the elderly. Based on a survey of physicians’
preferences for treating different types of patients, they
found that deterministic monotonicity was violated—
for 85% of the patients, there was at least one physi-
cian who would prescribe conventional antipsychotic
medication and another physician who would prescribe

atypical antipsychotic medication even though the sec-
ond physician had greater preference for conventional
antipsychotic medication.

We now consider stochastic monotonicity for the
physician prescribing preference IV. Consider U to be
the vector of all patient characteristics that systemat-
ically affect treatment or potential outcomes so that
D ⊥⊥ {Y(0), Y (1)}|U; patients who share the same U
can be considered patients of the same type. Consider
the following assignment process for a patient’s physi-
cian and the last patient seen by the physician: a pa-
tient’s physician is chosen randomly and the last pa-
tient the physician saw before the current patient is
chosen randomly among all other patients. Such an as-
signment process is plausible when the physicians are
at a single practice and which physician a patient sees
is essentially chosen randomly (Korn and Baumrind,
1998). Under this assignment process, (3) is satisfied,
and also since the IV is randomly assigned, the IV is
independent of {Y(1), Y (0),U}, meaning SCC-IVA1 is
satisfied. The stochastic monotonicity condition, SCC-
IVA2, says that for each patient type, the chance that
a patient of that type will receive the treatment if the
physician’s previous patient received the treatment is
at least as large as if the physician’s previous patient
received the control. Suppose that the assignment pro-
cess described above holds where there are J types
of patients with probabilities pj (so that the type of
the previous patient seen by a physician is multinomial
with probabilities p1, . . . , pJ ) and a physician always
makes the same prescription to the same type of pa-
tient. Let Ajk denote whether the kth physician would
prescribe the treatment to a patient of type j and let
there be K physicians. Then the stochastic monotonic-
ity condition is that for all patient types j = 1, . . . , J ,

∑K
k=1

∑J
j ′=1 Ajkpj ′Aj ′k∑K

k=1
∑J

j ′=1 pj ′Aj ′k
(18)

≥
∑K

k=1
∑J

j ′=1 Ajkpj ′(1 − Aj ′k)∑K
k=1

∑J
j ′=1 pj ′(1 − Aj ′k)

.

Boef et al. (2016) found that in a survey of physicians’
preferences for treating patients with subclinical hy-
pothyroidism, preferences for starting vs. not starting
treatment on levothryoxine, deterministic monotonic-
ity was violated but the stochastic monotonicity con-
dition (18) held. See the supplemental materials (Sec-
tions I and J) for two other examples in which deter-
ministic monotonicity is likely violated but stochastic
monotonicity is plausible.
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10. DISCUSSION

Angrist, Imbens and Rubin’s (1996) work on the
LATE has had a large influence on how researchers un-
derstand and interpret what is learned from IV analy-
ses. However, there has been controversy over whether
the LATE is a useful estimand because (i) the LATE
is an average treatment effect over a subpopulation,
the compliers, that cannot be identified in the sense
that there are subjects for whom we do not know
whether they belong to the subpopulation and (ii) the
LATE may not be the treatment effect of primary in-
terest, instead the global average treatment effect is
often of greater interest (Deaton, 2010, Pearl, 2011,
Swanson and Hernán, 2014). Our generalization of
the LATE, the SIV-WATE, could be criticized along
the same lines. We support Imbens’ discussion (Sec-
tion 4.6 of Imbens, 2014) of why the LATE is use-
ful and we feel similar reasoning also applies to the
SIV-WATE. For studying a treatment, we would ide-
ally like to have a randomized trial with perfect com-
pliance. IV analysis is only used when for practical or
ethical reasons, we do not have this ideal study and
instead have an observational study with unmeasured
confounding (or a randomized trial with noncompli-
ance); as Imbens says, “IV analysis is an analysis in a
second-best setting.” Under deterministic monotonic-
ity, the LATE tells us what we can learn directly about
treatment effects from the data without making homo-
geneity assumptions about the treatment effect. Under
stochastic monotonicity, the SIV-WATE tells us what
we can learn directly about treatment effects from the
data without making either homogeneity assumptions
about the treatment effect or the assumption of deter-
ministic monotonicity. We can describe the weighted
population that the SIV-WATE refers to in terms of the
observed covariates, as we did in the NICU study (Ta-
ble 3). The SIV-WATE can be combined with assump-
tions about how heterogeneous treatment effects are
to find bounds on the global average treatment effect
(Section 4.5 and Table 4).

The SIV-WATE is also useful in some settings be-
cause it directly addresses the decisionmaking question
of interest. Suppose a doctor is trying to decide whether
to encourage a patient to take a treatment with a possi-
ble side effect. Suppose the patient’s utility for taking
the treatment is y − s1(side effect occurs) where the
side effect occurs with probability t if the treatment is
taken. The difference in the expected utility from en-

couraging the patient to take the treatment vs. not is∫ [
P(D = 1|Z = 1,U = u)

− P(D = 1|Z = 0,U = u)
]{

E
[
Y(1)

− Y(0)|U = u
] − st

}
dF(u)

= (SIV-WATE − st) ×
∫

w(u) dF (u).

Therefore, the doctor would like to encourage the pa-
tient to take the treatment if the SIV-WATE is greater
than st .

ACKNOWLEDGMENTS

We thank the Associate Editor, Editor and referees
for constructive comments that helped improve our pa-
per.

SUPPLEMENTARY MATERIAL

Supplement to “Instrumental Variable Estima-
tion with a Stochastic Monotonicity Assumption”
(DOI: 10.1214/17-STS623SUPP; .pdf). Section A of
the supplementary materials presents analogues of
Propositions 1–4 when conditioning on observed
covariates. Section B presents proofs for the propo-
sitions given in Section A of the supplementary ma-
terials. Section C presents proofs for the results in
Section 2 of the main text. Section D shows that de-
terministic compliance class framework identification
results are a special case of stochastic compliance class
framework results. Section E discusses bounds on the
global average treatment effect for a binary outcome
under stochastic monotonicity. Section F gives an ex-
ample in which bounds under stochastic monotonic-
ity are tighter than bounds without stochastic mono-
tonicity. Section G extends results in the main text to
the setting of a non-binary instrumental variable. Sec-
tion H discusses identification results when the mea-
sured IV is an intensity preserving proxy for a contin-
uous causal IV satisfying deterministic monotonicity.
Sections I and J give additional examples besides those
given in the main text in which deterministic mono-
tonicity is likely violated but stochastic monotonicity
is plausible.

REFERENCES

ABADIE, A. (2003). Semiparametric instrumental variable estima-
tion of treatment response models. J. Econometrics 113 231–
263. MR1960380

ANGRIST, J. D., IMBENS, G. W. and RUBIN, D. B. (1996). Iden-
tification of causal effects using instrumental variables. J. Amer.
Statist. Assoc. 91 444–455.

http://dx.doi.org/10.1214/17-STS623SUPP
http://www.ams.org/mathscinet-getitem?mr=1960380


578 D. S. SMALL ET AL.

ANGRIST, J. D. and PISCHKE, J.-S. (2009). Mostly Harmless
Econometrics: An Empiricist’s Companion. Princeton Univ.
Press, Princeton, NJ.

BAGNOLI, M. and BERGSTROM, T. (2005). Log-concave prob-
ability and its applications. Econom. Theory 26 445–469.
MR2213177

BAIOCCHI, M., SMALL, D. S., LORCH, S. and ROSEN-
BAUM, P. R. (2010). Building a stronger instrument in an obser-
vational study of perinatal care for premature infants. J. Amer.
Statist. Assoc. 105 1285–1296. MR2796550

BALKE, A. and PEARL, J. (1997). Bounds on treatment effects for
studies with imperfect compliance. J. Amer. Statist. Assoc. 92
1171–1176.

BOEF, A. G. C., GUSSEKLOO, J., DEKKERS, O. M., FREY, P.,
KEARNEY, P. M., KERSE, N., MALLEN, C. D., MC-
CARTHY, V. J. C., MOOIJAART, S. P., MUTH, C.,
RODONDI, N., ROSEMANN, T., RUSSELL, A., SCHERS, H.,
VIRGINI, V., DE WAAL, M. W. M., WARNER, A., LE

CESSIE, S. and DEN ELZEN, W. P. J. (2016). Physician’s pre-
scribing preference as an instrumental variable: Exploring as-
sumptions using survey data. Epidemiology 27 276–283.

BROOKHART, M. A. and SCHNEEWEISS, S. (2007). Preference-
based instrumental variable methods for the estimation of treat-
ment effects: Assessing validity and interpreting results. Int. J.
Biostat. 3 Art. 14, 25. MR2383610

BROOKHART, M. A., WANG, P., SOLOMON, D. H. and
SCHNEEWEISS, S. (2006). Evaluating short-term drug effects
using a physician-specific prescribing preference as an instru-
mental variable. Epidemiology 17 268–275.

CAVOLINA, M. J. F., KELLY, M. A. T., STONE, J. A. J. and
DAVIS, R. G. M. (2000). Growing up Catholic: The Millen-
nium Edition: An Infinitely Funny Guide for the Faithful, the
Fallen and Everyone in-Between. Image.

CHALAK, K. (2017). Instrumental variables methods with hetero-
geneity and mismeasured instruments. Econometric Theory 33
69–104. MR3574861

CHENG, J. and SMALL, D. S. (2006). Bounds on causal effects
in three-arm trials with non-compliance. J. R. Stat. Soc. Ser. B
Stat. Methodol. 68 815–836. MR2301296

COX, D. R. (1958). Planning of Experiments. Wiley, New York.
MR0095561

DE CHAISEMARTIN, C. (2017). Tolerating defiance: Local average
treatment effects without monotonicity. Quant. Econ. 8 367–
396.

DEATON, A. (2010). Instruments, randomization and learning
about development. J. Econ. Lit. 48 424–455.

DIJKSTRA, E. W. (1959). A note on two problems in connexion
with graphs. Numer. Math. 1 269–271. MR0107609

DINARDO, J. and LEE, D. S. (2011). Program evaluation and re-
search designs. In Handbook of Labor Economics, Vol. 4 463–
536. Elsevier, Amsterdam.

FINKELSTEIN, A., TAUBMAN, S., WRIGHT, B., BERNSTEIN, M.,
GRUBER, J., NEWHOUSE, J. P., ALLEN, H., BAICKER, K. and
GROUP OREGON HEALTH STUDY (2012). The Oregon health
insurance experiment: Evidence from the first year. Q. J. Econ.
127 1057–1106.

GUO, Z., CHENG, J., LORCH, S. A. and SMALL, D. S. (2014).
Using an instrumental variable to test for unmeasured confound-
ing. Stat. Med. 33 3528–3546. MR3260644

HERNÁN, M. A. and ROBINS, J. M. (2006). Instruments for causal
inference: An epidemiologist’s dream? Epidemiology 17 360–
372.

HOROWITZ, J. L. and MANSKI, C. F. (2000). Nonparametric anal-
ysis of randomized experiments with missing covariate and out-
come data. J. Amer. Statist. Assoc. 95 77–88. MR1803142

HUBER, M. and MELLACE, G. (2012). Relaxing monotonicity in
the identification of local average treatment effects. Working pa-
per.

IMBENS, G. W. (2014). Instrumental variables: An econometri-
cian’s perspective. Statist. Sci. 29 323–358. MR3264545

IMBENS, G. W. and ANGRIST, J. D. (1994). Identification and
estimation of local average treatment effects. Econometrica 61
467–476.

KLEIN, T. J. (2010). Heterogeneous treatment effects: Instrumen-
tal variables without monotonicity? J. Econometrics 155 99–
116. MR2607188

KORN, E. L. and BAUMRIND, S. (1998). Clinician preferences and
the estimation of causal treatment differences. Statist. Sci. 13
209–235. MR1665709

LEHMANN, E. L. (1966). Some concepts of dependence. Ann.
Math. Statist. 37 1137–1153. MR0202228

LORCH, S. A., BAIOCCHI, M., AHLBERG, C. E. and
SMALL, D. S. (2012a). The differential impact of delivery hos-
pital on the outcomes of premature infants. Pediatrics 130 270–
278.

LORCH, S. A., KROELINGER, C. D., AHLBERG, C. and
BARFIELD, W. D. (2012b). Factors that mediate racial/ethnic
disparities in US fetal death rates. Am. J. Publ. Health 102
1902–1910.

MANSKI, C. F. (1990). Non-parametric bounds on treatment ef-
fects. Am. Econ. Rev. 80 351–374.

MCCLELLAN, M., MCNEIL, B. J. and NEWHOUSE, J. P. (1994).
Does more intensive treatment of acute myocardial infarction in
the elderly reduce mortality? Analysis using instrumental vari-
ables. J. Am. Med. Dir. Assoc. 272 859–866.

NEAL, D. (1997). The effects of Catholic secondary schooling on
educational achievement. J. Labor Econ. 14 98–123.

OGBURN, E. L., ROTNITZKY, A. and ROBINS, J. M. (2015). Dou-
bly robust estimation of the local average treatment effect curve.
J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 373–396. MR3310531

PEARL, J. (2011). Principal stratification—a goal or a tool? Int. J.
Biostat. 7 Art. 20, 15. MR2787410

PHIBBS, C. S., MARK, D. H., LUFT, H. S., PELTZMAN-
RENNIE, D. J., GARNICK, D. W., LICHTENBERG, E. and
MCPHEE, S. J. (1993). Choice of hospital for delivery: A com-
parison of high-risk and low-risk women. Health Serv. Res. 28
201.

RAMSAHAI, R. R. (2012). Causal bounds and observable con-
straints for non-deterministic models. J. Mach. Learn. Res. 13
829–848. MR2913720

ROBINS, J. M. (1989). The analysis of randomized and nonran-
domized AIDS treatment trials using a new approach to causal
inference in longitudinal studies. In Health Service Research
Methodology: A Focus on AIDS (L. Sechrest, H. Freeman and
A. Mulley, eds.) 113–159.

ROBINS, J. M. (1994). Correcting for non-compliance in random-
ized trials using structural nested mean models. Comm. Statist.
Theory Methods 23 2379–2412. MR1293185

http://www.ams.org/mathscinet-getitem?mr=2213177
http://www.ams.org/mathscinet-getitem?mr=2796550
http://www.ams.org/mathscinet-getitem?mr=2383610
http://www.ams.org/mathscinet-getitem?mr=3574861
http://www.ams.org/mathscinet-getitem?mr=2301296
http://www.ams.org/mathscinet-getitem?mr=0095561
http://www.ams.org/mathscinet-getitem?mr=0107609
http://www.ams.org/mathscinet-getitem?mr=3260644
http://www.ams.org/mathscinet-getitem?mr=1803142
http://www.ams.org/mathscinet-getitem?mr=3264545
http://www.ams.org/mathscinet-getitem?mr=2607188
http://www.ams.org/mathscinet-getitem?mr=1665709
http://www.ams.org/mathscinet-getitem?mr=0202228
http://www.ams.org/mathscinet-getitem?mr=3310531
http://www.ams.org/mathscinet-getitem?mr=2787410
http://www.ams.org/mathscinet-getitem?mr=2913720
http://www.ams.org/mathscinet-getitem?mr=1293185


STOCHASTIC MONOTONICITY ASSUMPTION 579

ROSENBAUM, P. R. (2010). Design of Observational Studies.
Springer, New York. MR2561612

RUBIN, D. B. (1986). Statistics and causal inference: Comment:
Which ifs have causal answers. J. Amer. Statist. Assoc. 81 961–
962.

SMALL, D. S., TAN, Z., RAMSAHAI, R. R., LORCH, S. A. and
BROOKHART, M. A. (2017). Supplement to “Instrumental vari-
able estimation with a stochastic monotonicity assumption.”
DOI:10.1214/17-STS623SUPP.

STOCK, J. H. (2001). Instrumental variables in economics and
statistics. In International Encyclopedia of the Social & Behav-
ioral Sciences (N. J. Smelser and P. B. Baltes, eds.) 7577–7582.
Elsevier, Amsterdam.

SWANSON, S. A. and HERNÁN, M. A. (2014). Think globally,
act globally: An epidemiologist’s perspective on instrumental
variable estimation [discussion of MR3264545]. Statist. Sci. 29
371–374. MR3264549

SWANSON, S. A., MILLER, M., ROBINS, J. M. and
HERNÁN, M. A. (2015). Definition and evaluation of the
monotonicity condition for preference-based instruments.
Epidemiology 26 414–420.

TAN, Z. (2006). Regression and weighting methods for causal in-
ference using instrumental variables. J. Amer. Statist. Assoc. 101
1607–1618. MR2279483

TAN, Z. (2010). Marginal and nested structural models using
instrumental variables. J. Amer. Statist. Assoc. 105 157–169.
MR2757199

VANDERWEELE, T. J. and SHPITSER, I. (2013). On the definition
of a confounder. Ann. Statist. 41 196–220. MR3059415

YANG, F., LORCH, S. A. and SMALL, D. S. (2014). Estimation
of causal effects using instrumental variables with nonignor-
able missing covariates: Application to effect of type of de-
livery NICU on premature infants. Ann. Appl. Stat. 8 48–73.
MR3191982

http://www.ams.org/mathscinet-getitem?mr=2561612
http://dx.doi.org/10.1214/17-STS623SUPP
http://www.ams.org/mathscinet-getitem?mr=3264549
http://www.ams.org/mathscinet-getitem?mr=2279483
http://www.ams.org/mathscinet-getitem?mr=2757199
http://www.ams.org/mathscinet-getitem?mr=3059415
http://www.ams.org/mathscinet-getitem?mr=3191982

	Introduction
	Stochastic Monotonicity Assumption and Main Results
	Review of Literature and Contributions of This Paper

	Notation and Framework
	Core Assumptions for Z Being a Causal IV
	Core Assumptions for Z Being an Intensity Preserving Proxy for a Causal IV Z*
	Core Assumptions for Z to Be a Valid IV When Neither Z Nor Something That Z Is a Proxy for Can Be Manipulated
	Common Features of the Core Assumptions for the Three Different Types of IVs

	Review of Deterministic Compliance Class Framework and Identiﬁcation Results
	Deterministic Compliance Class Framework and Deterministic Monotonicity Assumption
	Identiﬁcation Results Under the Deterministic Compliance Class Framework
	Deterministic Monotonicity with a Proxy IV

	Stochastic Compliance Class Framework and Identiﬁcation Results
	Stochastic Compliance Class Framework
	Identiﬁcation Results Under the Stochastic Compliance Class Framework
	No Sign Reversal Property Under Stochastic Monotonicity
	Characterizing the Strength of IV Weighted Population Q in Terms of Observed Covariates
	Bounds on the Global Average Treatment Effect

	Sensitivity Analysis for Violations of Stochastic Monotonicity
	Choice of U for Interpreting the SIV-WATE
	Conditioning on Covariates
	Application to Study the Effectiveness of High-Level Neonatal Intensive Care Units
	Physician Prescribing Preference IV
	Discussion
	Acknowledgments
	Supplementary Material
	References

