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Hierarchical Sparse Modeling: A Choice
of Two Group Lasso Formulations
Xiaohan Yan and Jacob Bien

Abstract. Demanding sparsity in estimated models has become a routine
practice in statistics. In many situations, we wish to require that the spar-
sity patterns attained honor certain problem-specific constraints. Hierarchi-
cal sparse modeling (HSM) refers to situations in which these constraints
specify that one set of parameters be set to zero whenever another is set to
zero. In recent years, numerous papers have developed convex regularizers
for this form of sparsity structure, which arises in many areas of statistics
including interaction modeling, time series analysis, and covariance estima-
tion. In this paper, we observe that these methods fall into two frameworks,
the group lasso (GL) and latent overlapping group lasso (LOG), which have
not been systematically compared in the context of HSM. The purpose of this
paper is to provide a side-by-side comparison of these two frameworks for
HSM in terms of their statistical properties and computational efficiency. We
call special attention to GL’s more aggressive shrinkage of parameters deep
in the hierarchy, a property not shared by LOG. In terms of computation,
we introduce a finite-step algorithm that exactly solves the proximal opera-
tor of LOG for a certain simple HSM structure; we later exploit this to de-
velop a novel path-based block coordinate descent scheme for general HSM
structures. Both algorithms greatly improve the computational performance
of LOG. Finally, we compare the two methods in the context of covariance
estimation, where we introduce a new sparsely-banded estimator using LOG,
which we show achieves the statistical advantages of an existing GL-based
method but is simpler to express and more efficient to compute.

Key words and phrases: Hierarchical sparsity, convex regularization, group
lasso, latent overlapping group lasso.

1. INTRODUCTION

Convex regularizers for sparse modeling are ubiq-
uitous in the statistics and machine learning litera-
tures. Regularizers such as the lasso (Tibshirani, 1996)
and the group lasso (Turlach, Venables and Wright,
2005, Yuan and Lin, 2006) are commonly-used tools
for seemlessly integrating model selection into statisti-
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cal procedures, thereby extending these methods’ reach
to high-dimensional settings in which the number of
parameters greatly exceeds the sample size. In con-
trast to the lasso, which seeks sparsity with no a priori
pattern, the group lasso regularizer allows pre-defined
groups of variables to be set to zero simultaneously,
giving rise to the so-called structured sparsity litera-
ture in which certain patterns of zeros are sought (Bach
et al., 2012). The focus of this paper is on a particular
kind of structured sparsity that arises in many statis-
tics problems, which we will call hierarchical sparse
modeling (HSM). Given a vector β ∈ Rp of parame-
ters and a known collection of non-empty, disjoint sets
s1, . . . , sN ⊆ {1, . . . , p}, HSM focuses on situations in
which we wish to set groups of variables to zero while
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ensuring that

βsi = 0 =⇒ βsj = 0

for certain ordered pairs of groups (si, sj ). More
specifically, in HSM one forms a directed acyclic graph
(DAG) over {s1, . . . , sN } to encode the desired hier-
archical sparsity relations (one requires the above to
hold if si is an ancestor of sj in the DAG). HSM ap-
pears in many applications in statistics, including in-
teractions (Yuan, Joseph and Zou, 2009, Zhao, Rocha
and Yu, 2009, Radchenko and James, 2010, Schmidt
and Murphy, 2010, Choi, Li and Zhu, 2010, Jenatton
et al., 2010, Bien, Taylor and Tibshirani, 2013, Lim and
Hastie, 2015, She, Wang and Jiang, 2017, Haris, Wit-
ten and Simon, 2016), covariance matrix estimation
(Levina, Rothman and Zhu, 2008, Rothman, Levina
and Zhu, 2010, Bien, Bunea and Xiao, 2016), additive
models (Lou et al., 2016, Chouldechova and Hastie,
2015), time series models (Nicholson, Bien and Matte-
son, 2014), and multiple kernel learning (Bach, 2008).
We note that hierarchical sparse coding is a common
special case of HSM in which the DAG is a forest of
trees (Zhao, Rocha and Yu, 2009, Jenatton et al., 2011).
For example, in a two-way interaction model of the
form

Y = β0 + β1X1 + β2X2 + β3X3

+ β12X1X2 + β13X1X3 + β23X2X3 + ε,

one can express the principle of marginality (Nelder,
1977) as that βj and βk are parents of βjk (each node
of the DAG contains a single element, that is, |si | = 1
for all i). The DAG, which is not a tree, is depicted in
Figure 1. A simpler DAG structure arises in banded co-
variance estimation, in which a p ×p matrix �’s spar-
sity pattern can be described by having the elements
of each subdiagonal set to zero only if those farther
from the main diagonal than it are also all set to zero
(in this situation, the DAG is simply a path as depicted
in Figure 4 with D = p − 1). We will discuss banded
covariance estimation in greater detail in Section 5.

There are two primary convex regularizers used for
structured sparsity: the group lasso (GL) and latent
overlapping group lasso (LOG) (Jacob, Obozinski and
Vert, 2009). The sparsity patterns attained by these
regularizers are in general different in nature, and so
the regularizers typically arise in complementary situ-
ations. Given a set of groups of parameters G, GL sets
to zero a union of groups that is a subset of G. The GL
penalty is defined as a weighted sum of �2 norms over
groups of parameters as defined in G:

(1) �G
GL(β;w) = ∑

g∈G
wg‖βg‖2.

Here, wg are positive scalars that control the relative
strength of the terms within the GL penalty.

Jacob, Obozinski and Vert (2009) observe that when
the groups in G overlap, the induced support from GL
may not be a union of groups since the complement of a
union of groups is not necessarily a union of groups. In
this sense, the group lasso as defined in (1) should not
be used in situations in which one wishes a subset of
(overlapping) groups to remain nonzero. The authors
propose LOG as a solution to this problem. Rather
than apply the �1/�2 norm directly on the parameter
vector β , LOG forms the parameters as a sum of GL-
penalized latent variables, which is each supported by
a group g:

�G
LOG(β;w) = inf

{v(g)∈Rp}g∈G

{∑
g∈G

wg

∥∥v(g)
∥∥

2 s.t.

∑
g∈G

v(g) = β and v
(g)
gc = 0 for g ∈ G

}
.

(2)

In LOG, a subset of the latent variables is set to zero.
Since β is formed as a sum of these latent variables, the
parameters in a group g are selected as long as the cor-
responding latent variable v(g) is nonzero. As a result,
the LOG penalty leaves nonzero a union of groups.

Although GL and LOG induce different sparsity pat-
terns in general, we show in Section 2 that in the special
case of HSM, either regularizer (with an appropriately
chosen group structure) can be used to accomplish the
HSM structure. From a methodological statistician’s
standpoint, this observation leads to ambiguity as to
which regularizer one should use for HSM. Indeed, a
survey of the HSM literature reveals that researchers
have been using both frameworks with no discussion of
the seemingly arbitrary choice about whether to use GL
or LOG. Table 1 arranges methods developed across
five statistical domains according to which regularizer
was used. One observes that LOG is the less commonly
employed regularizer in HSM problems. The objec-
tive of this paper is to compare the GL and LOG ap-
proaches in the context of HSM. While the class of
sparsity patterns obtainable is the same for the two reg-
ularizers, we show in Section 2.3 that the nature of the
shrinkage is different even for the simplest nontrivial
HSM problem.

The main contributions of our investigation into
these two regularizers are summarized below:

• In Section 3, we show that the GL penalty as defined
in (1) tends to apply a greater amount of shrinkage
to parameters embedded deep in the DAG whereas
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TABLE 1
Applications of GL and LOG in HSM

Problem Group lasso (GL) Latent overlapping GL (LOG)

Hierarchical interactions CAP, Zhao, Rocha and Yu (2009)
VANISH, Radchenko and James (2010),

Schmidt and Murphy (2010)
hiernet, Bien, Taylor and Tibshirani (2013)
GRESH, She, Wang and Jiang (2017)
FAMILY, Haris, Witten and Simon (2016)

glinternet, Lim and Hastie (2015)

Banded covariance matrix hierband, Bien, Bunea and Xiao (2016) Section 5 of this paper

Generalized partially linear additive models SPLAM, Lou et al. (2016) GAMSel, Chouldechova and Hastie (2015)

Times series HVAR, Nicholson, Bien and Matteson (2014) —

Hierarchical multiple kernel learning HKL, Bach (2008) —

LOG does not. In certain situations where this more
aggressive shrinkage is not desired, a more compli-
cated weighting scheme can be adopted (as was done
in Jenatton, Audibert and Bach, 2011, Bien, Bunea
and Xiao, 2016). This weighting scheme, which
makes computation and theory more involved, ap-
pears to be necessary to match the statistical perfor-
mance of LOG.

• In Section 4, we focus on computational aspects. It
was shown in Jenatton et al. (2011) that when the
DAG is a tree, the proximal operator of GL could
be solved exactly in a finite number of operations.
While there is no known corresponding algorithm
for LOG, in the special case that the DAG is a path
graph (or forest of path graphs), we derive such an
algorithm. We then leverage this result to introduce
a novel path-based block coordinate descent (BCD)
scheme for the case of a general DAG that is more
efficient than the standard BCD algorithm.

• In Section 5, as a case study, we demonstrate how the
LOG framework can be used instead of GL for the
problem of estimating a banded covariance matrix.
We use banded covariance matrix estimation as a
primary basis to compare the statistical performance
between the GL and LOG frameworks. We prove
that this estimator attains the same bandwidth re-
covery properties and convergence rate as the “con-
vex banding” estimator of Bien, Bunea and Xiao
(2016), which had to rely on a complicated weight-
ing scheme. Furthermore, we find that it attains sim-
ilar empirical performance.

1.1 Notation

We use ‖β‖2 and ‖�‖F for the �2 norm of a vector
β ∈ Rp and the Frobenius norm of a matrix � ∈Rp×p ,

respectively. The support of β is denoted supp(β) ⊆
{1, . . . , p}, which is the set of indices of nonzero ele-
ments in β . For β , a group of parameters is a subset
g ⊆ {1, . . . , p}. We use G to denote the set of groups.
The weight vector w, of the same size as G, has pos-
itive elements. For a group g ⊆ {1, . . . , p}, βg ∈ Rp

has the same entries as β for indices in g and is 0 for
all other indices, whereas β|g ∈ R|g| is a subset of β

for indices in g. For a matrix X ∈ Rn×p and a sub-
set g ⊆ {1, . . . , p}, X|g ∈Rn×|g| has the same columns
as X for column indices in g. In Section 5, given a
subset of a matrix indices g ⊆ {1, . . . , p}2 of a ma-
trix �, let �g ∈ Rp×p be a matrix whose entries are
the same as � for the indices in g, and are 0 for other
indices. Let (·)+ = max{·,0} denote the positive part
and S(·, ·) and SG(·, ·) the elementwise and groupwise
soft-thresholding operators, respectively,

[
S(y,μ)

]
i = yi

(
1 − μ

|yi |
)

+
and

SG(y,μ) = y

(
1 − μ

‖y‖
)

+
,

where ‖ · ‖ denotes ‖ · ‖2 or ‖ · ‖F , depending on
whether y is a vector or a matrix.

2. HIERARCHICAL SPARSE MODELING:
TWO FRAMEWORKS

Let s1, . . . , sN ⊆ {1, . . . , p} be a collection of non-
empty, disjoint sets of indices and let D be a DAG
with vertex set {s1, . . . , sN }. In specifying a DAG, the
notions of ancestor and descendant are well defined.
In particular, we let descendants(D; si) denote the set
of all sj for which there exists a path from si to sj
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FIG. 1. Left: A DAG D for a two-way interaction model with
three predictors. In HSM, the DAG D encodes the sparsity struc-
ture: a node’s parameters must be set to zero if it has a par-
ent with zeroed parameters. Right: The same D specified using
our notation: each node contains only one element and the cor-
respondence between si and βj is as shown. In red dashed con-
tour, ancestors(D; s5) = {s1, s3, s5} include both main effects, β1
and β3, in the ancestor group of the interaction effect β13. In blue
solid contour, descendants(D; s2) = {s2, s4, s6} contains both in-
teraction effects involving main effect β2.

in D and we likewise let ancestors(D; sj ) denote the
set of all si for which there exists a path from si to
sj . Note that we let a node itself be in both its ances-
tor group and its descendant group. To better illustrate
the constructions of ancestor and descendant, we use
a two-way interaction model with three predictors as
an example. The corresponding DAG for the interac-
tion model is shown in Figure 1. To be specific, for
each main effect βj , the two interaction effects resulted
from βj and another main effect βk are considered as
descendancts of βj . Conversely, for the interaction ef-
fect βjk , its two parent main effects, βj and βk , are its
ancestors.

The goal of HSM is to attain sparsity patterns for
which

βsi = 0 ⇒ βsj = 0

for all sj ∈ descendants(D; si).
(3)

In the context of our interaction model example, (3)
enforces the selection that all the resulting interaction
effects are discarded if the main effect is not selected.
We can equivalently express (3) as

βsj �= 0 ⇒ βsi �= 0

for all si ∈ ancestors(D; sj ).
(4)

In interaction modeling, this tells us that all its parent
main effects need to be selected if an interaction effect
is selected. Given (3) and (4) are functionally equiva-
lent statements, we show in Sections 2.1 and 2.2 how
GL and LOG are based on (3) and (4), respectively.
While their sparsity patterns are equivalent, we show
in Section 2.3 that the two approaches lead to different
solutions.

2.1 The Group Lasso Approach

To induce the hierarchical sparsity of (3), Zhao,
Rocha and Yu (2009), Jenatton et al. (2011) and many
others use the GL regularizer (1) with group structure
G chosen to be

(5) d(D) := {
descendants(D; si) : i = 1, . . . ,N

}
.

The top panels of Figure 2 gives an example of d(D)

for a DAG associated with a two-way interaction model
with three predictors. There is a group corresponding
to each node si , and this group contains all the param-
eters in si and in its descendant nodes. Recalling that
GL sets to zero a union of groups, we see that �

d(D)
GL

achieves (3). As shown in the top panels of Figure 2,
each main effect is grouped with its descendant interac-
tion effects, whereas each interaction effect is grouped
by itself. It is possible for an interaction effect to be
zeroed out while keeping its parent main effects sig-
nificant. However, whenever the main effect is zeroed
out which only occurs when the whole group (includ-
ing interaction effects) is not selected, all the descen-
dant interaction effects must be zeroed out as well. We
choose a convex smooth loss function F depending on
the statistical context (a common choice is the negative
log-likelihood) and then solve

(6) min
β∈Rp

{
F(β) + λ�

d(D)
GL (β;w)

}
.

Here, λ ≥ 0 is a regularization parameter that controls
the sparsity level of β .

2.2 The Latent Overlapping Group Lasso
Approach

The LOG penalty (2) of Jacob, Obozinski and Vert
(2009) can be used for HSM taking the perspective of
(4). We choose G to be

(7) a(D) := {
ancestors(D; sj ) : j = 1, . . . ,N

}
.

For each node sj in D, there is a group containing
all parameters that are contained in sj or its ances-
tors. The bottom panels of Figure 2 shows a(D) for
the same DAG as on the top. As observed in Jacob,
Obozinski and Vert (2009), LOG leaves a union of
groups nonzero, thus we see that (4) is accomplished
by �

a(D)
LOG. In our interaction model example, as shown

in the bottom panels of Figure 2, each interaction effect
is grouped with both parent main effects, whereas each
main effect is grouped by itself separately. This group
structure guarantees (4) since both main effects will be
recovered as nonzero if we have a nonzero interaction
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FIG. 2. For the same DAG as in Figure 1, an illustration of group structures G = d(D) and G = a(D) induced for GL and LOG, respectively.
Top: The group structure d(D) for GL is shown in solid contours: d(D) = {s4, s5, s6, s2 ∪ s4 ∪ s6, s1 ∪ s4 ∪ s5, s3 ∪ s5 ∪ s6}. Each group
of d(D) can be thought of as a set of the effect itself and all the relevant interaction effects. Bottom: The group structure a(D) for LOG is
shown in dashed contours: a(D) = {s1, s2, s3, s1 ∪ s3 ∪ s5, s1 ∪ s2 ∪ s4, s2 ∪ s3 ∪ s6}. Each group of a(D) can be described as a set of the
effect itself and all the relevant main effects.

effect, given they are in the same group. We are thus
faced with a choice of whether to use an estimator de-
fined based on solving (6) versus one based on solving

(8) min
β∈Rp

{
F(β) + λ�

a(D)
LOG(β;w)

}
.

2.3 Are These Two Approaches Different?

In Sections 2.1 and 2.2, we describe two frameworks
that lead to the same set of sparsity patterns. This
equivalence can be shown geometrically in the simple
case in which p = 3, si = {i} for i = 1,2,3, and D is
the path graph s1 → s2 → s3. Figure 3 depicts the unit
ball of the induced GL and LOG penalties introduced
in the previous sections. We observe that both balls
have their nondifferentiable points lying in the plane
defined by β3 = 0. Furthermore, both unit balls have
“poles” on the axis defined by β2 = β3 = 0. Given that
both penalties lead to the same set of supports, it is nat-
ural to ask if these two regularizers are in fact identical
for an appropriately chosen set of weights. We consider
the simplest nontrivial HSM: let p = 2, s1 = {1} and
s2 = {2}, and take D to be a single edge connecting
singleton sets: s1 → s2. The following lemma estab-
lishes that these two penalties are different even in this
simplest of situations.

LEMMA 1. Take D to be {1} → {2} and fix w′ =
(1,1). There does not exist w ∈ R+2 such that

�
d(D)
GL (β;w) = �

a(D)
LOG

(
β;w′) ∀β ∈ R2.

PROOF. See Appendix A. �

Moreover, we can compare the proximal operators of
the two penalties, which correspond to (6) and (8) with
F(β) = 1

2‖y − β‖2
2:

Proxd(D)
GL (y;λ,w)

:= arg min
β∈Rp

{
1

2
‖y − β‖2

2 + λ�
d(D)
GL (β;w)

}
,

(9)

Proxa(D)
LOG(y;λ,w)

:= arg min
β∈Rp

{
1

2
‖y − β‖2

2 + λ�
a(D)
LOG(β;w)

}
.

(10)

The use of equality in the above definition is justified
by observing that F is strongly convex and therefore
the arg min is a single point. The path graph structure
of the simplest HSM example allows us to express both
proximal operators in closed form, which allows us to
see plainly how they differ. Let β̂GL and β̂LOG denote
the solution to the respective proximal operators de-
fined in (9) and (10).

LEMMA 2. Taking D to be {1} → {2}, β̂GL and
β̂LOG can be written in closed form:

β̂GL = SG

((
y1

S(y2, λw2)

)
, λw1

)
,
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FIG. 3. For β ∈R3 and the DAG {1} → {2} → {3}, left: the unit ball of �
d(D)
GL (β;w) where d(D) = {{1,2,3}, {2,3}, {3}} and w = (1,1,1),

and right: the unit ball of �
a(D)
LOG (β;w) where a(D) = {{1}, {1,2}, {1,2,3}} and w = (1,

√
2,

√
3).

β̂LOG =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SG(y,λw2)

if |y2| ≥
√

w2
2 − w2

1

w1
|y1|,⎛

⎝ S(y1, λw1)

S
(
y2, λ

√
w2

2 − w2
1

)
⎞
⎠

otherwise

with w1 and w2 in GL being applied on the group {1,2}
and {2}, respectively, and w1 and w2 in LOG being
applied on the group {1} and {1,2}, respectively.

PROOF. This result follows by applying Algo-
rithms 1 and 3 in Section 4. �

We see that β̂GL
2 has two “chances” to be set to zero:

first, through the elementwise soft thresholding of y2
and, second, through the groupwise soft-thresholding
of (y1, S(y2, λw2)). By contrast, for β̂LOG

2 , the shrink-
age is applied only once (though whether it is an el-
ementwise or groupwise soft-thresholding depends on
the relative size of |y1| and |y2|). This example estab-
lishes that these two regularizers are in fact different,
so we proceed to investigate the nature and implica-
tions of this difference.

3. DIFFERENTIAL SHRINKAGE OF GL

In this section, we call attention to a property of the
GL shrinkage that is not shared by LOG: namely, that
�

d(D)
GL shrinks parameters embedded in nodes deep in

the DAG D more agressively than those that are in less

deep nodes in the DAG. This “over-penalization” phe-
nomenon has been observed previously (Jenatton, Au-
dibert and Bach, 2011, Bach et al., 2012, Bien, Bunea
and Xiao, 2016) in overlapping group lasso settings,
but it does not appear to be widely appreciated. A sim-
ple explanation for this phenomenon is that the vector
βsj appears within �

d(D)
GL in | ancestors(D; sj )| terms,

a number that can vary greatly among different sj . In
Section 4, we will see that the amount of shrinkage of
βsj grows with the number of groups its indices sj be-
long to. For example, for the path graph D shown in
Figure 4, βs1 appears in only a single groupwise soft-
thresholding whereas βsD is soft-thresholded D times.
The uneven distribution of shrinkage over the support
in GL is a nonnegligible phenomenon. By contrast, we
will show that �

a(D)
LOG applies a comparable amount of

shrinkage at all depths of D.
In order to more directly study the difference of the

shrinking mechanisms in GL and LOG, we will com-
pare the solutions to (9) and (10) for the directed path
graph in Figure 4 in the case that there is one parameter
per node, that is, si = {i} for i = 1, . . . ,D. For simplic-
ity, we consider y ∼ ND(β∗, σ 2ID) where β∗ is an un-
known mean vector. The group structure d(D) for GL
for this DAG consists of groups of the form {i, . . . ,D}

FIG. 4. Directed Path Graph with D Nodes.
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FIG. 5. The effect of the proximal operator of three regularizers on β∗
i = 1 − i−1

D
: Left: β̂GL, middle: β̂LOG, and right: β̂mGL.

for i = 1, . . . ,D. For λ ≥ 0, we compute

(11) β̂GL = Proxd(D)
GL

(
y;λ, {wi = 1}).

Likewise, the group structure a(D) for LOG consists
of groups of the form {1, . . . , i} for i = 1, . . . ,D, and
we compute

(12) β̂LOG = Proxa(D)
LOG

(
y;λ, {wi = √

i}).
The following two propositions emphasize the dif-

ference between the penalties in terms of the “over-
penalization” phenomenon.

PROPOSITION 1. Let β∗
d = 1{d≤K∗} for K∗ < D.

For β̂GL in (11), if we choose λ > λ̄ := 2σ
√

logD, then
with probability at least 1 − 2/D,

(a) supp(β̂GL) ⊆ supp(β∗),
(b) for 1 ≤ d ≤ d + h ≤ K∗ and β̂GL

d �= 0,

(13)
|β̂GL

d+h|
|β̂GL

d | ≤ |yd+h|
|yd | exp

(
− λh√∑K∗

m=d+1 y2
m

)
.

PROOF. See Appendix B.1. �
Equation (13) shows that the difference in the

amount of shrinkage applied to two elements in D in-
creases at least exponentially with the distance h be-
tween them. In particular, Proposition 1 illustrates the
differential shrinkage of GL: parameters embedded in
nodes deep in the DAG are shrunken more aggres-
sively than those that are in less deep nodes. Indeed,
we can see this exponential decaying pattern empiri-
cally in two examples shown in the left panels of Fig-
ure 5 and Figure 6. The next proposition shows that
LOG by contrast applies a uniform shrinkage across
all elements.

PROPOSITION 2. For the same β∗ as in Proposi-
tion 1 and β̂LOG in (12), assuming D > 1 and λ̄ :=
2σ

√
logD < 1, if we choose

λ̄ < λ ≤ (1 − δ)(1 − λ̄),

for δ ∈ (0,1) then with probability at least 1 − 2/D,

FIG. 6. The effect of the proximal operator of three regularizers on β∗
i = 1{i≤D/2} + 0.5 ∗ 1{i>D/2}: Left: β̂GL, middle: β̂LOG, and right:

β̂mGL.
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(a) supp(β̂LOG) ⊆ supp(β∗),
(b) for 1 ≤ d ≤ d + h ≤ K∗ and β̂LOG

d+h �= 0,

(14) δ
|yd+h|
|yd | ≤ |β̂LOG

d+h |
|β̂LOG

d | ≤ |yd+h|
|yd | .

PROOF. See Appendix B.2. �
Equation (14) illustrates that the difference in the

amount of shrinkage applied by LOG to two elements
of different depths does not increase exponentially with
the distance h between the two elements. Moreover,
the discrepancy in the amount of shrinkage is lower-
bounded by a fixed quantity (that, importantly, does
not depend on h) with high probability. For a fixed
δ, the range of λ for which this holds is non-empty
as σ

√
logD → 0. Proposition 2 thus establishes that

LOG applies a comparable amount of shrinkage at all
depths of D. This is corroborated empirically in the
middle panels of Figure 5 and Figure 6.

To demonstrate how pronounced the differential
shrinkage phenomenon of GL is when the DAG depth
is large, we plot the elements of β̂GL and β̂LOG when
the depth is 50 (Figure 4 with D = 50). In order to
better observe the effect of the proximal operator and
thereby better understand the regularizer’s influence,
we consider a noiseless simulation, that is, σ = 0, and
therefore y = β∗. We begin with a situation in which
the input to the prox function decays linearly with
depth, which might suggest to a statistician good rea-
son to use a regularizer that shrinks elements deep in
D to zero before others:

β∗
i = 1 − i − 1

D
for i = 1, . . . ,D.

The left and middle panels of Figure 5 show the prox-
imal operators’ outputs for ten equally spaced values
of λ between 0 and 1. When λ is 0 (shown in green),
both β̂GL (in the left panel) and β̂LOG (in the middle
panel) simply return y. As we increase λ (shown with
increasing levels of blue), one notices a striking differ-
ence between the two regularizers. The LOG regular-
izer preserves the linear nature of the input while the
GL regularizer shrinks elements deep in D to zero at a
faster rate than those higher in D. The result is that GL
exaggerates the original downward trend in the input.

To balance the aggressive shrinkage of parameters
appearing in many groups in the overlapping case,
Jenatton, Audibert and Bach (2011) suggest weighting
each parameter in a group differently based on the de-
gree of overlaps existing on the parameter, instead of
assigning a single weight to the whole group. In the

context of banded covariance estimation, Bien, Bunea
and Xiao (2016) also find that a better rate of conver-
gence can be obtained using a more elaborate weight-
ing scheme. For a fixed group g� ∈ d(D), the idea is to
apply smaller weights to elements deeper in D. In the
directed path graph example, the weight applied to sm
in group g� =⋃D

m=� sm is

(15) w�,m = 1

m − � + 1
, for 1 ≤ � ≤ m ≤ D,

whereas a more general definition of the weights can
be found in Appendix E.2. The modified GL (mGL)
penalty and the corresponding proximal operator under
the general weighting scheme can be denoted as

�
d(D)
mGL

(
β; {w�,m})= D∑

�=1

√√√√ D∑
m=�

w2
�,mβ2

m,(16)

β̂mGL = arg min
β∈Rp

{
1

2
‖y − β‖2

2

(17)

+ λ�
d(D)
mGL

(
β; {w�,m})}.

In the right panel of Figure 5, we see that β̂mGL be-
haves less aggressively in shrinking elements deep
in D. In fact, it appears that GL with general weights
mimics the LOG penalty.

Our second example considers a situation in which
the raw input is a step function. We take β∗

i =
1{i≤D/2} + 0.5 ∗ 1{i>D/2} for i = 1, . . . ,D. Figure 6
shows the effects of the three penalties. We find again
that GL creates a strong downward trend whereas LOG
preserves the relative sizes of the elements. Again,
mGL behaves as a compromise between these two.

In summary, we observe that GL shrinks elements
deep in D more than those high in D. LOG by contrast
is able to enforce the HSM constraints without apply-
ing differential shrinkage across D. The mGL weight-
ing scheme can effectively balance the aggressiveness
of GL and seems reasonable to be used when more
aggressive shrinkage is not desired. From a computa-
tional standpoint, which is the focus of the next section,
this more elaborate weight structure complicates the
computation of the proximal operator. Meanwhile, in
some cases when the true model is sufficiently sparse,
the GL approach, which favors simpler models, may
serve a better role. Users should be aware of the dif-
ference among these frameworks and consequences,
and choose a suitable approach based on their appli-
cations.
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4. COMPUTATION

Given that both �
d(D)
GL and �

a(D)
LOG can be used in

HSM, we would like to compare them from a computa-
tional perspective. Problems (6) and (8) are nonsmooth
convex optimization problems, and proximal gradient
methods (Nesterov, 2013, Beck and Teboulle, 2009)
are well suited to such problems, especially when the
non-differentiable part’s proximal operator can be effi-
ciently evaluated. We suppose that F is differentiable
and that ∇F is Lipschitz-continuous with constant L.
In its simplest form, the proximal gradient method it-
eratively computes (for k = 0,1,2, . . .)

βk+1 ← arg min
β∈Rp

{
1

2

∥∥∥∥β −
(
βk − 1

L
∇F

(
βk))∥∥∥∥2

2

+ λ�(β)

}
,

where � can be �
d(D)
GL or �

a(D)
LOG. In words, at each step

of the algorithm, the standard gradient descent step
for minimizing F is modified by applying the penalty
λ�’s proximal operator. It follows that an important
computational benchmark lies in how efficiently the
proximal operators, defined in (9) and (10), can be
solved.

The proximal operator of GL when there are over-
lapping groups is usually solved via the dual prob-
lem (Boyd and Vandenberghe, 2004). As described in
Jenatton et al. (2011), a dual of the proximal operator
of (1) is given by

min
{η(g)∈Rp}g∈G

{
1

2

∥∥∥∥y − ∑
g∈G

η(g)

∥∥∥∥2

2

s.t.
∥∥η(g)

∥∥
2 ≤ λwg and η

(g)
gc = 0 for g ∈ G

}
.

Given a solution {η̂(g)}g∈G , it can be shown that
ProxGGL(y;λ,w) = y−∑

g∈G η̂(g). The separable struc-
ture of the constraints suggests using block coordinate
descent (BCD, Tseng, 2001) to solve for {η̂(g)}g∈G . Al-
gorithm 1 has the details of implementation.

In the special case that G = d(D) and D is a tree,
Jenatton et al. (2011) proves the remarkable result
that the while loop in Algorithm 1 will terminate in
one pass, as long as the pass of BCD over g ∈ d(D)

proceeds from innermost groups outward (i.e., from
children to parents). The implication of this result is
that when D is a tree, the proximal operator is es-
sentially available in a closed form. Its computational
complexity in this situation is O(p), where p is the

Algorithm 1 BCD in the dual for solving the proximal
operator of �G

GL

Input: y,w,λ,G.
Require: λ ≥ 0,wg > 0 ∀g ∈ G.

1: η(g) = 0 ∈Rp for all g ∈ G
2: β = y

3: while stopping criterion not reached do
4: for g ∈ G do
5: β ← β + η(g)

6: η(g) ← λwgβg

‖βg‖2

7: β ← β − η(g)

8: end for
9: end while

Output: β

dimension of β . By contrast, there is no known al-
gorithm that solves the proximal operator of �

a(D)
LOG

in a closed form under a tree structure. Several iter-
ative methods have been used to solve (10), includ-
ing cyclic projection (Villa et al., 2014) and BCD
(Obozinski, Jacob and Vert, 2011). In Section 4.1, we
review a commonly-used BCD approach for solving
(10). In Section 4.2, we derive a new closed-form al-
gorithm for solving (10) when D is a directed path
graph. Finally, in Section 4.3, we leverage this new re-
sult to develop a more efficient algorithm for evaluating
Proxa(D)

LOG for general DAGs D.

4.1 Naive BCD for LOG

By definition of the LOG penalty (2), its proximal
problem can be rewritten in terms of the latent vari-
ables:

min
β∈Rp

{
1

2
‖y − β‖2

2 + λ�G
LOG(β;w)

}

⇔ min
{v(g)∈Rp}g∈G

{
1

2

∥∥∥∥y − ∑
g∈G

v(g)

∥∥∥∥2

2
+ λ

∑
g∈G

wg

∥∥v(g)
∥∥

2

s.t. v
(g)
gc = 0

}
.

In this parametrization, the penalty term naturally sep-
arates into blocks defined by the latent variables, and
one can use BCD, cycling over the latent variable vec-
tors (Obozinski, Jacob and Vert, 2011). Algorithm 2
provides the details of this approach, which we refer to
as naive BCD.

The complexity per cycle of both Algorithm 1 and
Algorithm 2 is O(

∑
g∈G |g|). Recalling that in HSM,

for LOG, G = a(D) contains all ancestor sets whereas
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Algorithm 2 Naive BCD for solving the proximal op-
erator of �G

LOG

Input: y,w,λ,G.
Require: λ ≥ 0,wg > 0 ∀g ∈ G.

1: v(g) = 0 ∈ Rp for all g ∈ G
2: β = 0 ∈ Rp

3: while stopping criterion not reached do
4: for g ∈ G do
5: β ← β − v(g)

6: v(g) ← SG(yg − βg,λwg)

7: β ← β + v(g)

8: end for
9: end while

Output: β

for GL, G = d(D) contains all descendant sets. It is
straightforward to observe that a(D) and d(D) have
equal numbers of nodes in total. Assuming |si | has
the same magnitude across i = 1, . . . ,N , we see Al-
gorithm 1 and Algorithm 2 require the same order of
computation per cycle for general DAGs D.

In the next section, we focus on the case in which
D is a directed path graph and present a new algo-
rithm that exactly solves the proximal operator in a
finite number of steps. This will allow us to develop
a more efficient alternative to naive BCD for general
DAGs.

4.2 Closed-Form Solution of the LOG Prox for a
Directed Path Graph

Suppose that D is a directed path graph with D nodes
as shown in Figure 4. We present here what can be
seen as LOG counterpart to the result of Jenatton et al.
(2011) for GL when D is a tree. For notational sim-
plicity, we let si:j denote

⋃j
k=i sk . Using this notation,

the group structure for the LOG penalty a(D) = {s1:� :
� = 1, . . . ,D} (since s1:� is the union of all indices con-
tained in si that are ancestors of s�). A key quantity in
Algorithm 3 is

f (j, k) = ‖ys(k+1):j ‖2√
w2

j − w2
k

, for 0 ≤ k < j ≤ D.

A standard choice for wj is |s1:j |1/2 in which case the
denominator becomes |s(k+1):j |1/2 and f (j, k)2 can be
thought of as the average of y2

� for � ∈ s(k+1):j . The al-
gorithm identifies a sequence of knots 0 = k0 < k1 <

· · · < km ≤ D with the properties that ki maximizes
f (·, ki−1) and that f (ki, ki−1) > λ for i = 1, . . . ,m.

Algorithm 3 Solve the proximal operator of �
a(D)
LOG for

a directed path graph D
Input: λ ≥ 0, w = (w1, . . . ,wD) ∈ R+D , y ∈ Rp and

a(D).
Require: w1 < · · · < wD . D a path of depth D.

1: β ← 0 ∈ Rp

2: k ← 0 ∈ R
3: w0 ← 0 ∈ R
4: while k < D do
5: K ← arg maxj :j>k f (j, k)

6: if f (K,k) ≤ λ then
7: break
8: end if
9: βs(k+1):K ← SG(ys(k+1):K ,λ

√
w2

K − w2
k)

10: k ← K

11: end while
Output: β

The knots are the values that k has taken in the algo-
rithm. Interestingly, once the set of knots has been de-
termined, the algorithm is identical to that of the prox-
imal operator of the non-overlapping group lasso with
group structure {s(ki−1+1):ki

}i=1,...,m ∪{s1:D \ s1:km} and

weights {
√

w2
ki

− w2
ki−1

}i=1,...,m ∪ {∞}. That is, each
vector of elements between consecutive knots is sepa-
rately groupwise soft-thresholded. The choice of knots
implies that only the elements in s1:D \ s1:km are set to
zero. We see that the value of λ determines the number
of knots m, but not their location; thus, when solving
the proximal operator for a sequence of λ values, we
only need to compute the knots once.

LEMMA 3. Algorithm 3 computes the proximal op-
erator in (10) for a directed path graph D of depth
D with complexity O(p + Dm), where m is the num-
ber of knots determined by the algorithm (not count-
ing the initialization of k = 0). In the worst case when
there are D knots (i.e., k increases by one and the con-
dition in line 6 is never satisfied), the complexity is
O(p + D2).

PROOF. Appendix C proves that the algorithm
computes the proximal operator, and Appendix D
proves that when the solution has m knots, Algorithm 3
requires O(p + Dm) operations. To attain this com-
plexity, one does not compute the f (j, k) directly as
defined in line 5 of the algorithm but rather performs
constant time updates to reduce overall computation.

�
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In Appendix E, we show that the computational com-
plexity of computing Proxd(D)

GL for this same DAG is
O(p + D). This means that when D is larger than
p1/2, computing GL’s prox may be more efficient than
computing LOG’s prox. By contrast, the computational
complexity of computing the proximal operator of the
modified GL penalty is O(p + D2 log(n)), given n-
digit precision is required in using Newton’s method
for root-finding.

4.3 Path-Based BCD and ADMM for LOG

In the previous section, we showed that when D is a
directed path graph, (10) can be solved extremely effi-
ciently. For a general DAG D, we can exploit this result
by partitioning D into paths and cycling over the paths
until convergence. The left panel of Figure 7 shows an
example in which we partition a DAG into three paths.
Let P1, . . . ,PL be our path decomposition of D. We
require that every node in D belongs to a unique path
P� and that the edges in path P� all be in D. The path
decomposition of D induces a partition of a(D) into
G1, . . . ,GL, where

G� = {
ancestors(D; si) : si ∈ P�

}
,

for � = 1, . . . ,L.

The following lemma shows that the LOG penalty for
a general DAG can be decomposed into a sum of LOG
penalties, each having the simple path structure. This
observation can be exploited to suggest an efficient al-
ternative to naive BCD such that the “blocks” in the
new approach are defined by the paths.

LEMMA 4. Let {G�}L�=1 be the partition of a(D)

induced by the path decomposition P1, . . . ,PL of D.

For a convex smooth loss function F(β), Problem (8)
can be equivalently solved with

min
{β(�)∈Rp}L�=1

{
F

(
L∑

�=1

β(�)

)
+ λ

L∑
�=1

�
G�

LOG

(
β(�);wP�

)

s.t. supp
(
β(�))⊆ ⋃

g∈G�

g

}
,

(18)

where wP�
= {wg : g ∈ G�} for � = 1, . . . ,L.

PROOF. See Appendix F. �
Problem (18) satisfies the necessary conditions for

BCD on β(�) to converge (Tseng, 2001). For solving
the proximal Problem (10) where F(β) = 1

2‖y − β‖2
2,

Algorithm 4 presents what we call path-based BCD.
The value of this reparametrization is that each block
update can be efficiently solved using Algorithm 3.
When there are long paths in D, the path-based BCD
can make much faster progress compared to naive
BCD since we are able to jointly minimize over all
nodes in the path rather than settle for slow incre-
mental progress. The decomposition of a DAG into
paths is non-unique and the choice of path decomposi-
tion will affect efficiency. Algorithm 6 in Appendix G
presents a simple greedy approach that attempts to
break D into long paths. The path-based BCD is im-
plemented in the R package hsm that accompanies this
paper.

Clearly, the greatest efficiency gains for path-based
BCD are to be expected when D can be decomposed
into a small number of long path graphs. By contrast,
the least favorable case for the path-based BCD is

FIG. 7. Let si = {i} for i ∈ {1, . . . ,8}. Left: a(D) is decomposed into 3 path graphs: P(1) (in green solid contour), P(2) (in red dashed
contour) and P(3) (in blue dotted contour). Middle: The partition of G = a(D): G1, G2 and G3 (colored accordingly). Right: a(D) can be
thought of as three separate path graphs on a new set of nodes, with parameter assignments shown inside each node: supp(β(1)) ⊆ {1, . . . ,7}
(in green solid contour), supp(β(2)) ⊆ {3,4,5,6,8} (in red dashed contour) and supp(β(3)) ⊆ {3,5} (in blue dotted contour).
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Algorithm 4 Path-based BCD for solving the proximal
operator of �

a(D)
LOG

Input: y ∈ Rp,w,λ,D, and a path-decomposition
{P�}L�=1 of D.

1: Generate G� from a(D) and {P�}.
2: S� ←⋃

g∈G�
g for � = 1, . . . ,L

3: β(�) ← 0 ∈ Rp for � = 1, . . . ,L

4: β ← 0 ∈Rp

5: while stopping criterion not reached do
6: for � ∈ [1 : L] do
7: β ← β − β(�)

8: β
(�)
S�

← ProxG�

LOG(yS�
− βS�

;λ,wP�
)

� solved using Algorithm 3
9: β ← β + β(�)

10: end for
11: end while
Output: β

when D is a depth-two tree since this structure does
not have any long paths. The upper panel of Figure 8
shows these two trees along with a binary tree, which
represents a choice for D between these two extremes.
We perform simulations for these three choices of D
to compare the rate of change of objective values us-
ing both BCD schemes. In the first example (upper left
panel of Figure 8), T1 and T2 are path graphs of length
50 and 49, respectively, and each node has |si | = 5 (for
a total of p = 500 parameters); in the second example
(upper middle panel), we again have |si | = 5 (and p =

500); in the third example (upper right panel), we take a
binary tree of depth 9, with |si | = 1 (p = 29 −1 = 511).
In all cases, we take λ = 0.1 and wg = |g|1/2.

For each D, we randomly draw 20 samples of y from
Np(μ = 0,� = 4Ip), and use both methods to solve
(10) at each y. The bottom panels of Figure 8 show
the evolution over 50 cycles the ratio of the difference
in objective values of the two BCDs and the differ-
ence in objective value of the path-based BCD and the
“truth,” evaluated at each cycle and averaged over 20
realizations. For each (D, y) pair, the objective evalu-
ated at true parameter value is estimated with the min-
imum objective value computed over all the cycles of
the two methods. All three curves are above zero af-
ter the starting point, indicating the naive approach is
slower. In the most favorable case for path-based BCD
(example 1), we see great advantage of using path-
based BCD since the curve is in a much higher magni-
tude than the other two. As expected, path-based BCD
has minor advantage over naive BCD in the depth-
two tree case. For example, in the second cycle of the
middle panel, the ratio takes value 0.8, meaning that
(naive objective − true objective) is 80% larger than
(path objective − true objective). In a non-extreme
case represented by binary tree, path-based BCD still
converges faster than naive BCD. For a more general
F(β) = 1

2‖y − Xβ‖2
2 in (8), Lemma 4 can be used

to suggest an efficient alternating direction method of
multipliers (ADMM, Boyd et al., 2011) approach:

LEMMA 5 (Path-based ADMM). Let {G�}L�=1 be
the partition of a(D) induced by the path decomposi-

FIG. 8. Top: Tree structures for example 1, 2 and 3, respectively. On top left, T1 and T2 are path graphs of length 50 and 49, respectively.
Bottom: Plot of ratio of the difference in objective values of the two BCDs and the difference in objective value of the path-based BCD and
the “truth”, evaluated at each cycle and averaged over 20 realizations, with the corresponding tree above it.
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tion P1, . . . ,PL of D. For y ∈ Rn and X ∈Rn×p , Prob-
lem (8) with F(β) = 1

2‖y − Xβ‖2
2 can be equivalently

solved using ADMM on the following problem:

min
{β(�)∈Rp,γ (�)∈Rp}L�=1

1

2

∥∥∥∥∥y − X
L∑

�=1

γ (�)

∥∥∥∥∥
2

2

+ λ

L∑
�=1

�
G�

LOG

(
β(�);wP�

)

s.t. β(�) = γ (�) and supp
(
β(�))⊆ ⋃

g∈G�

g =: g(�)

∀� = 1, . . . ,L.

(19)

The ADMM iterates among the following three steps
and uses Algorithm 4 to solve Step (2):

(1)

γ̂
(�)

|g(�) ← β̂
(�)

|g(�) + 1

ρ
û

(�)

|g(�) + 1

ρ
XT

|g(�)(y − )

∀� = 1, . . . ,L

where

 =
(
I + 1

ρ

∑
�

X|g(�)XT
|g(�)

)−1

·∑
�

(
X|g(�)

(
β̂

(�)

|g(�) + 1

ρ
û

(�)

|g(�)

)

+ 1

ρ
X|g(�)XT

|g(�)y

)
.

(2)

β̂
(�)

|g(�) ← ProxG�

LOG

((
γ̂

(�)

|g(�) − 1

ρ
û

(�)

|g(�)

)
; λ

ρ
,wP�

)

∀� = 1, . . . ,L.

(3)

û(�) ← û(�) + ρ
(
γ̂ (�) − β̂(�)) ∀� = 1, . . . ,L.

PROOF. See Appendix H. �

5. ESTIMATING BANDED COVARIANCE WITH LOG

In Section 3, we observed that LOG avoids applying
differential shrinkage on D as is in GL. In Section 4,
we showed that when D is a directed path graph, the
proximal operator can be evaluated in a closed form.
In this section, we synthesize these observations in an
application to covariance estimation. This example will
demonstrate how choosing the LOG penalty leads to an

estimator that achieves the statistical advantages of an
existing estimator that requires the more complicated
modified GL approach.

Suppose we observe a sample X(1),X(2), . . . ,X(n) ∈
Rp of independent zero-mean random vectors with true
population covariance matrix �∗. If the p variables
have a known ordering, a common assumption is that
�∗ is K-banded, meaning that

�∗
ij = 0 for |i − j | > K.

The sample covariance matrix, S = 1
n

∑n
i=1(X

(i) − X̄) ·
(X(i) − X̄)T (where X̄ = 1

n

∑n
i=1 X(i)), degrades as an

estimator of �∗ as p increases; when �∗ is (or could be
reasonably approximated as) a banded matrix, banded
estimators are preferable. It is straightforward to see
that banded estimation of a matrix is an instance of
HSM: Take D to be a directed path graph, such as that
depicted in Figure 4, where

sm = {
ij ∈ {1, . . . , p}2 : |i − j | = m

}
for m = 1, . . . , p − 1,

is the “subdiagonal” of elements that are m away from
the main diagonal. Bandedness of � can then be ex-
pressed as �s� = 0 =⇒ �sm = 0 for any m > �.

Bien, Bunea and Xiao (2016) propose “convex band-
ing” estimators, which, in the terminology of our paper,
correspond to

�̂
GL = arg min

�∈Rp×p

{
1

2
‖S − �‖2

F + λ�
d(D)
GL

(
�−;w)}

with w� =√|s�|
being the weight on the group s�:D , and

�̂
mGL = arg min

�∈Rp×p

{
1

2
‖S − �‖2

F + λ�
d(D)
mGL

(
�−; w̃)}

with w̃�,m =√|s�|/(m − � + 1)

being the weight on sm within the group s�:D , where
�− denotes the matrix � but with zeros on its main
diagonal. We recognize these as the proximal opera-
tors of the two penalties. Bien, Bunea and Xiao (2016)
prove that both estimators can recover the true band-

width with high probability; however, only �̂
mGL

, and

not �̂
GL

, is shown to attain (up to a logarithmic factor)
the minimax rate of convergence in Frobenius norm
over a certain class of covariance matrices. They sug-
gest, as we have here, that it is the overly aggressive
shrinkage of subdiagonals far from the main diagonal
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(i.e., sm deep in D) that prevents them from getting a

similar rate for �̂
GL

.
In light of our observation in Section 3 that LOG ap-

plies a comparable amount of shrinkage at all depths
of D, we investigate in this section whether a banded
covariance estimator based instead on LOG can match
the performance of �̂

mGL
. Indeed, we will show that

this LOG-based covariance estimator does successfully

match the statistical performance of �̂
mGL

, and, no-
tably, does not require any modification of the weights
as was the case with the GL-based estimator.

5.1 Defining the Estimator �̂
LOG

We define �̂
LOG

as the solution to the following
problem:

�̂
LOG = arg min

�∈Rp×p

{
1

2
‖� − S‖2

F + λ�
a(D)
LOG

(
�−;w)},

(20)
with wm =√|s1:m|

being the weight on the group s1:m. The group structure
a(D) is depicted in Figure 9. A key property of the
“convex banding” estimators (Bien, Bunea and Xiao,
2016) is that they can be evaluated in a single pass
over the elements of S. By our result in Section 4.2,
this advantageous computational property is shared by

�̂
LOG

. For completeness, Algorithm 3 in the context
of covariance estimation is provided in Algorithm 7 of
Appendix L.

5.2 Statistical Properties of �̂
LOG

We briefly review the statistical assumptions made in
Bien, Bunea and Xiao (2016), which we will assume
hold here as well.

ASSUMPTION 1. The random vector X = (X1,

. . . ,Xp)T ∈ Rp (which is mean 0 with covariance ma-
trix �∗) is marginally sub-Gaussian, that is,

E exp
(
tXi/

√
�∗

ii

)≤ exp
(
Ct2)

for all t ≥ 0 and for some C > 0. Further, maxi |�∗
ii | ≤

M for some constant M > 0.

ASSUMPTION 2. The dimension p and sample
size n scale as follows: γ0 logn ≤ logp ≤ γ n for some
γ0 > 0, γ > 0.

Under these assumptions, it is proved in Lemma 1 of
Bien, Bunea and Xiao (2016) that the random set

Ax =
{

max
1≤i,j≤p

∣∣Sij − �∗
ij

∣∣≤ x
√

logp/n
}
,

has high probability for sufficiently large x.

5.2.1 Exact bandwidth recovery. Suppose the true
population covariance matrix �∗ has bandwidth K ,
that is, we have �∗

sK
�= 0 and �∗

sk
= 0 for k > K . Let K̂

denote the bandwidth of �̂
LOG

. We show in Theorem 1
and Theorem 2 that under mild conditions our estima-
tor �̂

LOG
correctly recovers K with high probability.

THEOREM 1. If λ ≥ x
√

logp/n, then K̂ ≤ K with
high probability.

PROOF. See Appendix I. �
From Theorem 1, we see that for large enough λ,

�̂
LOG

will not overestimate K . In order for �̂
LOG

not to underestimate the true bandwidth, we need the
nonzero elements of �∗ to be sufficiently large. In the
next theorem, we quantify the signal size by the root-
mean-square of the elements of �∗ in each group of
the form sm:K for m = 1, . . . ,K .

FIG. 9. Left: The group s1:2. Right: The nested groups of the form s1:k in a(D).
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THEOREM 2. Take λ as in Theorem 1. If

(21) min
1≤m≤K

‖�∗
sm:K ‖F√|sm:K | > 2λ,

then K̂ ≥ K with high probability.

PROOF. See Appendix J. �
Thus, under the above signal strength condition, our

LOG-based estimator correctly recovers the bandwidth
with high probability. Furthermore, this condition is
implied by the corresponding condition appearing in
Theorem 4 of Bien, Bunea and Xiao (2016). This es-
tablishes that the LOG estimator recovers bandwidth
at least as well as the “convex banding” estimators.

5.2.2 Convergence in Frobenius norm. In this sec-

tion, we show that �̂
LOG

achieves, up to a multiplica-
tive logarithmic factor, the optimal rate of convergence
in Frobenius norm over the class of K-banded covari-
ance matrices �∗.

THEOREM 3. Suppose �∗ has bandwidth K . If
λ = x

√
logp/n, then with high probability

(22)
∥∥�̂LOG − �∗∥∥2

F � pK logp

n
,

where � denotes an inequality holding up to a positive
multiplicative constant independent of n or p.

PROOF. See Appendix K. �
This rate matches the statistical rate shown for

�̂
mGL

, but is noteworthy in that �̂
LOG

does not require

the sophisticated weight structure of �̂
mGL

.

5.3 Simulation Studies

From Section 5.2, we see that the estimators �̂
LOG

and �̂
mGL

have comparable theoretical properties;
moreover, they both share the beneficial computational
property that they can be computed in a single pass
over the parameters. The more complicated weighting

scheme of �̂
mGL

requires solving a one-dimensional
line search for every subdiagonal whereas all opera-

tions in computing �̂
LOG

are very simple. We now
further our comparison in two empirical studies. We
consider two patterns for �∗: a moving-average pat-
tern and a stair pattern. The moving-average pattern
corresponds to a downward linear decay in subdiago-
nal values:

(23) �∗ = toeplitz
((

1,
K − 1

K
, . . . ,

1

K
,0p−K

))
,

where toeplitz(v) denotes a symmetric Toeplitz ma-
trix with v ∈ Rp being the first column. The stair pat-
tern, as its name suggests, adds flatness to the decay by
introducing a “staircase” pattern in �∗. We construct
� ∈ Rp×p as

� = toeplitz
(
(1K

5
,0.8 ∗ 1K

5
,0.6 ∗ 1K

5
,

0.4 ∗ 1K
5
,0.2 ∗ 1K

5
,0p−K)

)
and define

(24) �∗ = � + (
0.01 − λmin(�)

)
+Ip

so that the minimum eigenvalue of �∗ is at least 0.01.
For both studies, we simulate 50 samples of size

50 with a given �∗, where each sample is denoted as

{X(i) i.i.d.∼ Np(0,�∗) for i = 1, . . . ,50}. A sample co-
variance Sj is computed with the j th sample. In terms
of evaluating performance, we use mean-squared error
as the metric of comparison:

(25) MSE(λ) = 1

50

50∑
j=1

∥∥�̂(λ,Sj ) − �∗∥∥2
F /p.

In the first study, we investigate to what extent the

rate of �̂
LOG

derived in Theorem 3 in terms of K and
p holds in practice. We simulate under the model used
in Section 5.1.1 of Bien, Bunea and Xiao (2016). In
particular, we take λtheory = 2

√
logp/n and simulate

with �∗ in (23) for p ∈ {500,1000,2000}. At each p,
we vary K over 10 values equally spaced between 10
and 500. In agreement with Theorem 3, the left panel
of Figure 10 shows (for three values of p) an approx-
imate linear dependence of K on squared Frobenius
norm. The right panel supports the p dependence of
Theorem 3 since we find that the three curves line up
when we scale the squared Frobenius norm by p logp.

In the second study, we compare the empirical per-

formance of �̂
GL

, �̂
mGL

, and �̂
LOG

over the two pat-
terns for �∗ at p = 500 and for various K . In contrast
to the previous study, where we used the theoretically
justified λtheory of the form x

√
logp/n, in this study

we use

(26) λbest = arg min
λ∈�

MSE(λ),

where � is a grid of 50 values equally spaced on the
log scale. The quantity MSE(λbest) is an estimate of
minλE‖�̂(λ) − �∗‖2

F /p and provides a view of the
best obtainable performance of each method.

We first consider the moving-average pattern de-
scribed in (23) for �∗ with K varying over 10 equally-
spaced values between 10 and 500. The left panel of
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FIG. 10. Left: MSE(λtheory), and right: MSE(λtheory)/ logp as a function of K for �̂
LOG

where λtheory = 2
√

logp/n.

Figure 11 shows how MSE(λbest) varies with K for the

three methods. We notice that �̂
GL

outperforms �̂
mGL

and �̂
LOG

at all K . In addition, �̂
mGL

and �̂
LOG

ap-
pear to perform similarly. It is striking to compare the
scale of the y-axis in the left panel of Figure 10 to
that of Figure 11. Figure 10 shows the performance

of �̂
LOG

with λtheory = 2
√

logp/n, which while mo-
tivated by theory, is evidently far from the optimal
choice of λ in terms of MSE. The sublinear curve seen
in Figure 11 is again a reminder that the theory is about
λ = x

√
logp/n and not about λbest.

The second pattern we consider for �∗ is the stair
pattern described in (24) with K varying over 10
equally-spaced values between 50 and 500. As shown
in the right panel of Figure 11, all three estimators
achieve much larger error than in the moving aver-

age case. When K is small (K < 200), �̂
GL

beats

�̂
mGL

and �̂
LOG

, but by a small amount. When K be-

comes larger, both �̂
mGL

and �̂
LOG

outperform �̂
GL

.

We again see similar performance between �̂
mGL

and

�̂
LOG

. The relative performance of these three meth-
ods in these two scenarios suggests that LOG and mGL
perform very similarly and that it is difficult to say in
general whether these perform better or worse than GL.

Since we are estimating a covariance matrix, we
are also interested in getting a positive semidefinite

(PSD) estimate. For the stair pattern, we find in sim-
ulation that these three estimators are always PSD. By
contrast, in the moving-average example, we find that
the probability of each estimator being PSD at each
method’s λbest varies with K (see Figure 12 of Ap-

pendix M). We find that the probability that �̂
GL

is

PSD decreases to 0 as K increases to p. For �̂
mGL

and �̂
LOG

, the K dependence is less simple; for large
K , the probability that they are PSD is approximately
80%, but for moderate K , we find the probability drops
to as low as 20%. If positive definiteness is important
in a given application, one could modify Problem (20)
to include a PSD constraint as is done in Problem (2.3)
of Bien, Bunea and Xiao (2016).

6. CONCLUSION

In this paper, we focus on hierarchical sparse mod-
eling, a structure that arises in a wide array of statis-
tical problems. In particular, we investigate the differ-
ences between two convex penalties, GL and LOG, that
have been used in this context for identical purposes
but until now have not been systematically compared
for HSM.

We highlight a phenomenon of GL in which param-
eters embedded deep within the HSM’s DAG are more
aggressively regularized than those that are less deeply
embedded. We find that this phenomenon may have
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FIG. 11. For the three estimators (�̂
mGL

, �̂
GL

, �̂
LOG

), MSE(λbest) as a function of K under the moving average pattern (left) and the
stair pattern (right) where λbest = arg minλ∈� MSE(λ).

negative statistical consequences for GL—both theo-
retical and empirical—when the DAG has deep nodes
and the true model is not very sparse. While a modifica-
tion of GL is possible to curb this over-aggressiveness
of GL (Jenatton, Audibert and Bach, 2011, Bach et al.,
2012, Bien, Bunea and Xiao, 2016), doing so compli-
cates the computation and makes for a more difficult
to describe estimator. By contrast, we show that us-
ing LOG fulfills our goal without any additional com-
plication and performs, both in practice and in theory,
very similarly to the modified GL penalty. In the spe-
cial case that the DAG is a path, we derive a closed-
form expression for the proximal operator of LOG
that can be seen as the LOG counterpart to a result
of Jenatton et al. (2011) about the GL penalty. Hav-
ing this closed form makes computation extremely ef-
ficient for directed path graphs, and we leverage this
efficiency to general DAGs and more general problems
by proposing path-based BCD and path-based ADMM
algorithms. We show in simulation that the path-based
BCD algorithm converges in fewer passes over the pa-
rameters than the standard BCD approach for LOG.

As an application of these ideas to statistics, we show
how the recent “convex banding” covariance estima-
tor of Bien, Bunea and Xiao (2016) could have in-
stead been formulated with an LOG penalty. We show
that our LOG-based estimator attains the same conver-
gence and recovery results as the mGL-based appoach

in Bien, Bunea and Xiao (2016) and in simulation per-
forms extremely similarly as well. The advantage of
our LOG estimator is that it is easier to describe and
compute.

In future work, it would be interesting to determine
whether a closed-form solution exists for DAG struc-
tures more general than a directed path graph. While
we were not able to derive such a closed form, we
have not established that such a solution does not ex-
ist. Another avenue for future work lies in extending
the comparison of GL and LOG to situations beyond
the class of problems considered here. For example,
the sparse group lasso penalty,

∑K
k=1 wk‖βgk

‖2 +‖β‖1
(Simon et al., 2013) is a GL penalty with K + p

groups: g1, . . . , gK, {1}, . . . , {p}. This group structure
can be written as d(D), where D is a forest of K

trees, each having an empty root pointing to the sin-
gletons contained in gk . However, the LOG penalty
on a(D) is simply the lasso, whereas an LOG with
g1, . . . , gK, {1}, . . . , {p} would seem to be the appro-
priate corresponding model.

APPENDIX A: PROOF OF LEMMA 1

For p = 2, denote β = (β1, β2) ∈ R2. The �
d(D)
GL and

�
a(D)
LOG penalties can be written as

�
d(D)
GL (β;w) = w1

∥∥(β1, β2)
∥∥

2 + w2|β2|,
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�
a(D)
LOG

(
β;w′)= min

{v(1)
1 ∈R,v(2)∈R2}

{∣∣v(1)
1

∣∣+ ∥∥v(2)
∥∥

2

s.t.

(
v

(1)
1 + v

(2)
1

v
(2)
2

)
=
(
β1
β2

)}
.

Suppose there exists w ∈ R+2 such that for all β ,
�

d(D)
GL (β;w) = �

a(D)
LOG(β;w′) holds. The equality also

holds for β = (0, β2) and β = (β1,0).

• When β = (0, β2), that is, β1 = 0, the following is
true:

�
a(D)
LOG

(
β;w′)= min

v
(1)
1 ∈R

∣∣v(1)
1

∣∣+√(
v

(1)
1

)2 + β2
2 = |β2|

= �
d(D)
GL (β;w) = (w1 + w2)|β2|.

We get w1 + w2 = 1.
• When β = (β1,0), that is, β2 = 0, the following is

true:

�
a(D)
LOG

(
β;w′)= min

v
(2)
1 ∈R

∣∣β1 − v
(2)
1

∣∣+ ∣∣v(2)
1

∣∣= |β1|

= �
d(D)
GL (β;w) = w1|β1|.

We get w1 = 1.

Combining the results above we have w2 = 0 which
leads to a contradiction. Hence, when p = 2 and
w′ = (1,1), there does not exist w ∈ R+2 such that
�

d(D)
GL (·;w) = �

a(D)
LOG(·;w′).

APPENDIX B: PROOF OF PROPOSITIONS 1 AND 2

Let y = β∗ + ε where ε ∼ ND(0, σ 2ID) and β∗
d =

1{d≤K∗} for d = 1, . . . ,D (and assume K∗ < D). We
define the event

B :=
{

max
i=1,...,D

|εi | > λ̄
}
,(27)

where λ̄ := 2σ
√

logD. A union bound and a Chernoff
upper bound for normal variables establishes that

P
(

max
i=1,...,D

|εi | > t
)

≤ DP
(|ε1| > t

)≤ 2De−t2/2σ 2
,

for t > 0. Taking t = 2σ
√

logD gives that

P(B) ≤ 2/D.(28)

B.1 Proof of Proposition 1

We establish the following deterministic result that
holds on Bc [by (28), this proves Proposition 1].

LEMMA 6. The following two statements hold on
Bc under the assumptions of Proposition 1:

(a) supp(β̂GL) ⊆ supp(β∗),
(b) for 1 ≤ d ≤ d + h ≤ K∗ and β̂GL

d �= 0,

|β̂GL
d+h|

|β̂GL
d | ≤ |yd+h|

|yd | exp
(
− λh√∑K∗

m=d+1 y2
m

)
.

PROOF. Jenatton et al. (2011) provide a closed-
form solution for (9) (see Algorithm 2 in their paper).
Their algorithm in this context is as follows:

1. Initialize b̂(D) = y.
2. For d = D, . . . ,1,

b̂
(d−1)
d:D ← b̂

(d)
d:D ·

(
1 − λ

‖b̂(d)
d:D‖2

)
+
, and

b̂
(d−1)
1:(d−1) ← y1:(d−1) if d > 1.

Defining r̂d := ‖b̂(d)
d:D‖2 for d = 1, . . . ,D, one gets the

recurrence relation

(29) r̂2
d−1 = (r̂d − λ)2+ + y2

d−1 where r̂D = |yD|.
The solution to (9) can be expressed, for each d , as

(30) β̂GL
d = yd ·

d∏
�=1

(1 − λ/r̂�)+.

Our choice of λ in Proposition 1 establishes that on Bc,
λ > maxi=1,...,D |εi |. This together with the recurrence
relation in (29) implies the following:

• For d = K∗ + 1, . . . ,D, r̂d = |yd | = |εd | and thus,
by (30), β̂GL

d = 0 for d > K∗. This establishes that
supp(β̂GL) ⊆ supp(β∗).

• For d = K∗,

r̂K∗ = |yK∗ | ≤
√√√√ K∗∑

�=d

y2
� .

For d < K∗, suppose r̂d+1 ≤
√∑K∗

�=d+1 y2
� . Then we

have

r̂d =
√

(r̂d+1 − λ)2+ + y2
d ≤

√
r̂2
d+1 + y2

d

≤
√√√√√ K∗∑

�=d+1

y2
� + y2

d ≤
√√√√ K∗∑

�=d

y2
� .

This establishes by induction that r̂d ≤
√∑K∗

�=d y2
�

for all d ≤ K∗.
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For 1 ≤ d ≤ d + h ≤ K∗, assuming β̂GL
d �= 0, we

have

|β̂GL
d+h|

|β̂GL
d | = |yd+h| ·∏d+h

�=1 (1 − λ
r̂�

)+
|yd | ·∏d

�=1(1 − λ
r̂�

)+

= |yd+h|
|yd |

d+h∏
�=d+1

(
1 − λ

r̂�

)
+

≤ |yd+h|
|yd | exp

(
−

d+h∑
�=d+1

λ

r̂�

)

(
since (1 − x)+ ≤ e−x for x ∈ R

)

≤ |yd+h|
|yd | exp

(
−

d+h∑
�=d+1

λ√∑K∗
m=� y2

m

)

≤ |yd+h|
|yd | exp

(
− λh√∑K∗

m=d+1 y2
m

)
.

�
B.2 Proof of Proposition 2

We prove two deterministic lemmas, corresponding
to parts (a) and (b) in Proposition 2.

LEMMA 7. Under the assumptions of Proposi-
tion 2, supp(β̂LOG) ⊆ supp(β∗) holds on Bc.

PROOF. We prove this using Algorithm 3 which
solves (10) under a directed path graph. Let K̄ be the
largest knot such that K̄ ≤ K∗, determined by Algo-
rithm 3 on solving (10). We show in what follows that
f (k, K̄) ≤ λ ∀k > K̄ , which establishes that K̄ is the
last knot. The assumed lower bound on λ ensures that
λ > maxi=1,...,D |εi | on the event Bc.

If K̄ = K∗, ∀k > K∗

f (k, K̄) = ‖y(K̄+1):k‖2√
k − K̄

= ‖ε(K∗+1):k‖2√
k − K∗

≤ max
i=1,...,D

|εi | < λ.

(31)

If K̄ < K∗, then K∗ is not chosen as a knot,
given that K̄ by construction is the last knot de-
termined by Algorithm 3 on or before K∗. We let
k = K̄ on line 5 of Algorithm 3. Consider two pos-
sible cases for K∗: K∗ = arg maxj :j>K̄ f (j, K̄) and

K∗ �= arg maxj :j>K̄ f (j, K̄). In the first case, we

must have f (K∗, K̄) ≤ λ otherwise the while loop
would not break on line 7, making K∗ a knot and
leading to a contradiction. In the second case, let
Ǩ := arg maxj :j>K̄ f (j, K̄). If Ǩ < K∗, we have

f (K∗, K̄) ≤ f (Ǩ, K̄) ≤ λ otherwise Ǩ would be a

knot which would then be in contradiction with the as-
sumption that K̄ was the last knot on or before K∗. If
Ǩ > K∗, we have f (K∗, K̄) ≤ f (Ǩ, K̄) by definition
of Ǩ . In summary, either one of the following is true
for the second case:

1. f (K∗, K̄) ≤ λ.
2. ∃k̄ > K∗ such that f (K∗, K̄) ≤ f (k̄, K̄), that is,

‖y(K̄+1):K∗‖2
2 ≤ ‖y(K̄+1):k̄‖2

2 · K∗−K̄

k̄−K̄
.

We show that in both cases

(32) ‖y(K̄+1):K∗‖2
2 ≤ λ2(K∗ − K̄

)
.

Case (i) is equivalent to (32). When Case (ii) holds,
∃k̄ > K∗ such that

‖y(K̄+1):K∗‖2
2

≤ ‖y(K̄+1):k̄‖2
2 · K∗ − K̄

k̄ − K̄

= (‖y(K̄+1):K∗‖2
2 + ‖ε(K∗+1):k̄‖2

2
) · K∗ − K̄

k̄ − K̄
.

(33)

Plugging α = K∗−K̄

k̄−K̄
into (33) yields

(1 − α)‖y(K̄+1):K∗‖2
2 ≤ α‖ε(K∗+1):k̄‖2

2

⇒ ‖y(K̄+1):K∗‖2
2 ≤ α

1 − α
‖ε(K∗+1):k̄‖2

2

<
α

1 − α
λ2(k̄ − K∗)

= λ2(K∗ − K̄
)
,

where the last equality is by α
1−α

(k̄ − K∗) = K∗ − K̄ .
Having established that (32) holds, we have ∀k > K∗
that

‖y(K̄+1):k‖2
2 = ‖y(K̄+1):K∗‖2

2 + ‖ε(K∗+1):k‖2
2

< λ2(K∗ − K̄
)+ λ2(k − K∗)

= λ2(k − K̄)

(34)

By (34) we have

(35) ‖y(K̄+1):k‖2
2 ≤ λ2(k − K̄) ⇔ f (k, K̄) ≤ λ.

According to Algorithm 3, K̄ is the last knot on the
entire path graph and supp(β̂LOG) ⊆ supp(β∗). �

LEMMA 8. Under the assumptions of Proposi-
tion 2, the following holds on Bc: For 1 ≤ d ≤ d + h ≤
K∗ and β̂LOG

d+h �= 0,

δ
|yd+h|
|yd | ≤ |β̂LOG

d+h |
|β̂LOG

d | ≤ |yd+h|
|yd | .
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PROOF. For 1 ≤ d ≤ d + h ≤ K∗ and β̂LOG
d+h �= 0,

by Algorithm 3 we have

(36)
|β̂LOG

d+h |
|β̂LOG

d | = |yd+h|
|yd | ·

1 − λ
f (kU (d+h),kL(d+h))

1 − λ
f (kU (d),kL(d))

,

where f (k, j) = ‖y(j+1):k‖2/
√

k − j and kL(d) and
kU(d) are two adjacent knots determined by Algo-
rithm 3 such that kL(d) < d ≤ kU(d) [and similarly
kL(d +h) < d +h ≤ kU(d +h)]. For simplicity of no-
tation, we denote a := f (kU(d + h), kL(d + h)) and
b := f (kU(d), kL(d)).

By (36), we wish to show that

δ ≤ 1 − λ/a

1 − λ/b
≤ 1.

When kL(d) = kL(d + h) and kU(d) = kU(d + h),
a = b and thus this is immediate. It remains to con-
sider the case when kL(d) < kU(d) ≤ kL(d + h) <

kU(d + h). By Lemma 9, we have that b ≥ a, which
gives the upper bound.

Some algebra shows that
1 − λ/a

1 − λ/b
≥ δ ⇔ λ ≤ 1 − δ

1/a − δ/b
.(37)

We will show that the upper bound on λ assumed in
Proposition 2 ensures that the above inequality holds
on Bc.

For any 0 ≤ j < k ≤ K∗,

min
i∈{j+1,...,k}y

2
i ≤ ‖y(j+1):k‖2

2/(k − j) = f (k, j)2

and thus on Bc,

f (k, j) ≥ min
1≤i≤K∗ |yi |

≥ 1 − max
1≤i≤K∗ |εi | by the triangle inequality(38)

≥ 1 − λ̄ by definition of Bc.

Since supp(β̂LOG) ⊆ supp(β∗) on Bc by Lemma 7
and β̂LOG

d+h �= 0 by assumption, we have kL(d + h) <

kU(d + h) ≤ K∗. Taking (k, j) = (kU (d + h),

kL(d + h)) in (38) yields

1 − λ̄ ≤ a ≤ 1

1/a − δ/b
.

Thus, recalling the upper bound for λ given in Propo-
sition 2,

λ ≤ (1 − δ)(1 − λ̄) ≤ 1 − δ

1/a − δ/b
,

which by (37), establishes that

|β̂LOG
d+h |

|β̂LOG
d | ≥ |yd+h|

|yd | · δ.
�

APPENDIX C: PROOF THAT ALGORITHM 3
SOLVES Proxa(D)

LOG FOR A DIRECTED PATH GRAPH

Suppose D is a directed path graph with D nodes
as shown in Figure 4. Let β̂ = Proxa(D)

LOG(y;λ′,w′) and
β̄ denote the output from Algorithm 3 with inputs λ′
and w′. To prove β̄ = β̂ , we propose a {v̄(�)}D�=1 such
that supp(v̄(�)) ⊆ s1:� and v̄(�) ∈ Rp for � = 1, . . . ,D.
We then show that β̄ =∑D

�=1 v̄(�) and

(39)

⎧⎪⎨
⎪⎩

β̄s1:� − ys1:� = −λ′w′
�v̄

(�)

‖v̄(�)‖2
if v̄(�) �= 0,

‖β̄s1:� − ys1:�‖2 ≤ λ′w′
� if v̄(�) = 0.

By the optimality condition stated in Lemma 11 of
Obozinski, Jacob and Vert (2011), this establishes that
β̄ = β̂ . Let 0 = k0 < k1 < · · · < km ≤ D be the se-
quence of knots determined by Algorithm 3 such that
ki maximizes f (·, ki−1) and f (ki, ki−1) > λ′ for i =
1, . . . ,m.

If m = 0, that is, k0 = 0 is the only knot, we have
β̄ = 0. Consider v̄(�) = 0 for � = 1, . . . ,D, which sat-
isfy β̄ = ∑D

�=1 v̄(�). Moreover, we get ‖ys1:�‖2/w
′
� ≤

λ′ for � = 1, . . . ,D directly from the algorithm. By
Lemma 11 of Obozinski, Jacob and Vert (2011),
β̄ = β̂ .

Now consider m ≥ 1. We first prove an inequality
in f (j, k) in Lemma 9 when (k, j) are two nearest
knots.

LEMMA 9. Let 0 = k0 < k1 < · · · < km ≤ D be the
sequence of knots. We have the following inequality:

f (kj−1, kj−2) ≥ f (kj , kj−1) for j = 2, . . . ,m.

PROOF. Applying Algorithm 3 yields that for j =
2, . . . ,m,

f (kj−1, kj−2) ≥ f (kj , kj−2)

⇒
‖ys(kj−2+1):kj−1

‖2√
w′2

kj−1
− w′2

kj−2

≥
‖ys(kj−2+1):kj ‖2√

w′2
kj

− w′2
kj−2

⇒
w′2

kj−1
− w′2

kj−2

‖ys(kj−2+1):kj−1
‖2

2

≤
w′2

kj
− w′2

kj−2

‖ys(kj−2+1):kj ‖2
2

⇒
w′2

kj−1
− w′2

kj−2

‖ys(kj−2+1):kj−1
‖2

2

−
w′2

kj−1
− w′2

kj−2

‖ys(kj−2+1):kj ‖2
2

≤
w′2

kj
− w′2

kj−2

‖ys(kj−2+1):kj ‖2
2

−
w′2

kj−1
− w′2

kj−2

‖ys(kj−2+1):kj ‖2
2



HIERARCHICAL SPARSE MODELING 551

⇒
(w′2

kj−1
− w′2

kj−2
)‖ys(kj−1+1):kj ‖2

2

‖ys(kj−2+1):kj−1
‖2

2‖ys(kj−2+1):kj ‖2
2

≤
w′2

kj
− w′2

kj−1

‖ys(kj−2+1):kj ‖2
2

⇒
w′2

kj−1
− w′2

kj−2

‖ys(kj−2+1):kj−1
‖2

2

≤
w′2

kj
− w′2

kj−1

‖ys(kj−1+1):kj ‖2
2

⇒
√

w′2
kj−1

− w′2
kj−2

‖ys(kj−2+1):kj−1
‖2

≤
√

w′2
kj

− w′2
kj−1

‖ys(kj−1+1):kj ‖2

⇒ 1

f (kj−1, kj−2)
≤ 1

f (kj , kj−1)

⇒ f (kj−1, kj−2) ≥ f (kj , kj−1). �
For notational simplicity, we let aj = f (kj , kj−1)

for j = 1, . . . ,m, and let

Aj =
j∑

i=1

ys(ki−1+1):ki
ai

.

We observe that

‖Aj‖2
2 =

j∑
i=1

‖ys(ki−1+1):ki ‖2
2

a2
i

=
j∑

i=1

(
w′2

ki
− w′2

ki−1

)= w′2
kj

.

(40)

Now consider the following {v̄(�)}D�=1 such that
supp(v̄(�)) ⊆ s1:� and v̄(�) ∈ Rp ∀�.

• For � /∈ {k1, . . . , km},
v̄(�) = 0.

• For � = kj for j = 1, . . . ,m − 1,

v̄(kj ) = SG

(
ajAj ,w

′
kj

aj+1
)

= Aj · aj ·
(

1 −
w′

kj
aj+1

aj‖Aj‖2

)
+

= Aj · (aj − aj+1)

by (40) and aj ≥ aj+1 from Lemma 9.
• For � = km,

v̄(km) = SG

(
amAm,λ′w′

km

)
= amAm ·

(
1 − λ′w′

km

am‖Am‖2

)
+

= Am · (am − λ′)
by am > λ′ from Algorithm 3.

Because of the very definition of β̄ in Algorithm 3, we
can express β̄ in the following form:

• For 1 ≤ i ≤ m,

β̄s(ki−1+1):ki = SG

(
ys(ki−1+1):ki , λ

′√w′2
ki

− w′2
ki−1

)
.

• If km < D, β̄s(km+1):D = 0.

We show that β̄ =∑D
�=1 v̄(�) through steps (a), (b) and

(c) below.

(a) For i = 1, . . . ,m − 1,

D∑
�=1

v̄(�)
s(ki−1+1):ki

=
m∑

j=i

v̄
(kj )
s(ki−1+1):ki

=
m−1∑
j=i

v̄
(kj )
s(ki−1+1):ki + v̄(km)

s(ki−1+1):ki

= ys(ki−1+1):ki
ai

m−1∑
j=i

(aj − aj+1)

+ ys(ki−1+1):ki
ai

(
am − λ′)

= ys(ki−1+1):ki
ai

(
ai − λ′)

= ys(ki−1+1):ki

(
1 − λ′

ai

)

= SG

(
ys(ki−1+1):ki , λ

′√w′2
ki

− w′2
ki−1

)
= β̄s(ki−1+1):ki .

(b) For i = m,

D∑
�=1

v̄(�)
s(ki−1+1):ki

= v̄(km)
s(km−1+1):km

= ys(km−1+1):km
am

(
am − λ′)

= ys(km−1+1):km

(
1 − λ′

am

)

= SG

(
ys(km−1+1):km , λ′√w′2

km
− w′2

km−1

)
= β̄s(km−1+1):km .

(c) If km < D,
∑D

�=1 v̄
(�)
s(km+1):D = 0 = β̄s(km+1):D .

Combining (a), (b) and (c) we have established β̄ =∑D
�=1 v̄(�). We next show (39) is true through steps (a′)

and (b′) below.
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(a′) By definition, v̄(�) �= 0 if and only if � ∈ {k1, . . . ,

km}. For � = ki ∈ {k1, . . . , km}, we have

β̄s1:ki − ys1:ki

=
i∑

j=1

SG

(
ys(kj−1+1):kj , λ

′
√

w′2
kj

− w′2
kj−1

)

− ys1:ki

=
i∑

j=1

ys(kj−1+1):kj
(
1 − λ′a−1

j

)− ys1:ki

=
i∑

j=1

−
λ′ys(kj−1+1):kj

aj

= −λ′Ai.

By the definition of {v̄(�)}D�=1, we have

−λ′w′
ki
v̄(ki )

‖v̄(ki )‖2
= −λ′w′

ki
Ai

‖Ai‖2
= −λ′Ai.

Thus, β̄s1:� − ys1:� = −λ′w′
�v̄

(�)

‖v̄(�)‖2
if v̄(�) �= 0.

(b′) By definition, v̄(�) = 0 if and only if � /∈ {k1, . . . ,

km}. We discuss � in the following three cases.
(i) If ki−1 < � < ki for some i = 2, . . . ,m, by

Algorithm 3 we have

β̄s1:� − ys1:� = −λ′Ai−1 − λ′ys(ki−1+1):�
ai

.

Taking �2-norm on both sides yields

‖β̄s1:� − ys1:�‖2

=λ′

√√√√√w′2
ki−1

+ (w′2
ki

−w′2
ki−1

)‖ys(ki−1+1):�‖2
2

‖ys(ki−1+1):ki‖2
2

.
(41)

By the Algorithm 3, we know

ki = arg max
i′∈{ki−1+1,...,D}

f
(
i ′, ki−1

)
,

so that ai ≥ f (�, ki−1) which leads to

‖ys(ki−1+1):ki ‖2
2

(w′2
ki

− w′2
ki−1

)
≥ ‖ys(ki−1+1):�‖2

2

(w′2
� − w′2

ki−1
)

⇒ (w′2
ki

− w′2
ki−1

)‖ys(ki−1+1):�‖2
2

‖ys(ki−1+1):ki ‖2
2

≤ w′2
� − w′2

ki−1
.

(42)

Combining (41) and (42) yields

‖β̄s1:� − ys1:�‖2 ≤ λ′√w′2
ki−1

+ w′2
� − w′2

ki−1

= λ′w′
�.

(ii) If � < k1, β̄s1:� − ys1:� = −λ′ys1:�/a1. Since
k1 = arg maxi′∈{1,...,D} f (i ′,0), we have a1 ≥
f (�,0) which leads to

‖ys1:k1
‖2

2

w′2
k1

≥ ‖ys1:�‖′2
2

w′2
�

⇒ w′2
k1

‖ys1:�‖2
2

‖ys1:k1
‖2

2

≤ w′2
� .

(43)

By (43) we get

‖β̄s1:� − ys1:�‖2 =
√√√√λ′2w′2

k1
‖ys1:�‖2

2

‖ys1:k1
‖2

2

≤ λ′w′
�.

(iii) If � > km (provided km < D),

β̄s1:� − ys1:� = −λ′Am − ys(km+1):� .

Since km is the last knot, we know that

max
i′∈{km+1,...,D}

f
(
i ′, km

)≤ λ′.

Thus, f (�, km) ≤ λ′ which leads to

‖ys(km+1):�‖2
2 ≤ λ′2(w′2

� − w′2
km

)
.

Thus,

‖β̄s1:� − ys1:�‖2 =
√

λ′2‖Am‖2
2 + ‖ys(km+1):�‖2

2

=
√

λ′2w′2
km

+ ‖ys(km+1):�‖2
2

≤
√

λ′2w′2
km

+ λ′2(w′2
� − w′2

km

)
= λ′w′

�.

Combining (a′) and (b′) we prove (39) holds. Since
the second optimality condition in Lemma 11 of
Obozinski, Jacob and Vert (2011) is satisfied, we have
β̄ = β̂ .

APPENDIX D: COMPUTATIONAL COMPLEXITY
OF ALGORITHM 3

Let zi = ‖ysi‖2
2 for i = 1, . . . ,D. We begin by com-

puting all the zi , which takes O(p) operations. To com-
pute the ith knot requires computing f (j, ki−1) for
j = ki−1 + 1, . . . ,D.

To compute f (k + 1, k)2 = zk+1/(w
2
k+1 − w2

k) re-
quires constant time; also, once f (j, k) has been com-
puted, we can get f (j + 1, k) in constant time since

f (j + 1, k)2 = (w2
j − w2

k)f (j, k)2 + zj+1

(w2
j+1 − w2

k)
.
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Thus computing all the f (·, ki−1)’s requires
O(D − ki−1) operations. Finding the maximizer in
line 5 takes an additional O(D − ki−1) operations.
Thus, in total finding all knots requires on the order
of

p +
m∑

i=1

(D − ki−1)

operations. Once the knots have been found, the group-
wise soft-thresholding steps require only an addi-
tional O(p) work. Therefore, the algorithm requires
O(p + mD) operations. Since the number of knots is
not known a priori, the worst case is O(p + D2).

APPENDIX E: COMPUTATIONAL COMPLEXITY
OF GL FOR A DIRECTED PATH GRAPH

E.1 GL Proximal Operator

By Jenatton et al.’s (2011) result, Algorithm 1 will
converge in a single pass when D is a directed path
graph if we cycle through the groups gi = s(D+1−i):D
from smallest to largest. The algorithm can be stated
simply as follows: Initialize β0 = y and then for i =
1, . . . ,D, set

βi
gi

←
(

1 − λwi

‖βi−1
gi ‖2

)
+
βi−1

gi
,

and output βD as the solution. As in Appendix D,
we begin by computing zi = ‖ysi‖2

2 for i = 1, . . . ,D,
which can be done in O(p) operations. Define ai =
‖βi−1

gi
‖2

2 and observe that a1 = z1 and that, for i ≥ 1,

ai+1 = zi+1 + ∥∥βi
gi

∥∥2
2 = zi+1 + (

a
1/2
i − λwi

)2
+.

Thus, we can compute a1, . . . , aD in O(D) opera-
tions. For � = 1, . . . ,D, we form b� =∏D

i=�(1− λwi√
ai

)+
[which can be done in O(D) operations] and observe
that

βD
s�

= b�ys� .

This final scaling of the elements of y takes O(p).
Thus, computing the GL proximal operator can be
done in O(p + D) operations.

E.2 Modified GL Proximal Operator

When we introduced �
d(D)
mGL in (16) of Section 3,

we defined the penalty in the one parameter per node
case. Following Bien, Bunea and Xiao (2016), we now
generalize the definition to the situation of multiple
parameters per node in a directed path graph D. For

� = 1, . . . ,D, we let g� = s�:D . Let w�,m =
√|s�|

m−�+1

Algorithm 5 Solve proximal operator of modified GL
in (44)

1: βD+1 ← y

2: for i = D, . . . ,1 do

3: Solve λ2 =∑D
m=i

w2
i,m

(w2
i,m+ν̂(i))2 ‖βi+1

sm
‖2

2 for ν̂(i)

4: for m = 1, . . . ,D do
5: βi

sm
← [ν̂(i)]+

w2
i,m+[ν̂(i)]+ βi+1

sm

6: end for
7: end for

Output: β1

where 1 ≤ � ≤ m ≤ D be the weight applied to sm in
g�. The modified GL penalty under a path graph can be
written as

(44) �
d(D)
mGL

(
β; {w�,m})= D∑

�=1

√√√√ D∑
m=�

w2
�,m‖βsm‖2

2,

By Jenatton et al.’s (2011) result, a single pass of BCD
from gD to g1 will solve the dual problem. Bien, Bunea
and Xiao (2016) proves the modified version of BCD
in the context of covariance estimation, which itself is
a special case of directed path graphs. By Theorem 2
of Bien, Bunea and Xiao (2016), we have the algorithm
stated in Algorithm 5.

We can define t ∈ Rp such that for m = 1, . . . ,D,

(tsm)j =

⎧⎪⎪⎨
⎪⎪⎩

m∑
i=1

[ν̂(i)]+
w2

i,m + [ν̂(i)]+
if j ∈ sm,

0 otherwise.

The solution β̂ can be written as β̂ = t ∗ y where ∗
denotes elementwise multiplication. Provided all the
{ν̂(i)}i=1,...D have been found, computing t requires
O(
∑D

m=1 m) = O(D2) operations. Performing ele-
mentwise multiplication to get β̂ can be done in O(p)

operations.
To find a root {ν̂(i)}i=1,...D , Bien, Bunea and Xiao

(2016) shows that ν̂(i) ≤ 0 when λ2 ≥∑D
m=i ‖βi+1

sm
‖2

2/

w2
i,m. In that case, βi

gi
= 0. If parameters corresponding

to {gD, . . . , g
K̂+1} are zeroed out, only the last K̂ roots

need to be numerically computed. We start by comput-
ing zi = ‖ysi‖2

2 for i = 1, . . . ,D, which can be done in
O(p) operations. Then do the following two steps:

1. Compute zi/|si | for i = D, . . . ,1. Let i = K̂ be the
first time λ2 < zi/|si |. The amount of operations is

O(D). At the end of this part, we have βK̂+1
g
K̂+1

= 0 if

K̂ < D.
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2. For i ∈ {K̂, . . . ,1}, we need to find ν such that

f (ν) = 1 − λ√∑D
m=i

w2
i,m‖βi+1

sm ‖2
2

(w2
i,m+ν)2

= 1 − λ√∑K̂
m=i

w2
i,m‖βi+1

sm ‖2
2

(w2
i,m+ν)2

= 0,

which can be solved using Newton’s method. At
each iteration of Newton’s method, we need to com-
pute

f (ν)

f ′(ν)
=
(

K̂∑
m=i

w2
i,m‖βi+1

sm
‖2

2

(w2
i,m + ν)2

− λ−1

(
K̂∑

m=i

w2
i,m‖βi+1

sm
‖2

2

(w2
i,m + ν)2

)1.5)

/ K̂∑
m=i

w2
i,m‖βi+1

sm
‖2

2

(w2
i,m + ν)3

.

Evaluating ‖βi+1
sm

‖2
2 can be done efficiently. For

i = K̂, . . . ,1 and m = i, . . . , K̂ , define a(i,m) =
‖βi+1

sm
‖2

2. It is obvious that a(i,i) = ‖ysi‖2
2 = zi for

i = K̂, . . . ,1. For m ≥ i, we have

a(i−1,m) = ∥∥βi
sm

∥∥2
2 =

( [ν̂(i)]+
w2

i,m + [ν̂(i)]+
)2

a(i,m).

Applying this update, we can compute all {a(i,m)}
with i ≤ m in a total of O(

∑K̂
m=1 m) = O(K̂2) op-

erations. At a fixed i = K̂, . . . ,1, provided all the
needed {a(i,m)} are computed already, evaluating
f (ν)/f ′(ν) requires O(K̂ − i) per ν value. New-
ton’s method is known for its quadratic convergence
rate once the estimate gets “near” a root (Proposi-
tion 1.4.1 of Bertsekas, 1999). Therefore, the num-
ber of significant digits double with each iteration
when the estimate gets close to the root. For n-
digit precision, Newton’s method needs O(log(n) ·
(K̂ − i)) operations if the initial point is good.
Therefore, the total amount of computations for
Step 2 is

O

(
K̂2 + log(n)

K̂∑
i=1

(K̂ − i)

)
= O

(
log(n)K̂2)

= O
(
D2 log(n)

)
.

Combing the above derivation, the proximal operator
of modified GL can be computed in O(p + D2 log(n))

operations, where n is the pre-determined number of
digits of precision for Newton’s method.

APPENDIX F: PROOF OF LEMMA 4

Recalling that G1, . . . ,GL is a partition of a(D), we
can write Problem (8) as the following:

min
β∈Rp

{
F(β) + λ�

a(D)
LOG(β;w)

}

⇔ min
{v(g)∈Rp}g∈a(D)

{
F

(
L∑

�=1

∑
g∈G�

v(g)

)

+ λ

L∑
�=1

∑
g∈G�

wg

∥∥v(g)
∥∥

2

s.t. v
(g)
gc = 0 ∀g ∈ a(D)

}

⇔ min
{v(g)∈Rp}g∈a(D)

{
F

(
L∑

�=1

β(�)

)

+ λ

L∑
�=1

∑
g∈G�

wg

∥∥v(g)
∥∥

2

s.t. v
(g)
gc = 0 ∀g ∈ a(D), β(�) = ∑

g∈G�

v(g)

}
.

(45)

Finally, by definition of the LOG penalty, we can write
(45) as

min
{β(�)∈Rp}L�=1

{
F

(
L∑

�=1

β(�)

)

+ λ

L∑
�=1

�
G�

LOG

(
β(�);wP�

)

s.t. supp
(
β(�))⊂ ⋃

g∈G�

g

}
,

where wP�
= {wg : g ∈ G′

�}.

APPENDIX G: SIMPLE ALGORITHM FOR PATH
DECOMPOSITION OF DAG

Algorithm 6 presents a simple greedy algorithm for
decomposing D into paths.
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Algorithm 6 Path decomposition of a DAG D
Input: D

1: M ←∅ and L ← 1
2: Form set of “root nodes” R = {si :

ancestors(D; si) = {si}}.
3: for si ∈ R do
4: while descendants(D; si)�M do
5: Choose the path P from si for which

|P \M| is largest.
6: Define P� ←P \M
7: M ← M∪P�.
8: L ← L + 1
9: end while

10: end for
Output: P1, . . . ,PL.

APPENDIX H: PROOF OF LEMMA 5

By Lemma 4, Problem (8) with

F(β) = 1

2
‖y − Xβ‖2

2

can be written in terms of {β(�)}L�=1 subject to β =∑L
�=1 β(�):

min
{β(�)∈Rp}L�=1

1

2

∥∥∥∥∥y − X
L∑

�=1

β(�)

∥∥∥∥∥
2

2

+ λ

L∑
�=1

�
G�

LOG

(
β(�);wP�

)

s.t. supp
(
β(�))⊆ g(�) ∀� = 1, . . . ,L.

(46)

Then (19) follows by substituting {β(�)} with {γ (�)} in
the squared loss of (46). The augmented Lagrangian
subject to supp(β(�)) ⊆ g(�) and supp(γ (�)) ⊆ g(�) ∀�

is

L
({

β(�)}, {γ (�)}, {u(�)})

= 1

2

∥∥∥∥∥y − X
L∑

�=1

γ (�)

∥∥∥∥∥
2

2

+ λ

L∑
�=1

�
G�

LOG

(
β(�);wP�

)

+
〈⎛⎜⎜⎝

u(1)

...

u(L)

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

β(1) − γ (1)

...

β(L) − γ (L)

⎞
⎟⎟⎠
〉

+ ρ

2

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

β(1) − γ (1)

...

β(L) − γ (L)

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥

2

2

= 1

2

∥∥∥∥∥y − X
L∑

�=1

γ (�)

∥∥∥∥∥
2

2

+ λ

L∑
�=1

�
G�

LOG

(
β(�);wP�

)

+ ρ

2

L∑
�=1

∥∥∥∥β(�) − γ (�) + 1

ρ
u(�)

∥∥∥∥2

2

− 1

2ρ

L∑
�=1

∥∥u(�)
∥∥2

2.

Alternating Direction Method of Multipliers (ADMM)
iteratively updates {γ (�)} and {β(�)} by optimizing the
corresponding part in the augmented Lagrangian.

Step 1: Optimize over {γ (�)}. For � = 1, . . . ,L,

γ̂ (�) = arg min
γ (�)∈Rp

1

2

∥∥∥∥∥y − X
L∑

�′=1

γ (�′)
∥∥∥∥∥

2

2

+ ρ

2

∥∥∥∥β̂(�) − γ (�) + 1

ρ
û(�)

∥∥∥∥2

2

s.t. supp
(
γ (�))⊆ g(�).

Solving the gradient with respect to γ
(�)

|g(�) equal to zero
yields

XT
|g(�)

(
X
∑
�′

γ (�′) − y

)

+ ρ

(
γ

(�)

|g(�) − β̂
(�)

|g(�) − 1

ρ
û

(�)

|g(�)

)
= 0.

It follows that

γ
(�)

|g(�) = β̂
(�)

|g(�) + 1

ρ
û

(�)

|g(�)

+ 1

ρ
XT

|g(�)

(
y − X

∑
�′

γ (�′)
)

= β̂
(�)

|g(�) + 1

ρ
û

(�)

|g(�)

+ 1

ρ
XT

|g(�)

(
y −∑

�′
X|g(�′)γ

(�′)
|g(�′)

)
.

(47)

Left-multiplying both sides of (47) by X|g(�) yields

X|g(�)γ
(�)

|g(�) = X|g(�)

(
β̂

(�)

|g(�) + 1

ρ
û

(�)

|g(�)

)
(48)

+ 1

ρ
X|g(�)XT

|g(�)

(
y −∑

�′
X|g(�′)γ

(�′)
|g(�′)

)
.
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Summing up (48) over all �’s yields∑
�

X|g(�)γ
(�)

|g(�)

=∑
�

[
X|g(�)

(
β̂

(�)

|g(�) + 1

ρ
û

(�)

|g(�)

)

+ 1

ρ
X|g(�)XT

|g(�)y

]

− 1

ρ

∑
�

X|g(�)XT
|g(�)

∑
�′

X|g(�′)γ
(�′)
|g(�′)

⇒
(
I + 1

ρ

∑
�

X|g(�)XT
|g(�)

)∑
�

X|g(�)γ
(�)

|g(�)

=∑
�

[
X|g(�)

(
β̂

(�)

|g(�) + 1

ρ
û

(�)

|g(�)

)

+ 1

ρ
X|g(�)XT

|g(�)y

]

⇒ ∑
�

X|g(�)γ
(�)

|g(�)

=
(
I + 1

ρ

∑
�

X|g(�)XT
|g(�)

)−1

·∑
�

[
X|g(�)

(
β̂

(�)

|g(�) + 1

ρ
û

(�)

|g(�)

)

+ 1

ρ
X|g(�)XT

|g(�)y

]
.

(49)

Substituting (49) into (47) yields

γ̂
(�)

|g(�) = β̂
(�)

|g(�) + 1

ρ
û

(�)

|g(�) + 1

ρ
XT

|g(�)(y − ),

where  :=∑
� X|g(�)γ

(�)

|g(�) in (49).

Step 2: Optimize over {β(�)}. For � = 1, . . . ,L,

β̂(�) = arg min
β(�)∈Rp

L∑
�=1

{
1

2

∥∥∥∥β(�) −
(
γ̂ (�) − 1

ρ
û(�)

)∥∥∥∥2

2

+ λ

ρ
�

G�

LOG

(
β(�);wP�

)}

s.t. supp
(
β(�))⊆ g(�),

β̂
(�)

|g(�) = ProxG�

LOG

((
γ̂

(�)

|g(�) − 1

ρ
û

(�)

|g(�)

)
; λ

ρ
,wP�

)
.

All the β̂
(�)

|g(�) ’s can be efficiently updated using path-
based BCD in Algorithm 4.

Step 3: û(�) ← û(�)+ρ(γ̂ (�)− β̂(�)) for � = 1, . . . ,L.

APPENDIX I: PROOF OF THEOREM 1

If K = p − 1, then K̂ ≤ K .
If K < p − 1, let K̄ be the largest knot such that

K̄ ≤ K . Then K̂ ≥ K̄ . We will show that ∀k > K

(50)
‖Ss(K̄+1):k‖2

F

|s(K̄+1):k|
≤ λ2

through the following two cases.
Case 1: If K̄ = K , then ∀k > K , we have

‖Ss(K̄+1):k‖2
F

|s(K̄+1):k|
=

‖Ss(K̄+1):k − �∗
s(K̄+1):k‖2

F

|s(K̄+1):k|
≤ max

ij
|Sij − �∗

ij |2 ≤ λ2.

(51)

Case 2: If K̄ < K , then ∀k > K , we have

‖Ss(K̄+1):k‖2
F = ‖Ss(K̄+1):K ‖2

F

+ ∥∥Ss(K+1):k − �∗
s(K+1):k

∥∥2
F .

(52)

Since K̄ is the largest knot before or at K , by Algo-
rithm 7 we have ∀i = K̄ + 1, . . . ,K either (a) or (b) is
true:

(a) ‖Ss(K̄+1):i‖F ≤ λ|s(K̄+1):i |1/2,

(b) ∃k̄ > i s.t. ‖Ss(K̄+1):i‖F ≤ ‖Ss(K̄+1):k̄‖F
|s(K̄+1):i |1/2

|s(K̄+1):k̄ |1/2 .

If (a) holds for i = K , then (52) becomes

‖Ss(K̄+1):k‖2
F ≤ λ2|s(K̄+1):K | + ∥∥Ss(K+1):k − �∗

s(K+1):k
∥∥2
F

≤ λ2|s(K̄+1):K | + λ2|s(K+1):k|
= λ2|s(K̄+1):k|.

If (b) holds for i = K , then ∃k̄ > K such that

‖Ss(K̄+1):K ‖2
F ≤ ‖Ss(K̄+1):k̄‖2

F

|s(K̄+1):K |
|s(K̄+1):k̄|

= (‖Ss(K̄+1):K ‖2
F + ‖Ss(K+1):k̄‖2

F

)
· |s(K̄+1):K |

|s(K̄+1):k̄|
.

Let α = |s(K̄+1):K |
|s(K̄+1):k̄ | . Then,

‖Ss(K̄+1):K ‖2
F (1 − α) ≤ ∥∥(S − �∗)

(K+1):k̄
∥∥2
F α

⇒ ‖Ss(K̄+1):K ‖2
F ≤

(
α

1 − α

)
λ2|s(K+1):k̄|.

(53)
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Let a = |s(K̄+1):K | and b = |s(K+1):k̄|. Then α = a
a+b

.
It can be derived that ( α

1−α
)b = a. Therefore,(

α

1 − α

)
b ≤ a

⇒
(

α

1 − α

)
|s(K+1):k̄| ≤ |s(K̄+1):K |.

(54)

Combining (53) and (54) yields

‖Ss(K̄+1):K ‖2
F ≤

(
α

1 − α

)
λ2|s(K+1):k̄|

≤ λ2|s(K̄+1):K |.
(55)

Considering ‖Ss(K+1):k‖2
F = ‖Ss(K+1):k − �∗

s(K+1):k‖2
F ≤

λ2|s(K+1):k| and (55), we have

‖Ss(K̄+1):k‖2
F ≤ λ2|s(K̄+1):k|.

In both Case 1 and Case 2, we have
‖Ss

(K̄+1):k ‖2
F

|s(K̄+1):k | ≤ λ2.

By Algorithm 7, K̄ is the last knot in both cases.
Hence, K̂ = K̄ ≤ K .

APPENDIX J: PROOF OF THEOREM 2

Let K̃ be the largest knot such that K̃ < K . Being on
the set Ax implies that, for any k > K̃ ,

‖Ss
(K̃+1):k‖F ≥ ∥∥�∗

s
(K̃+1):k

∥∥
F

− ∥∥Ss
(K̃+1):k − �∗

s
(K̃+1):k

∥∥
F

≥ ∥∥�∗
s
(K̃+1):k

∥∥
F − λ

√
|s

(K̃+1):k|.
(56)

From (56), we have

max
k≥K

{‖Ss
(K̃+1):k‖F

|s
(K̃+1):k|

1
2

}
≥ max

k≥K

{‖�∗
s
(K̃+1):k‖F

|s
(K̃+1):k|

1
2

}
− λ

≥
‖�∗

s
(K̃+1):K ‖F

|s
(K̃+1):K | 1

2

− λ

> 2λ − λ = λ.

(57)

where the last equality holds by Assumption (21),
given K̃ + 1 ≤ K . Equivalently, ∃k ≥ K such that

(58)
‖Ss

(K̃+1):k‖2
F

|s
(K̃+1):k|

> λ2.

There exists a knot k ≥ K when applying Algorithm 7
to solve the problem. Hence, K̂ ≥ K .

APPENDIX K: PROOF OF THEOREM 3

We can rewrite Problem (20) in terms of the latent
variables {V(k)}p−1

k=1 :

{
V̂(k)}p−1

k=1 = arg min
V(1),...,V(p−1)∈Rp×p

{
1

2

∥∥∥∥∥
p−1∑
k=1

V(k) − S−
∥∥∥∥∥

2

F

+ λ

p−1∑
k=1

wk

∥∥V(k)
∥∥
F(59)

s.t. supp
(
V(k))⊆ s1:k

}

so that �̂
LOG− =∑p−1

k=1 V̂(k). In addition, �̂
LOG
s0

= Ss0

because the LOG penalty does not apply to the diago-
nal elements. Taking subgradient of the objective func-
tion in (59) with respect to V(K) where K is the band-
width of �∗ yields

(60) 0 ∈
(p−1∑

k=1

V̂(k) − S−
)

s1:K
+ λwK∂

∥∥V(K)
∥∥
F .

When V(K) �= 0,

(61) ∂
∥∥V(K)

∥∥
F = V(K)

‖V(K)‖F

.

When V(K) = 0,

∂
∥∥V(K)

∥∥
F = {

Z ∈ Rp×p :
‖U‖F ≥ ∥∥V(K)

∥∥
F + 〈

Z,U − V(k)〉
∀U ∈Rp×p}

= {
Z ∈ Rp×p : ‖U‖F ≥ 〈Z,U〉

∀U ∈Rp×p}
= {

Z ∈ Rp×p : ‖Z‖F ≤ 1
}
.

(62)

Combining (60), (61) and (62) we have∥∥∥∥∥
(p−1∑

k=1

V̂(k) − S−
)

s1:K

∥∥∥∥∥
F

≤ λwK

⇔ ∥∥(�̂LOG− − S−)
s1:K

∥∥
F ≤ λwK

⇔ ∥∥(�̂LOG − S
)
s1:K

∥∥
F ≤ λwK.

(63)

Furthermore, on Ax we have

λ2 ≥ max
i=j

∣∣Sij − �∗
ij

∣∣2 ≥ 1

p

∥∥Ss0 − �∗
s0

∥∥2
F ,(64)

λ ≥ max
i,j

∣∣Sij − �∗
ij

∣∣≥ 1√|s1:K |
∥∥(S − �∗)

s1:K
∥∥
F .(65)
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Using triangle inequality, (63) and (65) we have

∥∥(�̂LOG − �∗)
s1:K

∥∥
F

≤ ∥∥(�̂LOG − S
)
s1:K

∥∥
F + ∥∥(S − �∗)

s1:K
∥∥
F

≤ λwK + λ
√|s1:K |

= 2λ
√|s1:K |.

(66)

Using (64) and (66) we have

∥∥�̂LOG − �∗∥∥2
F = ∥∥(�̂LOG − �∗)

s1:K
∥∥2
F

+ ∥∥�̂LOG
s0

− �∗
s0

∥∥2
F

= ∥∥(�̂LOG − �∗)
s1:K

∥∥2
F

+ ∥∥Ss0 − �∗
s0

∥∥2
F

≤ 4λ2|s1:K | + λ2p

≤ 4x2pK logp

n
+ x2p logp

n
.

(67)

By Theorem 1, K̂ ≤ K with high probability when λ ≥
x
√

logp/n. Therefore, the equality in (67) holds with
high probability. Hence,

∥∥�̂LOG − �∗∥∥2
F � pK logp/n.

APPENDIX L: ALGORITHM 7 FOR SOLVING (20),
MODIFIED FROM ALGORITHM 3

Algorithm 7 Solve for �̂
LOG

defined by Problem (20)

Input: λ ≥ 0, S ∈ Rp×p and a(D).
1: � ← Ss0

2: k ← 0
3: while k < p − 1 do
4: K ← arg maxj :j>k f (j, k)

� f (j, k) = ‖Ss(k+1):j ‖F√|s(k+1):j | for 0 ≤ k < j ≤ p − 1

5: if f (K,k) ≤ λ then
6: break
7: end if
8: �s(k+1):K ← SG(Ss(k+1):K ,λ

√|s(k+1):K |)
9: k ← K

10: end while
Output: �

APPENDIX M: PSD PROBABILITY (FIGURE 12)
AND MINIMUM EIGENVALUES (FIGURE 13) OF

THE THREE COVARIANCE ESTIMATORS

FIG. 12. For the three estimators (�̂
mGL

, �̂
GL

, �̂
LOG

) in mov-
ing-average pattern, probability of their estimates being PSD at
λbest.

FIG. 13. For the three estimators (�̂
LOG

, �̂
mGL

, �̂
GL

) in mov-
ing-average pattern, minimum eigenvalues of 50 samples at λbest.
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FIG. 13. (Continued).
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