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A Review of Nonparametric Hypothesis
Tests of Isotropy Properties in
Spatial Data
Zachary D. Weller and Jennifer A. Hoeting

Abstract. An important aspect of modeling spatially referenced data is ap-
propriately specifying the covariance function of the random field. A practi-
tioner working with spatial data is presented a number of choices regarding
the structure of the dependence between observations. One of these choices
is to determine whether or not an isotropic covariance function is appropri-
ate. Isotropy implies that spatial dependence does not depend on the direc-
tion of the spatial separation between sampling locations. Misspecification
of isotropy properties (directional dependence) can lead to misleading infer-
ences, for example, inaccurate predictions and parameter estimates. A re-
searcher may use graphical diagnostics, such as directional sample vari-
ograms, to decide whether the assumption of isotropy is reasonable. These
graphical techniques can be difficult to assess, open to subjective interpreta-
tions, and misleading. Hypothesis tests of the assumption of isotropy may be
more desirable. To this end, a number of tests of directional dependence have
been developed using both the spatial and spectral representations of random
fields. We provide an overview of nonparametric methods available to test the
hypotheses of isotropy and symmetry in spatial data. We discuss important
considerations in choosing a test, provide recommendations for implement-
ing a test, compare several of the methods via a simulation study, and propose
a number of open research questions. Several of the reviewed methods can
be implemented in R using our package spTest, available on CRAN.

Key words and phrases: Isotropy, symmetry, nonparametric spatial covari-
ance.

1. INTRODUCTION

Early spatial models relied on the simplifying as-
sumptions that the covariance function is stationary
and isotropic. With the emergence of new sources of
spatial data, for instance, remote sensing via satellite,
climate model output or environmental monitoring, a
variety of methods and models have been developed
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that relax these assumptions. In the case of anisotropy,
there are a number of methods for modeling both zonal
anisotropy (Journel and Huijbregts, 1978, pages 179–
184, Ecker and Gelfand, 2003, Schabenberger and Got-
way, 2004, page 152, Banerjee, Carlin and Gelfand,
2014, page 31) and geometric anisotropy (Borgman
and Chao, 1994, Ecker and Gelfand, 1999). Rapid
growth of computing power has allowed the implemen-
tation and estimation of these models.

When modeling a spatial process, the specification
of the covariance function will have an effect on krig-
ing and parameter estimates and the associated un-
certainty (Cressie, 1993, pages 127–135). Sherman
(2011), pages 87–90, and Guan, Sherman and Calvin
(2004) use numerical examples to demonstrate the ad-
verse implications of incorrectly specifying isotropy

305

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/16-STS547
http://www.imstat.org
mailto:wellerz@stat.colostate.edu
mailto:jah@stat.colostate.edu


306 Z. D. WELLER AND J. A. HOETING

properties on kriging estimates. Given the variety of
choices available regarding the properties of the co-
variance function (e.g., parametric forms, isotropy, sta-
tionarity) and the effect these choices can have on in-
ference, practitioners may seek methods to inform the
selection of an appropriate covariance model.

A number of graphical diagnostics have been pro-
posed to evaluate isotropy properties in observed data.
Perhaps the most commonly used methods are direc-
tional semivariograms and rose diagrams (Matheron,
1961, Isaaks and Srivastava, 1989, pages 149–154).
Banerjee, Carlin and Gelfand (2014), pages 38–40,
suggest using an empirical semivariogram contour plot
to assess isotropy as a more informative method than
directional sample semivariograms. Another technique
involves comparing empirical estimates of the covari-
ance at different directional lags to assess symmetry
for data on gridded sampling locations (Modjeska and
Rawlings, 1983). One caveat of the aforementioned
methods is that they can be challenging to assess, are
open to subjective interpretations, and can be mislead-
ing (Guan, Sherman and Calvin, 2004) because they
typically do not include a measure of uncertainty. Ex-
perienced statisticians may have intuition about the in-
terpretation and reliability of these diagnostics, but a
novice user may wish to evaluate assumptions via a hy-
pothesis test.

Statistical hypothesis tests of second order prop-
erties can be used to supplement and reinforce in-
tuition about graphical diagnostics and can be more
objective. Like the graphical techniques, hypothesis
tests have their own caveats, for example, a paramet-
ric test of isotropy demands specification of the co-
variance function. A nonparametric method for testing
isotropy avoids the potential problems of misspecifica-
tion of the covariance function and the requirement of
model estimation under both the null and alternative
hypothesis, which can be computationally expensive
for large datasets. Furthermore, nonparametric meth-
ods do not require the common assumption of geomet-
ric anisotropy. However, in abandoning the paramet-
ric assumptions about the covariance function, imple-
menting a test of isotropy presents several challenges
(see Section 5). A nonparametric test of isotropy or
symmetry can serve as another form of exploratory
data analysis that supplements graphical techniques
and informs the choice of an appropriate nonparamet-
ric or parametric model. Figure 1 illustrates the process
for assessing and modeling isotropy properties.

In this article we review nonparametric hypothesis
tests developed to test the assumptions of symmetry

and isotropy in spatial processes. We summarize tests
in both the spatial and spectral domain and provide ta-
bles that enable convenient comparisons of test prop-
erties. A simulation study evaluates the empirical size
and power of several of the methods and enables a di-
rect comparison of method performance. We provide
recommendations regarding choices for test implemen-
tation and investigate the effects of these choices via
simulations. Finally, we include graphics that demon-
strate considerations for choosing a nonparametric test
and illustrate the process of determining isotropy prop-
erties.

The remainder of this article is organized as fol-
lows: Section 2 establishes notation and definitions;
Section 3 details the various nonparametric hypothesis
tests of isotropy and symmetry and includes Tables 1–
3 which facilitate comparison between tests as well as
test selection for users; Section 4 describes the simula-
tion study comparing the various methods and displays
some of the results; Section 5 provides recommenda-
tions for test implementation; and Section 6 proposes
new avenues of future research and concludes the pa-
per. Additional details on the simulation study and sim-
ulation results are available in the Appendix.

2. NOTATION AND DEFINITIONS

Here we briefly review key definitions required
for tests of isotropy. For additional background, see
Schabenberger and Gotway (2004). Let {Y(s) : s ∈
D ⊆ R

d, d > 1} be a second order stationary random
field (RF). Below we will assume that d = 2, although
many of the results hold for the more general case
of d ≥ 2. For a spatial lag h = (h1, h2), the semivar-
iogram function describes dependence between obser-
vations, Y , at spatial locations separated by lag h and
is defined as

γ (h) = 1
2 Var

(
Y(s + h) − Y(s)

)
.(2.1)

The classical, moment-based estimator of the semivar-
iogram (Matheron, 1962) is

γ̂ (h) = 1

2|D(h)|
∑[

Y(s) − Y(s + h)
]2

,(2.2)

where the sum is over D(h) = {s : s, s + h ∈ D} and
|D(h)| is the number of elements in D(h). The set
D(h) is the set of sampling location pairs that are
separated by spatial lag h. The covariance function,
C(h), is an alternative to the semivariogram for de-
scribing spatial dependence and is given by C(h) =
lim‖v‖→∞ γ (v) − γ (h) if the limit exists.
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FIG. 1. A flow chart illustrating the process of assessing and modeling isotropy in spatial data. The gray boxes indicate the focus of this
paper.
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Let {s1, . . . , sn} ⊂ D be the finite set of locations at
which the random process is observed, providing the
random vector Y = (Y (s1), . . . , Y (sn))

T . The sampling
locations may follow one of several spatial sampling
designs such as gridded locations, randomly and uni-
formly distributed locations, or a cluster design. Some
authors make the distinction between a lattice process
and a geostatistical process observed on a grid (Fuentes
and Reich, 2010, Schabenberger and Gotway, 2004,
pages 6–10). We do not explore this distinction further
and will use the term grid throughout.

It is often of interest to infer the effect of co-
variates on the process, deduce dependence struc-
ture and/or predict Y with quantifiable uncertainty at
new locations. To achieve these goals, the practitioner
must specify the distributional properties of the spa-
tial process. A common assumption is that the finite-
dimensional joint distribution of Y is multivariate nor-
mal (MVN), in which case we call the RF a Gaussian
random field (GRF). We are interested in second order
properties; thus, hereafter we assume that the mean of
the RF is zero.

A common simplifying assumption on the spatial de-
pendence structure is that it is isotropic.

DEFINITION 2.1. A second order stationary spa-
tial process is isotropic if the semivariogram, γ (h) [or,
equivalently, the covariance function C(h)], of the spa-
tial process depends on the lag vector h only through
its Euclidean length, h = ‖h‖, that is, γ (h) = γ 0(h) for
some function γ 0(·) of a univariate argument.

Isotropy implies that the dependence between any
two observations depends only on the distance between
their sampling locations and not on their relative orien-
tation. A spatial process that is not isotropic is called
anisotropic. Anisotropy is often broadly categorized
as either geometric or zonal (Zimmerman, 1993). In
practice, if a process is assumed to be anisotropic, it
is often assumed to be geometrically anisotropic due
to its precise formal and functional definition (Ecker
and Gelfand, 1999). Geometric anisotropy is governed
by a scaling parameter, R, and rotation parameter, θ ,
and implies the anisotropy can be corrected via a lin-
ear transformation of the lag vector or, equivalently,
the sampling locations (Cressie, 1993, page 64). Ge-
ometric anisotropy implies that the range of the spatial
process is direction dependent. Although there is some
disagreement on the definition, most authors agree that
a common element of zonal anisotropy is a direc-
tion dependent sill. We refer the interested reader to

Zimmerman (1993) for more discussion on geometric,
zonal and other types of anisotropies.

Symmetry is another directional property of the co-
variance (semivariogram) function, which is often used
to describe the spatial variation of processes on a grid.
We discuss symmetry properties here as they are a sub-
set of isotropy, and methods for testing isotropy can of-
ten be used to test symmetry. The following definitions
come from Lu and Zimmerman (2005) and Scaccia and
Martin (2005) where the notation C(h1, h2) denotes
the covariance between random variables located h1
columns and h2 rows apart on the grid, denoted L2.

DEFINITION 2.2. A second order stationary spa-
tial process on a grid is reflection or axially symmetric
if C(h1, h2) = C(−h1, h2) for all (h1, h2) ∈ L2.

DEFINITION 2.3. A second order stationary spa-
tial process on a grid is diagonally or laterally symmet-
ric if C(h1, h2) = C(h2, h1) for all (h1, h2) ∈ L2.

DEFINITION 2.4. A second order stationary spa-
tial process on a grid is completely symmetric if it
is both reflection and laterally symmetric, that is,
C(h1, h2) = C(−h1, h2) = C(h2, h1) = C(−h2, h1)

for all (h1, h2) ∈ L2.

Complete symmetry is a weaker property than iso-
tropy. Isotropy requires that C(h1, h2) depends only on√

h2
1 + h2

2 for all h1, h2. The relationship between these
properties is given by

isotropy ⇒ complete symmetry
(2.3)

⇒ reflection symmetry
diagonal symmetry

.

Thus, rejecting a null hypothesis of reflection symme-
try implies evidence against the assumptions of reflec-
tion symmetry, complete symmetry and isotropy. How-
ever, failure to reject a null hypothesis of reflection
symmetry does not imply an assumption of complete
symmetry or isotropy is appropriate.

The aforementioned properties of isotropy and sym-
metry were defined in terms of examining the spatial
random process in the spatial domain where second or-
der properties depend on the spatial separation, h. Al-
ternatively, a spatial random process can be represented
in the spectral domain using Fourier analysis. For the
purposes of investigating second order properties, we
are interested in the spectral representation of the co-
variance function, called the spectral density function
and denoted f (ω), where ω = (ω1,ω2). Under certain
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conditions and assumptions (Fuentes and Reich, 2010,
page 62), the spectral density function is given by

f (ω) = 1

(2π)2

∫
R2

exp
(−iωT h

)
C(h) dh,(2.4)

so that the covariance function, C(h), and the spectral
density function, f (ω), form a Fourier transform pair.

Properties of the covariance function imply prop-
erties of the spectral density. For example, if the co-
variance function is isotropic, then the spectral density
(2.4) depends on ω only through its length, ω = ‖ω‖,
and we can write f (ω) = f0(ω), where f0(·) is called
the isotropic spectral density (Fuentes, 2013). Conse-
quently, second order properties of a second order sta-
tionary RF can be explored via either the covariance
function or the spectral density function. Test statis-
tics quantifying second order properties can be con-
structed using the periodogram, an estimator of (2.4)
and denoted by I (·). For a real-valued spatial process
observed on a rectangular grid Z

2 ⊂ R
2, a moment-

based periodogram used to estimate (2.4) is

I (ω1,ω2) = 1

(2π)2

n1−1∑
h1=−n1+1

n2−1∑
h2=−n2+1

Ĉ(h1, h2)

(2.5)
· cos(h1ω1 + h2ω2),

where n1 and n2 denote the number of rows and
columns of the grid and Ĉ(h1, h2) is a nonparametric
estimator of the covariance function. It is important to
note that, depending on whether the underlying pro-
cess is discrete or continuous, (2.5) is an estimator of
different quantities; see Fuentes and Reich (2010) for
more details on this distinction. In practice, the peri-
odogram (2.5) is used to estimate the spectral density
at the Fourier or harmonic frequencies. The frequency
ω = (ω1,ω2) is a Fourier or harmonic frequency if
ωj is a multiple of 2π/nj , j = 1,2. Furthermore, the
set of frequencies is limited to {ωj = 2πkj/nj , kj =
0,±1,±2, . . . ,±n∗

j }, where n∗
j is (nj − 1)/2 if nj is

odd and nj/2 − 1 if nj is even.

3. TESTS OF ISOTROPY AND SYMMETRY

3.1 Brief History

Matheron (1961) developed one of the earliest hy-
pothesis tests of isotropy when he used normality of
sample variogram estimators to construct a χ2 test
for anisotropy in mineral deposit data. Cabaña (1987)
tested for geometric anisotropy using level curves of
random fields. Vecchia (1988) and Baczkowski and

Mardia (1990) developed tests for isotropy assuming
a parametric covariance function. Baczkowski (1990)
also proposed a randomization test for isotropy. De-
spite these early works, little work on testing isotropy
was published during the 1990s, although the PhD dis-
sertation work of Lu (1994) would eventually have an
noteworthy impact on the literature. Then, in the 2000s,
a number of nonparametric tests of second order prop-
erties emerged. Some of the developments used esti-
mates of the variogram or covariogram to test symme-
try and isotropy properties (Lu and Zimmerman, 2001,
Guan, 2003, Guan, Sherman and Calvin, 2004, 2007,
Maity and Sherman, 2012). These works generally bor-
rowed ideas from two bodies of literature: (a) the-
ory on the distributional and asymptotic properties
of semivariogram estimators (e.g., Baczkowski and
Mardia, 1987, Cressie, 1993, pages 69-47, Hall and
Patil, 1994) and (b) subsampling techniques to esti-
mate the variance of statistics derived from spatial
data (e.g., Possolo, 1991, Politis and Sherman, 2001,
Sherman, 1996, Lahiri, 2003, Lahiri and Zhu, 2006).
Other nonparametric methods used the spectral domain
to test isotropy and symmetry (Scaccia and Martin,
2002, 2005, Lu and Zimmerman, 2005, Fuentes, 2005).
These works generally extended ideas used in the time
series literature (e.g., Priestley and Subba Rao, 1969,
Priestley, 1981) to the spatial case. Methods for test-
ing isotropy and symmetry in both the spatial and
spectral domains, under the assumption of a paramet-
ric covariance function, have also been developed re-
cently (Stein, Chi and Welty, 2004, Haskard, 2007,
Fuentes, 2007, Matsuda and Yajima, 2009, Scaccia and
Martin, 2011).

3.2 Nonparametric Methods in the Spatial Domain

A popular approach to testing second order proper-
ties was pioneered in the works of Lu (1994) and Lu
and Zimmerman (2001) who leveraged the asymptotic
joint normality of the sample variogram computed at
different spatial lags. The subsequent works of Guan,
Sherman and Calvin (2004, 2007) and Maity and Sher-
man (2012) built upon these ideas and are the primary
focus of this subsection. Lu (1994) details methods
for testing axial symmetry. While Lu and Zimmerman
(2001), Guan, Sherman and Calvin (2004) and Maity
and Sherman (2012) focus on testing isotropy, these
methods can also be used to test symmetry. Finally,
Bowman and Crujeiras (2013) detail a more compu-
tational approach for testing isotropy. Both Li, Gen-
ton and Sherman (2007, 2008b) and Jun and Gen-
ton (2012) use an approach analogous to the methods



310 Z. D. WELLER AND J. A. HOETING

from Lu and Zimmerman (2001), Guan, Sherman and
Calvin (2004, 2007) and Maity and Sherman (2012)
but for spatiotemporal data. Table 1 summarizes test
properties discussed in this section and Section 3.3.

Nonparametric tests for anisotropy in the spatial do-
main are based on a null hypothesis that is an approx-
imation to isotropy. Under the null hypothesis that the
RF is isotropic, it follows that the values of γ (·) evalu-
ated at any two spatial lags that have the same norm are
equal, regardless of the direction of the lags. To fully
specify the most general null hypothesis of isotropy,
theoretically, one would need to compare variogram
values for an infinite set of lags. In practice, a small
number of lags are specified. Then it is possible to test
a hypothesis consisting of a set of linear contrasts of
the form

H0 : Aγ (·) = 0(3.1)

as a proxy for the null hypothesis of isotropy, where A
is a full row rank matrix (Lu and Zimmerman, 2001).
For example, a set of lags, denoted �, commonly used
in practice for gridded sampling locations with unit
spacing is

� = {
h1 = (1,0),h2 = (0,1),

(3.2)
h3 = (1,1),h4 = (−1,1)

}
,

and the corresponding A matrix under H0 : Aγ (�) = 0
is

A =
[

1 −1 0 0
0 0 1 −1

]
.(3.3)

One of the first steps in detecting potential anisotropy
is the choice of lags, as the test results will only hold
for the particular set of lags considered (Guan, Sher-
man and Calvin, 2004). While this choice is subjective,
there are several considerations and useful guidelines
for determining the set of lags (see Section 5).

For nonparametric tests of symmetry, the null hy-
pothesis of symmetry using (3.1) can be expressed by
a countable set of contrasts for a process observed
on a grid. Tests of symmetry will be subject to sim-
ilar practical considerations as tests of isotropy, and
practitioners testing symmetry properties will need to
choose a small set of lags and form a hypothesis that
is a surrogate for symmetry. For example, testing re-
flection symmetry of a process observed on the integer
grid would require comparing estimates of C(·) evalu-
ated at the lag pairs {(1,0), (−1,0)}, {(2,0), (−2,0)},
{(1,1), (−1,1)}, etc.

The tests in Lu and Zimmerman (2001), Guan, Sher-
man and Calvin (2004, 2007) and Maity and Sherman

(2012) involve estimating either the semivariogram,
γ (·), or covariance, C(·), function at the set of cho-
sen lags, �. Denoting the set of point estimates of the
semivariogram/covariance function at the given lags as
Ĝn, the true values as G and the normalizing constant
as an, a central result for all three methods is that

an(Ĝn − G)
d−→

n→∞ MVN(0,�),(3.4)

under increasing domain asymptotics and mild mo-
ment and mixing conditions on the RF. Using the A
matrix, an estimate of the variance covariance matrix,
�̂ and Ĝn, a quadratic form is constructed, and a p-
value can be obtained from an asymptotic χ2 distribu-
tion with degrees of freedom given by the row rank
of A. The primary differences between these works
are the assumed distribution of sampling locations, the
shape of the sampling domain, and the estimation of G
and �. These differences are important when choosing
a test that is appropriate for a particular set of data (see
Tables 1 and 2 and Figure 4 for more information about
these differences).

Maity and Sherman (2012) develop a test with the
fewest restrictions on the shape of the sampling region
and distribution of sampling locations. Their test can
be used when the sampling region is any convex sub-
set in R

d and the distribution of sampling locations in
the region follows any general spatial sampling design.
The test in Guan, Sherman and Calvin (2004) also al-
lows convex subsets in R

d and is developed for gridded
and nongridded sampling locations but requires non-
gridded sampling locations to be uniformly distributed
on the domain, that is, generated by a homogenous
Poisson process. The Poisson assumption is dropped
in Guan, Sherman and Calvin (2007). Lu and Zimmer-
man (2001) require the domain to be rectangular and
the observations to lie on a grid.

Another difference between methods is the form of
the nonparametric estimator of G. In Lu and Zim-
merman (2001), Ĝn is computed using the log of the
classical sample semivariogram estimator (2.2). Guan,
Sherman and Calvin (2004, 2007) also use the esti-
mator in (2.2) for gridded sampling locations, but use
a kernel estimator of γ (h) for nongridded locations.
Maity and Sherman (2012) use a kernel estimator of
the covariance function. When smoothing over spa-
tial lags in R

2, the Nadaraya–Watson (Nadaraya, 1964,
Watson, 1964) product kernel estimator is typically
adopted, independently smoothing over horizontal and
vertical lags. Common choices for the kernel are the
Epanechnikov or truncated Gaussian kernels. The ker-
nel estimators also require the selection of a bandwidth
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TABLE 1
Properties of nonparametric tests of isotropy. “Domain” refers to the domain used to represent the RF (spatial or spectral), “Test stat based

on” lists the nonparametric estimator used to construct the test statistic, “Distb’n” gives the limiting asymptotic distribution of the test
statistic, and “GP” denotes whether the test requires data to be generated from a Gaussian process

Hypothesis test properties

Test method Isotropy Symmetry Domain Test stat based on Asymptotics Distb’n GP

Lu and Zimmerman (2001) yes yes spatial semivariogram inc domain χ2 yes
Guan, Sherman and Calvin (2004, 2007) yes yes spatial (kernel)a variogram inc domain χ2 b no
Scaccia and Martin (2002, 2005) partial yes spectral periodogram inc domain Z, t no
Lu and Zimmerman (2005) partial yes spectral periodogram inc domain χ2, F no
Fuentes (2005) partial no spectral spatial periodogram shrinking (mixed) χ2 yes
Maity and Sherman (2012) yes yes spatial kernel covariogram inc domain χ2 no
Bowman and Crujeiras (2013) yes no spatial variogram inc domain approx. χ2 yes
Van Hala et al. (2014) yes yes spectral empirical likelihood shrinking (mixed) χ2 no

aFor gridded sampling locations, the estimator in (2.2) is used, while a kernel semivariogram estimator is used for nongridded sampling
locations.
bp-values may need to be approximated using finite sample adjustments.

TABLE 2
Test implementation, part 1. “Subsamp” defines whether spatial subsampling procedures are needed to perform the test and “S&P sim”

denotes whether or not the author(s) of the method provides a simulation of test size and power (see also Table 3)

Hypothesis test implementation

Test method Sampling domain shape Sampling design Subsamp S&P sim Software

Lu and Zimmerman (2001) rectangular in R
2 grid no yesa no

Guan, Sherman and Calvin (2004, 2007) convex subsets in R
d grid/unifb/non-unifc yes yesa R package spTest

Scaccia and Martin (2002, 2005) rectangular in R
2 grid no yesa no

Lu and Zimmerman (2005) rectangular in R
2 grid no yes R package spTest

Fuentes (2005) rectangular in R
d grid no yesa no

Maity and Sherman (2012) convex subsets in R
d nonunifc yes yesa R package spTest

Bowman and Crujeiras (2013) convex subsets in R
d unifb no yesa R package sm

Van Hala et al. (2014) subsets in R
d nonunifc no yesa no

aSimulated data are Gaussian only.
bSampling locations must be generated by a homogeneous Poisson process, that is, uniformly distributed on the domain.
cSampling locations can be generated by any general sampling design.

parameter, w. Choosing an appropriate bandwidth is
one of the challenges of implementing the tests for non-
gridded sampling locations, and the conclusion of the
test has the potential to be sensitive to the choice of the
bandwidth parameter (see Section 5 for recommenda-
tions on bandwidth selection).

Nonparametric tests in the spatial domain also vary
in the estimation of �, the asymptotic variance–
covariance of Ĝn in (3.4). Lu and Zimmerman (2001)
use a plug-in estimator, which requires the choice of
a parameter, m, that truncates the sum used in estima-
tion. Spatial resampling methods are another approach

used to estimate �. The method used for spatial resam-
pling and properties of estimators computed from spa-
tial resampling will depend on the underlying spatial
sampling design (Lahiri, 2003, page 281). Guan, Sher-
man and Calvin (2004, 2007) use a moving window
approach, creating overlapping subblocks that cover
the sampling region. Maity and Sherman (2012) em-
ploy the grid based block bootstrap (GBBB) (Lahiri
and Zhu, 2006). The GBBB approach divides the spa-
tial domain into regions, then replaces each region by
sampling (with replacement) a block of the sampling
domain having the same shape and volume as the re-
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gion, creating a spatial permutation of blocks of sam-
pling locations. When using the resampling methods,
the user must choose the window or block size, and
the conclusion of the test has the potential to change
based on the chosen size. Irregularly shaped sampling
domains can pose a challenge in using the subsampling
methods. For example, for an irregularly shaped sam-
pling domain, many incomplete blocks may complicate
the subsampling procedure. We summarize guidelines
for choosing the window/block size in Section 5.

Another approach to testing isotropy in the spatial
domain is given by Bowman and Crujeiras (2013) who
take a more empirical and computationally-intensive
approach. Their methods are available in the R soft-
ware (R Core Team, 2014) package sm (Bowman and
Azzalini, 2014). One caveat of using the sm pack-
age is that the methods are computationally expensive,
even for moderate sample sizes. For example, a test
of isotropy on 300 uniformly distributed sampling lo-
cations on a 10 × 16 sampling domain took approx-
imately 9.5 minutes, where the methods from Guan,
Sherman and Calvin (2004) took 1.6 seconds using a
laptop with 8 GB of memory and a 2 GHz Intel Core i7
processor. Because of the computational costs, we do
not consider this method further.

3.3 Nonparametric Methods in the Spectral
Domain

For gridded sampling locations, nonparametric spec-
tral methods have been developed for testing symme-
try (Scaccia and Martin, 2002, 2005, Lu and Zimmer-
man, 2005) and stationarity (Fuentes, 2005), but none
are designed with a primary goal of testing isotropy.
This may, in part, be due to the aliasing that oc-
curs when estimating the spectral density of a con-
tinuous process observed on a discrete set of loca-
tions (Fuentes and Reich, 2010). Additionally, due to
the difficulties presented by nongridded sampling lo-
cations, historically there have been fewer develop-
ments using spectral methods for nongridded sampling
locations than for gridded (or lattice) data, but this
is an area that has received more attention recently
(see, e.g., Fuentes, 2007, Matsuda and Yajima, 2009,
Bandyopadhyay, Lahiri and Nordman, 2015). Despite
the challenges, Van Hala et al. (2014) have proposed
a nonparametric, empirical likelihood approach to test
isotropy and separability for nongridded sampling lo-
cations.

The primary motivation for using the spectral do-
main over the spatial domain are simpler asymptotics

in the spectral domain. Unlike estimates of the var-
iogram or covariogram at different spatial lags, esti-
mates of the spectral density at different frequencies
via the periodogram are asymptotically independent
under certain conditions (Pagano, 1971, Schabenberger
and Gotway, 2004, pages 78, 194). Additionally, in
practice, tests of symmetry in the spectral domain are
generally not subject to as many choices (e.g., spatial
lag set, bandwidth, block size) as those in the spatial
domain.

Analogous to testing isotropy in the spatial domain
by using a finite set of spatial lags, tests of symmetry
in the spectral domain typically involve estimating and
comparing the spectral density (2.4) at a finite set of
the Fourier frequencies. For example, axial symmetry
(2.2) of the covariance function implies axial symme-
try of the spectral density, f (ω1,ω2) = f (−ω1,ω2),
which can be evaluated by comparing I (ω1,ω2) to
I (−ω1,ω2) at a finite set of frequencies. Similarly, the
null hypothesis of isotropy can be approximated by
comparing periodogram estimates (2.5) at a set of dis-
tinct frequencies with the same norm (Fuentes, 2005).
Although most of the current spectral methods are not
directly designed to test isotropy, the hypothesis of
complete symmetry can be used to reject the assump-
tion of isotropy due to (2.3). However, certain types
of anisotropy may not be detected by these tests. For
example, a geometrically anisotropic process having
the major axis of the ellipses of equicorrelation parallel
to the x-axis is axially symmetric, and the anisotropy
wouldn’t be detected by a test of axial symmetry.

Scaccia and Martin (2002, 2005) use the peri-
odogram (2.5) to develop a test for axial symme-
try. They propose three test statistics that are a func-
tion of the periodogram values. The first uses the
average of the difference in the log of the peri-
odogram values, log[I (ω1,ω2)] − log[I (ω1,−ω2)].
The second and third test statistics use the average
of standardized periodogram differences, [I (ω1,ω2)−
I (ω1,−ω2)]/[I (ω1,ω2) + I (ω1,−ω2)]. These test
statistics are shown to asymptotically follow a standard
normal or t distribution via the central limit theorem,
and the corresponding distributions are used to obtain
a p-value.

Lu and Zimmerman (2005) also use the periodogram
as an estimator of the spectral density to test proper-
ties of axial and complete symmetry of processes on
the integer grid, Z2. They use the asymptotic distribu-
tion of the periodogram to construct two potential test
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statistics. Both test statistics leverage the fact that, un-
der certain conditions and at certain frequencies,

2I (ω1,ω2)

f (ω1,ω2)

iid−→
n1,n2→∞ χ2

2 ,(3.5)

where f (·) is the spectral density of the (noncontin-
uous) process on the grid. Under the null hypothesis
of axial or complete symmetry, (3.5) implies that ra-
tios of periodogram values at different frequencies fol-
low an F(2,2) distribution. The preferred test statis-
tic produces a p-value via a Cramér–von Mises (CvM)
goodness-of-fit test using the appropriate set of peri-
odogram ratios. Because rejecting a hypothesis of axial
symmetry implies rejecting a hypothesis of complete
symmetry, Lu and Zimmerman (2005) recommend a
two-stage procedure for testing complete symmetry. At
the first stage, they test the hypothesis of axial symme-
try, and if the null hypothesis is not rejected, they test
the hypothesis of complete symmetry. To control the
overall type-I error rate at α, the tests at each stage can
be performed using a significance level of α/2.

Leveraging the asymptotic independence of the pe-
riodogram at different frequencies, Van Hala et al.
(2014) propose a spatial frequency domain empirical
likelihood (SFDEL) approach that can be used for in-
ference about spatial covariance structure. One of the
applications of this method is testing isotropy. An ad-
vantage of this method over other frequency domain
approaches is that it can be used for nongridded sam-
pling locations. To implement the test, the user must se-
lect the set of lags and, because the sampling locations
are not gridded, the number and spacing of frequencies.
Van Hala et al. (2014) offer some guidelines for these
choices based on the simulations and theoretical con-
siderations (e.g., the frequencies need to be asymptot-
ically distant). Once these choices are made, Van Hala
et al. (2014) maximize an empirical likelihood under a
moment constraint corresponding to isotropy and show
that the log-ratio of the constrained and unconstrained
maximizer asymptotically follows a χ2 distribution.
The SFDEL method relies on the asymptotic indepen-
dence of the periodogram values, and the smallest sam-
ple size used in simulations was n = 600. Thus, it is not
clear how the method will perform for smaller sample
sizes.

Fuentes (2005) introduces a nonparametric, spatially
varying spectral density to represent nonstationary spa-
tial processes. While the method can be used to test the
assumption of isotropy, the test requires a large sample
size on a fine grid. For this reason and also because the
test was primarily designed to test the assumption of
stationarity, we do not consider it further.

4. SIMULATION STUDY

We designed a simulation study to compare the em-
pirical size, power and computational costs for four
of the methods. For gridded sampling locations, we
compare Lu and Zimmerman (2005) (hereafter, LZ) to
Guan, Sherman and Calvin (2004) (hereafter denoted
as GSC or GSC-g when we are specifically referring to
the test when applied to gridded sampling locations).
For uniformly distributed sampling locations we com-
pare Maity and Sherman (2012) (MS) to Guan, Sher-
man and Calvin (2004, 2007) (GSC-u for the method
used for uniformly distributed sampling locations).

We performed the tests on the same realizations of
the RF. Data are simulated on rectangular grids or rect-
angular sampling domains because they are more re-
alistic than square domains and simulations on rect-
angular domains were not previously demonstrated.
We simulate Gaussian data with mean zero and expo-
nential covariance functions with no nugget, a sill of
one and effective range values corresponding to short-,
medium- and long-range dependence. We introduce
varying degrees of geometric anisotropy via coordi-
nate transformations governed by a rotation parameter
θ and scaling parameter R that define the ellipses of
equicorrelation (see Figure 5 in the Appendix). The pa-
rameter θ quantifies the angle between the major axis
of the ellipse and the x-axis (counterclockwise rota-
tion), while R gives the ratio of the major and minor
axes of the ellipse. We also performed simulations that
investigate the effect of changing the lag set, block size
and bandwidth. Although some simulations are given
in the original works, our simulations serve to provide
a direct comparison of the effects of changing these
values and provide further insight into how to choose
them. See the Appendix for additional simulation de-
tails and results.

Figures 2 and 3 illustrate a subset of the simulation
results comparing empirical size, power and computa-
tional time (full results in the Appendix and Tables 5
and 6). These simulations indicate that nonparamet-
ric tests for anisotropy have higher power for grid-
ded (Table 5 and Figure 2) than for nongridded (Ta-
ble 6 and Figure 3) sampling designs. In both compar-
isons the methods from GSC have favorable empirical
power over the competitor with a comparable empirical
size. As the effective range increases, both empirical
size and power tend to increase for the methods from
GSC, but they tend to decrease for MS. GSC-g and
LZ have similar computation time, while MS is much
more computationally expensive than GSC-u. This dif-
ference is due to the bootstrapping required by MS.
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FIG. 2. Empirical size and power for Guan, Sherman and Calvin
(2004) (GSC-g) and Lu and Zimmerman (2005) (LZ) for 1000 re-
alizations of a mean 0 GRF with gridded sampling locations using
a nominal level of α = 0.05. Colors and shapes indicate the type
of anisotropy. Gray points correspond to the isotropic case. The
results correspond to a “medium” effective range. Computational
time for each method is also displayed.

FIG. 3. Empirical size and power for Guan, Sherman and Calvin
(2004) (denoted GSC-u) and Maity and Sherman (2012) (denoted
MS) for 1000 realizations of a mean 0 GRF with uniformly dis-
tributed sampling locations using a nominal level of α = 0.05. Col-
ors and shapes indicate the type of anisotropy. Gray points corre-
spond to the isotropic case. The results correspond to a “medium”
effective range. Computational time for each method is also dis-
played.

Unsurprisingly, as the strength of anisotropy in-
creases (measured by R), power increases for all the
methods. For a geometrically anisotropic process, the
major and minor axes of anisotropy are orthogonal.
In comparing the effect of the orientation of isotropy
(θ ) on the methods, it is important to note that when
θ = 0, the major axis of the ellipse defining the ge-
ometric anisotropy is parallel to the x-axis and corre-
sponds to a spatial process that is axially symmetric but
not completely symmetric. When θ = 3π/8, the major
axis of the ellipse forms a 67.5-degree angle with the x-
axis, and the spatial process is neither axially nor com-
pletely symmetric (see Figure 5 in the Appendix for
contours of equal correlation used in the simulation).
The original works generally only simulate data from a
geometrically anisotropic process with the major axis
of anisotropy forming a 45-degree angle with the x-
axis; hence, our simulation study more carefully ex-
plores the effect of changing the orientation of geomet-
ric anisotropy. The methods from GSC exhibit higher
power when θ = 0 than when θ = 3π/8. This is due
to the fact that the lag set, �, from (3.2) used for the
tests contains a pair of spatial lags that are parallel to
the major and minor axes of anisotropy when θ = 0,
indicating that an informed choice of spatial lags im-
proves the test’s ability to detect anisotropy. This same
result does not hold for MS. It is unclear whether this
behavior is observed because the method uses the co-
variogram rather than the semivariogram, the GBBB
rather than moving window approach for estimating �,
or perhaps both. The simulation results indicate that the
LZ test has low empirical power; however, this method
was developed to test symmetry properties on square
grids, and the choice of a rectangular grid for our sim-
ulation study does not allow for a large number of pe-
riodogram ordinates for the second stage of the proce-
dure for testing the complete symmetry hypothesis.

Results from simulations that investigate the effects
of changing the lag set, the block size and the band-
width for nongridded sampling locations are displayed
in Tables 7–9, respectively, in the Appendix. For both
GSC-u and MS, the lag set in (3.2) provided an empir-
ical size close to the nominal level. Using more lags or
longer lags decreased the size and power for GSC-u.
This may be due to the additional uncertainty induced
by estimating the covariance between the semivariance
at more lags and the larger variance of semivariance es-
timates at longer lags. For MS the longer lags lead to an
inflated size and more lags decreased the power. In this
case, the GBBB may not be capturing the uncertainty
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in covariance estimates at longer lags with the cho-
sen block size. The MS test was not overly sensitive to
block size, with larger blocks leading to slightly higher
power. MS found that an overly large block size was
adverse for test size. For GSC-u the small- and normal-
sized windows performed at nominal size levels with
comparable power, while larger windows were detri-
mental to test size and power. For GSC-u, we find that
choosing a large window tends to lead to overestima-
tion of the asymptotic variance–covariance matrix due
to fewer blocks being used to re-estimate the semivari-
ance. Finally, the results investigating the bandwidth
selection for GSC-u indicate that choosing an overly
large bandwidth inflates test size, while choosing too
small a bandwidth deflates test size and power. How-
ever, the results also indicate that, for the small sample
size used, test size and power are less negatively af-
fected when approximating the p-value via the finite
sample adjustment.

Weller (2015b) demonstrates applications of several
of these methods on two real data sets. The R package
spTest (Weller, 2015a) implements the tests in LZ,
GSC and MS for rectangular grids and sampling re-
gions and is available on the Comprehensive R Archive
Network (CRAN). The R scripts for reproducing simu-
lation results are available online at https://sites.google.
com/site/zachdweller/research.

5. RECOMMENDATIONS

Based on the simulation results, we offer recommen-
dations for implementation of nonparametric tests of
isotropy. The flow chart in Figure 1 along with Fig-
ure 4 summarizes the steps in the process. Tables 1–3
compare the tests. Table 4 summarizes the recommen-
dations provided below.

In choosing a nonparametric test for isotropy, the
distribution of sampling locations on the sampling do-
main is perhaps the most important consideration. Data
on a grid simplifies estimation because the semivari-
ogram or covariogram can be estimated at spatial lags
that are exactly observed separating pairs of sampling
locations. A grid also allows the option of using easily
implemented tests in the spectral domain.

Sample size requirements for the asymptotic proper-
ties of tests using the spatial domain to approximately
hold will depend on the dependence structure of the
random field. GSC note that convergence of their test
statistic is slow in the case of gridded sampling loca-
tions and obtain an approximate p-value via subsam-
pling rather than the asymptotic χ2 distribution. Tests

using the spectral domain rely on the asymptotic in-
dependence of periodogram values, and correlation in
finite samples can lead to an inflated test size (LZ).
Based on our simulations, we recommend the sample
size be at least 150 for gridded sampling locations and
at least 300 for nongridded sampling locations. How-
ever, power tends be low when the sample size is small
and/or the anisotropy is weak (Figures 2 and 3).

We focus on implementation of the methods that use
the spatial domain for the remainder of this section. We
discuss the choice of lags, block size and bandwidth
for the tests in GSC and MS. Due to the large num-
ber of choices required to implement the tests (e.g.,
block size, bandwidth, kernel function, subsampling
method), features of the random field (e.g., sill, range)
and properties of the sampling design (e.g., density
of sampling locations, shape of sampling domain), the
recommendations we offer will not apply in all situa-
tions. The numerous moving parts make it challenging
to develop general recommendations, especially when
choosing a bandwidth.

When determining the lag set, �, for use in (3.1), the
user needs to select the following:

(a) the norm of the lags (e.g., Euclidean distance),
(b) the orientation (direction) of the lags, and
(c) the number of lags.

Regarding (a), short lags are preferred because esti-
mates of the spatial dependence at large lags tend to
be more variable than estimates at shorter lags. Ad-
ditionally, empirical and theoretical evidence (Lu and
Zimmerman, 2001) indicates that values of γ (·) in two
different directions generally exhibit the largest differ-
ence at a lag less than the effective range, the distance
beyond which pairs of observations can be assumed
to be independent. Finally, there is mathematical sup-
port that correctly specifying the covariance function
at short lags is important for spatial prediction (Stein,
1988). Considering (b), if the process is anisotropic,
the ideal choice of � and A produces contrasting lags
with the same norm but oriented in the direction of
weakest and strongest spatial correlation. Typically, the
directions of weakest and strongest spatial correlation
will be orthogonal and, thus, lags contrasted using the
A matrix should also be orthogonal. Prior information,
if available, about the underlying physical/biological
process giving rise to the data can also be used to in-
form the orientation of the lags (Guan, Sherman and
Calvin, 2004). If no prior information about potential
anisotropy is available, lags oriented in the same direc-
tions as those in (3.2) are a good starting set. In regards

https://sites.google.com/site/zachdweller/research
https://sites.google.com/site/zachdweller/research
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TABLE 3
Test Implementation, part 2. This table continues the list of choices and considerations for implementing a given test. “Samp size (S/A)”

indicates the minimum sample sizes used in simulations (S) and applications (A) provided by the author(s) of the method

Hypothesis test implementation

Test method Choices Other considerations Samp size (S/A)

Lu and Zimmerman (2001) spatial lag set, truncation parameter optimal truncation parameter 100/112

Guan, Sherman and Calvin (2004)
gridded design

spatial lag set, window size optimal window size, edge effects, finite
sample adjustment

400/289

Guan, Sherman and Calvin (2004)
uniform design

spatial lag set, kernel function,
bandwidth parameter, window size

optimal bandwidth & window size, edge
effects, finite sample adjustment

400/289

Guan, Sherman and Calvin (2007)
non-uniform design

500/584

Scaccia and Martin (2002, 2005) test statistic requires gridded sampling locations;
designed to test symmetry

121/–

Lu and Zimmerman (2005) test statistic requires gridded sampling locations;
two-stage testing procedure, designed to
test symmetry; relies on asymptotic
independence

100/–

Fuentes (2005) kernel function, bandwidth
parameters, frequency set, spatial
knots

requires fine grid; designed to test
stationarity

5175/5175

Maity and Sherman (2012) lag set �, kernel function,
bandwidth parameter, subblock
size, number of bootstrap samples

optimal bandwidth & block size 350/584

Bowman and Crujeiras (2013) bandwidth parameter computationally intensive 49/148

Van Hala et al. (2014) lag set, number and spacing of
frequencies

optimal number and spacing of
frequencies, relies on asymptotic
independence

600/–

TABLE 4
General recommendations for test implementation. This table contains a list of general recommendations for test implementation. These

guidelines will not apply in all situations and will vary based on a variety of factors including, but not limited to, the sample size, density of
sampling locations and scale of the problem. See additional discussion in Section 5

Hypothesis test choices

Test method Lag seta Block size Bandwidth p-value Min. n

Guan, Sherman and Calvin (2004)
gridded design

Length: shorter preferred nb < n1/2 n/a finite sample adjustment 150

Guan, Sherman and Calvin
(2004, 2007) uniform design

Orientation: equation (3.2) nb � n1/2 0.6 < w < 0.9b finite sample adjustment when
n < 500, asymptotic χ2 when
n ≥ 500

300

Maity and Sherman (2012) Number: 4 (2 pairs) nb � n1/2 empirical
bandwidth

asymptotic χ2 300

aGuidelines apply to all 3 test methods. Prior knowledge, if available, should be used to inform the choice of lags.
bOur simulations suggest these bandwidth values are reasonable when using a Gaussian kernel with truncation parameter of 1.5.
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FIG. 4. Spatial sampling design considerations for choosing a
nonparametric hypothesis test of isotropy, including LZ = Lu and
Zimmerman (2005); SM = Scaccia and Martin (2005); GSC-g =
Guan, Sherman and Calvin (2004) for gridded sampling locations;
GSC-u = Guan, Sherman and Calvin (2004) for uniformly dis-
tributed sampling locations; MS = Maity and Sherman (2012);
GSC-n = Guan, Sherman and Calvin (2007) for nonuniform sam-
pling locations. The method we recommended for testing isotropy
in each situation is given in bold.

to (c), detecting certain types of anisotropy requires
a sufficient number of lags, but using a large number
of lags requires a large number of observations (Guan,
Sherman and Calvin, 2004). As a general guideline, we
suggest using four lags to construct two contrasts.

Several tests require selection of a window or block
size to estimate the variance–covariance matrix. The
moving window from GSC creates overlapping sub-
blocks of data by sliding the window over a grid placed
on the region. Each of these subblocks are used to re-
estimate the semivariance. The block size from MS de-
fines the size of resampled blocks when implementing
the GBBB. The GBBB permutes resampled blocks to
create a new realization of the process over the en-
tire domain. Choosing the window size in GSC re-
quires balancing two competing goals. First, the mov-
ing window should be large enough to create subblocks
that are representative of the dependence structure for

the entire RF. Second, the window should be small
enough to allow for a sufficient number of subblocks
to re-estimate the semivariance, as these values are
used to obtain an estimate of the asymptotic variance–
covariance. A window that is too large or too small
can potentially lead to under or overestimation of the
asymptotic variance–covariance. For GSC-u, the win-
dows must be large enough to ensure enough pairs of
sampling locations are in each subblock to compute an
estimate of the semivariance without having to over-
smooth. For gridded sampling locations, GSC demon-
strate good empirical size and power by using mov-
ing windows with size of only 2 × 2. However, they
find slow convergence to the asymptotic χ2 distribu-
tion, and a p-value is instead computed by approx-
imating the distribution of the test statistic by com-
puting its value for each of the subblocks. Hence, ap-
proximating the p-value to two decimal places will
require at least 100 subblocks over the sampling re-
gion. This may not be possible in practice. For exam-
ple, a 12 × 12 grid of sampling locations with mov-
ing windows of size 2 × 2 results in only 90 sub-
blocks when correcting for edge effects. The challenge
of choosing the block size in MS is subject to sim-
ilar considerations as the window size in GSC. The
p-value for both tests will change when performing
the test with different window or block sizes, and the
user may decide to run the test with different block
sizes (e.g., MS). There are a number of works on
resampling spatial data to obtain an estimate of the
variance of a spatial statistic (e.g., Sherman, 1996,
Politis and Sherman, 2001, Lahiri, 2003, Lahiri and
Zhu, 2006), but they do not directly consider variance
estimation in the case of a nonparametric estimate of
the semivariogram/covariogram. Denoting the number
of points per block as nb, Sherman (1996) proposes
choosing the block size such that nb ≈ cn1/2 for a con-
stant, c, when the spatial dependence does not exhibit
a large range. In a number of different applications of
spatial subsampling, c is typically chosen to be be-
tween 0.5 and 2 (Politis and Sherman, 2001, Guan,
Sherman and Calvin, 2004, 2006). Based on our simu-
lations, we find acceptable empirical size and power for
GSC-g using small windows and approximating the p-
value with the finite sample adjustment. Thus, we rec-
ommend setting nb < n1/2 for GSC-g. For example, we
used windows with size 3 × 2 and 5 × 3 for sampling
domains of 18 × 12 and 25 × 15, respectively. In the
case of uniformly distributed sampling locations (see
Table 8 in the Appendix), the empirical size and power
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from GSC-u were negatively affected by a large mov-
ing window size; hence, we recommend setting c = 1
and choosing nb � n1/2. For the MS test, a small block
size negatively affected the empirical size and power;
thus, we recommend choosing nb � n1/2 for this test.

Between the choices of a lag set, block size and
bandwidth, choosing an appropriate bandwidth to
smooth over observed spatial lags for nongridded sam-
pling locations is the most challenging. For GSC-u the
user needs to choose the form of the smoothing kernel
as well as the bandwidth for both the entire grid and
the subblocks, while MS use an Epanechnikov kernel
and empirical bandwidth based on a user-specified tun-
ing parameter. If the selected bandwidth is too large,
then over-smoothing occurs. In over-smoothing, there
is very little filtering of the lag distance and direction.
The lack of filtering produces similar estimates of the
spatial dependence at lags with different directions and
distances. If the selected bandwidth is too small, then
there is very little smoothing and estimates of the spa-
tial dependence are based on a small number of pairs
of sampling locations and thus highly variable. Con-
sidering the aforementioned effects of the bandwidth,
the bandwidth should decrease as n increases under
the usual increasing domain asymptotics. For exam-
ple, simulations (not included) indicated a bandwidth
of w = 0.65 maintains nominal size when n = 950,
but leads to deflated test size and power when n = 400
on a smaller domain. García-Soidán, Febrero-Bande
and González-Manteiga (2004), García-Soidán (2007)
and Kim and Park (2012) develop theoretically optimal
bandwidths for nonparametric semivariogram estima-
tion, but these works are not applicable here because
they focus on the isotropic case and require an estimate
of the second derivative of the semivariogram. We have
found that the empirical bandwidth used by MS tends
to produce nominal size (see Table 6). For GSC-u we
find the most consistent results with a bandwidth in the
range of 0.60 < w < 0.90 when using a normal kernel
truncated at 1.5, but these values will change when a
different truncation value or kernel function are em-
ployed. For small sample sizes (n < 500), our simu-
lations demonstrate that test size and power are less
affected by the choice of bandwidth when the p-value
is approximated using a finite sample adjustment, in-
dicating poor convergence to the asymptotic χ2 distri-
bution. Thus, the user should consider using the finite
sample adjustment for nongridded sampling locations
when the sample size is small and there are at least 100
subblocks. While it is challenging to choose a band-
width for GSC-u and the p-value of the test is sensitive

to this parameter, GSC-u exhibits nominal size and has
substantially higher power than MS when an appropri-
ate bandwidth is selected.

6. CONCLUSIONS

There are several important avenues of future re-
search. Methods to more formally characterize the op-
timal block size and bandwidth parameters for the
tests in the spatial domain would enhance the appli-
cability of the tests. The performance of the tests for
nongridded data in Guan, Sherman and Calvin (2004)
and Maity and Sherman (2012) are sensitive to these
choices and their optimality remains an open ques-
tion. Zhang, Li and Shao (2014) develop a nonpara-
metric method for estimating the asymptotic variance–
covariance matrix of statistics derived from spatial data
that avoids choosing tuning parameters which could
simplify test implementation. Another area of future
investigation is the effect of changing the covariance
function on test size and power. Our simulations used
exponential covariance functions, and results may dif-
fer for other covariance functions, for example, Matérn
covariance with varying range and smoothness. A third
area of future work is further development of nonpara-
metric tests of isotropy for gridded and nongridded
data in the spectral domain. A fourth area of further in-
vestigation is to compare nonparametric to parametric
methods for testing isotropy, for example, Scaccia and
Martin (2011). A final area of future work is develop-
ment of a formal definition and more careful quantifi-
cation of power of the tests. For example, the degree of
geometric anisotropy could be quantified using differ-
ent characteristics of the covariance function, including
the ratio of the major and minor axes of the ellipse, de-
gree of rotation of the ellipse from the coordinate axes,
and range of the process. Furthermore, it is important
to consider the effects of density and design of sam-
pling locations, sample size and the amount of noise
(nugget and sill) in the observations on a test’s ability
to detect anisotropy.

There is a volume of work on tests for isotropy in
other areas of spatial statistics. Methods for detect-
ing anisotropy in spatial point process data have been
developed, for example, Schabenberger and Gotway
(2004), pages 200–205, Guan (2003), Guan, Sherman
and Calvin (2006) and Nicolis, Mateu and D’Ercole
(2010). For multivariate spatial data, Jona-Lasinio
(2001) proposes a test for isotropy. Gneiting, Gen-
ton and Guttorp (2007) provide a review of potential
second order assumptions and models for spatiotem-
poral geostatistical data, and a number of tests for
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second order properties of spatiotemporal data have
been developed, for example, Fuentes (2006), Li, Gen-
ton and Sherman (2007), Park and Fuentes (2008),
Shao and Li (2009), Jun and Genton (2012). Li, Gen-
ton and Sherman (2008a) construct a test of the co-
variance structure for multivariate spatiotemporal data.
Tests for isotropy have also been developed in the com-
puter science literature (e.g., Molina and Feito, 2002,
Chorti and Hristopulos, 2008, Spiliopoulos et al., 2011,
Thon, Geilhufe and Percival, 2015).

Appropriately specifying the second order proper-
ties of the random field is an important step in mod-
eling spatial data, and a number of models have been
developed to capture anisotropy in spatial processes.
Graphical tools, such as directional sample semivari-
ograms, are commonly used to evaluate the assump-
tion of isotropy, but these diagnostics can be mislead-
ing and open to subjective interpretation. We have pre-
sented and reviewed a number of procedures that can
be used to more objectively test hypotheses of isotropy
and symmetry without assuming a parametric form for
the covariance function. These tests may be helpful
for a novice user deciding on an appropriate spatial
model. In abandoning parametric assumptions, these
hypothesis testing procedures are subject and sensitive
to choices regarding smoothing parameters, subsam-
pling procedures and finite sample adjustments. The
test that is most appropriate for a set of data will largely
depend on the sampling design. Additionally, there are
trade-offs between the empirical power demonstrated
by the tests and the number of choices the user must
make to implement the tests (e.g., between Guan, Sher-
man and Calvin, 2004 and Maity and Sherman, 2012).
We have offered recommendations regarding the var-
ious choices of method and their implementation and
have made the tests available in the spTest software.
Because of the sensitivity of the tests to the various
choices, we believe that graphical techniques and non-
parametric hypothesis tests should be used in a comple-
mentary role. Graphical techniques can provide an ini-
tial indication of isotropy properties and inform sensi-
ble choices for a hypothesis test, for example, in choos-
ing the spatial lag set, while hypothesis tests can affirm
intuition about graphical techniques.

APPENDIX: SIMULATION STUDY DETAILS AND
FURTHER RESULTS

We define the isotropic exponential covariance func-
tion as

C(h) =
{

σ 2 exp(−φh) if h > 0,

τ 2 + σ 2 otherwise,
(A.1)

where h = ‖si − sj‖ is the distance between sites
si and sj (Irvine, Gitelman and Hoeting, 2007). The
corresponding semivariogram is γ (h) = (τ 2 + σ 2) −
σ 2 exp(−φh), where τ 2 is the nugget, τ 2 + σ 2 is the
sill, and the effective range, ξ , the distance beyond
which the correlation between observations is less than
0.05, is

ξ = −1

φ
log

(
0.05

τ 2 + σ 2

σ 2

)
.

Simulations in Section 4 were performed using the ex-
ponential covariance function (A.1) with a partial sill,
σ 2, of 1 and no nugget, τ 2 = 0. We also performed
simulations using different nugget values (results not
included). Introducing a nugget led to decreased em-
pirical test size and power. For the no nugget simu-
lations, we chose the effective range, ξ , for isotropic
processes to be 3, 6 and 12, corresponding to short-,
medium- and long-range dependence. We introduce
geometric anisotropy by transforming the sampling lo-
cations according to a scaling parameter, R, and a rota-
tion parameter, θ . Given an (R, θ) pair, the coordinates
(x, y) are transformed to the anisotropic coordinates,
(xa, ya), via

(xa, ya) = (x, y)

[
cos θ sin θ

− sin θ cos θ

][
1 0
0 1

R

]
.

A realization from the anisotropic process is then cre-
ated by simulating using the distance matrix from the
transformed coordinates and placing the observed val-
ues at their corresponding untransformed sampling lo-
cations. Figure 5 shows the isotropic exponential cor-
relogram corresponding to τ 2 = 1 and ξ = 6 and con-
tours of equicorrelation corresponding to the (R, θ)

values used in the simulation study. Note that R = 0
and θ = 0 corresponds to an isotropic process and a
larger value of R corresponds to a more anisotropic
process.

For the simulations comparing the GSC-g and LZ
tests in Table 5, data were simulated on a subset of the
integer grid, Z2. The p-values for the GSC-g test were
approximated using a finite sample statistic (Guan,
Sherman and Calvin, 2004), and we used the lag set
in (3.2) and A matrix in (3.3). For the results involv-
ing the LZ test, a test of complete symmetry was per-
formed as an approximation to the null hypothesis of
isotropy. The p-values for the LZ test were obtained
using the CvM* statistic. A nominal level of α = 0.05
was maintained by first testing reflection symmetry at
α = 0.025, then testing complete symmetry at α =
0.025 if the hypothesis of reflection symmetry was not
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FIG. 5. Correlogram and contours of equal correlation for
the covariance models used in the simulation study. Note that
R = 0, θ = 0 corresponds to an isotropic covariance function.

rejected. For the GSC-g test, the moving window di-
mensions were 3 × 2 (width, height) and 5 × 3 for the
parent grids of 18 × 12 and 25 × 15, respectively.

For the simulations in Table 6 comparing the GSC-u
and MS tests, we simulated data at random, uniformly
distributed sampling locations on 10 × 16 and 10 × 20
sampling domains. The lag set, �, used for both tests is
given in (3.2) with A matrix (3.3), and the p-values for
both methods were obtained using the asymptotic χ2

2
distribution. For semivariogram estimates in GSC-u,
we use independent (product) Gaussian (normal) ker-
nels with a truncation parameter of 1.5. The bandwidth
for the Gaussian kernel for smoothing over lags on the
entire field and on moving windows was chosen as
w = 0.75. We used the empirical bandwidth and the
product Epanechnikov kernel given in Maity and Sher-
man (2012) to implement the MS test. For both tests, a
grid with spacing of 1 was laid on the sampling region.
Using this grid, the moving window dimensions for the
GSC-u test were 4 × 2 and the block size for the MS
test was 4 × 2. For the MS test, B = 100 resamples
using the GBBB were used to estimate the asymptotic
variance–covariance matrix.

For the results in Tables 7–9, we simulated mean
0, Gaussian RFs with exponential covariance function
with no nugget, a sill of one, and medium effective

TABLE 5
Empirical size and power for Guan, Sherman and Calvin (2004)

(denoted GSC-g) and Lu and Zimmerman (2005) (denoted LZ) for
1000 realizations of a mean 0 GRF with gridded sampling

locations using a nominal level of α = 0.05. Computational time
for each method is also included

Effective range

R θ Method 3 6 12

(a) Sample size of n = 216 gridded sampling locations
18 cols × 12 rows grid

0 0 GSC-g 0.04 0.05 0.05
LZ 0.05 0.08 0.05

√
2 0 GSC-g 0.29 0.37 0.36

LZ 0.07 0.09 0.09

2 0 GSC-g 0.82 0.86 0.87
LZ 0.17 0.15 0.15

√
2 3π

8 GSC-g 0.25 0.27 0.29
LZ 0.10 0.12 0.12

2 3π
8 GSC-g 0.75 0.78 0.80

LZ 0.29 0.31 0.31

Computational time for 1 test
GSC-g 1.11 seconds
LZ 1.45 seconds

(b) Sample size of n = 375 gridded sampling locations
25 cols × 15 rows grid

0 0 GSC-g 0.05 0.06 0.06
LZ 0.06 0.06 0.08

√
2 0 GSC-g 0.59 0.63 0.63

LZ 0.08 0.10 0.09

2 0 GSC-g 0.98 0.99 0.98
LZ 0.17 0.15 0.15

√
2 3π

8 GSC-g 0.51 0.52 0.54
LZ 0.13 0.16 0.17

2 3π
8 GSC-g 0.96 0.97 0.98

LZ 0.40 0.43 0.46

Computational time for 1 test
GSC-g 7.29 seconds
LZ 4.99 seconds

range (ξ = 6). Sampling locations were generated ran-
domly and uniformly over a 16 × 10 sampling domain.
We use the lag set and A matrix from (3.2) and (3.3),
respectively, unless otherwise noted. All tests were per-
formed using a nominal level of α = 0.05. For the
GSC-u tests, we use product Gaussian kernels with a
truncation parameter of 1.5. For the MS tests, we use
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TABLE 6
Empirical size and power for Guan, Sherman and Calvin (2004)

(denoted GSC-u) and Maity and Sherman (2012) (denoted MS) for
1000 realizations of a mean 0 GRF with uniformly distributed

sampling locations using a nominal level of α = 0.05.
Computational time for each method is also included

Effective range

R θ Method 3 6 12

(a) Sample size of n = 300 uniformly distributed sampling locations
16 width × 10 height domain

0 0 GSC-u 0.02 0.03 0.04
MS 0.04 0.04 0.04

√
2 0 GSC-u 0.10 0.19 0.19

MS 0.08 0.06 0.05

2 0 GSC-u 0.43 0.50 0.53
MS 0.21 0.13 0.13

√
2 3π

8 GSC-u 0.10 0.16 0.16
MS 0.11 0.06 0.05

2 3π
8 GSC-u 0.37 0.48 0.51

MS 0.27 0.18 0.16

Computational time for 1 test
GSC-u 2.17 seconds
MS 83.40 seconds

(b) Sample size of n = 450 uniformly distributed sampling locations
20 width × 10 height domain

0 0 GSC-u 0.02 0.03 0.05
MS 0.04 0.04 0.02

√
2 0 GSC-u 0.13 0.22 0.24

MS 0.10 0.07 0.05

2 0 GSC-u 0.57 0.65 0.69
MS 0.29 0.19 0.16

√
2 3π

8 GSC-u 0.13 0.18 0.23
MS 0.13 0.09 0.06

2 3π
8 GSC-u 0.53 0.64 0.67

MS 0.38 0.26 0.21

Computational time for 1 test
GSC-u 4.44 seconds
MS 162.35 seconds

the default product Epanechnikov kernels with empiri-
cal bandwidth specified in Maity and Sherman (2012).

The simulation results in Table 7 demonstrate the ef-
fects of changing the set of lags for the GSC-u and
MS tests. For these simulations, the lag set labeled
“regular” corresponds to the lag set given in (3.2).
The lag set labeled “long” represents the lags in (3.2)

TABLE 7
Effects of changing the lag set. Empirical size and power for

Guan, Sherman and Calvin (2004) (denoted GSC-u) and Maity
and Sherman (2012) (MS) for 500 realizations of a mean 0 GRF
with n = 400 uniformly distributed sampling locations. The label

“regular” corresponds to the lag set in (3.2), while “long”
represents using longer lags, and “more” denotes using more lags

(see Figure 6). Domain is 16 width × 10 height

Lag set

R θ Method Regular Long More

0 0 GSC-u 0.03 0.02 0.03
MS 0.02 0.18 0.03

√
2 3π

8 GSC-u 0.18 0.07 0.13
MS 0.10 0.23 0.08

2 3π
8 GSC-u 0.56 0.19 0.51

MS 0.24 0.38 0.22

multiplied by 2.5. Finally, the lag set labeled “more”
stands for the lags in (3.2) with the additional pair
of lags {h5 = (1.132,0.469),h6 = (−0.469,1.132)}.
The lags h5 and h6 are a pair of lags that create ap-
proximate 22.5◦ and 112.5◦ angles, respectively, with
the x-axis (counterclockwise rotation), and have Eu-
clidean length of approximately 1.22. These were cho-
sen to supplement the lag pairs (h1,h2), which have
unit length and create 0◦ and 90◦ angles with the x-
axis, and (h3,h4), which have length

√
2 ≈ 1.41 and

create 45◦ and 135◦ angles with the x-axis. The lag sets
are plotted in Figure 6. The A matrix for the “more”
lag set was constructed as in (3.3), where orthogo-

TABLE 8
Effects of changing the window/block size. Empirical size and

power for Guan, Sherman and Calvin (2004) (denoted GSC-u) and
Maity and Sherman (2012) (MS) for 500 realizations of a mean 0
GRF with n = 300 uniformly distributed sampling locations. The
label “medium” corresponds to the window/block size of 4 × 2,
while “small” represents using a smaller window, and “large”
denotes using a larger window. Domain is 16 width × 10 height

Window/Block size

R θ Method Regular Long More

0 0 GSC-u 0.05 0.04 0.01
MS 0.03 0.04 0.04

√
2 0 GSC-u 0.17 0.13 0.04

MS 0.06 0.07 0.08

2 0 GSC-u 0.58 0.53 0.23
MS 0.20 0.20 0.22
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TABLE 9
Effects of changing bandwidth. Empirical size and power for
Guan, Sherman and Calvin (2004) (denoted GSC-u) for 500

realizations of a mean 0 GRF with n = 400 uniformly distributed
sampling locations using a nominal level of α = 0.05. Domain is

16 width × 10 height

Effective range

R θ Bandwidth 3 6 12

(a) p-value: asymptotic χ2 distribution

0 0 0.65 0.00 0.00 0.01
0.75 0.02 0.04 0.06
0.85 0.07 0.13 0.14

√
2 0 0.65 0.02 0.05 0.08

0.75 0.12 0.20 0.23
0.85 0.26 0.34 0.38

2 0 0.65 0.18 0.24 0.29
0.75 0.51 0.60 0.62
0.85 0.67 0.72 0.75

√
2 3π

8 0.65 0.03 0.04 0.03
0.75 0.14 0.17 0.21
0.85 0.24 0.32 0.40

2 3π
8 0.65 0.16 0.23 0.27

0.75 0.46 0.55 0.57
0.85 0.63 0.74 0.74

(b) p-value: finite sample

0 0 0.65 0.01 0.03 0.05
0.75 0.03 0.07 0.08
0.85 0.06 0.09 0.11

√
2 0 0.65 0.09 0.17 0.19

0.75 0.18 0.27 0.32
0.85 0.24 0.31 0.37

2 0 0.65 0.42 0.51 0.50
0.75 0.63 0.65 0.68
0.85 0.65 0.71 0.73

√
2 3π

8 0.65 0.11 0.11 0.16
0.75 0.19 0.20 0.30
0.85 0.23 0.27 0.37

2 3π
8 0.65 0.36 0.45 0.46

0.75 0.53 0.61 0.61
0.85 0.58 0.68 0.67

nal lags are contrasted. The p-values were calculated
using the asymptotic χ2 distribution with degrees of
freedom based on the number of pairs of lags con-
trasted. For the GSC-u method, we used a bandwidth
of 0.75. The moving window dimensions were 4 × 2.
For the MS method, we chose block dimensions of 4 ×

FIG. 6. The lag sets used for the simulations in Table 7.

2 and used B = 75 resamples using the GBBB to esti-
mate the asymptotic variance–covariance matrix. Ta-
ble 8 demonstrates the effects of changing the block
size for the GSC-u and MS tests. For these simula-
tions, the labels “small,” “medium” and “large” cor-
respond to moving windows/blocks of size 3×2, 4×2
and 5 × 3, respectively. Because we simulated n = 300
uniformly distributed sampling locations on a 16 × 10
domain, we expect 1.875 sampling locations per unit
area. Thus, we expect nb = 11.3, 15 and 28.1 points per
block for the small, medium and large block sizes, re-
spectively. We find that the methods tend to have nomi-
nal size when nb ≈ n1/2 = 17.3. For both tests, we used
the lags in (3.2), and the blocks are defined by a grid
with spacing 0.5 placed on the sampling region (i.e., a
4×2 window is achieved by setting the window dimen-
sions to 8 × 4 in the spTest software). We performed
the tests using a nominal level of α = 0.05, and the p-
values were calculated using the asymptotic χ2 distri-
bution. For the GSC-u method, we used a bandwidth of
0.75. For the MS method, we used B = 100 resamples
using the GBBB to estimate the asymptotic variance–
covariance matrix. Finally, Table 9 demonstrates the
effects of changing the bandwidth for the GSC-u test.
We use bandwidths of w = 0.65, 0.75 and 0.85. The p-
values are calculated using both the asymptotic χ2 dis-
tribution and using a finite sample adjustment similar
to the one used by Guan, Sherman and Calvin (2004)
for gridded sampling locations.

ACKNOWLEDGMENTS

The authors would like to thank Peter Guttorp and
Alexandra Schmidt for organizing the Pan-American



NONPARAMETRIC HYPOTHESIS TESTS OF ISOTROPY 323

Advanced Study Institute (PASI) on spatiotemporal
statistics in June 2014 which inspired this work. Weller
supported in part by the National Science Foundation
Research Network on Statistics in the Atmospheric and
Ocean Sciences (STATMOS) (DMS-1106862). Hoet-
ing supported in part by the National Science Founda-
tion (AGS-1419558).

REFERENCES

BACZKOWSKI, A. J. (1990). A test of spatial isotropy. In Compstat
277–282. Springer, Berlin.

BACZKOWSKI, A. J. and MARDIA, K. V. (1987). Approxi-
mate lognormality of the sample semivariogram under a Gaus-
sian process. Comm. Statist. Simulation Comput. 16 571–585.
MR0903164

BACZKOWSKI, A. J. and MARDIA, K. V. (1990). A test of spa-
tial symmetry with general application. Comm. Statist. Theory
Methods 19 555–572. MR1067588

BANDYOPADHYAY, S., LAHIRI, S. N. and NORDMAN, D. J.
(2015). A frequency domain empirical likelihood method for
irregularly spaced spatial data. Ann. Statist. 43 519–545.
MR3316189

BANERJEE, S., CARLIN, B. P. and GELFAND, A. E. (2014). Hi-
erarchical Modeling and Analysis for Spatial Data. CRC Press,
Boca Raton, FL.

BORGMAN, L. and CHAO, L. (1994). Estimation of a multidimen-
sional covariance function in case of anisotropy. Math. Geol. 26
161–179. MR1267007

BOWMAN, A. W. and AZZALINI, A. (2014). R package sm: Non-
parametric smoothing methods (version 2.2-5.4), Univ. Glas-
gow, UK and Univ. di Padova, Italia.

BOWMAN, A. W. and CRUJEIRAS, R. M. (2013). Inference for
variograms. Comput. Statist. Data Anal. 66 19–31. MR3064021

CABAÑA, E. M. (1987). Affine processes: A test of isotropy based
on level sets. SIAM J. Appl. Math. 47 886–891. MR0898839

CHORTI, A. and HRISTOPULOS, D. T. (2008). Nonparametric
identification of anisotropic (elliptic) correlations in spatially
distributed data sets. IEEE Trans. Signal Process. 56 4738–
4751. MR2517209

CRESSIE, N. A. C. (1993). Statistics for Spatial Data. Wiley, New
York. MR1239641

ECKER, M. D. and GELFAND, A. E. (1999). Bayesian modeling
and inference for geometrically anisotropic spatial data. Math.
Geol. 31 67–83.

ECKER, M. D. and GELFAND, A. E. (2003). Spatial modeling and
predication under stationary non-geometric range anisotropy.
Environ. Ecol. Stat. 10 165–178. MR1982482

FUENTES, M. (2005). A formal test for nonstationarity of spa-
tial stochastic processes. J. Multivariate Anal. 96 30–54.
MR2202399

FUENTES, M. (2006). Testing for separability of spatial–temporal
covariance functions. J. Statist. Plann. Inference 136 447–466.
MR2211349

FUENTES, M. (2007). Approximate likelihood for large irregu-
larly spaced spatial data. J. Amer. Statist. Assoc. 102 321–331.
MR2345545

FUENTES, M. (2013). Spectral methods. Wiley StatsRef: Statistics
Reference Online.

FUENTES, M. and REICH, B. (2010). Spectral domain. In Hand-
book of Spatial Statistics 55–77. CRC Press, Boca Raton, FL.

GARCÍA-SOIDÁN, P. (2007). Asymptotic normality of the
Nadaraya–Watson semivariogram estimators. TEST 16 479–
503. MR2365173

GARCÍA-SOIDÁN, P. H., FEBRERO-BANDE, M. and GONZÁLEZ-
MANTEIGA, W. (2004). Nonparametric kernel estimation of
an isotropic variogram. J. Statist. Plann. Inference 121 65–92.
MR2027716

GNEITING, T., GENTON, M. and GUTTORP, P. (2007). Geostatis-
tical space–time models, stationarity, separability and full sym-
metry. In Statistical Methods for Spatio-Temporal Systems 151–
175. Chapman & Hall/CRC Press, Boca Raton, FL.

GUAN, Y., SHERMAN, M. and CALVIN, J. A. (2004). A non-
parametric test for spatial isotropy using subsampling. J. Amer.
Statist. Assoc. 99 810–821. MR2090914

GUAN, Y., SHERMAN, M. and CALVIN, J. A. (2006). Assess-
ing isotropy for spatial point processes. Biometrics 62 119–125,
316. MR2226564

GUAN, Y., SHERMAN, M. and CALVIN, J. A. (2007). On
asymptotic properties of the mark variogram estimator of a
marked point process. J. Statist. Plann. Inference 137 148–161.
MR2292847

GUAN, Y. T. (2003). Nonparametric methods of assessing spatial
isotropy. Ph.D. thesis, Texas A&M Univ., College Station, TX.

HALL, P. and PATIL, P. (1994). Properties of nonparametric esti-
mators of autocovariance for stationary random fields. Probab.
Theory Related Fields 99 399–424. MR1283119

HASKARD, K. A. (2007). An anisotropic Matérn spatial covari-
ance model: REML estimation and properties. Ph.D. thesis,
Univ. Adelaide.

IRVINE, K. M., GITELMAN, A. I. and HOETING, J. A. (2007).
Spatial designs and properties of spatial correlation: Effects on
covariance estimation. J. Agric. Biol. Environ. Stat. 12 450–469.
MR2405534

ISAAKS, E. H. and SRIVASTAVA, R. M. (1989). Applied Geo-
statistics, Vol. 2. Oxford Univ. Press, New York.

JONA-LASINIO, G. (2001). Modeling and exploring multivariate
spatial variation: A test procedure for isotropy of multivariate
spatial data. J. Multivariate Anal. 77 295–317. MR1838690

JOURNEL, A. G. and HUIJBREGTS, C. J. (1978). Mining Geo-
statistics. Academic Press, New York.

JUN, M. and GENTON, M. G. (2012). A test for stationarity of
spatio-temporal random fields on planar and spherical domains.
Statist. Sinica 22 1737–1764. MR3027105

KIM, T. Y. and PARK, J. (2012). On nonparametric variogram es-
timation. J. Korean Statist. Soc. 41 399–413. MR3255345

LAHIRI, S. N. (2003). Resampling Methods for Dependent Data.
Springer, New York. MR2001447

LAHIRI, S. N. and ZHU, J. (2006). Resampling methods for spa-
tial regression models under a class of stochastic designs. Ann.
Statist. 34 1774–1813. MR2283717

LI, B., GENTON, M. G. and SHERMAN, M. (2007). A nonpara-
metric assessment of properties of space–time covariance func-
tions. J. Amer. Statist. Assoc. 102 736–744. MR2370863

LI, B., GENTON, M. G. and SHERMAN, M. (2008a). Testing the
covariance structure of multivariate random fields. Biometrika
95 813–829. MR2461213

LI, B., GENTON, M. G. and SHERMAN, M. (2008b). On the
asymptotic joint distribution of sample space–time covariance
estimators. Bernoulli 14 228–248. MR2401661

http://www.ams.org/mathscinet-getitem?mr=0903164
http://www.ams.org/mathscinet-getitem?mr=1067588
http://www.ams.org/mathscinet-getitem?mr=3316189
http://www.ams.org/mathscinet-getitem?mr=1267007
http://www.ams.org/mathscinet-getitem?mr=3064021
http://www.ams.org/mathscinet-getitem?mr=0898839
http://www.ams.org/mathscinet-getitem?mr=2517209
http://www.ams.org/mathscinet-getitem?mr=1239641
http://www.ams.org/mathscinet-getitem?mr=1982482
http://www.ams.org/mathscinet-getitem?mr=2202399
http://www.ams.org/mathscinet-getitem?mr=2211349
http://www.ams.org/mathscinet-getitem?mr=2345545
http://www.ams.org/mathscinet-getitem?mr=2365173
http://www.ams.org/mathscinet-getitem?mr=2027716
http://www.ams.org/mathscinet-getitem?mr=2090914
http://www.ams.org/mathscinet-getitem?mr=2226564
http://www.ams.org/mathscinet-getitem?mr=2292847
http://www.ams.org/mathscinet-getitem?mr=1283119
http://www.ams.org/mathscinet-getitem?mr=2405534
http://www.ams.org/mathscinet-getitem?mr=1838690
http://www.ams.org/mathscinet-getitem?mr=3027105
http://www.ams.org/mathscinet-getitem?mr=3255345
http://www.ams.org/mathscinet-getitem?mr=2001447
http://www.ams.org/mathscinet-getitem?mr=2283717
http://www.ams.org/mathscinet-getitem?mr=2370863
http://www.ams.org/mathscinet-getitem?mr=2461213
http://www.ams.org/mathscinet-getitem?mr=2401661


324 Z. D. WELLER AND J. A. HOETING

LU, H. (1994). On the distributions of the sample covariogram and
semivariogram and their use in testing for isotropy. Ph.D. thesis,
Univ. Iowa.

LU, H. and ZIMMERMAN, D. L. (2001). Testing for isotropy
and other directional symmetry properties of spatial correlation.
Preprint.

LU, N. and ZIMMERMAN, D. L. (2005). Testing for direc-
tional symmetry in spatial dependence using the periodogram.
J. Statist. Plann. Inference 129 369–385. MR2126855

MAITY, A. and SHERMAN, M. (2012). Testing for spatial isotropy
under general designs. J. Statist. Plann. Inference 142 1081–
1091. MR2879753

MATHERON, G. (1961). Precision of exploring a stratified forma-
tion by boreholes with rigid spacing-application to a bauxite de-
posit. In International Symposium of Mining Research, Univer-
sity of Missouri, Vol. 1 (G. B. Clark, ed.) 407–22. Pergamon
Press, Oxford.

MATHERON, G. (1962). Traité de géostatistique appliquée 1. Tech-
nip, Paris.

MATSUDA, Y. and YAJIMA, Y. (2009). Fourier analysis of irregu-
larly spaced data on R

d . J. R. Stat. Soc. Ser. B. Stat. Methodol.
71 191–217. MR2655530

MODJESKA, J. S. and RAWLINGS, J. O. (1983). Spatial correla-
tion analysis of uniformity data. Biometrics 373–384.

MOLINA, A. and FEITO, F. R. (2002). A method for testing
anisotropy and quantifying its direction in digital images. Com-
puters & Graphics 26 771–784.

NADARAYA, E. A. (1964). On estimating regression. Theory of
Probability & Its Applications 9 141–142.

NICOLIS, O., MATEU, J. and D’ERCOLE, R. (2010). Testing for
anisotropy in spatial point processes. In Proceedings of the Fifth
International Workshop on Spatio-Temporal Modelling 1990–
2010. Publisher Unidixital, Santiago de Compostela.

PAGANO, M. (1971). Some asymptotic properties of a two-
dimensional periodogram. J. Appl. Probab. 8 841–847.
MR0292247

PARK, M. S. and FUENTES, M. (2008). Testing lack of symmetry
in spatial–temporal processes. J. Statist. Plann. Inference 138
2847–2866. MR2526214

POLITIS, D. N. and SHERMAN, M. (2001). Moment estimation
for statistics from marked point processes. J. R. Stat. Soc. Ser. B.
Stat. Methodol. 63 261–275. MR1841414

POSSOLO, A. (1991). Subsampling a random field. In Spatial
Statistics and Imaging (Brunswick, ME, 1988). Institute of
Mathematical Statistics Lecture Notes—Monograph Series 20
286–294. IMS, Hayward, CA. MR1195571

PRIESTLEY, M. B. (1981). Spectral Analysis and Time Series. Aca-
demic Press, New York.

PRIESTLEY, M. B. and SUBBA RAO, T. (1969). A test for non-
stationarity of time-series. J. R. Stat. Soc. Ser. B. Stat. Methodol.
31 140–149. MR0269062

R CORE TEAM (2014). R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vi-
enna, Austria.

SCACCIA, L. and MARTIN, R. J. (2002). Testing for simplifica-
tion in spatial models. In COMPSTAT 2002 (Berlin) 581–586.
Physica, Heidelberg. MR1986584

SCACCIA, L. and MARTIN, R. J. (2005). Testing axial symmetry
and separability of lattice processes. J. Statist. Plann. Inference
131 19–39. MR2136004

SCACCIA, L. and MARTIN, R. J. (2011). Model-based tests for
simplification of lattice processes. J. Stat. Comput. Simul. 81
89–107. MR2747380

SCHABENBERGER, O. and GOTWAY, C. A. (2004). Statistical
Methods for Spatial Data Analysis. CRC Press, Boca Raton,
FL.

SHAO, X. and LI, B. (2009). A tuning parameter free test for prop-
erties of space–time covariance functions. J. Statist. Plann. In-
ference 139 4031–4038. MR2558347

SHERMAN, M. (1996). Variance estimation for statistics computed
from spatial lattice data. J. R. Stat. Soc. Ser. B. Stat. Methodol.
58 509–523. MR1394363

SHERMAN, M. (2011). Spatial Statistics and Spatio-Temporal
Data: Covariance Functions and Directional Properties. Wiley,
Chichester. MR2815783

SPILIOPOULOS, I., HRISTOPULOS, D. T., PETRAKIS, M. P. and
CHORTI, A. (2011). A multigrid method for the estimation of
geometric anisotropy in environmental data from sensor net-
works. Computers & Geosciences 37 320–330.

STEIN, M. L. (1988). Asymptotically efficient prediction of a ran-
dom field with a misspecified covariance function. Ann. Statist.
16 55–63. MR0924856

STEIN, M. L., CHI, Z. and WELTY, L. J. (2004). Approximating
likelihoods for large spatial data sets. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 66 275–296. MR2062376

THON, K., GEILHUFE, M. and PERCIVAL, D. B. (2015). A mul-
tiscale wavelet-based test for isotropy of random fields on
a regular lattice. IEEE Trans. Image Process. 24 694–708.
MR3301263

VAN HALA, M., BANDYOPADHYAY, S., LAHIRI, S. N. and
NORDMAN, D. J. (2014). A frequency domain empirical like-
lihood for estimation and testing of spatial covariance structure.
Preprint.

VECCHIA, A. V. (1988). Estimation and model identification
for continuous spatial processes. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 50 297–312. MR0964183

WATSON, G. S. (1964). Smooth regression analysis. Sankhyā
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