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Approximate Models and Robust
Decisions1

James Watson and Chris Holmes

Abstract. Decisions based partly or solely on predictions from probabilis-
tic models may be sensitive to model misspecification. Statisticians are taught
from an early stage that “all models are wrong, but some are useful”; how-
ever, little formal guidance exists on how to assess the impact of model ap-
proximation on decision making, or how to proceed when optimal actions
appear sensitive to model fidelity. This article presents an overview of re-
cent developments across different disciplines to address this. We review
diagnostic techniques, including graphical approaches and summary statis-
tics, to help highlight decisions made through minimised expected loss that
are sensitive to model misspecification. We then consider formal methods
for decision making under model misspecification by quantifying stability
of optimal actions to perturbations to the model within a neighbourhood of
model space. This neighbourhood is defined in either one of two ways. First,
in a strong sense via an information (Kullback–Leibler) divergence around
the approximating model. Second, using a Bayesian nonparametric model
(prior) centred on the approximating model, in order to “average out” over
possible misspecifications. This is presented in the context of recent work in
the robust control, macroeconomics and financial mathematics literature. We
adopt a Bayesian approach throughout although the presentation is agnostic
to this position.

Key words and phrases: Computational decision theory, model misspecifi-
cation, D-open problem, Kullback–Leibler divergence, robustness, Bayesian
nonparametrics.

1. INTRODUCTION

This article presents recent developments in robust
decision analysis using approximate statistical mod-
els. The central theme of the paper can be summarised
as follows, that the consequence of statistical model
misspecification is contextual, and hence should be
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dealt with under a decision theoretic framework (e.g.,
Berger, 1985, Parmigiani and Inoue, 2009). As a toy
illustration consider the following: suppose that data
arise from an exponential distribution, x ∼ exp(λ), yet
the statistician adopts a normal model, incorrectly as-
suming x ∼ N(μ,σ 2). If interest is in the estimation
of the mean E[X] and the sample size is large, then
there may be little consequence in the misspecification.
However, if the focus is on the probability of an inter-
val event, say X ∈ [a, b], then there might be far reach-
ing consequences. Of course, this is a toy problem and
careful model checking and refinement will help in re-
ducing misspecification, but pragmatically, especially
in modern high-dimensional data settings, it seems to
us inappropriate to separate the issue of model mis-
specification from the consequences, context and ra-
tionale of the modelling exercise.
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Statisticians are taught from an early stage that “es-
sentially, all models are wrong, but some are useful”
(Box and Draper, 1987). By “wrong” we will take to
mean misspecified and by “useful” we will take to
mean helpful for aiding actions (taking decisions), or
rather a model is not useful if it does not aid any deci-
sion. We will refer to such situations as D-open prob-
lems, to highlight that Nature’s true model is outside
of the decision makers knowledge domain; cf. M-open
in Bayesian statistics which refers to problems in up-
dating beliefs when the model is known to be wrong
(Bernardo and Smith, 1994). We will adopt a Bayesian
standpoint throughout although the approach we de-
velop is generic. We will assume there is uncertainty
in some aspect of the world,2 θ ∈ �, which if known
would determine the loss in taking an action a as quan-
tified through a real-valued measurable loss-function,
La(θ). The loss will often be a joint function of states
and observables, La(θ, x), although we shall suppress
this notation for convenience. Uncertainty in θ is char-
acterised via a probability distribution πI (θ) given all
available information I . Without loss of generality, we
will assume that θ relates to parameters of a probability
model and information I is in the form of data, x ∈ X ,
and a joint model π(x, θ), such that

πI (θ) ≡ π(θ |x) ∝ f (x; θ)π(θ),

where π(x, θ) is factorised according to the sampling
distribution (or likelihood) f (x; θ) and the prior π(θ);
although more generally πI (θ) simply represents the
statistician’s best current beliefs about the value of the
unknown state θ . Following the axiomatic approach of
Savage (1954), the rational coherent approach to de-
cision making is to select an action â from the set of
available actions a ∈ A so as to minimise expected
loss:

(1) â = arg inf
a∈A

EπI (θ)

[
La(θ)

]
.

This underpins the foundations of Bayesian statis-
tics (Bernardo and Smith, 1994). The problem is that
(1) assumes perfect precision in specifying π(x, θ)

and La(θ). In reality, the model π(x, θ) is misspeci-
fied, such that the decision maker acknowledges that
f (x; θ) may not be Nature’s true sampling distribu-
tion or π(θ) does not reflect all aspects of prior sub-
jective beliefs in f (x; θ) or on the marginal π(x) =

2Savage (1954) refers to � as the “small world” relevant to the
decision.

∫
θ π(x, θ)dθ . This paper presents diagnostics and for-

mal methods to assist in exploring the potential impact
of this misspecification.

It is important to note that we will not spend much
time on the area of pure inference problems such as
robust estimation of summary functionals for which
there is a substantial literature (Huber, 2011), or on
recent work on the use of loss functions to construct
posterior models (Bissiri, Holmes and Walker, 2013).
We shall also pass quickly over the use of conventional
prior sensitivity analysis and robust “heavy tailed” pri-
ors and likelihoods. We are principally concerned with
ex-post3 settings where π(x, θ) has been specified to
the best of the modeller’s ability under the practical
constraints of computation and time, and where con-
cerns arise as to whether π(x, θ) represents the mod-
eller’s true marginal π(x) to sufficient precision. This
is particularly important when θ pertains to a high-
dimensional complex model or to the value of a future
predicted observation.

There is a rich literature in Bayesian statistics on
model robustness, the vast majority of which relates
to sensitivity to specification of the prior π(θ). We
review the material in detail below but mention here
the overviews in Berger (1994), Ríos Insua and Rug-
geri (2000) and Ruggeri, Insua and Martín (2005).
Bayesian robustness was a highly active area through
the 1980s to mid-1990s. Interest tailored off some-
what since that time, principally due to the arrival of
computational methods such as Markov chain Monte
Carlo (MCMC) coupled with developments in hier-
archical models, nonlinear models and nonparametric
priors; see, for example, Chipman, George and Mc-
Culloch (1998), Robert and Casella (2004), Rasmussen
and Williams (2006), Denison et al. (2002) and Hjort
et al. (2010). These methods allow for very flexible
model specifications alleviating the historic concern
that π(x, θ) was indexing a restrictive sub-class of
models. However, a number of recent factors merit a
reappraisal. In the 1990s and 2000s, computational ad-
vances and hierarchical models broadly outpaced the
complexity of data sets being considered by statisti-
cians. In more recent times, very high-dimensional data
are becoming common, the so called “big data” era,
whose size and complexities prohibit application of
fully specified carefully crafted models (e.g., National
Research Council et al., 2013, Chapter 7). Relevant

3Meaning here “once the modelling has been completed”. In a
Bayesian setting, this refers to dealing directly with the posterior
quantities.
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to this, approximate probabilistic inference techniques
that are misspecified by design have emerged as im-
portant tools for applied statisticians tackling com-
plex inference problems. For example, models involv-
ing composite likelihoods, integrated nested Laplace
approximations (INLA), Variational Bayes, Approx-
imate Bayesian Computation (ABC), all start with
the premise of misspecification; see, for example,
Beaumont, Zhang and Balding (2002), Fearnhead and
Prangle (2012), Marjoram et al. (2003), Marin et al.
(2012), Minka (2001), Ratmann et al. (2009), Rue,
Martino and Chopin (2009), Varin, Reid and Firth
(2011), and Wainwright and Jordan (2003). Finally,
there have been recent developments in coherent risk
measures within the macroeconomics and mathemati-
cal finance literature, building on areas of robust con-
trol, which are of importance and relevance to statisti-
cians, as outlined in Section 2 below.

The rest is as follows. In Section 2, we review some
background literature on decision robustness and quan-
tification of expected loss under model misspecifica-
tion. In Section 3, we review diagnostic tools to assist
applied statisticians in identifying actions which may
be sensitive to model fidelity. Section 4 presents formal
methods for summarising decision stability, by explor-
ing the consequence of misspecification within local
neighbourhoods around the approximate model. Sec-
tion 5 contains illustrations. Conclusions are made in
Section 6.

2. BACKGROUND ON DECISIONS UNDER MODEL
MISSPECIFICATION

We first review some of the background literature on
decisions made under model misspecification.

2.1 Minimax

The first axiomatic approach to robust statistical de-
cision making was made by Wald (1950). In the ab-
sence of a true model, Wald interpreted the decision
problem as a zero sum two-person game, following
von Neumann and Morgenstern’s work on game theory
(von Neumann and Morgenstern, 1947). To be robust,
the statistician protects himself against the worst pos-
sible outcome, selecting an action â according to the
minimax rule, which for the purposes of this paper we
can consider as4

â = arg inf
a∈A

[
sup
θ∈�

La(θ)
]
.

4Wald’s original work considered selection of decision functions,
δ(x) ∈ A, by nonconditional loss quantified as frequentist risk,
R[θ, δ(x)] = ∫

L(δ(x), θ)F (dx), with x ∈ X from unknown dis-
tribution FX .

This is akin to the decision maker playing a two-person
game with a malevolent Nature, where losses made by
one agent will be gained by the other (zero sum). On
selection of an action, Nature will select the worst pos-
sible outcome, equivalent to the assumption of a point
mass distribution taken reactively to your choice of ac-
tion,

δθ∗
a
(θ),

where

θ∗
a = arg sup

θ∈�

La(θ).

Although elegant in its derivation, the minimax rule has
severe problems from an applied perspective. The de-
cision maker following the minimax rule is not ratio-
nal and treats all situations with extreme pessimism. It
assumes that Nature is reactive in selecting δθ∗

a
(θ) for

your choice of a ∈ A irrespective of the evidence from
existing information I on the plausible values of θ .
Subsequent to Wald, there has been considerable work
to develop more applied procedures that protect against
less extreme outcomes.

2.2 Robust Bayesian Statistics

Under a strict Bayesian position, there is no issue
with model robustness. You precisely specify your sub-
jective beliefs through π(x, θ) and condition on data to
obtain posterior beliefs, taking actions according to the
Savage axioms. However, even the modern founders
of Bayesian statistics acknowledged issues with an ap-
proach that assumes infinite subjective precision:

“Subjectivists should feel obligated to recognise that
any opinion (so much more the initial one) is only
vaguely acceptable. . . So it is important not only to
know the exact answer for an exactly specified ini-
tial problem, but what happens changing in a reason-
able neighbourhood the assumed initial opinion.” De
Finetti, as quoted in Dempster (1975).
“. . . in practice the theory of personal probability is
supposed to be an idealization of one’s own standard
of behaviour; that the idealization is often imperfect
in such a way that an aura of vagueness is attached to
many judgements of personal probability. . . ” Savage
(1954).

As Berger points out, many people somewhat distrust
the Bayesian approach as “Prior distributions can never
be quantified or elicited exactly (i.e., without error),
especially in finite amount of time”—Assumption II
in Berger (1984). This then raises the thorny issue of
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what does the resulting posterior distribution π(θ |x)

actually represent?
An intuitive solution is to first specify an operational

prior model π0(θ), to the best of your available time
and ability, and then investigate sensitivity of inference
or decisions to departures around π0(θ), typically as-
suming that f (x; θ) is known so that divergence is with
respect to the prior. This idea has origins in the work of
Robbins (1951) and Good (1952) with many important
contributions since that time. We mention just a few
pertinent areas below, referring the interested reader to
the review articles of Berger (1984, 1994), Wasserman
(1992) and Ruggeri, Insua and Martín (2005), as well
as the collection of papers in the edited volumes of
Kadane (1984) and Ríos Insua and Ruggeri (2000).

The resulting robust Bayesian methods are use-
fully classified as either “local” or “global”. Local
approaches look at functional derivatives of poste-
rior quantities of interest with respect to perturba-
tions around the baseline model, for example, Ruggeri
and Wasserman (1993), Sivaganesan (2000); see also
Kadane and Chuang (1978) who consider asymp-
totic stability of decision risk. Global approaches con-
sider variation in a posterior functional of interest,
ψ = ∫

h(θ)π(θ |x)dθ , by varying the prior π within a
neighbourhood π ∈ 	 centred around some π0. A typ-
ical quantity would be the range (ψ inf,ψ sup) where
ψ inf = infπ∈	 ψ and ψ sup = supπ∈	 ψ . The challenge
is to define the nature and size of 	 so as to capture
plausible ambiguity in π0, while taking into account
factors such as ease of specification and computational
tractability (Berger, 1994, 1985, Section 4.7). One im-
portant example being the ε-contamination neighbour-
hood (Berger and Berliner, 1986) formed by the mix-
ture model,

	 = {
π = (1 − ε)π0 + εq, q ∈ Q

}
,

where ε is the perceived contamination error in π0 and
Q is a class of contaminant distributions. It is usual to
restrict Q so that it is not “too big”, for instance by
including only uni-modal distributions Berger (1994),
for which it is shown that the solutions have tractable
form. Other approaches consider frequentist risk, such
as 	-minimax that investigates the minimax Bayes
(frequentist) risk of ψ sup for π ∈ 	 whereas condi-
tional 	-minimax procedures (Vidakovic, 2000) study
the maximum expected loss across prior distributions
within 	, this being perhaps closest to the approach
we develop here. Also of note is the idea of model
elaboration (Carota, Parmigiani and Polson, 1996),
whereby a parametric model is embedded into a larger

class of models (e.g., a normal model into the fam-
ily of student-t distributions). Diagnostics concerning
the sensitivity of the model can then be obtained by
comparing the two alternative posterior distributions,
for instance using their Kullback–Leibler divergence
as a summary statistic. This is somewhat different from
the approach we discuss here where we do not embed
the model (posterior) in a parametric or nonparamet-
ric family but rather embed it into a neighbourhood of
distributions.5

A more general distinction is that here we recom-
mend that robustness to misspecification should apply
to only those states θ that enter into the loss function
La(θ). This facilitates application to high-dimensional
problems for which specification of 	 may be diffi-
cult (Sivaganesan, 1994) and helps tackle the thorny
issue that changing the likelihood changes the interpre-
tation of the prior (Ruggeri, Insua and Martín, 2005,
page 635).

2.3 Robust Control, Macroeconomics and Finance

Independent of the above developments in statistics,
control theorists were investigating robustness to mod-
elling assumptions. Control theory broadly concerns
optimal intervention strategies (actions) on stochastic
systems so as to maintain the process within a stable
regime. Hence, it is not surprising that decision robust-
ness is an important issue. When the system is linear
with additive normal (white) noise, the optimal inter-
vention is well known (Whittle, 1990). Robust con-
trol theory, principally developed by Whittle, consid-
ers the case when Nature is acting against the operator
through stochastic buffering by nonindependent noise;
see Whittle (1990). Whittle established that under a
malevolent Nature with a bounded variance an optimal
intervention can be calculated using standard recursive
algorithms.

In Economics, one early criticism of the Savage ax-
ioms was that the framework could not distinguish
between different types of uncertainty. Gilboa and
Schmeidler (1989) developed a theory of maxmin Ex-
pected Utility in part to counter the famous Ellsberg
paradox6 which extends standard Bayesian inference
to a setting with multiple priors in the form of a closed

5Section 4.3 considers an embedding of the posterior in a non-
parametric model such as the Dirichlet process; however the pur-
pose of this is to allow for sampling of distributions within some
neighbourhood of the model πI .

6The standard setting for the Ellsberg paradox is as follows:
imagine two urns each containing 100 balls and every ball is ei-
ther red or blue. One is told that the first urn (A) has 50 red balls
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convex set 	. An action is then scored by its expected
loss under the least favourable prior within that set.
Their 1989 paper formalises this and provides a so-
lution to the Ellsberg paradox. When 	 contains only
one prior, we are back again in the usual Bayesian set-
ting. The set 	 can be seen as describing the decision-
maker’s aversion to uncertainty. This work is closely
related to 	-minimax (for which the Ellsberg paradox
is also used as a motivating example, see Section 1 of
Vidakovic, 2000).

Again working in economics, Hansen and Sargent
in a series of influential papers (e.g., 2001a, 2001b),
generalised ideas from Whittle (1990) and Gilboa and
Schmeidler (1989) motivated by problems in macroe-
conomic time series. They define a robust action as
a local-minimax act within a Kullback–Leibler (KL)
neighbourhood of the posterior πI (θ) through explo-
ration of

ψ
sup
(a) (C) = sup

π∈	C

Eπ

[
La(θ)

]
,

where 	C denotes a KL ball of radius C around πI ,

	C =
{
π :

∫
π(θ) log

π(θ)

πI (θ)
dθ ≤ C

}
.

We will use π
sup
a,C to denote the corresponding local-

minimax distribution

π
sup
a,C = arg sup

π∈	C

Eπ

[
La(θ)

]
.

Figure 1 shows a pictorial representation of this con-
strained minimax rule, where the reference distribution
πI is a point in the space M of all distributions on θ

(represented by the rectangle) and the least favourable
distribution π

sup
a,C is contained within the neighbour-

hood 	C (represented by the circle of radius C). The
Wald minimax distribution is given by δθ∗

a
(θ). Hansen

and Sargent showed how π
sup
a,C and ψ

sup
(a) can be com-

puted for dynamic linear systems with normal noise;
see Hansen and Sargent (2008) for a thorough review
and references.

Breuer and Csiszár (2013, 2016), building on the
work of Hansen and Sargent, derived corresponding re-
sults for arbitrary probability measures πI (θ). Under
mild regularity conditions, and using results from ex-
ponential families and large deviation theory they ob-
tain the exact form of π

sup
a,C for any πI (θ) given the

and 50 blue balls exactly. No more information is given about the
second urn (B). Suppose you win $100 if you pick a red ball, which
urn would you choose? The set of alternatives are equal in expected
value (under any reasonable prior) but Ellsberg showed that there
is an empirical ordering of preferences (people prefer urn A).

FIG. 1. Graphical representation of local-minimax model π
sup
a,C

within a Kullback–Leibler ball of radius C around the reference
model πI , with global (Wald’s) minimax density δθ∗

a
(θ).

KL ball of size C, as well as an estimate for ψ
sup
(a) ; see

also Ahmadi-Javid (2011, 2012). In Section 4, we de-
rive the same result using an alternative, less general,
but perhaps more intuitive proof. Before considering
these formal methods, we shall start with exploratory
diagnostics and visualisation methods.

3. D-OPEN DIAGNOSTICS

All good statistical data analysis begins with graph-
ical exploration and evaluation of summary statistics
before formal modelling takes place. In this section,
we consider some graphical displays to aid understand-
ing of when and where actions are sensitive to mod-
elling assumptions. Section 5 further illustrates these
ideas. Despite the importance of graphical statistics,
there are few if any established tools for investiga-
tion of decision stability, although see Vickers and
Elkin (2006) for one exception, in contrast to the mul-
titude of methods for investigating model discrepancy
and misspecification (Belsley, Kuh and Welsch, 1980,
Gelman, 2007, Kerman et al., 2008). Here, we consider
graphical displays that concentrate on the relationship
between the loss function L(a, θ) and “model” or pos-
terior πI (θ) for a given a. These are examples of how a
set of available actions a ∈ A can be graphically com-
pared. They could be displayed as a preliminary step to
a formal analysis of sensitivity.

3.1 Value at Risk (Quantile-Loss)

A primary tool for assessing the sensitivity with re-
spect to misspecification is to plot the distribution of
loss, where Za denotes the random loss under πI (θ):

FZa(z) = Pr(Za ≤ z) =
∫
θ∈�

I
[
La(θ) ≤ z

]
πI (dθ),
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where I [·] is the indicator function. We use nota-
tion fa(z) = FZa(dz) to denote the corresponding
density function and F−1

Za
(q), for q ∈ [0,1], is the

inverse cumulative distribution or quantile function.
For robustness, given a value q ∈ [0,1], it is pos-
sible to characterise the utility of an action a by
its quantile loss or Value at Risk (VaR; terminol-
ogy used in finance) F−1

Za
(1 − q) rather than the ex-

pected loss. Rostek (2010) developed an axiomatic
framework in which decision-makers can be uniquely
characterised by a quantile 1 − q and rational be-
haviour (optimal action) is defined as choosing actions
â := arg mina∈A F−1

Za
(1−q). For example, this method

could rank them by median loss (taking q = 0.5). Or
when q = 0, this would correspond to choosing ac-
tions using the minimax rule. The author argues that
quantile maximisation is attractive to practitioners as
its key characteristic is robustness, specifically to mis-
specification in the tails of the loss distribution. Al-
though single quantiles discard much information con-
tained in [πI (θ),La(θ)], plotting this function allows
for immediate visualisation of how much of the tails
are taken up by high loss (low utility) events. With a
bag of samples simulated from the posterior marginal
θ1, . . . , θm ∼ πI (θ), this is easily approximated:

1. Sort the realised loss values, z
(a)
i = La(θi), from

highest to lowest {z(a)
υa(1) ≥ z

(a)
υa(2) ≥ · · · ≥ z

(a)
υ(m)}, where

υa(·) defines the sort mapping.
2. For q ∈ [0,1], approximate F−1

Za
(1 − q) by linear

interpolation of the points (x = k/m,y = z
(a)
υa(k)).

We refer the reader to Figure 3 from Section 3.5 for an
illustration of this plot.

In mathematical finance, summary statistics defined
on loss distributions are known as risk measures. VaR
is a particularly controversial risk measure as it is
widely used (written into official regulations) but is
not coherent7 (Basle Committee, 1996, Artzner et al.,
1999),8 violating subadditivity.9 This has motivated the

7Note that this is a different definition of coherence from
Bayesian coherence, discussed in Section 4.1.2.

8A coherent risk measure ρ has the following properties: trans-
lational invariance: ρ(Z + c) = ρ(Z) + c, where c is a con-
stant; monotonicity: if Z is stochastically dominated by Y , then
ρ(Z) ≤ ρ(Y ); positive homogeneity: ρ(λZ) = λρ(Z), for λ ≥ 0;
subadditivity: ρ(Z + Y ) ≤ ρ(Z) + ρ(Y ). By ρ(Z + Y ), we mean
the risk measure on the combined loss distribution of the combi-
nation of the two actions corresponding to the loss distributions Z

and Y .
9Subadditivity corresponds to investors decreasing risk by diver-

sifying portfolios.

use of different diagnostics such as CVaR (see next sec-
tion). We note that expected loss and minimax are both
coherent diagnostics. However, the use of coherence
in Bayesian decision theory does not seem appropriate
in general as the subadditivity axiom does not hold in
many applications.10

3.2 Conditional Value at Risk (Upper-Trimmed
Mean Utility)

Conditional Value at Risk (CVaR, Rockafellar and
Uryasev, 2000) is another popular alternative to ex-
pected loss (or utility), initially motivated by concerns
of the incoherence of VaR. To a statistician it represents
the lower trimmed mean of loss (or upper trimmed
mean of utility),

Ga(q) = 1

q

∫ ∞
F−1

Za
(1−q)

zfa(z)dz.

This gives the expected value of an action condi-
tional on the event (θ ) occurring above a quantile
of loss (lowest of utility). q can be seen as regulat-
ing the amount of pessimism towards Nature, with
limq→0 supa Ga(q) corresponding to the minimax rule.

Another strategy for taking into account model mis-
specification is by considering the two-sided trimmed
expected loss, defined as

H(q) = 1

1 − q

∫ F−1
Za

(1−q/2)

F−1
Za

(q/2)
zfa(z)dz.

This is a robust measure of expected loss formed by
discarding events with highest and lowest loss. Both
these statistics are easily approximated using the bag
of samples {θi}ni=1 and the sort mapping υ defined pre-
viously. We use the linear interpolation,

Ĝa

(
k

m

)
= 1

k

k∑
i=1

La(θυ(i)), k = 0, . . . ,m.

For a set of actions A, it is possible to quantify the
stability of the optimal action a∗ evaluated under ex-
pected loss, by observing the first CVaR crossing point.
That is to say the first value q ∈ [0,1] such that a∗ is
no longer optimal, evaluated under CVaR(q).

10A trivial example is the following: Consider the two gambles,
A lose £10 if a fair coin falls on Heads; B lose £10 if a fair coin
falls on Tails. For the same coin, if both gambles are taken then one
loses £10 with probability 1.
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3.3 Cumulative Expected Loss

The Cumulative Expected Loss (CEL) function for
action a is defined as

Ja(q) =
∫ ∞
F−1

Za
(1−q)

zfa(z)dz = qGa(q)

for q ∈ [0,1]. The CEL-plot is a monotone decreasing
function Ja(q) and an informative graph for highlight-
ing decision sensitivity. An action with CEL-plot that
is steeply rising as q → 0 is “heavily downside” (see,
e.g., Figure 9 in Section 5.2), with expected-loss driven
by low-probability high loss outcomes, while CEL-plot
rising at 1 indicates “heavy upside”. In particular Ja(q)

and its gradient has a number of useful features:

• Ja(q) quantifies the contribution to the expected loss
of action a, from the 100×(1−q)% set of outcomes
with greatest loss.

• Ja(1) = EπI (θ)[La(θ)], is the expected loss of action
a, and â = arg maxa∈A Ja(1) is the optimal Savage
action.

• J ′
a(q) = infz∗∈R+{Pr(Za ≤ z∗) = 1 − q}, the gradi-

ent of the curve at Ja(q) gives the threshold loss
value z∗, such that under action a we can expect with
probability (1−q) the outcome to have loss less than
or equal to z∗. This is the “value-at-risk” of action a

outlined above, for example, Pritsker (1997).
• J ′

a(0) = supθ∈� La(θ), and hence the Wald minimax
action is given by: ã = arg mina∈A J ′

a(0) (the action
with steepest gradient as q → 0).

3.4 Sensitivity Diagnostics

It is also worth exploring the sensitivity or leverage
of the contribution of particular data observations, xj ,
to the overall expected loss. In this way, one might
highlight “outliers” to the decision. We suggest a sim-
ple method and graphical display for assessing the sen-
sitivity with respect to individual data points (like-
lihood) and/or the prior distribution. Again, let the
model be represented by a bag of Monte Carlo samples
θ1, . . . , θm ∼i.i.d. πI , noting for a parametric model,
πI (θi) ∝ ∏n

j=1 f (xj |θi)π(θi), for data xj , likelihood
f and prior π .

A simple importance sampling method for evaluat-
ing πI−{xj } and πI−π , denoting respectively the poste-
rior without the datum xj and the posterior without the
prior π (the posterior under a flat prior) has importance
weights given by

w
−xj

i = 1

f (xj |θi)
, w−π

i = 1

π(θi)
.

These weights can be used to compute the leave-one-
out (LOO) estimates of the expected loss, where the
prior can be considered as an extra data point:

ψ
−xj
a = 1∑

i w
−xj

i

∑
i

w
−xj

i La(θi),

ψ−π
a = 1∑

i w
−π
i

∑
i

w−π
i La(θi).

Thus, the effect on expected loss for single data points
can be evaluated (towards detection of points of high
leverage) as can the effect of the prior, which is espe-
cially useful in small sample situations.

We also propose plotting the loss values La(θi)

against the density estimates πI (θi) (up to a normalis-
ing constant). This will highlight situations where the
high loss samples are coming from the tails of the dis-
tribution πI . A more general analysis could even look
to model the LOO estimates as a function of x, us-
ing regression models, to highlight covariate regions
of greatest leverage on the expected loss.

3.5 Motivating Synthetic Example

We use a fictitious example of a decision process
taken from Baio and Dawid (2015). Consider an in-
fectious disease for which there exists treatment medi-
cation and a new vaccine. The problem is whether the
vaccination should be publicly funded, or whether the
status-quo should remain in place, whereby patients
visit their doctor and are prescribed over the counter
drugs. This is a standard setting for decisions made
by institutions such as NICE11 in the UK, for exam-
ple. The goal is compare the two available actions:
widespread vaccination or status quo. The modelling
must take into account the uncertainty with regards to
the efficacy of the vaccine and its coverage were it to
be implemented. With regards the status quo action,
the modelling has to consider the number of visits to
the GP,12 complications from the drugs which could
lead to extra visits, possible hospitalisation and even
death. Each of these outcomes has either a monetary
cost (visit to the GP for example) or a utility measured
in Quality Adjusted Life Years (QALYs). Therefore,
to assign a loss value to each action, it is necessary to
choose a conversion rate k, known as the “willingness
to pay” parameter, exchanging QALYs into pounds.

11National Institute for Clinical Excellence.
12General Practitioner.
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Most of the decision literature focusses on the sensi-
tivity of the decision system with respect to the spec-
ification of k. The R package BCEA (Bayesian Cost-
Effectiveness Analysis) developed by Gianluca Baio
implements the model presented in Baio and Dawid
(2015) and performs a sensitivity analysis around the
parameter k. The exact details of the model are not of
particular interest so we do not expose them here, our
main purpose being illustrative. The model used for
this setting has 28 parameters, each with informative
prior distributions, these are given in Table 1 of Baio
and Dawid (2015). MCMC is used to estimate a pos-
terior distribution; all the relevant details can be found
in the package documentation, such as the cost func-
tion used, etc. We ran the model given in BCEA using
the default settings. We note that all the graphs were
produced using our package decisionSensitivityR and
all the code can be found in its documentation. In Fig-
ure 2, we plot estimates of the densities of loss for the
two actions for the “willingness to pay” parameter k =
19,400, the threshold value at which the two actions
have the same expected loss. The status quo (blue) has
greater variance in the distribution of loss than vaccina-
tion (red). The value k = 19,400 is of interest because
the two actions are indistinguishable with respect to ex-
pected loss. However, our method allows for a princi-

FIG. 2. Loss densities of the two actions for “willingness to pay”
k = 19,400 (same expected loss for both actions).

pled manner of choosing between them (see solution to
the Ellsberg paradox, Section 4.1.3).

Figure 3 illustrates the three diagnostic plots pre-
sented above for this application. We see from the in-
verse loss distribution (top left) that status quo (blue)
has higher downside loss than vaccination (red). The
CVaR plot (top right) clearly distinguishes the two ac-
tions because of this higher downside loss. In this ex-
ample, the CEL is not informative, but this is context
dependent; see Figure 9 from the breast cancer screen-
ing application in Section 5.2. Note that the expected
values (bottom right plot) should match by design, the
differences being due to Monte Carlo error.

The diagnostic plots and summary statistics pre-
sented in this section allow for visualisation of depen-
dencies between the loss function and posterior distri-
bution, which can highlight the impact of model mis-
specification on decision making. We now look at for-
mal methods via perturbations to the model (posterior
distribution) in order to measure the sensitivity of the
expected loss quantities.

4. D-OPEN FORMAL METHODS

In shaping the development of formal methods, it
may help to state some principles of robust analysis
that we would hope to adhere to:

• Principle 1a: Context: The impact of model misspec-
ification (approximation) is contextual, and hence
should be dealt with in a decision theoretic frame-
work.

• Principle 1b: Consequence: Following P1a, we
should be concerned with sensitivity to only those
states θ that affect the expected loss—that is, states
that enter into the loss function La(·).

• Principle 2: Coherence: robust methods should be
coherent, in that two analysts starting with the same
approximate joint model (prior and likelihood) and
given the same information (data), should arrive at
the same robust conclusions when the same loss
function is applicable.

We show that these guiding principles lead to a
unique characterisation of the problem and robust so-
lution.

An important implication of P1a is that our assess-
ment of the robustness or sensitivity of a model will
change depending on the task at hand, so that a model
trained on the same data might be highly robust for
one analysis and highly sensitive for another. That is to
say, the statistician should investigate how the expected
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FIG. 3. Diagnostic plots for the decision system given in Baio and Dawid (2015) comparing vaccination (red) to status quo (blue). The
“willingness to pay” parameter set to 19,400. From top left to bottom right: Inverse loss distribution; Conditional value at risk; Cumulative
expected loss; Expected loss centred at two intervals of standard deviation.

loss ψ(a) = ∫
La(θ)πI (θ)dθ varies under model mis-

specification. An important implication of P1b is that
we shall only be concerned with the marginal posterior
model

πI (θ |x) =
∫
η
πI (θ, η|x)dη

on the states θ that enter into the loss function La(θ),
where η are all other parameters in the likelihood that
are nuisance parameters to the loss.

In studying robustness, we will consider the con-
struction of a neighbourhood of “close” models around
the marginal πI (θ). This allows for either a study of
the variation of the quantity of interest (expected loss)
ψa over all models in this neighbourhood, or can guide
the construction of a nonparametric extension of the
model. In this section, we explore both ideas, each pro-
viding the statistician with a different set of tools to
estimate the sensitivity of the decision system.

For ease of comprehension, all the notation used
throughout this paper is summarised in a glossary in
Appendix B.

4.1 Kullback–Leibler Neighbourhoods

To investigate formally the stability of decisions to
model misspecification, we suggest following the ap-
proach taken in Hansen and Sargent (2001b). This

studies the variation of expected loss ψ(a) over all mod-
els within a KL ball 	 centered around the marginal
posterior density, πI (θ), of the approximating model
on the states that enter into the loss function. We will
assume after linear transformation that the loss can be
bounded, a reasonable assumption for almost all ap-
plied problems.13

4.1.1 Properties. It is well known that the KL di-
vergence is not symmetric, in general KL(π∗‖π) 
=
KL(π‖π∗) for π∗ 
= π , and following others we con-
sider the neighbourhood 	C = {π : KL(π‖πI ) ≤ C}
(Hansen and Sargent, 2008, Breuer and Csiszár, 2016,
Ahmadi-Javid, 2012). This might be considered the
more natural setting as here the KL divergence repre-
sents the expected self-information log-loss in using an
approximate model πI when Nature is providing out-
comes according to the probability law π .14

13In practice, it is always possible to cap the loss. For instance,
any model by which θ is simulated using MCMC this assumption
is made. In finance, the potential losses incurred by any individual
or organisation could be bounded by an arbitrarily large number,
say ±GDP of the US.

14In the Monte Carlo setting where πI is represented by a set
of {θi}mi=1, each with weight 1/m, then any distribution π that is
a reweighing of θi ’s satisfies: KL(πI ‖π) ≥ KL(π‖πI ) (Watson,
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Surprisingly, the use of KL leads to a least favourable
distribution solution with a simple form.

THEOREM 4.1. Let

π
sup
a,C = arg sup

π∈	C

Eπ

[
La(θ)

]
,

with 	C = {π : KL(π‖πI ) ≤ C} for C ≥ 0. Then the
solution π

sup
a,C is unique and has the following form:

(2) π
sup
a,C = Z−1

C πI (θ) exp
[
λa(C)La(θ)

]
,

where ZC = ∫
πI (θ) exp[λa(C)La(θ)]dθ is the nor-

malising constant or partition function, for which we
assume ZC < ∞, and λa(C) is a nonnegative real val-
ued monotone function.

PROOF. The function maximisation problem,
π

sup
a,C = arg supπ∈	C

Eπ [La(θ)], has an unconstrained
Lagrange dual form (see, e.g., Hansen et al., 2006,
pages 58–60),

π
sup
a,C = arg inf

π∈M
{
Eπ

[−La(θ)
] + η−1

a KL(π‖πI )
}

for some ηa = ηa(C) is a penalisation parameter with
ηa ∈ [0,∞), and is monotone increasing in C. Hence,

π
sup
a,C

= arg inf
π∈M

{∫
−La(θ)π(θ)dθ

+ η−1
a

∫
π(θ) log

(
π(θ)

πI (θ)

)
dθ

}
(3)

= arg inf
π∈M

{∫
π(θ) log

(
π(θ)

πI (θ) exp[ηaLa(θ)]
)

dθ

}

∝ πI (θ) exp
[
ηaLa(θ)

]
.

The uniqueness arises from the convexity of the KL
loss. The result follows, taking λa(C) = ηa . �

By a similar argument, the distribution of minimum
expected loss follows:

π inf
a,C ∝ πI (θ) exp

[−λa(C)La(θ)
]
.

Note by assuming bounded loss functions we can
ensure the integrability of the densities. Breuer and
Csiszár (2013) and Ahmadi-Javid (2012) derive the
same result more generally but perhaps less intuitively.
Breuer and Csiszár (2013) gives more general condi-
tions on when the solution exists.

Nieto-Barajas and Holmes, 2016). Because we are looking at the
variation of the expected loss ψ(a) across the 	C , we want to the
neighbourhood to be more exclusive for fixed values of the ra-
dius C.

The 	C least favourable distributions, {π inf
a,C,π

sup
a,C},

have an interpretable form as exponentially tilted den-
sities, tilted towards the exponentiated loss function,
with weighting λa(C) a monotone function of the
neighbourhood size C. For linear loss, La(θ) = Aθ , the
local least favourable π

sup
a,C is the well-known Esscher

transform used for option pricing in actuarial science.
The tilting parameter λa(C) is a function of the neigh-
bourhood size C, but we will write λa for convenience.
λa and C can be thought of as interchangeable, as there
is a bijective mapping between C ≥ 0 and λa ≥ 0, al-
though this is not a linear mapping.

Following Theorem 4.1, the corresponding range of
expected losses for each action (ψ inf

(a),ψ
sup
(a) ) can then

be plotted as a function of C for each potential ac-
tion. Formally, we should write [ψ inf

(a)(C),ψ
sup
(a) (C)] al-

though for ease of notation we will often suppress C

from the expression unless clarity dictates. The con-
straint KL(π‖πI ) ≤ C will result in π

sup
a,C lodging on

the boundary as the expected loss can always be in-
creased by diverging towards δθ∗

a
(θ) for any distribu-

tion with KL(π‖πI ) < C. Substituting the solution (2)
into the KL divergence function gives

KL
(
π

sup
a,C‖πI

)

=
∫

π
sup
a,C(θ) log

(
Z−1

λa
exp

[
λaLa(θ)

])
dθ

= λaEπ
sup
a,C

[
La(θ)

] − logZλa .

So, given neighbourhood size C, the KL divergence
KL(π

sup
a,C‖πI ) is λa(C) times the expected loss under

π
sup
a,C minus the log partition function. Moreover, by

Jensen’s inequality,

KL
(
π

sup
a,C‖πI

)
= λaEπ

sup
a,C

[
La(θ)

] − logEπI

[
exp

{
λaLa(θ)

}]

≤ λa

[
Eπ

sup
a,C

[
La(θ)

] −EπI

[
La(θ)

]]
.

The KL divergence is bounded above by λa times the
difference in expected loss between the approximating
and the contained minimax models.

By plotting out the interval [ψ inf
(a)(C),ψ

sup
(a) (C)] for

each action as a function of KL divergence con-
straint C : KL(π‖πI ) ≤ C we can look for cross-
ing points between the supremum loss ψ

sup
(â)

under
the optimal action â chosen by the approximating
model and the infimum loss under all other actions,
ψ inf := infa∈A\â{ψ inf

(a)}.
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4.1.2 Coherence. Adapting results from Bissiri, Holmes
and Walker, 2013, we are able to state the following re-
sult regarding the uniqueness of Kullback–Leibler di-
vergence under the condition of guaranteeing coherent
Bayesian updating.

THEOREM 4.2. Let π sup
a,C(x,πI ) be the solution ob-

tained by

π
sup
a,C(x,πI )

= arg inf
π∈M

{
Eπ

[−La(θ)
] + η−1

a D(π‖πI )
}

with data x = {xi}ni=1, a centring distribution πI , and
arbitrary g-divergence measure D. Moreover, let x

be partitioned as x = {x(1), x(2)}, for x(1) = {xi}i∈S ,
x(2) = {xj }j∈S̄ , where S, S̄ is any partition of the in-
dices i = 1, . . . , n. For coherence we require

π
sup
a,C(x,πI ) ≡ π

sup
a,C

(
x(2), π

sup
a,C

(
x(1), πI

))
.

That is, the solution using a partial update involving
x(1), which is subsequently updated with x(2), should
coincide with the solution obtained using all of the data
{x(1), x(2)}, for any partition. Then for coherence the
divergence D(·‖·) is the Kullback–Leibler divergence.

The proof is given in Appendix A.
This theorem shows that KL is the only divergence

measure to provide coherent updating of the local least
favourable distribution.

4.1.3 Local sensitivity and regularisation of ill-
posed decisions. Although the framework presented
here fits into global robustness methods, it is also pos-
sible to extract local robustness measures and show
how they can restore well-posedness to certain decision
problems. Consider an ill-posed decision such as the
Ellsberg paradox mentioned earlier. The nonunique-
ness of the optimal action can be solved via the in-
troduction of a regularization term; cf. Tikhonov reg-
ularization and ridge-regression. In our context, this
amounts to exploring robust actions in the limit as the
neighbourhood size C → 0.

In Appendix C, we show that the derivative at zero
of the least favourable expected loss w.r.t. λ (exponen-
tial tilting parameter) is exactly the variance of the loss
distribution:

d

dλ

∣∣∣∣
λ=0

Eπ
sup
a,C(λ)

[La] = VarπI

[
La(θ)

]
.

This justifies the use of the variance of loss as a local
regularization term which provides a method for dif-
ferentiating between actions of equal expected loss. If

the action is chosen to minimise the least favourable
expected loss in the limit as λ → 0, then this corre-
sponds to the action with lowest variance. For the Ells-
berg paradox, the robust solution is to select the urn
with exactly 50 red and 50 black balls.

4.1.4 Local Bayesian admissibility. In a classical
setting, the notion of admissibility defines a subclass of
actions that can then be scrutinized in order to choose
an optimal decision. A decision is denoted inadmis-
sible if there is no θ ∈ � such that its risk function
(frequentist) is minimal (with respect to the other de-
cisions) at θ . We note that in a Bayesian context, be-
cause the expected loss is the single quantity used to
classify actions, only the action a∗ which minimizes
expected loss (with respect to πI ) is admissible. How-
ever, if we consider the set of posterior distributions
contained within a Kullback–Leibler neighbourhood of
radius C, then an analogous definition of admissibility
can be given.15 An action a is said to be admissible
if there exists a distribution π ∈ 	C such that a min-
imises expected loss in the set A as calculated with
respect to π . The previous results tell us about the ex-
pected loss under the least favourable distribution in
	C for each action a, but this does not in general tell
us whether an action a is admissible in 	C . The opti-
mal Bayes action a∗ is always admissible for all C ≥ 0
(because it is optimal under πI ∈ 	C). However, for an
action a 
= a∗ to be admissible, there must exist a dis-
tribution π such that a is better than a∗ under expected
loss with respect to some π ∈ 	. The existence of this
distribution can be deduced from the previous results
if we look at the regret loss function between the two
actions:

L(a∗,a)(θ) = La∗(θ) − La(θ)

and the corresponding least favourable pairwise distri-
bution:

π
sup
(a∗,a),C = arg sup

π∈	C

{
Eπ

[
L(a∗,a)(θ)

]}

= Z−1
C πI (θ) exp

(
λ(a∗,a)

[
La∗(θ) − La(θ)

])
with expected loss

ψ
sup
(a∗,a)(C) =

∫
θ
π

sup
(a∗,a),C(θ)

[
La∗(θ) − La(θ)

]
dθ.

The sign of this expected loss indicates whether a is
admissible with respect to a∗ (if it is positive).

This can be extended to every other action in the
set A, thus giving the following definition.

15Note that this is a different definition from the one usually given,
constructed here to suit our purposes.
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DEFINITION 1. We say that an action a is C∗-
dominated, or locally-inadmissible up to level C∗ when

C∗ := arg sup
{
C : ψ sup

(a′,a)(C) < 0,∀a′ ∈ A \ a
}
.

If a is ∞-dominated then it is globally inadmissible
(this retrieves the classical notion of admissibility).

4.1.5 Calibration of neighbourhood size. In most
scenarios, the local least favourable distribution
Z−1

λ πI (θ) exp[λaLa(θ)] will not have closed form.
When πI (θ) is represented as a Monte Carlo bag of
samples {θi}mi=1 ∼i.i.d. πI , the distribution can be ap-
proximated by using πI as an importance sampler lead-
ing to

π̃
sup
a,C = 1

Zλa

∑
i

wiδθi
(θ),

wi = exp
[
λaLa(θi)

]
, Zλa = ∑

i

wi.

We can then use π̃
sup
a,C to calculate (ψ inf

(a),ψ
sup
(a) ). For

a small neighbourhood size, and hence small λa rela-
tive to La(θ), this approximation should be accurate. In
general, if πI is thought to be a useful approximation to
the true posterior then the neighbourhood size should
be kept small. However, as λ increases, the variance of
the un-normalised importance weights will grow expo-
nentially and the approximation error with it. In this
situation, the problem appears amenable to sequential
Monte Carlo samplers (Del Moral, Doucet and Jasra,
2006) taking λa ≥ 0 as the “time index” although here
we do not explore this any further.

This points to the much wider and important open is-
sue of how to choose the size of the neighbourhood 	.
In the Monte Carlo setting of this problem, the statis-
tician might explore candidate KL values using one or
more of the following ideas:

• Explore the distribution of the importance weights
and deciding whether this is “degenerate”, for ex-
ample, by looking at the variance of the weights that
increases with C.

• Similar to the above, define an inequality constraint
for the distribution of importance weights, for exam-
ple, consider KL divergences up to the point when
99% of the mass of importance weights is assigned
to 1% of the importance samples.

• Calibrate to the distribution of KL values,
KL[π(θ |x−d)‖π(θ)], obtained in a partial update of
the prior π(θ) to the posterior given some % subset
of the full data set x−d . For example, we could ex-
amine a KL neighbourhood size in 	 equating to the
average KL divergence of the posterior to the prior
using 10% of the data.

Overall, we consider that the calibration of the
Kullback–Leibler divergence remains an open prob-
lem, even though this divergence is used in many ap-
plications. McCulloch (1989) proposes a general solu-
tion using a Bernoulli distribution, but it is not obvious
that this translates well into a method for the calibra-
tion of any continuous distribution. Further options are
presented in the Discussion section below.

4.2 Illustrative Solutions

In this section, we illustrate the form of some canon-
ical solutions found using the robust decision approach
of Section 4.1.

4.2.1 Information annealing. Under model mis-
specification, there is greater uncertainty in the statisti-
cal analysis than supposed by a conventional Bayesian
update, whereby the joint model is assumed true. To
put it another way, there is less information in the ex-
periment than is conditioned on. In such situations, it
can be interesting to anneal the information in the fol-
lowing manner.

Likelihood annealing. We consider robustness to
the use of the likelihood function, f (y; θ), for y =
{y1, . . . , yn}, which is usually assumed known in a con-
ventional Bayesian update. In this case, under a local
proper scoring rule, the natural loss function is the self-
information loss L(y) = − logf (y|x) (Bernardo and
Smith, 1994):

L(θ) = −∑
i

logf (yi; θ).

This leads to the robust Bayesian update as

π̃(θ |x) ∝ [
f (y; θ)

]1−λ
π(θ)

for λ ∈ [0,1]. This has the form of an annealing of the
information in the likelihood function reducing the in-
fluence of the data relative to the prior due to concerns
on the likelihood specification. This down weighting of
the likelihood has previously been considered by oth-
ers, without the formal justification of appealing to the
principles P1–P2 above, for example, Grünwald and
van Ommen (2014), Miller and Dunson (2015), Walker
and Hjort (2001).

Concept drift. More generally, suppose there is
meta-information, ui , recorded on each observation,
xi and a belief that robustness to the task at hand may
associate with ui . For example, in data-mining appli-
cations when the task is to provide a predictive model,
u may record the time at which an observation was col-
lected and there is concern that the underlying system
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being modeled is not dynamically stable. This is known
as “concept drift” (e.g., Section 3.1 in Hand, 2006), al-
though more generally u simply contains information
relative to predictive loss. The natural loss function is
now a weighted self-information loss, based on the em-
pirical distribution:

L(θ) = −∑
i

�(ui) logf (yi; θ)

with �(ui) ∈ (0,1) encapsulating the relative weight
of log-loss to the future predictive.

For prediction of a new observation y∗ given x∗, this
leads to the robust solution as

̂fsup
(
y∗|x∗)

∝
∫
θ
f

(
y∗|x∗, θ

)[∏
i

f (yi; θ)π(θ)

]

· e−∑
i �(ui) logf (yi;θ) dθ

∝
∫
θ
f

(
y∗|x∗, θ

)[∏
i

f (yi; θ)1−�(ui)π(θ)

]
dθ

that can be seen to down-weight the information in yi

used to predict y∗. For example, if ui records the time
since the current prediction time then a natural penalty
is �(ui) = exp(−λui), where λ encodes a predictive
forgetting factor. For a related approach, see Hastie and
Tibshirani (1993).

Predictive annealing. Suppose the task is to pro-
vide a marginal predictive distribution, f̂ (y|x), for
a future observation y given covariates x, without
knowledge or respect to where or how robustness
may affect the model. The local proper scoring rule
in this case is the self-information logarithmic loss
L(y) = − logf (y|x). The conventional Bayesian so-
lution is to report your honest marginal beliefs as
f̂ (y|x) = fI (y|x), where given a model parametrised
by θ we have fI (y|x) = ∫

f (y|x, θ)πI (θ)dθ . How-
ever, this assumes that the model is true and stable in
time, both of these assumptions being potentially dubi-
ous. The solution above protects against misspecifica-
tion and leads to

̂f ∗
sup(y|x) ∝ fI (y|x)1−λ,

for λ ∈ [0,1]. This has the form of annealing the pre-
dictive distribution, taking into account additional ex-
ternal levels of uncertainty outside of the modelling
framework.

4.2.2 General Bayesian updates, Gibbs posteriors
and PAC-Bayes. Suppose you hold prior beliefs about
a set of parameters θ but don’t know how to specify
the likelihood f (x|θ), and hence lack a model π(x, θ).
For example, suppose θ refers to the median of FX

with unknown distribution. Suppose the task (action)
is to provide your best subjective beliefs π(θ |·) con-
ditional on information in the data and prior knowl-
edge. We don’t have a likelihood but we could have
a well-defined prior, hence πI (θ) = π(θ). In this sit-
uation, there may be a well defined loss function on
the data that we would wish to maximise utility against
for specifying beliefs, for example, for the median we
should take

L(θ) = ∑
i

|xi − θ |.

The distribution that minimises the expected loss within
a certain KL divergence of the prior is given by the
local-maximin distribution,

π inf
a,C = Z−1

λa
e−λa

∑
i |xi−θ |π(θ).

This has the form of a Gibbs posterior or an expo-
nentially weighted PAC-Bayesian approach (Zhang,
2006a, 2006b, Bissiri, Holmes and Walker, 2013,
Dalalyan and Tsybakov, 2008, 2012). In this way, we
can interpret Gibbs posteriors as local-maximin solu-
tions in the absence of a known sampling distribution
(Bissiri, Holmes and Walker, 2013).

4.2.3 Conditional 	-minimax priors. There is a
direct relationship between the solution under Sec-
tion 4.1 and 	-minimax priors (Vidakovic, 2000) when
the La(θ) involves all the parameters in a parametric
model so that the posterior is

πI (θ) ∝
n∏

j=1

f (xj |θ)π(θ)

with likelihood f (·|θ) and prior π(θ).
Thus, the posterior least favourable distribution

π sup
a (θ) ∝ eλaLa(θ)

n∏
j=1

f (xj |θ)π(θ)

can be considered a Bayes update using the minimax
prior [eλaLa(θ)π(θ)] (dropping the normalisation con-
stant). This is an action specific prior.

Note that the KL divergence is the only divergence to
ensure this coherency, and also that the “prior” π

sup
a (θ)

is data dependent if the loss function uses the empirical
risk, that is, is of the form La(θ,X).
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4.3 Characterising Variation of Expected Loss
Within the Neighbourhood �

From a Bayesian standpoint rather than consider the
“worst case” least favourable distribution in 	C , it
is more natural to characterise the distribution in ex-
pected loss arising over all models in the neighbour-
hood 	. In order to quantify this uncertainty and take
expectations over distributions in the neighbourhood
of πI , we require a probability distribution on a set
of probability measures centred on πI . This is classi-
cally a problem in Bayesian nonparametrics; see, for
example, Hjort et al. (2010). However, in a decision-
theoretic context, only the functionals of the distribu-
tions π ∈ 	 are of importance. In particular, the func-
tionals ψa : π → Eπ [La(θ)] for a ∈ A (expected loss).
It is important here to note that two sequences of distri-
butions πn, π∗

n can be infinitely divergent in Kullback–
Leibler, or can remain at a finite distance in total varia-
tion metric, but weakly converge, that is, their function-
als converge; see Watson, Nieto-Barajas and Holmes
(2016) for an example and a further discussion of this.
Thus, if we set a nonparametric distribution � over
measures π , that is centred at πI : instead of study-
ing the “distance” between draws π ∼ � and the refer-
ence distribution πI , we can study the distance between
the induced distributions Fa,π (z) and Fa,πI

(z), the (cu-
mulative) distributions of loss for action a. A suitable
candidate distribution � should have wide support (to
overcome the possible misspecification) and it should
be possible to characterise the distance of the induced
distributions Fa,π . The Dirichlet Process (DP) allows
for exactly such a construction.

4.3.1 Dirichlet processes for functional neighbour-
hoods.

DEFINITION 2. Dirichlet process: Given a state
space X , we say that a random measure P is a Dirich-
let process on X , P ∼ DP(α,P0), with concentration
parameter α and baseline measure P0 if for every fi-
nite measurable partition {B1, . . . ,Bk} of X , the joint
distribution of {P(B1), . . . ,P (Bk)} is a k-dimensional
Dirichlet distribution Dirk{αP0(B1), . . . , αP0(Bk)}.

Using this definition, we can then sample from distri-
butions in the neighbourhood of πI according to π ∼
DP(α,πI ), for some α > 0. In practice, we can con-
sider a draw from the DP via a constructive definition,

{θi}mi=1 ∼ πI ,

w ∼ Dirm(α/m, . . . , α/m),(4)

π̃(θ) :=
m∑

i=1

wiδθi
(θ),

where the θi’s are i.i.d. from πI and independent
of the Dirichlet weights. As m → ∞, π̃ tends to a
draw π ∼ DP(α,πI ). This construction fits well with
the Monte Carlo context, where πI is represented by
a set of samples {θi}mi=1. If we draw multiple vec-
tors w(1), . . . ,w(k) ∼ Dirm, then in the limit m → ∞,
each corresponds to an independent draw from the
DP(α,πI ), conditional on the atoms θi . Ideally, we
would want to resample a set {θi}mi=1 at each step. But
this would not be feasible in practice and would defeat
our purpose of constructing an ex-post methodology
for analysing sensitivity. Therefore, this construction
of the Dirichlet process is more adapted than say the
stick-breaking representation.

For an action a, the expected loss under the re-
weighed draw π̃ is given by

(5) ψπ̃
a = ∑

i

wiLa(θi)

and the loss distribution by

Fa,π̃ (z) = ∑
i

wi1z≤La(θi)(z).

In what follows, without loss of generality, we fix
a and consider the θi to be ordered by loss, that is,
La(θ1) ≤ · · · ≤ La(θm). Let vi = ∑i

j=1 wi , the cu-
mulative summed weights, and xi := i/m for i =
1, . . . ,m. We also consider that the loss function
L(a, θ) has undergone the following linear transforma-
tion (which does not alter the ranking of actions under
expected loss):

(6) L(a, θ) → L(a, θ) − mina,θ L(a, θ)

maxa,θ L(a, θ) − mina,θ L(a, θ)
.

This means each loss c.d.f. takes values between [0,1].
We can study the L1 distance between the original em-
pirical distribution16 Fa,π̃I

with weights wi = 1/m and
the reweighed version Fa,π̃ which is given by

m∑
i=1

|vi − xi | · [
La(θi) − La(θi−1)

]
.

For a fixed sample {θi}mi=1, the increments La(θi) −
La(θi−1) are also fixed, and it is possible to compute
the expected difference |vi − xi | by noting that vi ∼
Beta(xiα, (1 − xi)α). This is given by

(7) Ev

{|vi − xi |} = 2

α

[xxi

i (1 − xi)
(1−xi)]α

Beta(xiα, (1 − xi)α)
.

16Empirical in the sense that it corresponds to πI through i.i.d.
sampling.



DECISIONS IN M-OPEN 479

As a consequence of the linear transformation given in
(6), this L1 difference is bounded by 1/2. Ew{|Fa,π̃ −
Fa,π̃I

|} is dependent on the concentration parameter α

which controls how close the draws Fa,π̃ are from the
reference loss distribution; increasing α shrinks the L1
distance. However, it is important the note that this dis-
tance will also be dependent on the form of the loss
function, that is, the increments La(θi)−La(θi−1). Us-
ing this result, we can set the parameter α in order to
sample distributions at a certain L1 distance thus al-
lowing for the calibration of the diagnostic plot pre-
sented in the following section.

4.3.2 Probability of optimality. From properties of
the Dirichlet process, we know that E�[La(θ)] =
EπI

[La(θ)], where � is the nonparametric measure
defined in equation (4). Thus, if an action a is optimal
under the criterion of posterior expected loss (taken
with respect to πI ), it will remain optimal under ex-
pected loss taken with respect to �. Instead of looking
at expected loss, we consider the probability that a par-
ticular action will be optimal when drawing a random
π ∼ DP(α,πI ) (and computing expected loss with re-
spect to this random π ). That is to say, each random
draw π will induce a ranking of the actions as given by
expected loss with respect to π . The probability that
a is optimal will depend on the concentration parame-
ter α. As the concentration parameter α → ∞, the ran-
dom loss distribution Fa,π tends to Fa,πI

in probabil-

ity under the L1 norm, thus giving back the optimality
mapping induced by πI .

This gives rise to a diagnostic graph, where the prob-
ability of optimality of each action is plotted as a func-
tion of the expected L1 distance of the DP random
draws. This probability of optimality is nonanalytical
in the general case, and dependent on the form of the
loss function L(a, θ). However, given a Monte Carlo
representation of πI , and thus a matrix of loss val-
ues (number of samples θi times number of actions)
it is easy to approximate via successive draws w ∼
Dir(α/n, . . . , α/n) and using the construction given
in (5). We can then use equation (7) to compute the
corresponding L1 distance for a given α value.

5. APPLICATIONS

5.1 Synthetic Example, Continued

To illustrate the ideas from Sections 4.1 and 4.3, we
continue with the vaccination versus status quo deci-
sion problem given in Section 3.5. Figure 4 plots the
expected loss both as a function of the ball size as
measured in KL divergence (left column) and also as
a function of the distance between πI and π

sup
a as mea-

sured in total variation (L1 distance—right column).
Showing these plots together provides a method for in-
terpreting the values of KL divergence. We note that
the L1 distance and the KL divergence are related by

FIG. 4. Diagnostic plots for the local least favourable distribution, comparing vaccination (red, dark line) to status quo (blue, light line).
Top row: Local least favourable expected loss as a function of KL radius (left) and total variation (right); Bottom row: As for top row but
plotting differences in the expected loss between nonoptimal and optimal actions again measured in KL divergence (left) and total variation
(right).
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FIG. 5. Probability of optimality of the status quo action under a
nonparametric extended model using a DP(πI ,α). This is plotted
as a function of the expected L1 distance of the draws as given in
Section 4.3.1.

Pinsker’s inequality. These plots show that for rela-
tively small values of KL (and of L1 distance) the sta-
tus quo action is no longer optimal. This can be ex-
plained by the greater variance of the vaccination ac-
tion loss distribution.

Figure 5 shows the probability of optimality for the
status quo action as a function of the L1 distance of the
draws from the Dirichlet process (as explained in Sec-
tion 4.3.1). This shows that for similar L1 distances, the
optimal Bayes action remains the most probable opti-
mal action as defined in Section 4.3.1. This highlights
that, in fact, the system is decision robust under small
perturbations as measured in L1 distance (see Section 6
for a discussion on decision robustness versus loss ro-
bustness) even though it is not loss robust.

The vaccination versus status quo decision problem
is synthetic but it allows us the illustrate the diagnos-
tic plots based on the formal methodology presented in
Section 4. We see that the two diagnostic methods re-
spectively based on KL balls and on Dirichlet process
extensions highlight different ways in which the opti-
mal action can be sensitive to model misspecification.
The local least favourable distribution concentrates on
the high loss values of each action, thus making the
vaccination action preferable for very small KL values
(see Figure 4, top right). However, using a Dirichlet
model extension, the decision system is robust to sym-
metrical perturbations around πI . This is shown in Fig-
ure 5 where even for small perturbations as measured
in expected L1 distance, the vaccination action (blue)
is not more probably optimal than the status quo (red).
This shows strong stability to these symmetrical per-
turbations. Taking a decision as to whether to trust the
model or not would be context dependent.

5.2 Example: Optimal Screening Design for Breast
Cancer

Public health policy is an area where the applica-
tion of statistical modelling can be used to optimally
allocate resources. Breast cancer screening for healthy
women over a certain age to detect asymptomatic tu-
mours, is a hotly debated and controversial issue for
which it is difficult to precisely quantify the benefits.
A recent independent review (Marmot et al., 2012),
commissioned by Cancer Research UK and the De-
partment of Health (England) concludes that only a
randomised clinical trial would fully resolve this is-
sue. This is, of course, the gold standard which per-
mits causal inference. However, a primary issue is de-
termining the optimal screening schedule, consisting of
a starting time t0 (age of first screen), and a frequency
δ for subsequent screens. It is of course sharply infea-
sible to trial all combinations of schedules (t0, δ). An
optimal trial design, however, can be constructed us-
ing a statistical model of disease progression through-
out a population. Parmigiani (1993) proposed using a
semi-Markov process consisting of four states which
generalises to any chronic disease characterised by an
asymptomatic stage. All individuals start in state A,
disease-free. They then transition either to the absorb-
ing state D (death, transition time denoted tD) or con-
tract the disease, modeled by a transition to state B

(denoted tB ), the pre-clinical stage. This is followed
by a transition to either the clinical stage of the dis-
ease (transition time tC ) or death. It was assumed that
each transition happens after a time t with the follow-
ing densities:

tD ∼ h(t |α,β) = Weibull(α,β),

tB ∼ f
(
t |μ,σ 2) = LogNormal

(
μ,σ 2)

,(8)

tC ∼ q(t |κ,ρ) = LogLogistic(κ, ρ).

Figure 6 shows a graphical model of the four state
semi-Markov process with transition densities. An in-
dividual is characterised by the triple t = (tB, tC, tD)

where the symptomatic stage of the disease is con-
tracted only when tD < tB + tC (assuming that all in-
dividuals will contract the disease if they lived long
enough). For a screening schedule a = (t0, δ), the loss
function is defined as follows (a function of the times
t = {tB, tC, tD}):
(9) L(a, t) = r · na(t) + 1C,

where na is the number of screening schedules an indi-
vidual will receive during their lifetime, until they die
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FIG. 6. Graphical model of the transitions and transition densi-
ties between states.

or enter into the symptomatic stage of the disease. 1C

is the indicator function, taking value 1 for the event
that the pre-clinical tumour is not detected by screen-
ing or occurs before t0, and zero otherwise. r trades off
the cost of one screen against the cost incurred by the
onset of the clinical disease. Each screen has an age-
dependent false-negative rate modeled with a logistic
function:

β(t) = 1

1 + e−bo−b1(t−t̃ )
,

where t̃ is the average age at entry in the study group.
To simulate transition times for individuals from this
model, we used 2000 posterior parameter samples for
θ = (μ,σ 2, κ, ρ, b0, b1) given in the supplementary
materials of Wu, Rosner and Broemeling (2007). This
is based on data from the HIP study Shapiro et al.
(1988). Figure 7 shows the estimated marginal densi-
ties for 104 sampled times for each transition event.17

There is a heated debate as to whether breast cancer
screening is in fact beneficial at all due to high false
positive rates and screening related anxiety; see, for in-
stance, Løberg et al. (2015). In the UK, the NHS invites
women for screening biennially, starting from 50–53
years of age. Some authors argue for earlier screening
starting times, from age 40; see Moss et al. (2015) and
counter-argument Autier (2015). With this in mind, we
carried out an ex-post analysis of the screening model
and considered 54 alternative schedules, consisting of
all combinations of starting ages taken from the set
{40,42,44,46,48,50} (years) and screening frequen-
cies of {1,1.25,1.5, . . . ,2.75,3} (years). This choice
of screening schedules is mainly illustrative for our
purposes: the optimal schedule will heavily depend on
the choice of r [trade-off ratio in equation (9)] which

17We calibrate the Weibull distribution with values α =
7.233, β = 82.651 which are the values used in Parmigiani (1993).

we do not attempt to justify [the value 10−3 was taken
from Section 4.5 of Ruggeri, Insua and Martín (2005)
where the authors also considered this application]. In
order for the plots to be legible, we selected the top 6
schedules18 (as ordered by a Monte Carlo approxima-
tion of the expected loss under the reference model)
for analysis. However, there is no reason not to analyse
a greater number of schedules other than for clarity in
plotting. The top left plot in Figure 8 shows the loss
density plot of the optimal action corresponding to the
schedule a = (t0 = 48, δ = 1.5) (units in years) and
a trade-off parameter r = 10−3. The other three plots
show the corresponding loss density for the minimax
distributions at KL values equivalent to reassigning 2,5
and 10% of the mass, respectively. The effect can be
see as transferring the mass from left to right, that is,
from low loss to high loss. The losses incurred for a
particular schedule a = (t0, δ) can be seen to be highly
bimodal. Most of the population do not contract the
disease and, therefore, contribute a loss of r · na (cost
of screen times number of total screens during life-
time). The loss contributed by those who do contract
the clinical stage of the disease is of magnitude 1/r

greater by definition.
Figure 9 gives four diagnostic plots for the loss dis-

tributions: inverse loss distributions; the Value at Risk;
the Conditional Value at Risk; and the Conditional
Expected Loss. These are defined in Section 3 and
are shown here with the schedules (decisions) afore-
mentioned. Both the loss distributions and the upper-
trimmed mean losses (CVaR) are almost indistinguish-
able. However, the Conditional Expected Loss plot
very clearly shows that the expected loss values are
driven by low probability events (around 10% of the
mass).

The diagnostic plot in Figure 10 which based on
the theory given in Section 4.1 confirms that the deci-
sion system is sensitive to small changes in the model.
The difference in expected loss under the local least
favourable distributions between action (45,1.5) and
the optimal action is negative for small KL values (bot-
tom plot, Figure 10). Hence, small perturbations (in KL
divergence) changes the optimality of the actions. This
is also apparent from Figure 11, where we plot the lo-
cal pairwise admissibility of the optimal action under
πI (see Section 4.1.4). For very small neighbourhoods
in KL, alternative actions to that of the optimal Bayes

18Given in order of increasing expected loss these are: (48,1.5),
(45,1.5), (42,1.5), (50,1.75), (50,2.5) and (48,3).
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FIG. 7. Probabilistic model of transition times: (from top to bottom) marginal densities of transition times to preclinical stage, transition
from preclinical to clinical stage, and death times.

action (at C = 0) are no longer inadmissible and should
be given serious consideration.

As a final diagnostic plot, we look at the probabil-
ity of optimality under the Dirichlet extension model
(Section 4.3). Figure 12 shows the probability of each
action being optimal with respect to a random DP
reweighting of πI as a function of the expected L1 dis-
tance of the draw (see Section 4.3.1). We see that the

probability of optimality of the Bayes action (48,1.5)

rapidly decreases for small increments of L1 and has
probability of optimality less than 1/2 for an L1 dis-
tance greater than 0.01. For larger values of L1 dis-
tance, the action (48,3) becomes most optimal, with all
other actions having an almost zero probability of op-
timality. This shows the lack of decision robustness in
this problem, mainly due to flatness of the loss surface.

FIG. 8. Top left: loss density for the optimal action (start at 48, frequency 18 months) under the approximating model πI given in (8). Going
from top right to bottom right: loss densities, for the same action, under the local least favourable distribution at KL divergences equivalent
to a reassignment of mass of 2%, 5% and 10%, respectively. These are approximately: 0.008, 0.08, 0.3. The effect can be seen as increasing
the mass put onto high loss events.
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FIG. 9. Model diagnostic plots. From top left to bottom right: inverse loss distributions of the 6 actions (all very close in shape); upper
trimmed mean loss which differentiates the actions by showing the higher downside in some schedules; conditional expected loss; estimates
of expected loss centred inside intervals of two standard deviations. We see that the expected loss ψa,πI for all actions is driven by low
probability, high loss events (shape of CEL plot).

FIG. 10. Diagnostic plots for local least favourable distribution. Top: plot of supremum expected loss versus the size C of the KL neigh-
bourhood; Bottom: difference between the supremum expected loss of each action and that of the optimal action a∗.

FIG. 11. Local Bayesian admissibility plot.
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FIG. 12. Probability of being optimal for the top six actions selected by expected loss as a function of the expected L1 distance of the
re-weighted draws. The legend gives the actions ordered by increasing expected loss. We observe the optimal action (under πI ) ceases to be
most likely optimal action when the L1 distance is greater than ≈ 0.015. For draws further that 0.02, the most probable optimal action is
(48,3).

This application highlights an interesting distinction
that must be made when considering model misspecifi-
cation in a decision-theoretic context. The loss surface
is very flat for changes in screening schedule. That is
to say, there is little relative difference in expected loss
between similar screening schedules. This is also noted
by Ruggeri, Insua and Martín (2005) in their analysis
of the problem. This particular application is robust to
changes in the model (in an expected loss sense) but not
however decision robust, that is, small perturbations to
the model will change the optimality of an action a∗.
We discuss this issue further in Section 6.

6. CONCLUSIONS

The goal of this article is to assist decision making by
providing statistical methods for exploring sensitivity
to model misspecification. We hope this will generate
further debate and research in this field. The increase
in complex high-dimensional statistical analysis prob-
lems has driven a corresponding rise in the use of ap-
proximate probabilistic techniques. This merits a reap-
praisal of existing diagnostics and formal methods for
characterising the stability of inference to approximate
modelling.

The three principles, (P1a, P1b, P2), underpinning
the formal methods presented in Section 4 advocate
that the neighbourhood should be defined with respect
to the marginal distribution on only those elements that
enter into the loss function. We showed that to achieve
coherence (P2), the Kullback–Leibler divergence is the

only measure to use for 	. Further motivation for using
KL is given in Chapters 1 and 9 in Hansen and Sargent
(2008). Other advantages stated in the literature for us-
ing KL as a divergence measure include:

• its invariance to re-parametrisation,
• its information theoretic representation as the num-

ber of bits of information needed to recover p from
model q ,

• its decision theoretic representation as the expected
log-loss in using q to approximate p when us-
ing proper local scoring rules (Bernardo and Smith,
1994),

• KL upper bounds the L1 divergence KL(p‖q) ≥
‖p − q‖1.

However, none of this provides a constructive approach
for choosing the KL radius C. In Chapter 9 of Hansen
and Sargent (2008), the authors suggest using detection
error probabilities to calibrate the size of the neigh-
bourhood 	. This stems from the concept of statisti-
cally indistinguishable models given a finite data sam-
ple of size N . Using model selection principles based
on likelihood ratio tests, the user determines a plausible
probability (a function of the radius C) of selecting the
wrong model given the available data, and then invert
this value to find C (by simulation). Although this is
a principled method, in many cases even the detection
error probability could be difficult to calibrate.

In terms of implementation, we showed that the ap-
proaches in Section 4 have simple numerical solu-
tions via re-weighted Monte Carlo samples drawn from
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the approximating model, using exponentially tilted
weights for the local-minimax solution and stochas-
tic Dirichlet weights for the marginal loss distribution.
This has the advantage that robustness can be explored
a posteriori using standard outputs from conventional
Bayesian analysis.

Finally, it is important to note the distinction be-
tween “decision robustness” and “loss robustness” as
discussed in Kadane and Srinivasan (1994). A system
is said to be decision robust if perturbations to the
model do not effect the optimality of an action â. On
the other hand, it is said to be loss robust, if those per-
turbations do not effect the overall expected loss of the
action â (in a relative sense). It is clear that a deci-
sion system can have one property without the other.
Which is more desirable will be highly context depen-
dent. Throughout the article, we have taken the loss
function to be known. However, it is clear that loss
misspecification is also an important element of robust
decision making. Further work is needed to develop a
unified approach for dealing with this. Our framework
does not take into account misspecification in the loss
function. Certain loss functions are often chosen for
computational ease or because they posses other desir-
able properties such as convexity. Also, elicitation of
the true loss function can be difficult (for an example,
see the application discussed in Section 5.2). Hence,
for completeness, a robustness analysis of a decision
system should take this into account.

APPENDIX A: PROOF OF THEOREM 4.2
IN SECTION 4

Reproduced and amended from Bissiri, Holmes and
Walker, 2013. Assume that � contains at least two dis-
tinct points, say θ1 and θ2. Otherwise, π is degener-
ate and the thesis is trivially satisfied. To prove this
theorem, it is sufficient to consider the case n = 2
and a very specific choice for π , taking π = p0δθ1 +
(1 − p0)δθ2 , where 0 < p0 < 1. Any probability mea-
sure absolutely continuous with respect to π has to
be equal to pδθ1 + (1 − p)δθ2 , for some 0 ≤ p ≤ 1.
Therefore, in this specific situation, the cost function,
l(·) = {Eπ [−L(θ)] + λ−1g(π‖πI )}, to be minimised
becomes

l(p,p0,LI )

:= pLI (θ1) + (1 − p)LI (θ2)

+ pg

(
p

p0

)
+ (1 − p)g

(
1 − p

1 − p0

)
,

where g is a divergence measure, LI (θi) = L(θi, I1) +
L(θi, I2) for data I = (I1, I2) and LI (θi) = L1(θi, Ij )

for I = Ij , i, j = 1,2. Denote by p1 the proba-
bility πI1({θ1}), that is, the minimum point of
l(p,p1,L(I1,I2)) as a function of p, and by p2 the prob-
ability π(I1,I2)({θ1}). By hypotheses, p2 is the unique
minimum point of both loss functions l(p,p1,LI2) and
l(p,p0,L(I1,I2)). Again by hypothesis, we shall con-
sider only those functions LI1 and LI2 such that each
one of the functions l(p,p0,LI1), l(p,p1,LI2), and
l(p,p0,L(I1,I2)), as a function of p, has a unique min-
imum point, which is p1 for the first one and p2 for the
second and third one. The values p1 and p2 have to be
strictly bigger than zero and strictly smaller than one:
this was proved by Bissiri and Walker, 2012 in their
Lemma 2. Hence, p1 has to be a stationary point of
l(p,p0, hI1) and p2 of both the functions l(p,p1,LI2)

and l(p,p0,L(I1,I2)). Therefore,

g′
(

p1

p0

)
− g′

(
1 − p1

1 − p0

)
= LI1(θ2) − LI1(θ1),(10)

g′
(

p2

p0

)
− g′

(
1 − p2

1 − p0

)

(11)
= L(I1,I2)(θ2) − L(I1,I2)(θ1),

g′
(

p2

p1

)
− g′

(
1 − p2

1 − p1

)
= LI2(θ2) − LI2(θ1).(12)

Recall that L(I1,I2) = LI2 + LI1 . Therefore, summing
up term by term (10) and (12), and considering (11),
one obtains

g′
(

p2

p0

)
− g′

(
1 − p2

1 − p0

)

= g′
(

p1

p0

)
− g′

(
1 − p1

1 − p0

)
+ g′

(
p2

p1

)
(13)

− g′
(

1 − p2

1 − p1

)
.

Recall that by hypothesis (10)–(12) need to hold for
every two functions LI1 and LI2 arbitrarily chosen with
the only requirement that p1 and p2 uniquely exist.
Hence, (13) needs to hold for every (p0,p1,p2) in
(0,1)3. By substituting t = p0, x = p1/p0 and y =
p2/p1, (13) becomes

g′(xy) − g′
(

1 − txy

1 − t

)

= g′(x) − g′
(

1 − tx

1 − t

)
(14)

+ g′(y) − g′
(

1 − txy

1 − tx

)
,
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which holds for every 0 < t < 1, and every x, y > 0
such that x < 1/t and y < 1/(xt). Being g convex and
differentiable, its derivative g′ is continuous. There-
fore, letting t go to zero, (14) implies that

(15) g′(xy) = g′(x) + g′(y) − g′(1)

holds true for every x, y > 0. Define the function
ϕ(·) = g′(·) − g′(1). This function is continuous, be-
ing g′ such, and by (15), ϕ(xy) = ϕ(x) + ϕ(y) holds
for every x, y > 0. Hence, ϕ(·) is k ln(·) for some k

and, therefore,

(16) g′(x) = k ln(x) + g′(1),

where k = (g′(2)−g′(1))/ ln(2). Being g convex, g′ is
not decreasing and, therefore, k ≥ 0. If k = 0, then g′
is constant, which is impossible, otherwise, for any hI ,
p1 satisfying (10) either would not exist or would not
be unique. Therefore, k must be positive. Being g(1) =
0 by assumption, (16) implies that g(x) = kx ln(x) +
(g′(1) − k)(x − 1). Hence,

g(π1, π2) = k

∫
ln

(
dπ1

dπ2

)
dπ1

holds true for some k > 0 and for every couple of mea-
sures (π1, π2) on � such that π1 is absolutely continu-
ous with respect to π2.

APPENDIX B: GLOSSARY OF TERMS

APPENDIX C: LOCAL SENSITIVITY ANALYSIS

We can look at the derivative of least favourable ex-
pected loss for a given action either as a function the
ball size C or the tilting parameter λ. First, differenti-
ating wrt λ gives

d

dλ
Eπ

sup
a,c(λ)

[La] = Varπ sup
a,C(λ)

[
La(θ)

]
.

Setting λ to 0, we see that the sensitivity of the ex-
pected loss estimate is given by the variance of the loss
under πI . Differentiating now w.r.t. C, we need the fol-
lowing (applying the chain rule):

d

dλ
Cλ = Eπ

sup
a,C(λ)

[
La(θ)

] −EπI

[
La(θ)

]
.

PROOF. We define ψ(λ) = Eπ
sup
a,C(λ)

[La(θ)] =∫
� La(θ)πI (θ)eλLa(θ)Z−1

λ dθ where

Zλ =
∫
�

πI (θ)eλLa(θ) dθ

(normalising constant)

dψ

dλ
= d

dλ

∫
�

La(θ)π
sup
a,C(λ)(θ)dθ

=
∫
�

La(θ)πI (θ)
d

dλ

(
eλLa(θ)Z−1

λ

)
dθ

=
∫
�

La(θ)πI (θ)

·
(

La(θ)eλLa(θ)Zλ − eλLa(θ) dZλ
dλ

Z2
λ

)
dθ

Notation Definition

� Parameter space describing the uncertainty in the “small world” of interest
a ∈A Set of actions or alternatives
L(a, θ) or La(θ) Loss function defined as mapping A× � → R+
L(a,a′)(θ) Regret loss function: La(θ) − La′(θ)

πI The approximating or reference model. This could be a Bayesian posterior, or just any distribution over the uncer-
tainty �

C The radius of the Kullback–Leibler ball centred at πI

λa(C) Exponential tilting parameter given in equation (2) for action a corresponding to least favourable distribution in KL
ball of radius C

	C Set of distributions π satisfying KL(π‖πI ) ≤ C (KL ball)
	rev

C Set of distributions π satisfying KL(πI ‖π) ≤ C (reverse KL ball)
π̃ , π̃I The distributions π , πI approximated by a bag of Monte Carlo samples
π

sup
a,C The least favourable distribution for action a in the KL ball of radius C centred at πI

ψ
sup
a (C) Expected loss of action a under π

sup
a,C

[ψ inf
a (C),ψ

sup
a (C)] Interval of expected loss of action a in 	C

π
sup
(a,a′),C Least favourable distribution corresponding to regret loss function L(a,a′)(θ)
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=
∫
�

La(θ)2πI (θ)eλLa(θ)Z−1
λ dθ

−
∫
�

La(θ)πI (θ)eλLa(θ)Z−1
λ

·
(∫

�
La(θ)πI (θ)eλLa(θ)Z−1

λ dθ

)
dθ

= Eπ
sup
a,C(λ)

[
La(θ)2] −Eπ

sup
a,C(λ)

[
La(θ)

]2

= Varπ sup
a,C(λ)

[
La(θ)

]
.

For λ > 0, define the corresponding KL divergence
Cλ:

Cλ := K(λ) :=
∫
�

πI (θ) log
πI (θ)Zλ

πI (θ)eλLa(θ)
dθ.

Hence,

dK

dλ
= d

dλ

∫
�

πI (θ)
(
logZλ − λLa(θ)

)
dθ

= d

dλ
logZλ −

∫
�

d

dλ
λπI (θ)La(θ)dθ

= Z−1
λ

∫
�

La(θ)πI (θ)eλLa(θ) dθ

−
∫
�

πI (θ)La(θ)dθ

= Eπ
sup
a,C(λ)

[
La(θ)

] −EπI

[
La(θ)

]
.

So the reciprocal derivative is

d

dCλ

(
K−1) = 1

dK
dλ

(K−1(Cλ))
.

�
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