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Toward Automated Prior Choice
David B. Dunson

1. GENERAL THOUGHTS ON PRIOR CHOICE

There is a pressing need for more work providing
general guidelines for prior choice in realistically com-
plex Bayesian models for real world applications. I find
that the rich literature on “objective Bayes” (O’Bayes)
lacks useful suggestions, with too much focus on “flat”
and noninformative priors, and on approaches designed
to mimic “old school” (i.e., prior to the modern era of
penalization) frequentist inferences. In practice, I find
that it is almost always a bad idea to choose a nonin-
formative or very high variance/diffuse prior in com-
plex modeling settings. Such priors tend to only work
well in very simple settings; for example, when the data
contain ample information and the model under con-
sideration is regular and contains a modest number of
parameters.

In practice, priors that tend to have good perfor-
mance in realistically complex models almost always
favor some degree of shrinkage toward some notion of
a low-dimensional structure. If the prior is overly vague
and the data are potentially not very informative about
certain model parameters, then instabilities can result
computationally and Bayesian inferences can have rel-
atively poor behavior (e.g., in a mean square predic-
tion or estimation error sense). Although shrinkage
is most famously important in high-dimensional low
sample size data settings, it can lead to gains much
more broadly. There is an increasingly vast literature
proposing shrinkage priors that are targeted toward
specific settings and do not require subjective elicita-
tion of hyperparameters using domain knowledge. Al-
though most of the focus (by far) has been on Gaussian
linear regression and closely related modeling con-
texts, there is an increasing literature on more elab-
orate settings ranging from factor modeling of high-
dimensional covariance matrices (e.g., Bhattacharya
and Dunson, 2011) to analysis of many way con-
tingency tables and high-dimensional categorical data
Zhou et al., 2015.
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Much of my own research agenda focuses on design-
ing new and better classes of priors for complex data
and models, with a particular emphasis on high dimen-
sional and object data settings. In our work, we often
attempt to design priors that will lead to appealing fre-
quentist properties, such as efficient rates of concentra-
tion of the posterior distribution in asymptotic regimes
in which the dimension of the data increases with the
sample size (refer, e.g., to Bhattacharya et al., 2015
and Zhou et al., 2015). In addition, a common theme
is designing the prior in such a manner that a very
small number of tuning parameters control the degree
of shrinkage toward some simple structure (zero coef-
ficient values, low rank factorization, etc.). However,
often it can be complicated to choose such priors and
validate their properties. Hence, it is appealing to have
new prescriptive approaches that can help one to tar-
get design of new priors. Current thinking in the “prag-
matic” Bayes community is that priors should be cho-
sen to be (a) weakly informative in the sense of placing
high probability on a wide range of plausible values
while avoiding an overly-vague specification; (b) con-
centrated near some lower-dimensional structure (e.g.,
zero parameter values) while having heavy tails to be
robust to deviations from this structure; (c) have a sim-
ple form favoring interpretation and computation. Of
course, in practice it is often not clear how exactly to
choose a prior having properties (a)–(c); although there
are many widely used families that satisfy (a)–(c) in
certain common classes of problems, it is typically not
clear how to choose hyperpriors and best select from
among the members of a family of priors. In addition,
it is difficult to develop appropriate priors in classes of
problems that have not been as widely studied; for ex-
ample, outside of locally Gaussian and/or linear mod-
els.

2. PENALIZED COMPLEXITY PRIORS AND THE
SIMPSON ET AL. APPROACH

The Simpson et al. article provides an important and
thought-provoking contribution to the rich literature on
penalized complexity (PC) priors. Many (most?) of the
existing shrinkage priors in the Bayesian literature can
also be said to penalize complexity in shrinking to-
ward a simple baseline model structure. However, the
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main contribution of Simpson et al. is to provide a
formalization of how to explicitly penalize complex-
ity, using Kullback–Leibler (KL) divergence from the
base model, in a simple and potentially broadly use-
ful manner. In addition, in the process of considering
the idea of PC priors, they introduce some intriguing
and thought-provoking ideas, which should hopefully
help to stimulate research in the important area of au-
tomated prior choice in general problems. In the fol-
lowing, I include some brief comments on their work.

Definition of Overfitting

This was one aspect of the article I found particu-
larly interesting and surprising. In complex Bayesian
models, over-fitting is a common concern and shrink-
age toward a simple base model is a well-known and
widely used solution. However, I was surprised to read
their definition that a prior overfits if “its density in a
sensible parameterization is zero at the base model.”
This is not a definition that I would have thought to
apply—yes we want the prior to assign sufficient mass
around the base model in some sense, but it is un-
usual to focus just on the density at zero in considering
whether or not the prior overfits. A prior could overfit
(i.e., lead to posteriors that tend to overfit) even if the
density is nonzero at a simple base model if the density
does not drop off rapidly enough for larger distances.
On the other hand, a prior could badly under-fit (i.e.,
over-shrink interesting structure in the data) even if the
density is nonzero at the baseline model if the density
drops off too rapidly away from zero before reaching
the “true” complexity level. The authors bypass this is-
sue and make their simple definition more reasonable
by focusing on constant rate penalization (their princi-
ple 3), leading to an exponential tail. This exponential
form will presumably lead to good behavior only in
certain settings, but is appealing as a simple choice.

Measure of Complexity

The Kullback–Leibler (KL) divergence for a more
complex model relative to a simple base model pro-
vides a natural notion of complexity, which leads to
some appealing properties for the proposed class of
PC priors. First, the KL is a measure of the amount
of additional information in the more complex model
over the base model, and hence is a good choice philo-
sophically. In addition, the KL divergence can be easily
calculated analytically for multivariate Gaussian likeli-
hoods, providing analytic tractability which the authors
take advantage of in the latent Gaussian examples pre-
sented in the manuscript (one wonders how useful the

proposed PC priors are in non-Gaussian models). I was
quite excited and interested to see how some of the ex-
amples presented work out, leading to slightly unusual
but well-motivated priors for a random effects preci-
sion, the degrees of freedom of a t-distribution and
the shrinkage parameter in the normal means problem.
These examples are all essentially toy cases, but still
the results are intriguing. The interpretation of the PC
priors as having an approximately tilted Jeffrey’s form
near the base model was also quite interesting.

One wonders whether there is any relationship be-
tween the proposed class of PC priors based on KL,
and recent work on robust alternatives to the usual
Bayesian paradigm that also utilize KL in their speci-
fications. For example, Miller and Dunson (2015) pro-
posed a robust alternative to the posterior distribution
based on conditioning on the event that the observed
data are close to data generated from the presumed
model. They used KL to define closeness, and placed
an exponential prior on the neighborhood size. One
could view this prior on neighborhood size as an al-
ternative type of penalized complexity prior.

Generality

The authors’ goals are extremely ambitious in at-
tempting to define principles and a concrete class of
priors that are useful in routine implementations for
very broad classes of models limiting the need for com-
plex prior elicitation in each new application. Although
this article contains a lot of very interesting and thought
provoking ideas, the authors certainly fall far short of
their goal (as they acknowledge). The main issues to
me in terms of generalizability relate to (a) feasibil-
ity of automatically calculating and doing computa-
tion with the PC prior for arbitrary models within a
probabilistic programming language, such as BUGS,
JAGS, STAN, etc.; (b) the fundamental limitations of
defining the priors locally ignoring the global structure
of the model entirely; (c) the lack of ability to char-
acterize dependence within different hyperparameters;
(d) whether or not the proposed class of PC priors ac-
tually has generally good properties in some sense. It
seems difficult to attack (a)–(d) simultaneously but I
nonetheless feel that the proposed article takes more of
a sizable step toward automatic prior specification in
complex models than most previous relevant articles.

3. NONPARAMETRIC BAYES MODELS

Much of my research agenda focuses on designing
and applying nonparametric (NP) Bayes methods in
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complex applications. As a general rule of thumb, I
typically attempt to choose the nonparametric prior in
such a way that it is centered on a simple baseline para-
metric model, with one or perhaps two tuning (hyper-
parameters) controlling collapsing back onto the base
model. Such a structure allows the posterior to con-
centrate near the baseline model when that model pro-
vides an adequate approximation. One example is the
problem of modeling an unknown conditional density
f (y|x) of a response variable y given predictors x. In
this setting, I typically choose the base model as a (pos-
sibly sparse) Gaussian linear regression, with mixtures
used to allow flexible deviations (Dunson and Park,
2008; Chung and Dunson, 2009). Certain hyperparam-
eter values will favor large weight on one mixture com-
ponent, inducing collapsing on a normal linear regres-
sion as appropriate.

This type of approach to NP Bayes modeling tends
to protect against over-fitting in broad settings and to
have a close philosophical relationship to the notion of
PC priors introduced by Simpson et al. Potentially the
principles defined in their article may provide a useful
manner in which one can choose good hyperpriors on
key tuning parameters in NP Bayes models, though a
major practical question is computability of such pri-
ors in the NP Bayes setting as the K–L divergence is

typically not available in a simple form or easy to ap-
proximate accurately analytically for complex models.

4. CLOSING COMMENTS

I congratulate the authors on an interesting and
thought provoking contribution, and hope that this
work inspires more research in the very important topic
of how to automatically choose priors in realistically
complex Bayesian models.
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