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Leave Pima Indians Alone: Binary
Regression as a Benchmark for Bayesian
Computation
Nicolas Chopin and James Ridgway

Abstract. Whenever a new approach to perform Bayesian computation is
introduced, a common practice is to showcase this approach on a binary re-
gression model and datasets of moderate size. This paper discusses to which
extent this practice is sound. It also reviews the current state of the art of
Bayesian computation, using binary regression as a running example. Both
sampling-based algorithms (importance sampling, MCMC and SMC) and
fast approximations (Laplace, VB and EP) are covered. Extensive numerical
results are provided, and are used to make recommendations to both end users
and Bayesian computation experts. Implications for other problems (variable
selection) and other models are also discussed.

Key words and phrases: Bayesian computation, expectation propagation,
Markov chain Monte Carlo, sequential Monte Carlo, variational inference.

1. INTRODUCTION

The field of Bayesian computation seems hard to
track these days as it is blossoming in many direc-
tions. MCMC (Markov chain Monte Carlo) remains
the main approach, but it is no longer restricted to
Gibbs sampling and Hastings–Metropolis, as it in-
cludes more advanced, physics-inspired methods, such
as HMC (Hybrid Monte Carlo, Neal, 2011) and its
variants (Girolami and Calderhead, 2011, Shahbaba
et al., 2014, Hoffman and Gelman, 2014). On the other
hand, there is also a growing interest for alternatives to
MCMC, such as SMC (Sequential Monte Carlo, e.g.,
Del Moral, Doucet and Jasra, 2006), nested sampling
(Skilling, 2006), or the fast approximations that origi-
nated from machine learning, such as VB (Variational
Bayes; see, e.g., Bishop, 2006, Chapter 10), and EP
(Expectation Propagation, Minka, 2001). Even Laplace
approximation has resurfaced in particular thanks to
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the INLA methodology (Rue, Martino and Chopin,
2009).

One thing, however, that all these approaches have
in common is they are almost always illustrated by a
binary regression example; see, for example, the afore-
mentioned papers. In other words, binary regression
models, such as probit or logit, are a de facto bench-
mark for Bayesian computation.

This remark leads to several questions. Are bi-
nary regression models a reasonable benchmark for
Bayesian computation? Should they be used then to
develop a “benchmark culture” in Bayesian computa-
tion, like in, for example, optimisation? And practi-
cally, which of these methods actually “works best”
for approximating the posterior distribution of a binary
regression model?

The objective of this paper is to answer these ques-
tions. As the title suggests, an important factor in our
discussion will be the size of the considered dataset.
In fact, one of our final recommendations will be to
consider using datasets that are bigger that those often
found in the literature (such as the popular Pima In-
dians dataset), but we shall return to this point in the
conclusion.

We would also like to discuss how Bayesian com-
putation algorithms should be compared. One obvious
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criterion is the error versus CPU time trade-off; this
implies discussing which posterior quantities one may
be need to approximate. A related point is whether the
considered method comes with a simple way to eval-
uate the numerical error. Other criteria of interest are:
(a) how easy to implement is the considered method?
(b) how generic is it? (does changing the prior or the
link function require a complete rewrite of the source
code?) (c) to which extent does it require manual tun-
ing to obtain good performances? (d) is it amenable
to parallelisation? Points (a) and (b) are rarely dis-
cussed in statistics, but relate to the important fact
that, the simpler the program, the easier it is to main-
tain, and to make it bug-free. Regarding point (c), we
warn beforehand that, as a matter of principle, we
shall refuse to manually tune an algorithm on a per
dataset basis. Rather, we will discuss, for each ap-
proach, some (hopefully reasonable) general recipe for
how to choose the tuning parameters. This has two mo-
tivations. First, human time is far more valuable that
computer time: Cook (2014) mentions that one hour
of CPU time is today three orders of magnitude less
expensive than one hour of pay for a programmer (or
similarly a scientist). Second, any method requiring too
much manual tuning through trial and error may be
practically of no use beyond a small number of experts.

Finally, we also hope this paper may serve as an
up to date review of the state of Bayesian computa-
tion. We believe this review to be timely for a num-
ber of reasons. First, as already mentioned, because
Bayesian computation seems to develop currently in
several different directions. Second, and this relates to
criterion (d), the current interest in parallel computa-
tion (Lee et al., 2010, Suchard et al., 2010) may re-
quire a reassessment of Bayesian computational meth-
ods: method A may perform better than method B on a
single core architecture, while performing much worse
on a parallel architecture. Finally, although the phrase
“big data” seems to be a tired trope already, it is cer-
tainly true that datasets are getting bigger and bigger,
which in return means that statistical methods needs to
be evaluated on bigger and bigger datasets.

The paper is structured as follows. Section 2 covers
certain useful preliminaries on binary regression mod-
els. Section 3 discusses fast approximations, that is, de-
terministic algorithms that compute an approximation
of the posterior, at a lower cost than sampling-based
methods. Section 4 discusses “exact,” sampling-based
methods. Section 5 is the most important part of the
paper, as it contains an extensive numerical compari-
son of all these methods. Section 6 discusses variable

selection. Section 7 discusses our findings, and their
implications for both end users and Bayesian compu-
tation experts. Section 8 discusses to which extent our
conclusions apply to other models.

2. PRELIMINARIES: BINARY REGRESSION
MODELS

2.1 Likelihood, Prior

The likelihood of a binary regression model has the
generic expression

(2.1) p(D|β) =
nD∏
i=1

F
(
yiβ

T xi

)
,

where the data D consist of nD responses yi ∈ {−1,1}
and nD vectors xi of p covariates, and F is some CDF
(cumulative distribution function) that transforms the
linear form yiβ

T xi into a probability. Taking F = �,
the standard normal CDF, gives the probit model, while
taking F = L, the logistic CDF, L(x) = 1/(1 + e−x),
leads to the logistic model. Other choices could be con-
sidered, such as, for example, the CDF of a Student dis-
tribution (robit model) to better accommodate outliers.

We follow Gelman et al.’s (2008) recommendation
to standardise the predictors in a preliminary step: non-
binary predictors have mean 0 and standard deviation
0.5, binary predictors have mean 0 and range 1 and
the intercept (if present) is set to 1. This standardis-
ation facilitates prior specification: one then may set
up a “weakly informative” prior for β , that is a proper
prior that assigns a low probability that the marginal
effect of one predictor is outside a reasonable range.
Specifically, we shall consider two priors p(β) in this
work: (a) the default prior recommended by Gelman
et al. (2008), a product of independent Cauchys with
centre 0 and scale 10 for the constant predictor, 2.5 for
all the other predictors (henceforth, the Cauchy prior);
and (b) a product of independent Gaussians with mean
0 and standard deviation equal to twice the scale of the
Cauchy prior (henceforth the Gaussian prior).

Of course, other priors could be considered, such as,
for example, Jeffreys’ prior (Firth, 1993), or a Laplace
prior (Kabán, 2007). Our main motivation for consider-
ing the two priors above is to determine to which extent
certain Bayesian computation methods may be prior-
dependent, either in their implementation (e.g., Gibbs
sampling) or in their performance, or both. In particu-
lar, one may expect the Cauchy prior to be more diffi-
cult to deal with, given its heavy tails.
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2.2 Data-Augmentation Formulation

An alternative way to define a binary regression
model is by introducing latent variables as follows:

zi = βT xi + ni,(2.2)

yi = sgn(zi),(2.3)

where z = (z1, . . . , znD)T is a vector of latent (unob-
served) variables. One obtains probit (resp., logit) re-
gression by taking εi ∼ N(0,1) [resp., εi ∼
Logistic(0,1)].

Under this “data-augmentation” formulation, one re-
covers p(β|D) as the marginal distribution of the joint
p(β,z|D). Some of the approaches reviewed in this pa-
per are based on this property: that is, they either sam-
ple from, or approximate in some way, p(β,z|D).

2.3 Posterior Maximisation (Gaussian Prior)

We explain in this section how to quickly compute
the mode, and the Hessian at the mode, of the posterior:

p(β|D) = p(β)p(D|β)

p(D)
,

p(D) =
∫
Rd

p(β)p(D|β)dβ,

where p(β) is one of the two priors presented in the
previous section, and p(D) is the marginal likelihood
of the data (also known as the evidence). These quanti-
ties will prove useful later, in particular to tune certain
of the considered methods.

The two first derivatives of the log-posterior density
may be computed as

∂

∂β
logp(β|D) = ∂

∂β
logp(β) + ∂

∂β
logp(D|β),

∂2

∂β ∂βT
logp(β|D) = ∂2

∂β ∂βT
logp(β)

+ ∂2

∂β ∂βT
logp(D|β),

where

∂

∂β
logp(D|β) =

nD∑
i=1

(logF)′
(
yiβ

T xi

)
yixi ,

∂2

∂β ∂βT
logp(D|β) =

nD∑
i=1

(logF)′′
(
yiβ

T xi

)
xix

T
i

and (logF)′ and (logF)′′ are the two first derivatives
of logF . Provided that logF is concave, which is the
case for probit and logit regressions, the Hessian of

the log-likelihood is clearly a negative definite matrix.
Moreover, if we consider the Gaussian prior, then the
Hessian of the log-posterior is also negative (as the sum
of two negative matrices, as Gaussian densities are log-
concave). We stick to the Gaussian prior for now.

This suggests the following standard approach to
compute the MAP (maximum a posteriori) estimator,
that is the point βMAP that maximises the posterior
density p(β|D): to use Newton–Raphson, that is, to it-
erate

(2.4) β(new) = β(old) − H−1
{

∂

∂β
logp(β(old)|D)

}

until convergence is reached; here, H is Hessian of the
log posterior at β = β(old), as computed above. The it-
eration above corresponds to finding the zero of a local,
quadratic approximation of the log-posterior. Newton–
Raphson typically works very well (converges in a
small number of iterations) when the function to max-
imise is concave.

We note two points in passing. First, one may ob-
tain the MLE (maximum likelihood estimator) by sim-
ply taking p(β) = 1 above (i.e., a Gaussian with in-
finite variance). But the MLE is not properly defined
when complete separation occurs, that is, there exists a
hyperplane that separates perfectly the two outcomes:
yiβ

T
CSxi ≥ 0 for some βCS and all i ∈ 1 : N . This re-

mark gives an extra incentive for performing Bayesian
inference, or at least MAP estimation, in cases where
complete separation may occur, in particular when the
number of covariates is large (Firth, 1993, Gelman
et al., 2008).

Variants of Newton–Raphson may be obtained by
adapting automatically the step size [e.g., update is
β(new) = β(old) − λH−1{ ∂

∂β logp(β(old)|D)}, and step
size λ is determined by line search] or replacing the
Hessian H by some approximation. Some of these
algorithms such as IRLS (iterated reweighted least
squares) have a nice statistical interpretation. For
our purposes, however, these variants seem to show
roughly similar performance, so we will stick to the
standard version of Newton–Raphson.

2.4 Posterior Maximisation (Cauchy Prior)

The log-density of the Cauchy prior is not concave:

logp(β) = −
p∑

j=1

log(πσj ) −
p∑

j=1

log
(
1 + β2

j /σ 2
j

)

for scales σj chosen as explained in Section 2.1.
Hence, the corresponding log-posterior is no longer
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guaranteed to be concave, which in turn means that
Newton–Raphson might fail to converge.

However, we shall observe that, for most of the
datasets considered in this paper, Newton–Raphson
does converge quickly even for our Cauchy prior. In
each case, we used as starting point for the Newton–
Raphson iterations the OLS (ordinary least square) es-
timate. We suspect what happens is that, for most stan-
dard datasets, the posterior derived from a Cauchy
prior remains log-concave, at least in a region that en-
closes the MAP estimator and our starting point.

2.5 Connection with PAC-Bayesian Classification

The focus on this paper is on Bayesian inference for
well defined statistical models, such as probit or logit.
Consider, however, for the sake of the argument, re-
placing likelihood (2.1) by pseudo-likelihood:

(2.5) p(D|β) = exp
{−λr(β)

}
,

where λ > 0, and r(β) is a certain empirical risk func-
tion, such as the misclassification rate:

r(β) = 1

nD

nD∑
i=1

1
{
yix

T
i β < 0

}
.

In addition, consider the pseudo-posterior p(β|D) ∝
p(β)p(D|β). By taking the expectation βpost (or some
similar quantity) of this pseudo-posterior, one obtains a
linear classifier (i.e., function x → sgn{xT βpost}) that
should achieve a small misclassification rate.

What we have outlined above is the PAC (Probably
Approximately Correct)-Bayesian approach to clas-
sification, which originates from Shawe-Taylor and
Williamson (1997), McAllester (1998), Catoni (2004);
see also Catoni (2007) for a general introduction, and
Bissiri, Holmes and Walker (2013) for an interest-
ing Bayesian perspective on this type of approach. Of
course, a different risk function could be considered in
(2.5), such as, for example, the AUC (area under curve)
criterion (Ridgway et al., 2014).

The discussion of this paper will also apply to some
extent to PAC-Bayesian classification. Note, however
that, for risk functions such as the misclassification
rate, the posterior log-density is neither concave nor
differentiable. Hence posterior maximisation is no
longer an option. We will return to this point later on.

3. FAST APPROXIMATION METHODS

This section discusses fast approximation methods,
that is, methods that are deterministic, fast (compared

to sampling-based methods), but which come with ap-
proximation errors which are difficult to assess. These
methods include the Laplace approximation, which
was popular in statistics before the advent of MCMC
methods, but also more recent Machine Learning meth-
ods, such as EP (Expectation Propagation, Minka,
2001), and VB (Variational Bayes, e.g., Bishop, 2006,
Chapter 10).

Concretely, we will focus on the approximation of
the following posterior quantities: the marginal like-
lihood p(D), as this may be used in model choice;
and the marginal distributions p(βi |D) for each com-
ponent βi of β . Clearly, these are the most commonly
used summaries of the posterior distribution, and other
quantities, such as the posterior expectation of β , may
be directly deduced from them.

Finally, one should bear in mind that such fast ap-
proximations may be used as a preliminary step to cal-
ibrate an exact, more expensive method, such as those
described in Section 4.

3.1 Laplace Approximation

The Laplace approximation is based on a Taylor ex-
pansion of the posterior log-density around the mode
βMAP:

logp(β|D) ≈ logp(βMAP|D)

− 1

2
(β − βMAP)T Q(β − βMAP),

where Q = −H , that is, minus the Hessian of
logp(β|D) at β = βMAP; recall that we explained how
to compute these quantities in Section 2.3. One may
deduce a Gaussian approximation of the posterior by
simply exponentiating the equation above, and normal-
ising:

qL(β) = Np

(
β;βMAP,Q−1)

:= (2π)−p/2|Q|1/2(3.1)

· exp
{
−1

2
(β − βMAP)T Q(β − βMAP)

}
.

In addition, since for any β ,

p(D) = p(β)p(D|β)

p(β|D)

one obtains an approximation to the marginal likeli-
hood p(D) as follows:

p(D) ≈ ZL(D) := p(βMAP)p(D|βMAP)

(2π)−p/2|Q|1/2 .

From now on, we will refer to this particular Gaussian
approximation qL as the Laplace approximation, even
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if this phrase is sometimes used in statistics for higher-
order approximations, as discussed in the next section.
We defer to Section 3.6 the discussion of the advan-
tages and drawbacks of this approximation scheme.

3.2 Improved Laplace, Connection with INLA

Consider the marginal distributions p(βj |D) =∫
p(β|D)dβ−j for each component βj of β , where

β−j is β minus βj . A first approximation may be
obtained by simply computing the marginals of the
Laplace approximation qL. An improved (but more ex-
pensive) approximation may be obtained from

p(βj |D) ∝ p(β)p(D|β)

p(β−j |βj ,D)
,

which suggests to choose a fine grid of βj values [de-
duced for instance from qL(β)], and for each βj value,
compute a Laplace approximation of p(β−j |βj ,D), by

computing the mode β̂−j (βj ) and the Hessian Ĥ (βj )

of logp(β−j |βj ,D), and then approximate (up to a
constant)

p(βj |D) ≈ qIL(βj ) ∝ p(β̂(βj ))p(D|β̂(βj ))

|Ĥ (βj )|1/2
,

where β̂(βj ) is the vector obtained by inserting βi at
position i in β̂−j (βj ), and IL stands for “Improved
Laplace.” One may also deduce posterior expectations
of functions of βj in this way. See also Tierney and
Kadane (1986), Tierney, Kass and Kadane (1989) for
higher order approximations for posterior expectations.

We note in passing the connection to the INLA
scheme of Rue, Martino and Chopin (2009). INLA ap-
plies to posteriors p(θ ,x|D) where x is a latent vari-
able such that p(x|θ,D) is close to a Gaussian, and θ is
a low-dimensional hyper-parameter. It constructs a grid
of θ -values, and for each grid point θ j , it computes an
improved Laplace approximation of the marginals of
p(x|θ j ,D). In our context, β may be identified to x,
θ to an empty set, and INLA reduces to the improved
Laplace approximation described above.

3.3 The EM Algorithm of Gelman et al. (2008)
(Cauchy Prior)

Gelman et al. (2008) recommend against the Laplace
approximation for a Student prior (of which our
Cauchy prior is a special case), because, as explained
in Section 2.4, the corresponding log-posterior is not
guaranteed to be concave, and this might prevent
Newton–Raphson to converge. In our simulations,
however, we found the Laplace approximation to work

reasonably well for a Cauchy prior. We now briefly de-
scribe the alternative approximation scheme proposed
by Gelman et al. (2008) for Student priors, which we
call for convenience Laplace-EM.

Laplace-EM is based on the well-known represen-
tation of a Student distribution, βj |σ 2

j ∼ N1(0, σ 2
j ),

σ 2
j ∼ Inv-Gamma(ν/2, sj ν/2); take ν = 1 to recover

our Cauchy prior. Conditional on σ 2 = (σ 2
1 , . . . , σ 2

p),
the prior on β is Gaussian, hence, for a fixed σ 2 one
may implement Newton–Raphson to maximise the log-
density of p(β|σ 2,D), and deduce a Laplace (Gaus-
sian) approximation of the same distribution.

Laplace-EM is an approximate EM (Expectation
Maximisation, Dempster, Laird and Rubin, 1977) algo-
rithm, which aims at maximising in σ 2 = (σ 2

1 , . . . , σ 2
p)

the marginal posterior distribution p(σ 2|D) = ∫
p(σ 2,

β|D)dβ . Each iteration involves an expectation with
respect to the intractable conditional distribution
p(β|σ 2,D), which is Laplace approximated, using a
single Newton–Raphson iteration. When this approxi-
mate EM algorithm has converged to some value σ 2


,
one more Newton–Raphson iteration is performed to
compute a final Laplace approximation of p(β|σ 2


,D),
which is then reported as a Gaussian approximation
to the posterior. We refer the readers to Gelman et al.
(2008) for more details on Laplace-EM.

3.4 Variational Bayes

The general principle behind VB (Variational Bayes)
is to approximate a posterior π by the member of a
given family F which is closest to π in Kullback–
Leibler divergence:

qVB = arg min
q∈F K(π‖q)

(3.2)

with K(π‖q) =
∫

q log
(

q

π

)
.

The choice of F is crucial: it must be large enough
to make the approximation error small, while at the
same time it must be such that the minimisation above
is tractable.

For models involving latent variables z, which is
the case for binary regression models under the data-
augmentation formulation (2.2)–(2.3), the standard
“mean field” approach is to approximate the joint pos-
terior p(β,z|D), and to set F to the set of distribu-
tions for (β,z) that factorises as follows: q(β,z) =
qβ(β)qz(z). This makes it possible to minimise (3.2)
using fixed-point iterations. Unfortunately, the solution
is typically much more concentrated (i.e., has a smaller
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variance) than the true posterior. Consonni and Marin
(2008) give numerical evidence of this phenomenon for
probit regression and a Gaussian prior. For more back-
ground on mean field VB, see Chapter 10 of Bishop
(2006), and for recent developments see Hoffman and
Blei (2014). Early references on mean VB include
Attias (1999) and Ghahramani and Beal (2000).

Another VB approach is to approximate directly
p(β|D), and to set F to a parametric family of di-
mension p (e.g., the set of Gaussian distributions).
Renewed interest in this parametric VB approach
(e.g., Opper and Archambeau, 2009) is due in part to
the development of more powerful optimisation tech-
niques to solve (3.2), such as stochastic gradient de-
scent (SGD) (Hoffman et al., 2013) and optimal con-
vex solvers (Khan et al., 2013, Alquier, Ridgway and
Chopin, 2016). Gradient descent although efficient is
not always available in closed form for the VB objec-
tive. Ranganath, Gerrish and Blei (2014) and Rezende,
Mohamed and Wierstra (2014) propose to write the
gradient as an expectation and use a version of SGD.
For logistic regression (with Gaussian prior) other
tricks apply, see Khan et al. (2013).

We also mention in passing that Alquier, Ridg-
way and Chopin (2016) found that such a parametric
VB approach works well for PAC-Bayesian classifica-
tion, that is, for a posterior corresponding to pseudo-
likelihood (2.5). However, since Gaussian VB does not
seem generally applicable to binary regression models,
we will not include it in our comparisons, and focus
instead on Laplace and EP (see next section).

For recent reviews of variational inference, see
Wainwright and Jordan (2008) and Blei, Kucukelbir
and McAuliffe (2016). The former also gives an in-
teresting unifying view of VB and EP (see next sec-
tion). For extensions of VB to deal with larger datasets
and more complex models see, for example, Hoffman
et al. (2013), Kingma and Welling (2013), Gregor et al.
(2015).

3.5 Expectation Propagation

Like Laplace and Gaussian VB, Expectation Prop-
agation (EP, Minka, 2001) generates a Gaussian ap-
proximation of the posterior, but it is based on different
ideas. The consensus in machine learning seems to be
that EP provides a better approximation than Laplace
(e.g., Nickisch and Rasmussen, 2008); the intuition be-
ing that Laplace is “too local” (i.e., it fitted so as to
match closely the posterior around the mode), while EP
is able to provide a global approximation to the poste-
rior.

Starting from the decomposition of the posterior as
product of (nD + 1) factors:

p(β|D) = 1

p(D)

nD∏
i=0

li(β),

li(β) = F
(
yiβ

T xi

)
for i ≥ 1,

and l0 is the prior, l0(β) = p(β), EP computes itera-
tively a parametric approximation of the posterior with
the same structure

(3.3) qEP(β) =
nD∏
i=0

1

Zi

qi(β).

Taking qi to be an unnormalised Gaussian density writ-
ten in natural exponential form

qi(β) = exp
{
−1

2
βT Qiβ + βT r i

}
,

one obtains for qEP a Gaussian with natural parameters
Q = ∑n

i=0 Qi and r i = ∑n
i=0 r i ; note that the more

standard parametrisation of Gaussians may be recov-
ered by taking

� = Q−1, μ = Q−1r.

Other exponential families could be considered for q

and the qi ’s (see, e.g., Seeger, 2005), but Gaussian ap-
proximations seems the most natural choice here.

An EP iteration consists in updating one factor qi , or
equivalently (Zi,Qi , r i ), while keeping the other fac-
tors as fixed, by moment matching between the hybrid
distribution

h(β) ∝ li(β)
∏
j 
=i

qj (β)

and the global approximation q defined in (3.3): com-
pute

Zh =
∫

li(β)
∏
j 
=i

qj (β)dβ,

μh = 1

Zh

∫
βli(β)

∏
j 
=i

qj (β)dβ,

�h = 1

Zh

∫
ββT li(β)

∏
j 
=i

qj (β)dβ

and set

Qi = �−1
h − Q−i , r i = �−1

h μh − r−i ,

logZi = logZh − �(r,Q) + �(r−i ,Q−i ),
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where r−i = ∑
j 
=i rj , Q−i = ∑

j 
=i Qj , and ψ(r,Q)

is the normalising constant of a Gaussian distribution
with natural parameters (r,Q),

ψ(r,Q) =
∫
Rp

exp
{
−1

2
βT Qβ + βT r

}
dβ

= −1

2
log |Q/2π | + 1

2
rT Qr.

In practice, EP proceeds by looping over sites, up-
dating each one in turn until convergence is achieved.

To apply EP to binary regression models, two points
must be addressed. First, how to compute the hybrid
moments? For the probit model, these moments may be
computed exactly, see the supplemental article (Chopin
and Ridgway, 2016), while for the other link func-
tion (such as logistic), numerical (one-dimensional)
quadrature may be used.

Second, how to deal with the prior? If the prior is
Gaussian, one may simply set q0 to the prior, and never
update q0 in the course of the algorithm. For a Cauchy
prior, q0 is simply treated as an extra site.

Supporting theory for EP appeared only recently
(Dehaene and Barthelmé, 2015a, 2015b); the former
reference shows that, under certain conditions, the EP
expectation is at distance O(n−2

D ) of the true poste-
rior expectation [while Laplace is at distance O(n−1

D )].
This seems to explain why EP is typically more accu-
rate than Laplace.

The main drawback of EP is that it often requires
more expertise than Laplace to make it work. First, for
a given model, the hybrid moments mentioned above
may be difficult to compute. Second, in certain sit-
uations, site updates may generate a negative matrix
Qi ; one may skip this site, but at the risk of an in-
creased approximation error (if the site keeps on being
skipped at subsequent iterations). Third, EP sometimes
fail to converge; in particular when the target density is
not log-concave (Seeger, 2005, Seeger, Gerwinn and
Bethge, 2007). In that case, it may help to use frac-
tional updates (Minka, 2004), where only a fraction
α ∈ (0,1) of site parameters (Zi,Qi , r i ) is updated,
but then choosing α requires some trial and error.

That said, in our experience binary regression mod-
els leads to well-behaved posteriors for which EP
works well without much hassle.

3.6 Complexity of the Different Approximation
Schemes

In our context, Laplace has complexity O(nD + p3)

per iteration, while EP has complexity O(nDp2).

The p3 term for Laplace comes from the fact that
(2.4) involves solving a linear system. EP site updates
involve a rank-one update of the precision matrix Q,
which may be performed in O(p2) by using Wood-
bury’s formula. The overall complexity of both algo-
rithms is harder to establish, as little is known on the
number of iterations needed for EP to achieve a given
error. Empirical evidence suggests however that EP is
more expensive than Laplace on small enough datasets.

This remark may be mitigated as follows. First, one
may modify EP so as to update the global approxima-
tion only at the end of each iteration (complete pass
over the data). The resulting algorithm (van Gerven
et al., 2010) may be easily implemented on parallel
hardware: simply distribute the nD factors over the pro-
cessors. Even without parallelisation, parallel EP re-
quires only one single matrix inversion per iteration.

Second, the “improved Laplace” approximation for
the marginals described in Section 3.1 performs a large
number of basic Laplace approximations, so its speed
advantage compared to standard EP essentially van-
ishes.

Points that remain in favour of Laplace is that it is
simpler to implement than EP, and the resulting code
is very generic: adapting to either a different prior, or a
different link function [choice of F in (2.1)], is simply
a matter of writing a function that evaluates the corre-
sponding function. We have seen that such an adapta-
tion requires the user more work in EP, although to be
fair the general structure of the algorithm is not model-
dependent. On the other hand, we shall see that EP is
often more accurate, and works in more examples, than
Laplace; this is especially the case for the Cauchy prior.

More generally, one sees that the number of covari-
ates p is more critical than the number of instances nD
in determining how “big” (how time-intensive to pro-
cess) is a given dataset. This will be a recurring point
in this paper.

4. EXACT METHODS

We now turn to sampling-based methods, which are
“exact,” at least in the limit: one may make the approx-
imation error as small as desired, by running the cor-
responding algorithm for long enough. (As mentioned
by a referee, “long enough” may be practically im-
possible for certain complex models.) We will see that
most of these algorithms require for good performance
some form of calibration, which in turn requires some
preliminary knowledge on the shape of the posterior
distribution. Since the approximation methods covered
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in the previous section are faster by orders of mag-
nitude than sampling-based methods, we will assume
that a Gaussian approximation q(β) (say, obtained by
Laplace or EP) has been computed in a preliminary
step.

4.1 Our Gold Standard: Importance Sampling

Let q(β) denote a generic approximation of the pos-
terior p(β|D). Importance sampling (IS) is based on
the trivial identity

p(D) =
∫

p(β)p(D|β)dβ

=
∫

q(β)
p(β)p(D|β)

q(β)
dβ,

which leads to the following recipe: sample β1, . . . ,

βN ∼ q , then compute as an estimator of p(D)

(4.1) ZN = 1

N

N∑
n=1

w(βn), w(β) := p(β)p(D|β)

q(β)
.

In addition, since
∫

ϕ(β)p(β|D)dβ =
∫

ϕ(β)q(β)w(β)dβ∫
q(β)w(β)dβ

one may approximate any posterior moment as

(4.2) ϕN =
∑N

n=1 w(βn)ϕ(βn)∑N
n=1 w(βn)

.

Approximating posterior marginals is also straightfor-
ward; one may for instance use kernel density estima-
tion on the weighted sample (βn,w(βn))

N
n=1.

Concerning the choice of q , we will restrict our-
selves to the Gaussian approximations generated either
from Laplace or EP algorithm. It is sometimes recom-
mended to use a Student distribution instead, as a way
to ensure that the variance of the above estimators is
finite, but we did not observe any benefit for doing so
in our simulations.

It is of course a bit provocative to call IS our gold
standard, as it is sometimes perceived as an obsolete
method. We would like to stress however that IS is hard
to beat relative to most of the criteria laid out in the
Introduction:

• Because it is based on IID sampling, assessing the
Monte Carlo error of the above estimators is triv-
ial: for example, the variance of ZN may be esti-
mated as N−1 times the empirical variance of the

weights w(βn). The auto-normalised estimator (4.2)
has asymptotic variance

Eq

[
w(β)2{

ϕ(β) − μ(ϕ)
}2]

,

μ(ϕ) =
∫

ϕ(β)p(β|D)dβ,

which is also trivial to approximate from the simu-
lated βn’s.

• Other advantages brought by IID sampling are:
(a) importance sampling is easy to parallelize; and
(b) importance sampling is amenable to QMC (Quasi-
Monte Carlo) integration, as explained in the follow-
ing section.

• Importance sampling offers an approximation of the
marginal likelihood p(D) at no extra cost.

• Code is simple and generic.

Of course, what remains to determine is whether im-
portance sampling does well relative to our main crite-
rion, that is, error versus CPU trade-off. We do know
that IS suffers from a curse of dimensionality: take both
q and the target density π to be the density of IID dis-
tributions: q(β) = ∏p

j=1 q1(βj ), π(β) = ∏p
j=1 π1(βj );

then it is easy to see that the variance of the weights
grows exponentially with p. Thus, we expect IS to col-
lapse when p is too large; meaning that a large propor-
tion of the βn gets a negligible weight. On the other
hand, for small to moderate dimensions, we will ob-
serve surprising good results; see Section 5. We will
also present below a SMC algorithm that automati-
cally reduces to IS when IS performs well, while doing
something more elaborate in more difficult scenarios.
Finally, we also note that Marin and Robert (2011) ob-
served that importance sampling (with a proposal set to
the Laplace approximation) outperforms several other
methods for approximating the marginal likelihood of
a probit model (and the Pima indians dataset).

The standard way to assess the weight degeneracy is
to compute the effective sample size (Kong, Liu and
Wong, 1994),

ESS = {∑N
n=1 w(βn)}2

∑N
n=1 w(βn)

2
∈ [1,N],

which roughly approximates how many simulations
from the target distribution would be required to pro-
duce the same level of error. In our simulations, we will
compute instead the efficiency factor EF, which is sim-
ply the ratio EF = ESS/N .
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4.2 Improving Importance Sampling by
Quasi-Monte Carlo

Quasi-Monte Carlo may be seen as an elaborate
variance reduction technique: starting from the Monte
Carlo estimators ZN and ϕN [see (4.1) and (4.2)], one
may re-express the simulated vectors as functions of
uniform variates un in [0,1]d ; for instance,

βn = μ + Cζ n, ζ n = �−1(un),

where �−1 is �−1, the N(0,1) inverse CDF, applied
component-wise. Then one replaces the N vectors un

by a low-discrepancy sequence; that is, a sequence
of N vectors that spread more evenly over [0,1]d ;
for example, a Halton or a Sobol’ sequence. Under
appropriate conditions, QMC error converges at rate
O(N−1+ε), for any ε > 0, to be compared with the
standard Monte Carlo rate OP (N−1/2). We refer to
Lemieux (2009) for more background on QMC, as well
as how to construct QMC sequences.

Oddly enough, the possibility to use QMC in con-
junction with importance sampling is very rarely men-
tioned in the literature; see, however, Hörmann and
Leydold (2005). More generally, QMC seems often
overlooked in statistics. We shall see, however, that this
simple IS-QMC strategy often performs very well.

One drawback of IS-QMC is that we lose the ability
to evaluate the approximation error in a simple manner.
A partial remedy is to use randomised Quasi-Monte
Carlo (RQMC), that is, the un are generated in such
a way that (a) with probability one, u1:N is a QMC
point set; and (b) each vector un is marginally sam-
pled from [0,1]d . Then QMC estimators that are em-
pirical averages, such as ZN = N−1 ∑N

n=1 w(βn) be-
come unbiased estimators, and their error may be as-
sessed through the empirical variance over repeated
runs. Technically, estimators that are ratios of QMC
averages, such as ϕN , are not unbiased, but for all prac-
tical purposes their bias is small enough that assessing
error through empirical variances over repeated runs
remains a reasonable approach.

4.3 MCMC

The general principle of MCMC (Markov chain
Monte Carlo) is to simulate a Markov chain that leaves
invariant the posterior distribution p(β|D); see Robert
and Casella (2004) for a general overview. Often men-
tioned drawbacks of MCMC simulation are (a) the
difficulty to parallelize such algorithms (although see,
e.g., Jacob, Robert and Smith, 2011, for an attempt at
this problem); (b) the need to specify a good starting

point for the chain (or alternatively to determine the
burn-in period, that is, the length of the initial part of
the chain that should be discarded) and (c) the diffi-
culty to assess the convergence of the chain [i.e., to
determine if the distribution of β t at iteration t is suffi-
ciently close to the invariant distribution p(β|D)].

To be fair, these problems are not so critical for bi-
nary regression models. Regarding (b), one may sim-
ply start the chain from the posterior mode, or from a
draw of one of the Gaussian approximations covered
in the previous section. Regarding (c) for most stan-
dard datasets, MCMC converges reasonably fast, and
convergence is easy to assess visually. The main is-
sue in practice is that MCMC generates correlated ran-
dom variables, and these correlations inflate the Monte
Carlo variance.

4.3.1 Gibbs sampling. A well-known MCMC ap-
proach to binary regression, due to Albert and Chib
(1993), is to apply Gibbs sampling to the joint poste-
rior p(β,z|D) under the data-augmentation formula-
tion (2.2) and (2.3); that is, one iterates the two follow-
ing steps: (a) sample from z|β,D and (b) sample from
β|z,D.

For (a) and for a probit model, the zi ’s are condi-
tionally independent, and follow a truncated Gaussian
distribution

p(zi |β,D) ∝ N1
(
zi;βT xi ,1

)
1{ziyi > 0},

which is easy to sample from (Chopin, 2011). For
step (b) and a Gaussian prior Np(0,�prior), one has,
thanks to standard conjugacy properties:

β|z,D ∼ Np

(
�−1

postxz,�post
)
, �−1

post = �−1
prior +xxT ,

where x is the n × p matrix obtained by stacking the
xT

i . Note that �post and its inverse need to be computed
only once, hence the complexity of a Gibbs iteration is
O(p2), not O(p3).

The main drawback of Gibbs sampling is that it is
particularly not generic: its implementation depends
very strongly on the prior and the model. Sticking to
the probit case, switching to another prior requires de-
riving a new way to update β|z,D. For instance, for
a prior which is a product of Students with scales σj

(e.g., our Cauchy prior), one may add extra latent vari-
ables, by resorting to the well-known representation:
βj |sj ∼ N1(0, νσ 2

j /sj ), sj ∼ Chi2(ν); with ν = 1 for
our Cauchy prior. Then the algorithm has three steps:
(a) an update of the zi ’s, exactly as above; (b) an update
of β , as above but with �prior replaced by the diagonal
matrix with elements νσ 2

j /sj , j = 1, . . . , p; and (c) an
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(independent) update of the p latent variables sj , with
sj |β,z,D ∼ Gamma((1 + ν)/2, (1 + νβ2

j /σ 2
j )/2). The

complexity of step (b) is now O(p3), since �prior and
�post must be recomputed at each iteration (although
some speed-up may be obtained by using Sherman–
Morrison formula).

Of course, considering yet another type of prior
would require deriving another strategy for sampling
β . Then if one turns to logistic regression, things get
rather complicated. In fact, deriving an efficient Gibbs
sampler for logistic regression is a topic of current
research; see Holmes and Held (2006), Frühwirth-
Schnatter and Frühwirth (2010), Gramacy and Polson
(2012), Polson, Scott and Windle (2013). In a nutshell,
the two first papers use the same data augmentation as
above, but with εi ∼ Logistic(1) written as a certain
mixture of Gaussians (infinite for the first paper, finite
but approximate for the second paper), while Polson,
Scott and Windle (2013) use instead a representation
of a logistic likelihood as an infinite mixture of Gaus-
sians, with a Polya–Gamma as the mixing distribution.
Each representation leads to introducing extra latent
variables, and discussing how to sample their condi-
tional distributions.

Since their implementation is so model-dependent,
the main justification for Gibbs samplers should be
their greater performance relative to more generic al-
gorithms. We will investigate if this is indeed the case
in our numerical section.

4.3.2 Hastings–Metropolis. Algorithm 1 gives a
generic description of an interation of a Hastings–
Metropolis algorithm that samples from p(β|D). Much
like importance sampling, Hastings–Metropolis is both
simple and generic, that is, up to the choice of the pro-
posal kernel κ(β
|β) (the distribution of the proposed
point β
, given the current point β). A naive approach
is to take κ(β
|β) independent of β , κ(β
|β) = q(β
),
where q is some approximation of the posterior. In

Algorithm 1 Hastings–Metropolis iteration
Input β
Output β ′
1 Sample β
 ∼ κ(β
|β).
2 With probability 1 ∧ r ,

r = p(β
)p(D|β
)κ(β|β
)

p(β)p(D|β)κ(β
|β)
,

set β ′ ← β
; otherwise set β ′ ← β .

practice, this usually does not work better than impor-
tance sampling based on the same proposal, hence this
strategy is hardly used.

A more usual strategy is to set the proposal kernel
to a random walk: κ(β
|β) = Np(β,�prop). It is well
known that the choice of �prop is critical for good per-
formance. For instance, in the univariate case, if �prop
is too small, the chain moves slowly, while if too large,
proposed moves are rarely accepted.

A result from the optimal scaling literature (e.g.,
Roberts and Rosenthal, 2001) is that, for a Np(0, Ip)

target, �prop = (λ2/p)Ip with λ = 2.38 is asymptoti-
cally optimal, in the sense that as p → ∞, this choice
leads to the fastest exploration. Since the posterior of a
binary regression model is reasonably close to a Gaus-
sian, we adapt this result by taking �prop = (λ2/p)�q

in our simulations, where �q is the covariance ma-
trix of a (Laplace or EP) Gaussian approximation of
the posterior. This strategy seems validated by the fact
we obtain acceptance rates close to the optimal rate, as
given by Roberts and Rosenthal (2001).

The bad news behind this optimality result is that the
chain requires O(p) steps to move a O(1) distance.
Thus, random walk exploration tends to become slow
for large p. This is usually cited as the main motivation
to develop more elaborate MCMC strategies, such as
HMC, which we cover in the following section.

4.3.3 HMC. Hamiltonian Monte Carlo (HMC, also
known as Hybrid Monte Carlo, Duane et al., 1987)
is a type of MCMC algorithm that performs several
steps in the parameter space before determining if the
new position is accepted or not. Thus HMC tends to
make bigger jumps in the parameter space than stan-
dard Hastings–Metropolis. HMC has been known for
some time in physics, but it seems to have been con-
sidered only recently in statistics, thanks in particular
to the excellent review of Neal (2011).

Consider the pair (β,α), where β ∼ p(β|D), and
α ∼ Np(0,M−1), thus with joint un-normalised den-
sity exp{−H(β,α)}, with

H(β,α) = E(β) + 1

2
αT Mα,

E(β) = − log
{
p(β)p(D|β)

}
.

The physical interpretation of HMC is that of a particle
at position β , with velocity α, potential energy E(β),
kinetic energy 1

2αT Mα, for some mass matrix M , and
therefore total energy given by H(β,α). The particle
is expected to follow a trajectory such that H(β,α) re-
mains constant over time.
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Algorithm 2 Leap-frog step
Input (β,α)

Output (β1,α1)

1 α1/2 ← α − ε
2∇βE(β)

2 β1 ← β + εα1/2
3 α1 ← α1/2 − ε

2∇βE(β1)

In practice, HMC proceeds as follows: first, sam-
ple a new velocity vector, α ∼ Np(0,M−1). Second,
move the particle while keeping the Hamiltonian H

constant; in practice, discretisation must be used, so
L steps of step-size ε are performed through leap-frog
steps; see Algorithm 2 which describes one such step.
Third, the new position, obtained after L leap-frog
steps is accepted or rejected according to probability
1 ∧ exp{H(β,α) − H(β
,α
)}; see Algorithm 3 for a
summary. The validity of the algorithm relies on the
fact that a leap-frog step is “volume preserving”; that
is, the deterministic transformation (β,α) → (β1,α1)

has Jacobian one. This is why the acceptance probabil-
ity admits this simple expression.

The tuning parameters of HMC are M (the mass ma-
trix), L (number of leap-frog steps), and ε (the step-
size). For M , we follow Neal’s (2011) recommenda-
tion to take M−1 = �q , an approximation of the pos-
terior variance (again obtained from either Laplace or
EP). This is equivalent to rescaling the posterior so as
to have a covariance matrix close to identity. In this
way, we avoid the bad mixing typically incurred by
strong correlations between components.

The difficulty to choose L and ε seems to be the
main drawback of HMC. The performance of HMC
seems very sensitive to these tuning parameters, yet
clear guidelines on how to choose them seem currently
lacking. A popular approach is to fix Lε to some value,
and to use vanishing adaptation (Andrieu and Thoms,
2008) to adapt ε so as to target acceptance rate of

Algorithm 3 HMC iteration
Input β
Output β ′
1 Sample momentum α ∼ Np(0,M).
2 Perform L leap-frog steps (see Algorithm 2), start-

ing from (β,α); call (β
,α
) the final position.
3 With probability 1 ∧ r ,

r = exp
{
H(β,α) − H

(
β
,α
)}

set β ′ = β
; otherwise set β ′ = β .

0.65 (the optimal rate according to the formal study
of HMC by Beskos et al., 2013): that is, at iteration t ,
take ε = εt , with εt = εt−1 − ηt (Rt − 0.65), ηt = t−κ ,
κ ∈ (1/2,1) and Rt the acceptance rate up to iteration
t . The rationale for fixing Lε is that quantity may be
interpreted as a “simulation length,” that is, how much
distance one moves at each step; if too small, the al-
gorithm may exhibit random walk behaviour, while if
too large, it may move a long distance before coming
back close to its starting point. Since the spread is al-
ready taken into account through M−1 = �q , we took
εL = 1 in our simulations.

4.3.4 NUTS and other variants of HMC. Girolami
and Calderhead (2011) proposed an interesting varia-
tion of HMC, where the mass matrix M is allowed to
depends on β; for example, M(β) is set to the Fisher
information of the model. This allows the correspond-
ing algorithm, called RHMC (Riemanian HMC), to
adapt locally to the geometry of the target distribution.
The main drawback of RHMC is that each iteration in-
volves computing derivatives of M(β) with respect to
β , which is very expensive, especially if p is large. For
binary regression, we found RMHC to be too expensive
relative to plain HMC, even when taking into account
the better exploration brought by RHMC. This might
be related to the fact that the posterior of a binary re-
gression model is rather Gaussian-like, and thus may
not require such a local adaptation of the sampler.

We now focus on NUTS (No U-Turn sampler,
Hoffman and Gelman, 2014), a variant of HMC which
does not require the user to specify a priori L, the num-
ber of leap-frog steps. Instead, NUTS aims at keep-
ing on doing such steps until the trajectory starts to
loop back to its initial position. Of course, the diffi-
culty in this exercise is to preserve the time reversibility
of the simulated Markov chain. To that effect, NUTS
constructs iteratively a binary tree whose leaves cor-
respond to different velocity-position pairs (α,β) ob-
tained after a certain number of leap-frog steps. The
tree starts with two leaves, one at the current velocity-
position pair, and another leaf that corresponds to one
leap-frop step, either in the forward or backward di-
rection (i.e., by reversing the sign of velocity); then
it iteratively doubles the number of leaves, by taking
twice more leap frog steps, again either in the for-
ward or backward direction. The tree stops growing
when at least one leaf corresponds to a “U-turn”; then
NUTS chooses randomly one leaf, among those leaves
that would have generated the current position with the
same binary tree mechanism; in this way reversibility
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is preserved. Finally, NUTS proposes the new position
that corresponds to the chosen leaf.

We refer the readers to Hoffman and Gelman (2014)
for a more precise description of NUTS. Given its com-
plexity, implementing directly NUTS seems to require
more efforts than the other algorithms covered in this
paper. Fortunately, the STAN package (http://mc-stan.
org/) provides a C++ implementation of NUTS which
is both efficient and user-friendly: the only required
input is a description of the model in a probabilistic
programming language similar to BUGS. In particular,
STAN is able to automatically derive the log-likelihood
and its gradient, and no tuning of any sort is required
from the user. Thus, we will use STAN to assess NUTS
in our numerical comparisons.

4.4 Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a class of algo-
rithms for approximating iteratively a sequence of dis-
tributions πt , t = 0, . . . , T , using importance sampling,
resampling and MCMC steps. We focus here on the
nonsequential use of SMC (Neal, 2001, Chopin, 2002,
Del Moral, Doucet and Jasra, 2006), where one is only
interested in approximating the final distribution πT [in
our case, the posterior p(β|D)], and the previous πt ’s
are designed so as to allow for a smooth progression
from some π0, which is easy to sample from, to πT .

At iteration t , SMC produces a set of weighted par-
ticles (simulations) (βn,wn)

N
n=1 that approximates πt ,

in the sense that

1∑N
n=1 wn

N∑
n=1

wnϕ(βn) → E
πt

[
ϕ(β)

]

as N → +∞. At time 0, one samples βn ∼ π0, and
set wn ← 1. To progress from πt−1 to πt , one uses
importance sampling: weights are multiplied by ratio
πt(βn)/πt−1(βn). When the variance of the weights
gets too large (which indicates that too few parti-
cles contribute significantly to the current approxima-
tion), one resamples the particles: each particle gets
reproduced On times, where On ≥ 0 is random, and
such that E(On) = Nwn/

∑N
m=1 wm, and

∑N
n=1 On =

N with probability one. In this way, particles with
low weights are likely to die, while particles with a
large weight get reproduced many times. [In our nu-
merical study, we use specifically the systematic re-
sampling algorithm of Carpenter, Clifford and Fearn-
head, 1999; see the supplemental article Chopin and
Ridgway, 2016 for an algorithmic description.] Fi-
nally, one may reintroduce diversity among the parti-
cles by applying one (or several) MCMC steps, using

Algorithm 4 Tempering SMC
Operations involving index n must be performed for
all n ∈ 1 : N .

0 Sample βn ∼ q(β) and set δ ← 0.
1 Let, for δ ∈ [δ,1],

EF(δ) = 1

N

{∑N
n=1 uδ(βn)}2

{∑N
n=1 uδ(βn)

2} ,

uδ(β) =
{
p(β)p(D|β)

q(β)

}δ

.

If EF(1) ≥ τ , stop and return (βn,wn)n=1:N with
wn = u1(βn); otherwise, use the bisection method
(Press et al., 2007, Chapter 9) to solve numerically
in δ the equation EF(γ ) = τ .

2 Resample according to normalised weights Wn =
wn/

∑N
m=1 wm, with wn = uδ(βn); see the supple-

ment Chopin and Ridgway (2016) for a description
of particular resampling algorithm (known as sys-
tematic resampling).

3 Update the βn’s through m MCMC steps that leaves
invariant πt(β), using, for example, Algorithm 1
with κ(β
|β) = Np(β,�prop), �prop = λ�̂, where
�̂ is the empirical covariance matrix of the resam-
pled particles.

4 Set δ ← δ. Go to step 1.

a MCMC kernel that leaves invariant the current distri-
bution πt .

We focus in this paper on tempering SMC, where the
sequence

πt(β) ∝ q(β)1−δt
{
p(β)p(D|β)

}δt

corresponds to a linear interpolation (on the log-
scale) between some distribution π0 = q , and πT (β) =
p(β|D), our posterior. This is a convenient choice in
our case, as we have at our disposal some good approx-
imation q (either from Laplace or EP) of our posterior.
A second advantage of tempering SMC is that one can
automatically adapt the “temperature ladder” δt (Jasra
et al., 2011). Algorithm 4 describes a tempering SMC
algorithm based on such an adaptation scheme: at each
iteration, the next distribution πt is chosen so that the
efficiency factor (defined in Section 4.1) of the impor-
tance sampling step from πt−1 to πt equals a prede-
fined level τ ∈ (0,1); a default value is τ = 1/2.

Another part of Algorithm 4 which is easily
amenable to automatic calibration is the MCMC step.

http://mc-stan.org/
http://mc-stan.org/
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We use a random walk Metropolis step, that is, Algo-
rithm 1 with proposal kernel κ(β
|β) = Np(β,�prop),
but with �prop calibrated to the empirical variance
of the particles �̂: �prop = λ�̂, for some λ. Finally,
one may also automatically calibrate the number m of
MCMC steps, as in Ridgway (2016), but in our simu-
lations we simply took m = 3.

In the end, one obtains essentially a black-box algo-
rithm. In practice, we shall often observe that, for sim-
ple datasets, our SMC algorithm automatically reduces
to a single importance sampling step, because the effi-
ciency factor of moving from the initial distribution q

to the posterior is high enough. In that case, our SMC
sampler performs exactly as standard importance sam-
pling.

Finally, we note that the reweighting step and the
MCMC steps of Algorithm 4 are easy to parallelise.

5. NUMERICAL STUDY

The point of this section is to compare numerically
the different methods discussed in the previous sec-
tions, first on several datasets of standard size (that are
representative of previous numerical studies), then in a
second time on several bigger datasets.

We focus on the following quantities: the marginal
likelihood of the data, p(D), and the p marginal poste-
rior distributions of the regression coefficients βj . Re-
garding the latter, we follow Faes, Ormerod and Wand
(2011) in defining the “marginal accuracy” of approxi-
mation q for component j to be

MAj = 1 − 1

2

∫ +∞
−∞

∣∣q(βj ) − p(βj |D)
∣∣ dβj .

This quantity lies in [0,1], and is scale-invariant. Since
the true marginals p(βj |D) are not available, we will
approximate them through a Gibbs sampler run for
a very long time. To give some scale to this cri-
terion, assume q(βj ) = N1(βj ;μ1, σ

2), p(βj |D) =
N1(βj ;μ2, σ

2), then MAj is 2�(−δ/2) ≈ 1 − 0.4 × δ

for δ = |μ1 − μ2|/σ small enough; for example, 0.996
for δ ≈ 0.01, 0.96 for δ ≈ 0.1.

In our results, we will refer to the following four
prior/model “scenarios”: Gaussian/probit, Gaussian/
logit, Cauchy/probit, Cauchy/logit, where Gaussian
and Cauchy refer to the two priors discussed in Sec-
tion 2.1. All the algorithms have been implemented
in C++, using the Armadillo and Boost libraries, and
run on a standard desktop computer (except when ex-
plicitly stated). Results for NUTS were obtained by
running STAN (http://mc-stan.org/) version 2.4.0.

TABLE 1
Datasets of moderate size [from UCI repository, except Elections,
from the website of Gelman and Hill’s (2006) book]: name (short
and long version), number of instances nD , number of covariates

p (including an intercept)

Dataset nD p

Pima (Indian diabetes) 532 8
German (credit) 999 25
Heart (Statlog) 270 14
Breast (cancer) 683 10
Liver (Indian Liver patient) 579 11
Plasma (blood screening data) 32 3
Australian (credit) 690 15
Elections 2015 52

5.1 Datasets of Moderate Size

Table 1 lists the 7 datasets considered in this sec-
tion [obtained from the UCI machine learning reposi-
tory, except Pima, which is the version available in the
R package MASS, and Elections, which is available
on the web page of Gelman and Hill’s (2006) book].
These datasets are representative of the numerical stud-
ies found in the literature. In fact, it is a super-set of
the real datasets considered in Girolami and Calder-
head (2011), Shahbaba et al. (2014), Holmes and Held
(2006) and also (up to one dataset with 5 covariates)
Polson, Scott and Windle (2013). In each case, an in-
tercept has been included; that is, p is the number of
predictors plus one.

5.1.1 Fast approximations. We compare the four
approximation schemes described in Section 3:
Laplace, Improved Laplace, Laplace EM, and EP. We
concentrate on the Cauchy/logit scenario for two rea-
sons: (i) Laplace EM requires a Student prior; and (ii)
Cauchy/logit seems to be the most challenging sce-
nario for EP, as (a) a Cauchy prior is more difficult to
deal with than a Gaussian prior in EP; and (b) con-
trary to the probit case, the site update requires some
approximation; see Section 3.5 for more details.

Left panel of Figure 1 plots the marginal accuracies
of the four approximation schemes across all compo-
nents and all datasets; Figure 2 does the same, but sepa-
rately for four selected datasets; results for the remain-
ing datasets are available in the supplement (Chopin
and Ridgway, 2016).

EP seems to be the most accurate method on these
datasets: marginal accuracy is about 0.99 across all
components for EP, while marginal accuracy of the
other approximation schemes tend to be lower, and

http://mc-stan.org/
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FIG. 1. Comparison of approximation schemes across all datasets of moderate size: marginal accuracies (left), and absolute error for
log-evidence versus the dimension p (right); x-axis range of the left plot determined by range of marginal accuracies (i.e., marginal accuracy
may drop below 0.4, for example, Laplace-EM).

may even drop to quite small values; see, for example,
the German dataset, and the left tail in the left panel of
Figure 1.

EP also fared well in terms of CPU time: it was
at most seven times as intensive as standard Laplace
across the considered datasets, and about 10 to 20
times faster than Improved Laplace and Laplace EM.
As expected (see Section 3.6). Of course, the usual
caveats apply regarding CPU time comparison, and
how they may depend on the hardware, the implemen-
tation, and so on.

We also note in passing the disappointing perfor-
mance of Laplace EM, which was supposed to replace
standard Laplace when the prior is Student, but which
actually performs not as well as standard Laplace on
these datasets.

We refer the reader to the supplement (Chopin and
Ridgway, 2016) for similar results on the three other
scenarios, which are consistent with those above. In ad-
dition, we also represent the approximation error of EP
and Laplace for approximating the log-evidence in the
right panel of Figure 1. Again, EP is found to be more
accurate than Laplace for most datasets (except for the
Breast dataset).

To conclude, it seems that EP may safely be used as
a complete replacement of sampling-based methods on
such datasets, as it produces nearly instant results, and
the approximation error along all dimensions is essen-
tially negligible.

5.1.2 Importance sampling, QMC. We now turn to
importance sampling (IS), which we deemed our “gold
standard” among sampling-based methods, because
of its ease of use and other nice properties as dis-
cussed in Section 4.1. We use N = 5 × 105 samples,
and a Gaussian EP proposal. (Results with a Laplace
proposal are roughly similar.) We consider first the
Gaussian/probit scenario, because this is particularly
favourable to Gibbs sampling; see the next section. Ta-
ble 2 reports for each dataset the efficiency factor of IS
(as defined in Section 4.1), the CPU time and two other
quantities discussed below.

We see that all these efficiency factors are all close
to one, which means IS works almost as well as IID
sampling would on such datasets. Further improve-
ment may be obtained by using either parallelization,
or QMC (Quasi-Monte Carlo, see Section 4.2). Table 2
reports the speed-up factor obtained when implement-
ing multi-threading on our desktop computer which
has a multi threading quad core CPU (hence 8 virtual
cores). We also implemented IS on an Amazon EC2
instance with 32 virtual CPUs, and obtained speed-up
factors about 20, and running times below 2s.

Finally, Table 2 also reports the MSE improvement
(i.e., MSE ratio of IS relative to IS-QMC) obtained
by using QMC, or more precisely RQMC (randomised
QMC), based on a scrambled Sobol’ sequence (see,
e.g., Lemieux, 2009). Specifically, the table reports the
median MSE improvement for the p posterior expecta-
tions (first column), and the MSE improvement for the
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FIG. 2. Box-plots of marginal accuracies across the p dimensions, for the four approximation schemes, and four selected datasets; plots
for remaining datasets are in the supplement (Chopin and Ridgway, 2016). For the sake of readability, scale of y-axis varies across plots.

evidence (second column). The improvement brought
by RQMC varies strongly across datasets.

The efficiency gains brought by parallelization and
QMC may be combined, because the bulk of the com-
putation (as reported by a profiler) is the N likelihood
evaluations, which are trivial to parallelize.

It is already clear that other sampling-based methods
do not really have a fighting chance on such datasets,
but we shall compare them in the next section for the
sake of completeness. See also the supplement (Chopin

and Ridgway, 2016) for results for other scenarios,
which are very much in line with those above.

5.1.3 MCMC schemes. In order to compare the dif-
ferent sampling-based methods, we define the IRIS (In-
efficiency Relative to Importance Sampling) criterion,
for a given method M and a given posterior estimate,
as follows:

MSEM

MSEIS
× CPUIS

CPUM
,
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TABLE 2
Performance of importance sampling (IS), and QMC importance sampling (IS-QMC), on all datasets, in Gaussian/probit scenario:

efficiency factor (EF), CPU time (in seconds), speed gain when using multi-threading Intel hyper-threaded quad core CPU (Speed gain
MT), and efficiency gain of QMC (see text)

IS IS-QMC

EF CPU MT MSE improv. MSE improv.
Dataset = ESS/N time speed-up (expectation) (evidence)

Pima 99.5% 37.54 s 4.39 28.9 42.7
German 97.9% 79.65 s 4.51 13.2 8.2
Breast 82.9% 50.91 s 4.45 2.6 6.2
Heart 95.2% 22.34 s 4.53 8.8 9.3
Liver 74.2% 35.93 s 4.76 7.6 11.3
Plasma 90.0% 2.32 s 4.28 2.2 4.4
Australian 95.6% 53.32 s 4.57 12 20.3
Elections 21.39% 139.48 s 3.87 617.9 3.53

where MSEM (resp., MSEIS) is the mean square er-
ror of the posterior estimate obtained with method M
(resp., with importance sampling), and CPUM the CPU
time of method M (resp., importance sampling). The
comparison is relative to importance sampling with-
out parallelisation or quasi-Monte Carlo sampling. In
terms of posterior estimates, we consider the expecta-
tion and variance of each posterior marginal p(βj |D).
We observe that, in both cases, IRIS does not vary
much across the p components, so we simply report
the median of these p values. Figure 3 reports the me-

dian IRIS across all datasets. We refer the reader to
Section 4.3 for how we tuned these MCMC algorithms.

The first observation is that all these MCMC schemes
are significantly less efficient than importance sam-
pling on such datasets. The source of inefficiency
seems mostly due to the autocorrelations of the simu-
lated chains (for Gibbs or random walk Metropolis), or,
equivalently, the number of leap-frog steps performed
at each iteration in HMC and NUTS. See the supple-
ment (Chopin and Ridgway, 2016) for ACF’s (Auto-
correlation plots) to support this statement.

FIG. 3. IRIS (Inefficiency relative to importance sampling) across all datasets for MCMC schemes and Gaussian/probit scenario; left (resp.,
right) panel shows median IRIS when estimating the p posterior expectations (resp., the p posterior variances).
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Second, HMC and NUTS do not perform signifi-
cantly better than random-walk Metropolis. As already
discussed, HMC-type algorithms are expected to out-
perform random walk algorithms as p → +∞. But the
considered datasets seem too small to give evidence to
this phenomenon, and should not be considered as rea-
sonable benchmarks for HMC-type algorithms (not to
mention again that these algorithms are significantly
outperformed by IS on such datasets). We note in pass-
ing that it might be possible to get better performance
for HMC by finely tuning the quantities ε and L on
per dataset basis. We have already explained in the In-
troduction why we think this is bad practice, and we
also add at this stage that the fact HMC requires so
much more effort to obtain good performance (relative
to other MCMC samplers) is a clear drawback.

Regarding Gibbs sampling, it seems a bit astonishing
that an algorithm specialised to probit regression is not
able to perform better than more generic approach on
such simple datasets. Recall that the Gaussian/probit
case is particularly favourable to Gibbs, as explained
in Section 4.3.1. See the supplement (Chopin and
Ridgway, 2016) for a comparison of MCMC schemes
in other scenarios than Gaussian/probit; results are
roughly similar, except that Gibbs is more significantly
outperformed by other methods, as expected.

5.2 Bigger Datasets

Finally, we turn our attention to the bigger datasets
summarised by Table 3. These datasets not only have
more covariates (than those of the previous section),
but also stronger correlations between these covari-
ates (especially Sonar and Musk). We consider the pro-
bit/Gaussian scenario.

Regarding fast approximations, we observe again
that EP performs very well, and better than Laplace;
see Figure 4. It is only for DNA (180 covariates) that
the EP approximation starts to suffer.

Regarding sampling-based methods, importance
sampling may no longer be used as a reference, as
the effective sample size collapses to a very small

TABLE 3
Datasets of larger size (from UCI repository): name, number of
instances nD , number of covariates p (including an intercept)

Dataset nD p

Musk 476 95
Sonar 208 61
DNA 400 180

value for these datasets. We replace it by the temper-
ing SMC algorithm described in Section 4.4. More-
over, we did not manage to calibrate HMC so as to
obtain reasonable performance in this setting. Thus,
among sampling-based algorithms, the four remaining
contenders are: Gibbs sampling, NUTS, RWHM (ran-
dom walk Hastings–Metropolis), and tempering SMC.
Recall that the last two are calibrated with the approx-
imation provided by EP.

Figure 5 reports the “effective sample size” of the
output of these algorithms when run for the same
fixed CPU time (corresponding to 5 × 105 iterations
of RWHM), for the p posterior expectations (left pan-
els), and the p posterior variances (right panels); here
“effective sample size” is simply the posterior variance
divided by the MSE of the estimate (across 50 indepen-
dent runs of the same algorithm).

No algorithm seems to vastly outperform the oth-
ers consistently across the three datasets. If anything,
RWMH seems to show consistently best or second best
performance.

Still, these results offer the following insights. Again,
we see that Gibbs sampling, despite being a specialised
algorithm, does not outperform significantly more
generic algorithms. Recall that the probit/Gaussian
scenario is very favourable to Gibbs sampling; in other
scenarios (results not shown), Gibbs is strongly domi-
nated by other algorithms.

More surprisingly, RWHM still performs well de-
spite the high dimension. In addition, RHHM seems
more robust than SMC to an imperfect calibration; see
the DNA example, where the error of the EP approxi-
mation is greater.

On the other hand, SMC is more amenable to paral-
lelisation, hence on a parallel architecture, SMC would
be likely to outperform the other approaches.

6. VARIABLE SELECTION

We discuss in this section the implications of our
findings for variable selection. The standard way to for-
malise variable selection is to introduce as a parameter
the binary vector γ ∈ {0,1}p , and to define the likeli-
hood

p(D|β,γ ) =
nD∏
i=1

F
(
yiβ

T
γ xγ ,i

)
,

where βγ (resp., xγ ,i) is the vector of length |γ | that
one obtains by excluding from β (resp., xi) the compo-
nents j such that γj = 0. Several priors may be consid-
ered for this problem (Chipman, George and McCul-
loch, 2001), but for simplicity, we will assume a uni-
form prior for γ (with respect to the set {0,1}p), and
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FIG. 4. Marginal accuracies across the p dimensions of EP and Laplace, for datasets Musk, Sonar and DNA.

one of the two priors discussed in Section 2.1 for βγ ,
given γ .

Computationally, variable selection is more chal-
lenging than parameter estimation, because the poste-
rior p(β,γ |D) is a mixture of discrete and continu-
ous components. The quantity p(D|γ ) is the marginal
likelihood of the data for a given set of predictors.
We have seen in the previous section that this quan-
tity is easy to approximate (using, e.g., Laplace, EP,
or importance sampling). This suggests to sample di-
rectly the marginal posterior distribution p(γ |D) ∝
p(γ )p(D|γ ). if p is small, one may perform a com-

plete enumeration: approximate p(γ )p(D|γ ) for each
γ , and normalise. For larger p, one may adapt the ap-
proach of Schäfer and Chopin (2013) for sampling bi-
nary vectors, as described in the next sections.

6.1 SMC Algorithm of Schäfer and Chopin (2013)

In linear regression, yi = βT
γ xγ ,i + εi , εi ∼ N1(0,

σ 2), the marginal likelihood p(D|γ ) may be com-
puted exactly (for a certain class of priors). Schäfer
and Chopin (2013) use this property to construct a
tempering SMC sampler, which transitions from the
prior p(γ ) to the posterior p(γ |D), through the tem-
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FIG. 5. Effective sample size for a fixed CPU time for sampling-based algorithms: posterior expectations (left), and posterior variances
(right) for datasets (from top to bottom): Musk, Sonar and ADN.
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FIG. 6. Variation of estimated inclusion probabilities p(γj = 1|D) over 50 runs for the p covariates of Musk dataset: median (red line),
80% confidence interval (white box); the black-box extends until the maximum value.

pering sequence πt(γ ) ∝ p(γ )p(D|γ )δt , with δt grow-
ing from 0 to 1. This algorithm has the same struc-
ture as Algorithm 4 (with the obvious replacements
of the β’s by γ ’s and so on). The only difference is
the MCMC step used to diversify the particles after re-
sampling. Instead of a random walk step (which would
be ill-defined on a discrete space), Schäfer and Chopin
(2013) use a Metropolis step based on an independent
proposal, constructed from a sequence of nested lo-
gistic regressions: proposal for first component γ1 is
Bernoulli, proposal for second component γ2, condi-
tional on γ1, corresponds to a logistic regression with
γ1 and an intercept as covariates, and so on. The pa-
rameters of these p successive regressions are simply
estimated from the current particle system. Schäfer and
Chopin (2013) show that their algorithm significantly
outperforms several MCMC samplers on datasets with
more than 100 covariates.

6.2 Adaptation to Binary Regression

For binary regression models, p(D|γ ) is intractable,
so the approach of Schäfer and Chopin (2013) cannot
be applied directly. On the other hand, we have seen
that (a) both Laplace and EP may provide a fast ap-
proximation of the evidence p(D|γ ); and (b) both im-
portance sampling and the tempering SMC algorithm
may provide an unbiased estimator of p(D|γ ).

Based on these remarks, Schäfer (2012) in his Ph.D.
thesis considered the following extension of the SMC

algorithm of Schäfer and Chopin (2013): in the se-
quence πt(γ ) ∝ p(γ )p(D|γ )δt , the intractable quan-
tity p(D|γ ) is simply replaced by an unbiased es-
timator (obtained with importance sampling and the
Gaussian proposal corresponding to Laplace). The cor-
responding algorithm remains valid, thanks to pseudo-
marginal arguments (see, e.g., Andrieu and Roberts,
2009). Specifically, one may reinterpret the resulting
algorithm as a SMC algorithm for a sequence of distri-
butions on an extended space, such that marginal in γ
is exactly the posterior p(D|γ ) at time t = T . In fact, it
may be seen as a particular variant of the SMC2 algo-
rithm of Chopin, Jacob and Papaspiliopoulos (2013).

6.3 Numerical Illustration

We now compare the proposed SMC approach with
the Gibbs sampler of Holmes and Held (2006) for sam-
pling from p(β,γ |D), on the Musk dataset. Both algo-
rithms were given the same CPU budget (15 minutes),
and were run 50 times; see Figure 6. Clearly, the SMC
sampler provides more reliable estimates of the inclu-
sion probabilities p(γj = 1|D) on such a big dataset.
See also the Ph.D. dissertation of Schäfer (2012) for re-
sults consistent with those, on other datasets, and when
comparing to the adaptive reversible jump sampler of
Lamnisos, Griffin and Steel (2013).

6.4 Spike and Slab

We also note in passing that a different approach to
the variable selection problem is to assign a spike and
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slab prior to β (George and McCulloch, 1993):

p(β) =
p∏

j=1

{
λN1

(
βj ;0, v2

0
)

+ (1 − λ)N1
(
βj ;0, v2

1
)}

, v2
0 � v2

1,

where λ ∈ (0,1), v2
0 and v2

1 are fixed hyper-parameters.
This prior yields a continuous posterior (without point
masses at βj = 0), which should be easier to sam-
ple from than the discrete-continuous mixture obtained
in the standard formulation of Bayesian variable se-
lection. It would be interesting to see to which ex-
tent our discussion and findings extend to this particu-
lar type of prior; see for particular Hernández-Lobato,
Hernández-Lobato and Dupont (2013) for an interest-
ing EP algorithm, based on the parametric family (for
the sites qi ) corresponding to an independent product
of p factors, equal to a Bernoulli (for choosing spike or
slab) times a Gaussian (for the coefficient βj ). Unfor-
tunately, we managed to make this approach work for
probit regression only on our list of small datasets, but
not on, for example, Musk.

7. CONCLUSION

The conclusions we draw and the recommendations
we give in this section apply exclusively to binary re-
gression models. Discussing to which extent these con-
clusions may be generalised to other models is deferred
to next section.

7.1 Recommendation to End Users

Our first and perhaps most important message to end
users is that Bayesian computation (for binary regres-
sion) is now sufficiently fast for routine use: if the
right approach is used, results may be obtained near
instantly on a standard computer, at least on simple
datasets.

Concretely, as far as binary regression is concerned,
our main recommendation is to use EP. It is very fast,
and its approximation error is negligible even on the
big datasets we have considered. EP requires some ex-
pertise to implement, but the second author has re-
leased a R package (available at https://cran.r-project.
org/web/packages/EPGLM/) that computes the EP ap-
proximation for a logit or a probit model.

In case one wishes to assess the EP error, by run-
ning in a second step some exact algorithm, we would
recommend to use the SMC approach outlined in Sec-
tion 4.4 (i.e., with initial particles simulated from the
EP approximation). Often, this SMC sampler will re-
duce to a single importance sampling step, and will

perform extremely well. Even when it does not, it
should provide decent performance, especially if run
on (and implemented for) a parallel architecture. Al-
ternatively, on a single-core machine, random walk
Metropolis is particularly simple to implement, and
performs surprisingly well on high-dimensional data
(when properly calibrated with EP).

7.2 Recommendations to Experts: Which
Benchmark?

The question “Which benchmark to use?” may be
recast into (as nicely put by one reviewer) the more
general question: what is best practice in demonstrat-
ing that a newly proposed method is useful? To answer
this question, we shall distinguish between specialised
algorithms and generic algorithms.

7.2.1 Benchmarking specialised algorithms. By
“specialised algorithm,” we mean in particular Gibbs
samplers that are specifically derived for a given bi-
nary regression model, and a given prior; see, for exam-
ple, Albert and Chib (1993), Holmes and Held (2006),
Frühwirth-Schnatter and Frühwirth (2010), Polson,
Scott and Windle (2013).

To prove that such a specialised algorithm is useful,
it seems important to show that it may perform better
than a generic algorithm, at least in certain cases. The
aforementioned papers mostly consider small datasets
(essentially those discussed in Section 5.1, which have
about 20 predictors or less). We have seen, how-
ever, that, for example, importance sampling and ran-
dom walk Metropolis are hard to beat on such small
datasets. Our recommendation, to anyone who is de-
veloping a new specialised algorithm, such as a Gibbs
sampler for logistic regression, would be to test it on
either a much bigger dataset (more than 100 predic-
tors), or on a similar but slightly more complex model
[such as a hierarchical logistic regression, as in Sec-
tion 3.2 of Frühwirth-Schnatter et al., 2009]. We also
recommend to systematically compare the proposed
algorithm to simple generic methods, such as properly
calibrated versions of importance sampling and ran-
dom walk Metropolis.

7.2.2 Benchmarking generic algorithms. By
“generic algorithm,” we mean in particular sampling-
based algorithms such as Metropolis–Hastings, HMC
and SMC which may sample from any target distribu-
tion. For such algorithms, a “benchmark” amounts to
the choice of a target distribution.

What our numerical study seems to indicate is that,
as far as generic algorithms are concerned, sampling

https://cran.r-project.org/web/packages/EPGLM/
https://cran.r-project.org/web/packages/EPGLM/
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from the posterior distribution of a binary regression
model and a small dataset may not be much more chal-
lenging than sampling from a Gaussian of the same di-
mension.

Of course, it is still useful to showcase a new generic
algorithm on such a posterior, if only as a “sanity
check” (as pointed out by two reviewers), that is: (a) to
quickly check it simulates from the correct distribution;
and (b) as a sensible place to start; that is, if the pro-
posed algorithm works well on such a posterior, then it
motivates looking at more challenging target distribu-
tions.

To construct more challenging posteriors from bi-
nary regression models, interesting approaches may be:
having more predictors (p > 100), having strongly cor-
related predictors (by, e.g., introducing cross effects),
and making the posterior less Gaussian through, for
example, a spike-and-slab prior. Alternatively, using a
PAC-Bayesian posterior such as, for example, (2.5), the
log-density of which is not concave and nondifferen-
tiable, could be an interesting option.

7.3 Big Data and the p3 Frontier

Several recent papers (Wang and Dunson, 2013,
Scott et al., 2016, Bardenet, Doucet and Holmes, 2015)
have approached the “big data” problem in Bayesian
computation by focussing on the big nD (many obser-
vations) scenario. In binary regression, and possibly in
similar models, the big p problem (many covariates)
seems more critical, as the complexity of most the al-
gorithms we have discussed is O(nDp3). Indeed, we
do not believe that any of the methods discussed in this
paper is practical for p � 1000. The large p problem
may be therefore the current frontier of Bayesian com-
putation for binary regression.

Perhaps one way to address the large p problem is to
make stronger approximations; for instance, by using
EP with an approximation family of sparse Gaussians.
Alternatively, one may use a variable selection prior
that forbids the number of active covariates to be larger
than a certain threshold.

8. GENERALISING TO OTHER MODELS

One should of course remain cautious regarding how
our findings may extend to other classes of models.
Some of the methods (e.g., Gibbs) which did not per-
form best for binary regression may turn out in other
contexts to the only viable option.

That said, there are two aspects of our study which
we recommend to consider more generally when

studying other models: parallelisation, and taking
into account the availability of fast approximations.
The former has already been discussed. Regarding
the latter, binary regression models are certainly not
the only models such that some fast approximations
may be obtained, whether through Laplace, INLA,
Variational Bayes or EP. And using this approxima-
tion to calibrate sampling-based algorithms (Hastings–
Metropolis, HMC, SMC and so on) will often have a
dramatic impact on the relative performance of these
algorithms. One may also discover, at least in certain
cases, that these approximations may be sufficiently
accurate to be used directly.
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