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Spherical Process Models for Global
Spatial Statistics
Jaehong Jeong, Mikyoung Jun and Marc G. Genton

Abstract. Statistical models used in geophysical, environmental, and cli-
mate science applications must reflect the curvature of the spatial domain in
global data. Over the past few decades, statisticians have developed covari-
ance models that capture the spatial and temporal behavior of these global
data sets. Though the geodesic distance is the most natural metric for mea-
suring distance on the surface of a sphere, mathematical limitations have
compelled statisticians to use the chordal distance to compute the covariance
matrix in many applications instead, which may cause physically unrealistic
distortions. Therefore, covariance functions directly defined on a sphere us-
ing the geodesic distance are needed. We discuss the issues that arise when
dealing with spherical data sets on a global scale and provide references to
recent literature. We review the current approaches to building process mod-
els on spheres, including the differential operator, the stochastic partial dif-
ferential equation, the kernel convolution, and the deformation approaches.
We illustrate realizations obtained from Gaussian processes with different
covariance structures and the use of isotropic and nonstationary covariance
models through deformations and geographical indicators for global surface
temperature data. To assess the suitability of each method, we compare their
log-likelihood values and prediction scores, and we end with a discussion of
related research problems.

Key words and phrases: Axial symmetry, chordal distance, geodesic dis-
tance, nonstationarity, smoothness, sphere.

1. INTRODUCTION

Rapid developments in science and technology have
facilitated the generation of global data sets from many
geophysical applications (Cressie and Johannesson,
2008). When working on a global scale, it is essen-
tial to respect the curvature of the spatial domain, par-
ticularly, with respect to spatial dependence. Geodesic
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(great circle) distance is physically the most natu-
ral distance metric for constructing covariance mod-
els for processes on the surface of a sphere (Gneiting,
2013). However, the mathematical limitations associ-
ated with covariance functions on spheres have en-
couraged the development of approximations based
on the chordal distance instead. As Yadrenko (1983)
and Yaglom (1987) pointed out, isotropic covariance
functions defined on Euclidean spaces can be used on
spheres when coupled with the chordal distance. The
Matérn covariance functions often work better with the
chordal distance than the geodesic distance if the pro-
cess is smooth (Jeong and Jun, 2015a, Guinness and
Fuentes, 2016). However, unless the range of the spa-
tial correlation is small relative to the curvature of the
earth, this approach should be used with caution; the
chosen distances may result in different parameter es-
timations of the covariance structures and a poor pre-
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diction performance at new locations (Banerjee, 2005,
Jeong and Jun, 2015b, Porcu, Bevilacqua and Genton,
2016).

Various covariance functions have been derived from
different construction approaches. Marinucci and Pec-
cati (2011) characterized isotropic Gaussian processes
on spheres in detail for cosmological applications.
Gneiting (2013) discussed methods for generating
valid covariance functions based on the geodesic dis-
tance. Ma (2012) and Du, Ma and Li (2013) charac-
terized covariance and variogram functions for vector-
valued processes in terms of Gegenbauer polynomials,
while Heaton et al. (2014) defined covariance func-
tions via kernel convolution. Porcu, Bevilacqua and
Genton (2016) and Alegría et al. (2017b) offered char-
acterizations of spatio-temporal covariance and cross-
covariance models.

In this paper, we discuss the issues that arise when
modeling spherical data, and we review the current
geostatistical approaches with a focus on covariance
functions for data on a global scale. The remainder of
the paper is organized as follows: Section 2 provides
the theoretical background for processes on the surface
of a sphere. Section 3 addresses covariance models on
spheres in general and Section 4 reviews constructive
approaches to modeling. Section 5 illustrates the re-
alizations obtained from processes with different co-
variance structures and the performance of covariance
models on global surface temperature data. The paper
ends with a discussion in Section 6.

2. THEORETICAL BACKGROUND FOR
PROCESSES ON A SPHERE

2.1 Definitions and Notations

Consider S2 = {x ∈ R
3 : ‖x‖ = R}, where ‖ · ‖ is

the Euclidean norm with center zero (0,0,0) and ra-
dius R ∈ (0,∞), a two-dimensional (2D) spherical
surface embedded in a three-dimensional (3D) Eu-
clidean space, R3. We can parameterize a point on S2

as (R,L, �), where L ∈ [−π/2, π/2] is the latitude
and � ∈ [−π,π ] is the longitude. If we use the Carte-
sian coordinate system, the same point is denoted by
(x, y, z), and x = R cos� cosL, y = R sin� cosL, and
z = R sinL.

We now define Z(L,�) as a stochastic process on
S2 at the latitude L and the longitude �. The process is
isotropic if the covariance of the process depends only
on the distance between the two points on S2. If Z is
Gaussian, then for Z = {Z(L1, �1), . . . ,Z(Ln, �n)}�,
we have Z ∼ Nn(μ,C) with mean vector μ =

{μ(L1, �1), . . . ,μ(Ln, �n)}� and covariance matrix C,
where Cij = cov{Z(Li, �i),Z(Lj , �j )}, i, j =
1, . . . , n. The covariance matrix should be positive def-
inite, that is, a�Ca ≥ 0 for any nonzero vector a ∈ R

n,
any spatial locations (Li, �i)

n
i=1, and any integer n.

For a spatio-temporal random field, we can define
Z(L,�, t) similarly, where t is the index for time.

As mentioned previously, the geodesic distance is
the most natural distance metric on S2. The central an-
gle between two points, (L1, �1) and (L2, �2), on S2

is

θ = arccos
{
sinL1 sinL2

+ cosL1 cosL2 cos (�1 − �2)
}
.

(1)

Therefore, the geodesic distance between these two
points is given by dG = Rθ . We can define the chordal
distance, which is the Euclidean distance in R

3, as
dC = 2R sin (θ/2). Figure 1 illustrates the difference
between the geodesic distance and the chordal distance
on a one-dimensional circle, and shows how the dis-
crepancy between those two distances changes with the
distance between (L1, �1) and (L2, �2).

2.2 Smoothness of Processes on a Sphere

As argued by Guinness and Fuentes (2016), the
notion of a great circle is useful for studying the
derivatives of random functions on S2. Assume that
Z(x),x ∈ S2, is a random process with an isotropic
covariance function C and the Hilbert space of lin-
ear combinations HC of Z, with finite variance. Sup-
pose X is the collection of all points along one great
circle. Then, there is a distance-preserving mapping
φ̃ : X → [0,2π) that associates each point on the great
circle with a unique angle. For some choice of φ̃, de-
fine ZX{φ̃(x)} = Z(x) as the restriction of Z on X.
Then ZX and Z are mean-square differentiable at x if
Z′

X{φ̃(x)} = limhn→0[ZX{φ̃(x)+hn}−ZX{φ̃(x)}]/hn

exists in HC and if Z′
X{φ̃(x)} exists for every X that

contains x.
Efforts have been made to introduce conditions

and covariance functions that can flexibly specify the
smoothness of a process on S2. Hitczenko and Stein
(2012) gave conditions for mean-square differentiabil-
ity when a covariance function is expressed in terms
of its spherical harmonic representation. Lang and
Schwab (2015) gave further results on Hölder conti-
nuity and differentiability of sample paths of the pro-
cess. According to Gneiting (2013), the geodesic dis-
tance cannot be used for any differentiable Matérn
field. Jeong and Jun (2015a) studied processes that al-
low differentiability at the origin, similar to the way



GLOBAL SPATIAL STATISTICS 503

FIG. 1. Chordal vs. geodesic distance on a circle with radius R.

the Matérn covariance function does in Euclidean
spaces. Guinness and Fuentes (2016) proposed a cir-
cular Matérn covariance function and provided con-
ditions that can be used to determine the number of
mean-square derivatives directly from the covariance
function or from its Fourier series representation.

3. COVARIANCE MODELS ON A SPHERE

3.1 Validity of Covariance Functions on a Sphere

According to Schoenberg (1942) and Yaglom (1987),
a covariance function of an isotropic process on S2 can
be expressed as the infinite sum of Legendre polynomi-
als, with nonnegative coefficients and the cosine of the
geodesic distance as their arguments. Schreiner (1997)
showed that such covariance functions are strictly pos-
itive definite if only finitely many coefficients are equal
to zero. The challenge in covariance modeling for
isotropic processes on S2 is that these infinite sums
usually do not have closed forms. Even if there is a
closed form, all of these infinite sums are analytic.
A well-known example of such a closed form is the
Poisson kernel:

Kr(θ) = 1 − r2

(1 − 2r cos θ + r2)3/2 ,

0 ≤ θ ≤ π,0 ≤ r < 1.

(2)

Das (2000) considered linear combinations of the Pois-
son kernel (or other lesser-known closed forms) and
the truncated infinite summation of Legendre polyno-
mials discussed above. This approach clearly provides
valid covariance functions for isotropic processes on
S2. However, all of the covariance functions obtained

in this way are analytic, which may be too smooth for
geophysical processes (Stein, 1999).

We could simply use a Euclidean distance-based
isotropic covariance function on a plane for isotropic
processes on S2. However, the resulting model may
not be valid with geodesic distances. For example,
the Gaussian covariance function, C(θ) = exp (−αθ2),
α > 0, is not positive definite on S2 with a geodesic
distance unless α = 0 (Gneiting, 1999a). Efforts have
been made to examine the validity of several paramet-
ric covariance functions when used with the geodesic
distance. Gneiting (1998) proposed methods for test-
ing the validity of isotropic covariance functions on
a circle, and Gneiting (1999b) provided conditions
for the validity of a linear covariance function on d-
dimensional balls. Huang, Zhang and Robeson (2011)
and Gneiting (2013) examined the validity of the most
popular covariance functions on S2, for example, the
Matérn class, the spherical model, and the Cauchy co-
variance functions.

Yaglom (1987) provided a simple way of using
isotropic covariance functions based on the Euclidean
distance for processes on S2. The key is using the
chordal distance rather than the geodesic distance on
the sphere. This method can provide a rich class of
isotropic covariance functions allowing the interpre-
tation of scale, support, shape, smoothness, and frac-
tal index for processes (Gneiting, 2013). However, the
chordal distance approach results in limited flexibility
by imposing a lower bound on the isotropic correlation
function, rejecting correlation values below −0.218
from the integral representation of isotropic correla-
tion functions in R

3 (Stein, 1999), and making no al-
lowances for the curvature of the earth. In fact, it is
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locally linear and, according to Gneiting (2013), it is
counter to spherical geometry for large geodesic dis-
tance values, and thus may bring about physically un-
realistic distortions.

3.2 Isotropic Covariance Models on a Sphere

Ma (2015) extended the characterizations of isotro-
pic covariance matrix functions on S2 via Gegenbauer
polynomials from Ma (2012). For example, a func-
tion C(θ) whose entries are continuous on [0, π] is a
covariance function on all spheres (S∞) if and only
if C(θ) = ∑∞

k=0 bk(cos θ)k or C(θ) = g(cos θ), where
bk is a summable sequence of nonnegative numbers,
g(·) is continuous on [−1,1], and g(x) + g(−x) and
g(x) − g(−x) are absolutely monotone on [0,1].

Porcu, Bevilacqua and Genton (2016) proposed sta-
tionary covariance functions for spatio-temporal pro-
cesses on S2, as well as cross-covariance functions
for multivariate random processes defined on S2. They
showed that a class of spatio-temporal covariance func-
tions based on the Euclidean distance (Gneiting, 2002)
can be adapted for processes over time on S2. Alegría
et al. (2017b) extended this to spatio-temporal cross-
covariance functions on S2. Porcu, Bevilacqua and
Genton (2016) also presented a direct construction
of C(θ,u) = ∑∞

k=0 gk(u)(cos θ)k , (θ, u) ∈ [0, π] × R,
where {gk(·)}∞k=0 is an absolutely convergent sequence
of continuous and positive-definite functions.

Closed-form expressions for cross-covariance func-
tions were also introduced by Porcu, Bevilacqua and
Genton (2016) using the geodesic distance and bas-
ing conditions for a valid construction on a completely
monotone function and a Bernstein function. Porcu
and Schilling (2011) and Porcu and Zastavnyi (2011)
gave examples of these two classes of functions. Porcu,
Bevilacqua and Genton (2016) defined the mapping
C(θ) = {σiσjρijCij (θ)}pi,j=1, θ ∈ [0, π], where ρij is
a co-located correlation coefficient, and a completely
monotone function Cij (·) is of the form Cij (θ) =
ϕ[0,π ](θ;λij ) = ∫

[0,∞) exp(−ξθ)μ(dξ ;λij ), with μ

being a positive and bounded measure and λ being
a vector of parameters. Through the above mapping,
they provided examples of cross-covariance functions.
In particular, they showed the validity of the Matérn
cross-covariances (Gneiting, Kleiber and Schlather,
2010, Apanasovich, Genton and Sun, 2012, Kleiber
and Nychka, 2012) when used with the geodesic dis-
tance. However, we highlight that the Matérn covari-
ance function with the geodesic distance is completely
monotonic only for ν ∈ (0,0.5] (Gneiting, 2013) and

cross-covariances obtained through the above con-
struction do not allow for differentiability at the ori-
gin. In practical applications, using the chordal dis-
tance may be preferable to using the geodesic distance
for the flexible multivariate Matérn model due to this
restriction on ν.

North, Wang and Genton (2011) presented deriva-
tions of isotropic covariance models across time on S2

for modeling global temperature fields. The forms were
obtained from simple energy-balance climate models
(i.e., white-noise-driven damped diffusion equations),
which provided some physical insight into the depen-
dencies. The resulting form on the plane belongs to the
Matérn class with smoothness ν = 1 (Whittle’s covari-
ance function) and that on S2 can be written as

C(cos θ) = σ 2
∞∑

k=0

2k + 1

4π

Pk(cos θ)

{λ2k(k + 1) + 1}2 ,(3)

where λ > 0 is the spatial range parameter and Pk is
the Legendre polynomial of degree k.

Smoothing splines (Wahba, 1981) and spherical
wavelets (Li, 1999, Oh and Li, 2004) have been ex-
plored to resolve the problem of modeling processes
on S2 with multi-scale structures that can be spatially
adaptive. These approaches are based on spherical har-
monics. The spherical wavelets in Li (1999) and Oh
and Li (2004) were constructed based on the Poisson
kernel, which is analytic on S2.

3.3 Axially Symmetric Processes

Stationarity on S2 cannot be defined in the same way
as in the planar domain. We can see from (1) that, even
if a process is isotropic on S2 (i.e., isotropy with either
the chordal or the geodesic distance is equivalent), its
covariance function depends on the latitudes through
L1 and L2, not the latitude lag between L1 and L2.
Jones (1963) called a process on S2 axially symmetric
if its covariance depends on the two latitude points and
longitudinal lag. An isotropic process on S2 is axially
symmetric, but axial symmetry does not imply station-
arity in latitude in the usual sense.

Even if a spherical process is axially symmetric,
it can exhibit various nonstationary covariance struc-
tures. First, as mentioned previously, the variance and
the covariance may vary with the latitude in a complex
manner. Second, it may be longitudinally irreversible
(or asymmetric) for some L1, L2, �1, and �2:

cov
{
Z(L1, �1),Z(L2, �2)

}
�= cov

{
Z(L1, �2),Z(L2, �1)

}
.
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In a similar manner, this asymmetry can be extended
to the multivariate case and the space–time case. The
covariance models proposed in Stein (2007), Jun and
Stein (2008), and Jun (2011) are axially symmetric, but
longitudinally irreversible and asymmetric (multivari-
ate or space–time). However, any isotropic process on a
sphere is axially symmetric, longitudinally reversible,
and symmetric (multivariate or space–time). Recently,
Ma (2016a, 2016b, 2016c, 2017) provided a general
form of the covariance matrix structures for axially
symmetric vector random fields, a series representation
for a longitudinally reversible vector random field, and
a time-varying vector random field.

4. CONSTRUCTIVE APPROACHES TO MODELING
ON A SPHERE

4.1 Differential Operator

The key idea of the differential operator approach
(Jun and Stein, 2007) was to apply a differential opera-
tor with respect to latitude and longitude to an isotropic
process in the L2 sense. If Z0 is an isotropic process on
S2, then

Z(L,�) =
{
A(L)

∂

∂L
+ B(L)

cosL

∂

∂�

}
Z0(L, �).(4)

Here, A(L) and B(L) are deterministic functions de-
pending on latitudes, for example, they were modeled
as finite linear combinations of spherical harmonics
(Jun and Stein, 2008). In order for the form in (4) to
be valid, the covariance function of Z0 should be at
least twice differentiable at the origin. As long as we
have an explicit expression for the covariance function
of Z0, we can obtain an explicit expression for the co-
variance function of Z.

Jun (2011) extended the model in (4) to a multi-
variate setting for multivariate nonstationary and ax-
ially symmetric spatial processes on S2. Jun (2014)
showed how the nonstationary Matérn model with spa-
tially varying parameters (Kleiber and Nychka, 2012)
can be coupled with the differential operator approach
to achieve more flexible parametric cross-covariance
models on S2. Jun (2014) also defined conditions on
A(L) and B(L) so that the resulting process is mean-
square continuous at the poles. Here, Matérn covari-
ance functions are used with the chordal distance to
model Z0, but the differential operator approach can
be applied to any process Z0 regardless of the type of
distance used to define the covariance function, as long
as the model is valid and the derivatives of the covari-
ance function exist at the origin.

4.2 Spherical Harmonic Representation

Stein (2007) used a series approach to model axially
symmetric processes on S2. Let

Z(L,�) =
∞∑

n=0

n∑
m=−n

Ynm exp(im�)P̃ m
n (sinL),(5)

with Ynm complex-valued random variables and the
infinite sum converging in a mean-square sense. The
polynomial P m

n is the associated Legendre polyno-
mial of degree n and order m, with P̃ m

n being its
normalized version, such that its squared integral on
[−1,1] is 1. Define δab = 1 if a = b, otherwise
δab = 0. To achieve axial symmetry of Z in (5),
we require that E(Ynm) = δm0μn, with

∑∞
n=0 μ2

n <

∞ and cov(Ynm,Yn′m′) = cm(n,n′)δmm′ , under suit-
able restrictions on the complex-valued covariances
cm(n,n′). Further conditions on cm are given in Stein
(2007), who showed that the axially symmetric covari-
ance function of the process in (5) is given by

C
(
L,L′, �

)
=

∞∑
m=−∞

∞∑
n,n′=|m|

exp(im�)P̃ m
n (sinL)

· P̃ m
n′

(
sinL′)cm

(
n,n′),

(6)

where c−m(n,n′) = cm(n,n′)∗ and c∗
m is the complex

conjugate of cm. In practice, the infinite sums in (6) are
truncated to a finite number of terms.

The spherical harmonic representation is a spectral
representation with forms that allow conclusions to be
drawn about local behaviors of the processes. To de-
scribe the large-scale features of the axially symmetric
process it is useful to consider the covariance function
using truncated series expansions. However, the com-
putational burden associated with parameter estimation
increases rapidly when accurately describing the small-
scale behavior of a process.

4.3 Stochastic Partial Differential Equations

Using a stochastic partial differential equation
(SPDE), Lindgren, Rue and Lindström (2011) showed
the existence of an explicit link between Gaussian ran-
dom fields and Gaussian Markov random fields. A ran-
dom process on R

d with a Matérn covariance function
is a solution to the SPDE:(

κ2 − �
)α/2

X(s) = φW(s),

where W(s) is Gaussian white noise, � is the Laplace
operator, and α = ν + d/2 (Whittle, 1963). Here, the
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Matérn covariance function C has a shape parame-
ter ν > 0, a scale parameter κ > 0, and a variance
parameter φ > 0, with the parametrization C(0) =
φ2(4π)−d/2�(ν)�(ν + d/2)−1κ−2ν .

Bolin and Lindgren (2011) extended the work of
Lindgren, Rue and Lindström (2011) to construct a
flexible class of models from a generalization of the
SPDE models. This class maintains all of the desirable
properties of the Markov approximated Matérn mod-
els, such as the computational efficiency, the conve-
nient extensions to nonstationarity, and the applicabil-
ity to data on general smooth manifolds. Nested SPDE
models introduce nonstationarity by allowing the pa-
rameters κi , bi , and Bi to vary spatially as[

n1∏
i=1

{
κ2
i (s) − �

}αi/2

]
X0(s) = W(s),

X(s) =
[

n2∏
i=1

{
bi(s) + Bi (s)�∇}]

X0(s),

where ∇ is the gradient, bi ∈ R, and Bi ∈ R
d . Here,

X(s) is the weighted sum of a Matérn field X0(s) and
its directional derivative in the direction determined by
the vector Bi . This model is closely related to Jun and
Stein (2008), but in this case the nested SPDEs inher-
ently use the geodesic distance because they are di-
rectly defined on S2 (Bolin and Lindgren, 2011). This
approach is computationally efficient in terms of CPU
time and memory storage (Bradley, Cressie and Shi,
2015, 2016) via the Hilbert space approximation of the
SPDE and the nested SPDE models, making it an at-
tractive option for large data sets.

4.4 Kernel Convolution

Heaton et al. (2014) defined covariance functions on
S2 in terms of the kernel convolution from Higdon
(1998). They defined a spatial process as W(s) =∫

u∈S2 K{u|η(s)}Z(u)du, where K(·) is a nonnegative,
real-valued kernel for which

∫
u∈S2 K(u)du = 1 and

Z(s) is a Gaussian white noise process with variance
σ 2

W . The kernel satisfies symmetric conditions for all
rotations, that is, K(Gs0) = K(G−1s0), where G ∈
SO(3) is a real 3 × 3 orthogonal matrix from the spe-
cial orthogonal group (Marinucci and Peccati, 2011).
If K is stationary, then K{u|η(s2)} = K{G−1u|η(s1)},
and the covariance function is given by

cov
{
W(s1),W(s2)

}
=

∫
u∈S2

K
{
u|η(s1)

}
K

{
u|η(s2)

}
du

=
∫

u∈S2
K

{
u|η(s1)

}
K

{
G−1u|η(s1)

}
du,

(7)

where η contains the common location-specific pa-
rameters (governing the orientation and dispersion)
of the kernel. Heaton et al. (2014) considered the
Kent distribution, which is a generalization of the von
Mises–Fisher distribution defined on S2; see Kent
(1982) for more details. The covariance function in
(7) can be computed effectively by multiplying the
Fourier coefficients using the convolution theorem
(Heaton et al., 2014). By opting for rotation rather than
geodesic distance, these models can capture geometri-
cally anisotropic covariance structures.

Heaton et al. (2014) studied the relationship between
the kernel and covariance functions through spherical
harmonic decomposition. As in Section 4.2, their ap-
proximation via the discrete convolution method may
not be appropriate for describing the small-scale prop-
erties of the process accurately. The kernel convolu-
tion via the Kent distribution could be useful for de-
scribing geometrically anisotropic covariance models
and large-scale behaviors of the processes. However,
in order to describe small-scale properties accurately,
we need to try different kernels or approaches, for ex-
ample, the von Mises–Fisher distribution leads to a
smooth spatial field on S2 because its closed form of
the covariance function has infinitely many derivatives.

4.5 Deformations

Sampson and Guttorp (1992) originally proposed
the spatial deformation approach to modeling nonsta-
tionary spatial covariance structures on R

2. The idea
is that, given a nonstationary process on the plane,
one can deform the geographical coordinate system so
that the process is approximately isotropic in the de-
formed coordinate system. Das (2000) extended this
method to S2 and proposed a new class of global
anisotropic models. To generalize this method on S2,
a method of deforming the global coordinate system
and isotropic covariance functions are necessary. The
covariance structure is expressed as a function of the
geodesic distance between two locations on S2 in
a bijective transformation of the coordinate system,
cov{Z(s1),Z(s2)} = C[θ{g(s1), g(s2)}], where C be-
longs to an isotropic class of parametric covariance
functions on S2 and g(·) is a deformation function that
expresses the spatial nonstationarity and anisotropy.

Here, the deformation should be restricted to the
class of mappings from spheres onto spheres and the
parallel latitude and longitude lines should not be al-
lowed to cross. To specify functional forms of g, Das
(2000) presented third-order spline functions, which
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are quite flexible and capable of producing large de-
formations. Although this approach generates flexi-
ble models by composing deformation functions over
and over, the computation is challenging for high-
dimensional data. However, it is possible to draw con-
clusions about the deformed space because the defor-
mation tends to compress (or stretch) the space among
observation of high (or low) spatial correlations.

4.6 Multi-Step Spectrum

Castruccio and Stein (2013) and Castruccio and
Genton (2014, 2016) introduced an alternative model
of axial symmetry for regularly spaced data that results
in a flexible covariance structure and computationally
efficient model fitting. In their multi-step model, they
separately considered the spectral process by latitu-
dinal bands, fitted a covariance function across the
longitudes, and then estimated the multi-band depen-
dence. For a single latitude band at Lm ∈ (−π/2, π/2),
m = 1, . . . ,M , they proposed a parametric model for
the spectrum |fLm |2 at wave numbers c = 0, . . . ,N −1,∣∣fLm(c)

∣∣2
= φLm/

{
α2

Lm
+ 4 sin2(πc/N)

}νLm+1/2
,

(8)

which is similar to the Matérn spectrum with an over-
all variance φLm , an inverse range parameter αLm , and
a rate of decay of the spectrum νLm at large wave num-
bers. Castruccio and Guinness (2017) relaxed the as-
sumption of axial symmetry by allowing the properties
of the process to vary over the earth’s geography. They
allowed the evolutionary transfer function fLm,�n(c)

to depend on �n according to land and ocean co-
variates, such that fLm,�n(c) = f 1

Lm
(c)bland(Lm, �n) +

f 2
Lm

(c){1−bland(Lm, �n)}, where the component spec-
tra has the parametric form (8) with different parame-
ters for land and ocean, and bland is an indicator func-
tion for different regimes. Recently, Jeong et al. (2017)
extended this to also consider the topographical relief.

Multi-step models that are designed to evaluate the
likelihood for parallel and distributed computing al-
low users to analyze very large data sets. For high-
dimensional dependent data, high-performance com-
puting can be integrated with the multi-step models
using spatially varying parameters to analyze data of
unprecedented size.

5. SIMULATED AND DATA EXAMPLES

5.1 Simulated Global Gaussian Processes with
Different Covariance Structures

We perform simulations to show what processes
with different covariance structures actually look like

on unit spheres. We generate realizations from Gaus-
sian processes with six different covariance structures.
The first row of Figure 2 shows the realizations of
isotropic processes with (a) the exponential covariance,
(b) the Poisson kernel in (2), and (c) the covariance
sum of the exponential covariance and Poisson kernel
functions. We assume unit variances, but the spatial
range (or shape) parameters, (β, r) are (0.157, 0.4),
for (a), (b), and (c). For (c), we put more weight on
the Poisson kernel with λ = 0.7. The second row of
Figure 2 represents the realizations of nonstationary
processes obtained from the different covariance struc-
tures. In (d), we assume the physics-based covariance
in (3), applying different variance and range parame-
ters over land and ocean, (σ 2

land, σ
2
ocean, ρland,ocean) =

(3,1,0.173) and (βland, βocean) = (0.235,0.47). We
set σ 2(�) = 0.3 + 0.7P3(sin�) and β(L) = 2 × (90 −
L)/180. For both (e) and (f), we consider the exponen-
tial covariance models, but (e) has different variances
based on the longitudinal bands and (f) has different
ranges based on the latitudinal bands. For example, the
effective range of spatial correlation is decreasing as
the location changes from the South Pole to the North
Pole in (f).

As the exponential covariance function has no deriv-
ative at the origin and the Poisson kernel is analytic,
the realizations (a) and (b) show rough and smooth
processes, respectively. The realization (c) obtained
from the convex sum model shows a smoother real-
ization than (a), but rougher than (b). By controlling
the weight between the two models, we can control the
smoothness of the process. For this reason, we apply
the convex sum model to global temperature data in
the following data example. The realization (d) shows
that land areas are more variable than ocean areas. We
clearly observe spatially varying structures depending
on longitudinal and latitudinal bands in the realizations
(e) and (f).

5.2 Global Surface Temperature Data

We illustrate covariance models using the geodesic
distance on global surface temperature from the Geo-
physical Fluid Dynamics Laboratory (GFDL) model
output. We use the monthly average surface temper-
ature from December 2009 with 12,960 data loca-
tions across the earth. We filter out the mean struc-
ture of the data by spherical harmonic regression,
with {Ym

k (sinL,�)|k = 0,1, . . . ,K,m = −k, . . . , k}
for K = 12, that is, m(L, �)�β is

∑12
k=0

∑k
m=−k f m

k ·
Ym

k (sinL,�). The estimated mean structure removes
most of the large-scale spatial patterns, but some non-
stationary land and ocean patterns remain (Figure 3).
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FIG. 2. Realizations of Gaussian processes obtained from different covariance structures. Realizations of isotropic processes (first row)
from (a) exponential covariance, (b) Poisson kernel, and (c) convex sum models. Realizations of nonstationary processes (second row) from
(d) physics-based covariance with different parameters over land and ocean, (e) exponential covariance with different variances based on
longitudinal bands, and (f) exponential covariance with different ranges based on latitudinal bands. The grid resolution for the realizations
is 2.5◦ × 2◦.

FIG. 3. Residuals after removing the mean structure for average global surface temperature (◦C) and sampling locations (red dots) for
estimation and prediction. Equirectangular projection, in which the horizontal coordinate is the longitude and the vertical coordinate is the
latitude, is used to construct plots.
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To model the nonstationary covariance structure,
we consider the spatial deformation approach with
isotropic covariance functions on S2 in terms of
geodesic distance (Das, 2000), while incorporating the
large-scale geographical indicators, land and ocean.
For the isotropic covariance function, we use the con-
vex sum model of the exponential and the Poisson
kernel-like covariance functions, and multiply it by the
Legendre polynomial of degree n to better account for
some negative correlations for small distances and os-
cillating patterns around zero for large distances:

C(θ) = σ 2Pn(cos θ)

·
[
λ × exp (−θ/β) + (1 − λ)

× (1 − α)2

α(3 − α)

{
(1 − α)2

(1 − 2α cos θ + α2)3/2 − 1
}]

,

where n ∈ Z, λ ∈ [0,1], σ 2, β > 0, and α ∈ (0,1). Das
(2000) presented the basic 2D deformation functions of
g(L, �) = {gL(L, �), g�(L, �)} with third-order spline
functions to find the new latitude and longitude:

gL(L, �)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − b(�)

90 − ξ(�)

{
L − ξ(�)

}2

+ b(�)
{
L − ξ(�)

} + ξ(�),

ξ(�) ≤ L ≤ 90,

− 1 − b(�)

90 + ξ(�)

{
L − ξ(�)

}2

+ b(�)
{
L − ξ(�)

} + ξ(�),

−90 < L ≤ ξ(�),

(9)

where ξ(�) = αξ exp{− cos2(� − ηξ )/βξ } and b(�) =
αb exp{− cos2(� − ηb)/βb}, and:

g�(L, �)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − u(L)

180 − η(L)

{
� − η(L)

}2

+ u(L)
{
� − η(L)

} + η(L),

η(L) ≤ � ≤ 180,

− 1 − u(L)

180 + η(L)

{
� − η(L)

}2

+ u(L)
{
� − η(L)

} + η(L),

−180 < � ≤ η(L),

(10)

where η(L) = αη exp{− cos2(L−ξη)/βη}, and u(L) =
αu exp{− cos2(L − ξu)/βu}. Here, αb,αu ∈ [0,2],
βξ ,βb,βη,βu > 0, αξ , ξη, ξu ∈ (−90,90), αη, ηξ , ηb ∈
(−180,180), g1(−90, �) = −90, g1(90, �) = 90,

g2(L,180) = 180, and g2(L,−180) = −180. We
focus on one step of the 2D deformation and in-
clude land and ocean covariates, so that g∗(L, �) =
{g∗

L(L, �), g∗
� (L, �)} can be expressed as g∗

L(L, �) =
g1

L(L, �)1land(L, �) + g2
L(L, �){1 − 1land(L, �)} and

g∗
� (L, �) = g1

�(L, �)1land(L, �) + g2
�(L, �){1 −

1land(L, �)}, where 1land(L, �) is an indicator function
that modulates the contribution of land.

Four different covariances are calculated corre-
sponding to (i) an isotropic model fit without defor-
mations, (ii) a fit using a simple deformation with land
and ocean covariates, where the deformations of one
coordinate do not depend on the other coordinate [i.e.,
ξ(�) = ξ , b(�) = b, η(L) = η, and u(L) = u in (9) and
(10)], (iii) a fit using a flexible deformation with (9) and
(10), where the deformations of a coordinate only de-
pend on the other coordinate, and (iv) a fit using both
the flexible deformation and geographical indicators,
such as land and ocean. The parameters of the defor-
mation and covariance functions are estimated using
the maximum likelihood method.

To reduce the computational burden, we select 1440
regularly spaced locations (from 144 × 90 to 48 × 30),
as shown in Figure 3. From these locations, we ran-
domly select 90% to use as training data for the param-
eter estimation, and the remaining 10% (140 locations)
are used as test data for the predictions. Conditional
on the fitted covariance models, we compute the best
linear unbiased predictions at each prediction location.
Since each deformation model generates a different de-
formation space, we perform predictions on the de-
formed space and then compare the isotropic model
with the deformation model in the prediction. We write
Pred(A|B) to denote the prediction of case A on the de-
formed space of case B, and let Pred(B) = Pred(B|B),
that is, Pred(i|ii) is the prediction from the isotropic
model fit (i) on the deformed space generated by the
deformation model fit (ii). As the criteria for compari-
son, we use the root mean squared error (RMSE), the
mean absolute error (MAE), and the continuous ranked
probability score (CRPS) to validate the prediction
quality and average the predictions over their locations.
We form 90% prediction intervals based on Gaussian-
ity and report their empirical coverage for each model.
We repeat this procedure 100 times for randomly cho-
sen sets of estimation and prediction locations.

Table 1 contains the maximum log-likelihood val-
ues, the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) values for the
various models considered. All of the deformation
models were superior to the isotropic model (i) in the
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TABLE 1
Comparison of the log-likelihood values, AIC, and BIC averaged
over 100 replications for the convex sum models corresponding to

different cases on the GFDL for surface temperature

(i) (ii) (iii) (iv)

Number of parameters 5 13 17 29
Log-likelihood −1488.0 −1425.9 −1410.5 −1387.7
AIC 2985.9 2877.8 2854.9 2833.4
BIC 3011.8 2945.0 2942.8 2983.3

model fit. The maximum log-likelihood value tends
to increase as the number of parameters increases. In
terms of model selection criteria, the flexible deforma-
tion model with land and ocean covariates (iv) is the
best in AIC among the models under consideration.
For BIC, similar values are observed between the de-
formation models (ii) and (iii). This suggests that, for
geographical indicators such as land and ocean, these
deformation models provide improved model fit.

Table 2 reports prediction results averaged over 100
replications for the isotropic model and the deforma-
tion models. Generally, we see better prediction scores
using the deformation approach. Prediction scores of
MAE and CRPS over the ocean are improved by 6–8%
when using the simplest deformation model (ii) instead
of the isotropic model (i). The more flexible deforma-
tion model (iii) shows similar patterns, and the most
flexible model (iv) outperforms the isotropic model (i)
in terms of prediction scores over both land and ocean.
Both the widths of the prediction interval and the em-
pirical coverage probabilities were smaller for the de-
formation models than for the isotropic model (i).

In general, we see that the deformation compresses
the original space in regions of high spatial correla-
tions, while stretching it in regions of relatively low

spatial correlations. Figure 4 displays the fitted defor-
mation coordinate systems. The deformation models
with geographical indicators from cases (ii) and (iv)
capture nonstationarity, based on whether the models
are on land or ocean; however, they stretch land com-
ponents in the Northern Hemisphere and contract the
ocean components. The latitude −50 in the Southern
Hemisphere is the most contracted because this area is
comprised of mainly ocean with less variability than
other areas. In addition, the deformation model (iii)
identifies the high correlations at this latitude by con-
tracting them.

Using simulations and data examples, we visualized
realizations of the Gaussian processes obtained from
different covariance structures on S2 and explored the
fit of covariance models to climate data output. Be-
cause geophysical processes have complicated struc-
tures, the covariance models that we discussed might
still be overly simplistic in many cases. Nevertheless,
by investigating the structure of the data with covari-
ance models ranging from basic to complex, a suitable
and useful model can be found.

6. DISCUSSION

The models introduced in this paper deal with spheri-
cal data sets on a global scale and respect the curvature
of the spherical domain with regard to the spatial de-
pendence. However, the extension of covariance func-
tions using the geodesic distance to the case of multi-
variate models, spatio-temporal models, nonstationary
models, and non-Gaussian models is not widely under-
stood. The development of various spatio-temporal co-
variance models based on the geodesic distance, as in
Alegría et al. (2017b), is needed. For multivariate mod-
els, one natural direction is to explore physics-based
cross-covariance models on S2, in which random fields

TABLE 2
Comparison of prediction scores, widths, and coverage probabilities of 90% prediction intervals averaged over 100 replications on the

GFDL for surface temperature

RMSE MAE CRPS

Pred Land Ocean Total Land Ocean Total Land Ocean Total Width Coverage

(i|ii) 2.315 1.271 1.735 1.494 0.788 1.042 1.110 0.710 0.855 6.11 93.1%
(ii) 2.382 1.222 1.746 1.485 0.729 1.001 1.117 0.662 0.826 5.55 91.6%

(i|iii) 2.335 1.272 1.742 1.529 0.804 1.065 1.132 0.692 0.851 5.81 92.5%
(iii) 2.374 1.244 1.750 1.523 0.773 1.044 1.133 0.663 0.833 5.46 91.6%

(i|iv) 2.371 1.360 1.803 1.551 0.840 1.096 1.155 0.729 0.882 5.83 91.5%
(iv) 2.341 1.280 1.749 1.516 0.815 1.067 1.129 0.685 0.845 5.45 90.7%
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FIG. 4. Maps of fitted deformations on the GFDL for surface temperature.

generated from physical fields are constrained by phys-
ical laws. Cross-covariance models based on under-
lying physical processes are promising for applica-
tions in areas such as geophysical science, for example,
modeling tangent vector fields on a sphere for zonal
and meridional wind components (Fan et al., 2017).
For flexible covariance modelings with real world ap-
plications, nonstationary models can be obtained by
adapting spatially varying parameters in the covari-
ance functions similarly to Jun (2014) and Poppick and
Stein (2014). The Gaussian assumption makes a spa-
tial model simple in structure and facilitates statisti-
cal predictions, but this assumption is often not sup-
ported by the data. To deal with this issue, we may
consider non-Gaussian processes (Du et al., 2012, Ma,
2013a, 2013b, 2015, Du, Ma and Li, 2013), such as the
skew-Gaussian (Alegría et al., 2017a) and the Tukey g-
and-h random fields (Xu and Genton, 2017). These are
promising for various applications, but their implemen-
tation remains unexplored. On the other hand, infer-
ence problems that are based on fixed-domain asymp-
totics are a challenge when modeling spatial processes.
It is often infeasible to have consistent estimates from
a single spatial realization (Zhang, 2004). Moreover,
as outlined in Schaffrin (1993), consistent estimates of
the covariance function on S2 exist only under the er-
godic assumption, which means that all of the infor-
mation characterizing a random field should be com-
pletely included in any of its realizations (Cressie and
Wikle, 2011), with the random field Z being non-
Gaussian. Few have explored the relationship between
ergodicity and Gaussianity on S2 and more research is
needed to allow better inference in spatial global mod-
els.
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